JP6710155B2 - Power semiconductor module and method of manufacturing power semiconductor module - Google Patents

Power semiconductor module and method of manufacturing power semiconductor module Download PDF

Info

Publication number
JP6710155B2
JP6710155B2 JP2016254758A JP2016254758A JP6710155B2 JP 6710155 B2 JP6710155 B2 JP 6710155B2 JP 2016254758 A JP2016254758 A JP 2016254758A JP 2016254758 A JP2016254758 A JP 2016254758A JP 6710155 B2 JP6710155 B2 JP 6710155B2
Authority
JP
Japan
Prior art keywords
cooler
substrate
semiconductor chip
bonding material
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016254758A
Other languages
Japanese (ja)
Other versions
JP2018107367A (en
Inventor
肇 津久井
肇 津久井
琢也 大内
琢也 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2016254758A priority Critical patent/JP6710155B2/en
Publication of JP2018107367A publication Critical patent/JP2018107367A/en
Application granted granted Critical
Publication of JP6710155B2 publication Critical patent/JP6710155B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、パワー半導体モジュールに関するものである。 The present invention relates to a power semiconductor module.

例えば、特許文献1には、放熱機能を有する熱伝導器(冷却器)に絶縁層を形成し、絶縁層の上に電力半導体チップ(半導体チップ)を搭載した電力用半導体モジュール(パワー半導体モジュール)が開示されている。特許文献1の電力用半導体モジュールは、絶縁層と半導体チップとがハンダ(接合材)により接合され、絶縁層と熱伝導器とが銅材(接合材)により接合されている。また、特許文献1には、熱伝導器が複数の面において電力用半導体モジュールを搭載する構成が開示されている。 For example, in Patent Document 1, a power semiconductor module (power semiconductor module) in which an insulating layer is formed on a heat conductor (cooler) having a heat dissipation function and a power semiconductor chip (semiconductor chip) is mounted on the insulating layer Is disclosed. In the power semiconductor module of Patent Document 1, the insulating layer and the semiconductor chip are bonded by solder (bonding material), and the insulating layer and the heat conductor are bonded by copper material (bonding material). In addition, Patent Document 1 discloses a configuration in which a heat conductor mounts a power semiconductor module on a plurality of surfaces.

特開平10−284685号公報JP, 10-284685, A

熱伝導器の複数の面に半導体チップを接合する場合において、先に第1面に半導体チップを接合した後に、第2面に半導体チップを接合する作業が必要となる。特許文献1では、熱伝導器の複数の面に半導体チップを搭載する場合でも、全ての面において同一の接合材を用いている。このため、冷却器の第2面に接合する際に、加熱炉の熱が第1面にも伝わり、先に第1面に接合された基板の接合材が再溶融し、第1面における半導体チップ及び基板が剥離する可能性がある。 When bonding semiconductor chips to a plurality of surfaces of the heat conductor, it is necessary to first bond the semiconductor chips to the first surface and then bond the semiconductor chips to the second surface. In Patent Document 1, even when semiconductor chips are mounted on a plurality of surfaces of the heat conductor, the same bonding material is used on all the surfaces. Therefore, when joining the second surface of the cooler, the heat of the heating furnace is also transferred to the first surface, and the joining material of the substrate previously joined to the first surface is remelted, and the semiconductor on the first surface The chip and the substrate may peel off.

本発明は、上述する問題点に鑑みてなされたもので、パワー半導体モジュールの製造工程において、半導体チップの接合性を確保することを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object thereof is to ensure the bondability of a semiconductor chip in a manufacturing process of a power semiconductor module.

上記目的を達成するために、本発明では、第1の手段として、伝熱面として第1面及び第2面を有する冷却器と、所定の溶融温度で溶融する第1接合材により第1半導体チップが接合されると共に、上記冷却器の第1面に接合される第1基板と、上記第1接合材と溶融温度が異なる第2接合材により第2半導体チップが接合されると共に上記冷却器の第2面に接合される第2基板とを備え、上記第1半導体チップは、上記第2半導体チップよりも発熱量が大きく、上記第1接合材は、上記第2接合材より熱伝導率が高く設定される、という構成を採用する。 In order to achieve the above object, in the present invention, as a first means, a cooler having a first surface and a second surface as heat transfer surfaces and a first bonding material that melts at a predetermined melting temperature are used to form a first semiconductor. The chips are joined together, the first substrate joined to the first surface of the cooler, and the second semiconductor chip joined together by the second joining material having a melting temperature different from that of the first joining material and the cooler. A second substrate bonded to the second surface of the first semiconductor chip, the first semiconductor chip has a larger heat generation amount than the second semiconductor chip, and the first bonding material has a thermal conductivity higher than that of the second bonding material. Is set to be high.

