JP6702280B2 - Light emitting device, method for manufacturing covering member, and method for manufacturing light emitting device - Google Patents

Light emitting device, method for manufacturing covering member, and method for manufacturing light emitting device Download PDF

Info

Publication number
JP6702280B2
JP6702280B2 JP2017145576A JP2017145576A JP6702280B2 JP 6702280 B2 JP6702280 B2 JP 6702280B2 JP 2017145576 A JP2017145576 A JP 2017145576A JP 2017145576 A JP2017145576 A JP 2017145576A JP 6702280 B2 JP6702280 B2 JP 6702280B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
reflecting member
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017145576A
Other languages
Japanese (ja)
Other versions
JP2017199933A (en
JP2017199933A5 (en
Inventor
林 忠雄
忠雄 林
照人 東
照人 東
別府 卓
卓 別府
泉野 訓宏
訓宏 泉野
強志 岡久
強志 岡久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Publication of JP2017199933A publication Critical patent/JP2017199933A/en
Publication of JP2017199933A5 publication Critical patent/JP2017199933A5/ja
Application granted granted Critical
Publication of JP6702280B2 publication Critical patent/JP6702280B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本開示は、発光装置、被覆部材の製造方法及び発光装置の製造方法に関する。 