第2の手段として、上記第1の手段において、上記第1接合材は、銀焼結材であり、上記第2接合材は、ハンダである、という構成を採用する。 As a second means, in the first means, the first bonding material is a silver sintered material and the second bonding material is solder.

本発明によれば、第1接合材と、第2接合材とで溶融温度が異なっている。先に、一方の伝熱面において溶融温度が高い方の接合材を用いて基板を冷却器に接合し、次に、他方の伝熱面において溶融温度が低い方の接合材を用いて基板を冷却器に接合することにより、溶融温度が低い方の接合材による接合工程において、溶融温度が高い方の接合材が再溶融することがない。 According to the present invention, the first joining material and the second joining material have different melting temperatures. First, the substrate is joined to the cooler by using the joining material with the higher melting temperature on one heat transfer surface, and then the substrate is joined with the joining material with the lower melting temperature on the other heat transfer surface. By joining to the cooler, the joining material having the higher melting temperature will not be re-melted in the joining process using the joining material having the lower melting temperature.

本発明の一実施形態に係るパワー半導体モジュールが備える電力変換装置の断面を示す模式図である。It is a schematic diagram which shows the cross section of the power converter device with which the power semiconductor module which concerns on one Embodiment of this invention is equipped.

以下、図面を参照して、本発明の一実施形態に係るパワー半導体モジュールの一実施形態について説明する。なお、以下の図面において、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。図1は、本実施形態に係るパワー半導体モジュールが備える電力変換装置1の断面を示す模式図である。 An embodiment of a power semiconductor module according to an embodiment of the present invention will be described below with reference to the drawings. In the following drawings, the scale of each member is appropriately changed in order to make each member recognizable. FIG. 1 is a schematic diagram showing a cross section of a power conversion device 1 included in a power semiconductor module according to this embodiment.

本実施形態におけるパワー半導体モジュールは、電力変換装置1を備えている。電力変換装置1は、図1に示すように、冷却器2と、第1電子基板ユニット3と、第2電子基板ユニット4とを備えている。
冷却器2は、天板部2aと、天板部2aに対向する底板部2bと、天板部2aと底板部2bとの間に設けられる放熱部2cとを有している。放熱部2cは、天板部2a及び底板部2bに垂直となるように複数の放熱フィンが立設されており、放熱フィンの間を水が通過することにより、放熱フィンの表面から熱を逃がしている。冷却器2は、第1電子基板ユニット3及び第2電子基板ユニット4の熱を放熱フィンから放熱することにより、第1電子基板ユニット3及び第2電子基板ユニット4を冷却する水冷ジャケットである。
The power semiconductor module according to the present embodiment includes the power conversion device 1. As shown in FIG. 1, the power conversion device 1 includes a cooler 2, a first electronic board unit 3, and a second electronic board unit 4.
The cooler 2 includes a top plate portion 2a, a bottom plate portion 2b facing the top plate portion 2a, and a heat radiating portion 2c provided between the top plate portion 2a and the bottom plate portion 2b. The heat radiating portion 2c has a plurality of heat radiating fins standing upright so as to be perpendicular to the top plate portion 2a and the bottom plate portion 2b. When water passes between the heat radiating fins, heat is released from the surface of the heat radiating fins. ing. The cooler 2 is a water cooling jacket that cools the first electronic board unit 3 and the second electronic board unit 4 by radiating the heat of the first electronic board unit 3 and the second electronic board unit 4 from the radiation fins.

第1電子基板ユニット3は、冷却器2の伝熱面である天板部2aの外面(第1面)に複数(本実施形態においては3つ)設けられ、第1基板3aと、第1半導体チップ3bと、銀焼結材接合層3c(第1接合材)とを備えている。第1基板3aは、第1半導体チップ3bが実装された絶縁基板であり、冷却器2の天板部2aの外面に銀焼結材接合層3cにより接合されている。また、第1基板3aには、銀焼結材接合層3cとの間に、両面において導電部材3dが設けられている。導電部材3dは、銀焼結材接合層3cを第1基板3aに定着させるために設けられる。 A plurality of (three in the present embodiment) first electronic board units 3 are provided on the outer surface (first surface) of the top plate portion 2a that is the heat transfer surface of the cooler 2, and the first board 3a and the first board 3a are provided. The semiconductor chip 3b and the silver sintered material bonding layer 3c (first bonding material) are provided. The first substrate 3a is an insulating substrate on which the first semiconductor chip 3b is mounted, and is joined to the outer surface of the top plate portion 2a of the cooler 2 by the silver sintered material joining layer 3c. In addition, the first substrate 3a is provided with conductive members 3d on both sides between the silver sintered material bonding layer 3c. The conductive member 3d is provided to fix the silver sintered material bonding layer 3c to the first substrate 3a.

第1半導体チップ3bは、銀焼結材接合層3cにより、第1基板3aにおける冷却器2と接合される面と対向する面に実装されており、通電時において最高約140℃程度で発熱する。銀焼結材接合層3cは、銀の微粒粉を約300℃で焼成することにより溶融させ、さらに溶融した銀の微粒粉を冷却して固化させたものである。なお、銀焼結材接合層3cは、再溶融する温度が約960℃とされ、熱伝導率が約420W/m・Kとされている。 The first semiconductor chip 3b is mounted on the surface of the first substrate 3a facing the surface to be bonded to the cooler 2 by the silver sintered material bonding layer 3c, and generates heat at a maximum of about 140° C. when energized. .. The silver-sintered-material bonding layer 3c is obtained by baking fine silver powder at about 300° C. to melt the fine silver powder, and then cooling and solidifying the fine silver powder. The silver-sintered-material bonding layer 3c has a remelting temperature of about 960° C. and a thermal conductivity of about 420 W/m·K.

第2電子基板ユニット4は、冷却器2の伝熱面である底板部2bの外面(第2面)に複数(本実施形態においては3つ)設けられ、第2基板4aと、第2半導体チップ4bと、ハンダ接合層4c(第2接合材)とを備えている。第2基板4aは、第2半導体チップ4bが実装された絶縁基板であり、冷却器2の底板部2bの外面にハンダ接合層4cにより接合されている。また、第2基板4aには、ハンダ接合層4cとの間に、両面において導電部材4dが設けられている。導電部材4dは、ハンダ接合層4cを第2基板4aに定着させるために設けられる。 A plurality of (three in the present embodiment) second electronic board units 4 are provided on the outer surface (second surface) of the bottom plate portion 2b that is the heat transfer surface of the cooler 2, and the second board 4a and the second semiconductor are provided. The chip 4b and the solder bonding layer 4c (second bonding material) are provided. The second substrate 4a is an insulating substrate on which the second semiconductor chip 4b is mounted, and is joined to the outer surface of the bottom plate portion 2b of the cooler 2 by the solder joining layer 4c. Further, the second substrate 4a is provided with the conductive members 4d on both surfaces between the second substrate 4a and the solder bonding layer 4c. The conductive member 4d is provided to fix the solder bonding layer 4c to the second substrate 4a.

第2半導体チップ4bは、ハンダ接合層4cにより、第2基板4aにおける冷却器2と接合される面と対向する面に実装されており、通電時において最高約110℃程度で発熱する。ハンダ接合層4cは、溶融する温度及び再溶融温度が約270℃とされ、熱伝導率が約62W/m・Kとされている。 The second semiconductor chip 4b is mounted on the surface of the second substrate 4a opposite to the surface bonded to the cooler 2 by the solder bonding layer 4c, and generates heat at a maximum of about 110° C. when energized. The solder joining layer 4c has a melting temperature and a remelting temperature of about 270° C., and a thermal conductivity of about 62 W/m·K.

すなわち、第1半導体チップ3bは、第2半導体チップ4bよりも発熱時の最高温度が高く、発熱量が大きい。また、銀焼結材接合層3cは、ハンダ接合層4cよりも熱伝導率が高く、さらに再溶融温度がハンダ接合層4cの溶融温度よりも高い。 That is, the first semiconductor chip 3b has a higher maximum temperature when generating heat and a larger amount of heat generation than the second semiconductor chip 4b. The silver sintered material bonding layer 3c has a higher thermal conductivity than the solder bonding layer 4c, and the remelting temperature is higher than the melting temperature of the solder bonding layer 4c.

このような本実施形態における電力変換装置1における第1電子基板ユニット3及び第2電子基板ユニット4と冷却器2との組み付け方法を説明する。
まず、冷却器2の天板部2aにおいて、第1電子基板ユニット3の取り付け作業が行われる。具体的には、第1基板3aに設けられた導電部材3dと冷却器2の天板部2aとの間に、銀ナノ粒子が配置される。そして、銀ナノ粒子は、導電部材3d及び冷却器2の天板部2aを介して加熱及び加圧されることで、表面の皮膜が除去され、粒子同士が接触する。さらに、銀ナノ粒子は、約300℃程度で焼結されることで、粒子同士が溶融して結合し、導電部材3d及び天板部2aに溶着することで、導電部材3dと天板部2aとの間に銀焼結材接合層3cを形成する。
A method of assembling the first electronic board unit 3 and the second electronic board unit 4 and the cooler 2 in the power conversion device 1 in this embodiment will be described.
First, the work of attaching the first electronic substrate unit 3 is performed on the top plate portion 2 a of the cooler 2. Specifically, silver nanoparticles are arranged between the conductive member 3d provided on the first substrate 3a and the top plate portion 2a of the cooler 2. Then, the silver nanoparticles are heated and pressed through the conductive member 3d and the top plate portion 2a of the cooler 2, whereby the film on the surface is removed and the particles come into contact with each other. Furthermore, when the silver nanoparticles are sintered at about 300° C., the particles are melted and bonded to each other, and the silver nanoparticles are welded to the conductive member 3d and the top plate portion 2a, whereby the conductive member 3d and the top plate portion 2a. And the silver sintered material bonding layer 3c are formed between them.

次に、冷却器2の底板部2bにおいて、第2電子基板ユニット4の取り付け作業が行われる。具体的には、第2基板4aに設けられた導電部材4dと冷却器2の底板部2bとの間にハンダが配置される。さらに、該ハンダは、不図示の加熱炉により約270℃程度で加熱されることで溶融し、導電部材4d及び冷却器2の底板部2bに密着した状態で固化することで、導電部材4dと冷却器2の底板部2bとの間にハンダ接合層4cを形成する。この際、加熱炉の熱と、加熱炉から冷却器2の底板部2bに加えられた熱とが天板部2a側へと伝わるものの、天板部2a側の銀焼結材接合層3cが、その再溶融温度である約960℃程度まで上昇することはなく、天板部2aの銀焼結材接合層3cが再溶融することはない。 Next, the attachment work of the second electronic substrate unit 4 is performed on the bottom plate portion 2b of the cooler 2. Specifically, solder is arranged between the conductive member 4d provided on the second substrate 4a and the bottom plate portion 2b of the cooler 2. Further, the solder is melted by being heated at a temperature of about 270° C. by a heating furnace (not shown), and is solidified in a state in which the conductive member 4d and the bottom plate portion 2b of the cooler 2 are in close contact with each other. A solder joint layer 4c is formed between the bottom plate portion 2b of the cooler 2 and the bottom plate portion 2b. At this time, the heat of the heating furnace and the heat applied from the heating furnace to the bottom plate portion 2b of the cooler 2 are transmitted to the top plate portion 2a side, but the silver sintered material bonding layer 3c on the top plate portion 2a side is The re-melting temperature does not rise to about 960° C., and the silver sintered material bonding layer 3c of the top plate 2a does not re-melt.

本実施形態によれば、銀焼結材接合層3cは、ハンダ接合層4cよりも溶融温度及び再溶融温度が高く設定されている。これにより、第2電子基板ユニット4の冷却器2への接合作業によって、銀焼結材接合層3cが再溶融することがない。 According to the present embodiment, the silver sintered material bonding layer 3c is set to have a higher melting temperature and remelting temperature than the solder bonding layer 4c. This prevents the silver sintered material bonding layer 3c from being remelted by the bonding work of the second electronic substrate unit 4 to the cooler 2.

さらに、本実施形態によれば、銀焼結材接合層3cは、ハンダ接合層4cよりも熱伝導率が高い。また、第1半導体チップ3bは、第2半導体チップ4bよりも発熱温度が高い。したがって、第1半導体チップ3bの高い発熱量を銀焼結材接合層3cにより効率的に冷却器2へと伝えることができ、第1半導体チップ3bを効率よく冷却することができ、第1半導体チップ3bが過熱することを防止できる。 Furthermore, according to this embodiment, the silver sintered material bonding layer 3c has a higher thermal conductivity than the solder bonding layer 4c. Further, the first semiconductor chip 3b has a higher heat generation temperature than the second semiconductor chip 4b. Therefore, the high calorific value of the first semiconductor chip 3b can be efficiently transmitted to the cooler 2 by the silver sintered material bonding layer 3c, the first semiconductor chip 3b can be efficiently cooled, and the first semiconductor It is possible to prevent the chip 3b from overheating.

以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The preferred embodiments of the present invention have been described above with reference to the drawings, but the present invention is not limited to the above embodiments. The shapes, combinations, and the like of the respective constituent members shown in the above-described embodiments are examples, and various modifications can be made based on design requirements and the like without departing from the spirit of the present invention.

上記実施形態においては、第1電子基板ユニット3及び第2電子基板ユニット4は、それぞれ3個ずつ冷却器2に接合される構成としたが、本発明はこれに限定されない。第1電子基板ユニット3及び第2電子基板ユニット4は、4個以上または2個以下としてもよい。 In the above-described embodiment, the first electronic board unit 3 and the second electronic board unit 4 are configured to be joined to the cooler 2 by three, respectively, but the present invention is not limited to this. The first electronic board unit 3 and the second electronic board unit 4 may be four or more or two or less.

1……電力変換装置、2……冷却器、3……第1電子基板ユニット、3a……第1基板、3b……第1半導体チップ、3c……銀焼結材接合層、4……第2電子基板ユニット、4a……第2基板、4b……第2半導体チップ、4c……ハンダ接合層 1... Power converter, 2... Cooler, 3... First electronic substrate unit, 3a... First substrate, 3b... First semiconductor chip, 3c... Silver sintered material bonding layer, 4... Second electronic substrate unit, 4a...Second substrate, 4b...Second semiconductor chip, 4c...Solder bonding layer

Claims (3)

伝熱面として第1面及び第2面からなる両面を有する冷却器と、
所定の溶融温度で溶融する第1接合材により第1半導体チップが接合されると共に、前記冷却器の第1面に前記第1接合材により接合される第1基板と、
前記第1接合材と溶融温度が異なる第2接合材により第2半導体チップが接合されると共に前記冷却器の第2面に前記第2接合材により接合される第2基板と
を備え、
前記第1半導体チップは、前記第2半導体チップよりも発熱量が大きく、
前記第1接合材は、前記第2接合材より熱伝導率及び溶融温度が高く設定されることを特徴とするパワー半導体モジュール。
A cooler having both surfaces consisting of a first surface and a second surface as a heat transfer surface;
A first semiconductor chip is bonded by a first bonding material that melts at a predetermined melting temperature, and a first substrate that is bonded to the first surface of the cooler by the first bonding material ;
A second semiconductor chip is bonded to the first bonding material by a second bonding material having a different melting temperature, and a second substrate is bonded to the second surface of the cooler by the second bonding material .
The first semiconductor chip generates a larger amount of heat than the second semiconductor chip,
The power semiconductor module, wherein the first bonding material is set to have higher thermal conductivity and melting temperature than the second bonding material.
前記第1接合材は、銀焼結材であり、
前記第2接合材は、ハンダである
ことを特徴とする請求項1記載のパワー半導体モジュール。
The first bonding material is a silver sintered material,
The power semiconductor module according to claim 1, wherein the second bonding material is solder.
パワー半導体モジュールの製造方法において、In the method of manufacturing a power semiconductor module,
冷却器の伝熱面である第1面に所定の溶融温度で溶融する第1接合材により第1基板を接合すると共に、前記第1接合材により前記第1基板に第1半導体チップを接合する第1接合工程と、The first substrate is bonded to the first surface, which is the heat transfer surface of the cooler, by the first bonding material that melts at a predetermined melting temperature, and the first semiconductor chip is bonded to the first substrate by the first bonding material. A first joining step,
前記第1面と両面をなす前記冷却器の伝熱面である第2面に前記第1接合材と溶融温度の異なる第2接合材により第2基板を接合すると共に、前記第2接合材により前記第2基板に第2半導体チップを接合する第2接合工程と、を備え、The second substrate is joined to the second surface, which is a heat transfer surface of the cooler, which is on both sides of the first surface, by the second joining material having a melting temperature different from that of the first joining material, and by the second joining material. A second bonding step of bonding a second semiconductor chip to the second substrate,
前記第1半導体チップは、前記第2半導体チップよりも発熱量が大きく、The first semiconductor chip generates a larger amount of heat than the second semiconductor chip,
前記第1接合材は、前記第2接合材より熱伝導率及び溶融温度が高く設定されることを特徴とするパワー半導体モジュールの製造方法。The method for manufacturing a power semiconductor module, wherein the first bonding material is set to have higher thermal conductivity and melting temperature than the second bonding material.
JP2016254758A 2016-12-28 2016-12-28 Power semiconductor module and method of manufacturing power semiconductor module Active JP6710155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016254758A JP6710155B2 (en) 2016-12-28 2016-12-28 Power semiconductor module and method of manufacturing power semiconductor module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016254758A JP6710155B2 (en) 2016-12-28 2016-12-28 Power semiconductor module and method of manufacturing power semiconductor module

Publications (2)

Publication Number Publication Date
JP2018107367A JP2018107367A (en) 2018-07-05
JP6710155B2 true JP6710155B2 (en) 2020-06-17

Family

ID=62787970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016254758A Active JP6710155B2 (en) 2016-12-28 2016-12-28 Power semiconductor module and method of manufacturing power semiconductor module

Country Status (1)

Country Link
JP (1) JP6710155B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020009868A (en) * 2018-07-06 2020-01-16 日立オートモティブシステムズ株式会社 Semiconductor module
JP7428548B2 (en) * 2020-03-10 2024-02-06 株式会社日立製作所 Power conversion units, power conversion devices, and mobile objects

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176675A (en) * 1993-10-27 1995-07-14 Hitachi Ltd Semiconductor device and manufacture thereof
JPH0878618A (en) * 1994-09-08 1996-03-22 Fujitsu Ltd Multi-chip module and its manufacture
JP3714808B2 (en) * 1998-11-24 2005-11-09 富士通株式会社 Semiconductor device
JP2004111938A (en) * 2002-08-28 2004-04-08 Matsushita Electric Ind Co Ltd Semiconductor device
JP4015634B2 (en) * 2004-03-09 2007-11-28 株式会社日立製作所 Semiconductor device
JP2006303290A (en) * 2005-04-22 2006-11-02 Mitsubishi Electric Corp Semiconductor device
JP4478618B2 (en) * 2005-06-28 2010-06-09 本田技研工業株式会社 Power semiconductor module
JP6529823B2 (en) * 2015-05-22 2019-06-12 シャープ株式会社 Semiconductor device and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2018107367A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US8791564B2 (en) Method of Manufacturing a semiconductor module and device for the same
JP6044097B2 (en) Power module substrate with heat sink, power module substrate with cooler, and power module
JP5672324B2 (en) Manufacturing method of joined body and manufacturing method of power module substrate
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
TW201143588A (en) Combining method for heat dissipating module
JP5125241B2 (en) Power module substrate manufacturing method
WO2007145303A1 (en) Semiconductor module and method for manufacturing same
JP2016082234A (en) Substrate with cooler for power module and method for producing the same
JP2008283067A (en) Al-aln composite material, manufacturing method thereof and heat exchanger
JP2008042039A (en) Semiconductor device
JP2005191502A (en) Electronic part cooling device
JP6710155B2 (en) Power semiconductor module and method of manufacturing power semiconductor module
JP2009188176A (en) Semiconductor device, and manufacturing method thereof
JP4757880B2 (en) Method for manufacturing electronic component, method for manufacturing heat conductive member, and method for mounting heat conductive member for electronic component
JP4493026B2 (en) Method for manufacturing circuit board with cooling device
JP5904257B2 (en) Power module substrate manufacturing method
JP2009147123A (en) Semiconductor device, and manufacturing method therefor
JP2014150130A (en) Method of manufacturing semiconductor device
JP2016174034A (en) Semiconductor power module
JP2004327711A (en) Semiconductor module
JP5061740B2 (en) Power module substrate
JP6477105B2 (en) Semiconductor device
JP2014072314A (en) Semiconductor device and semiconductor device manufacturing method
JP5631100B2 (en) Electronic component mounting board cooling structure
JP2006041363A (en) Resin-sealed semiconductor device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200526

R150 Certificate of patent or registration of utility model

Ref document number: 6710155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250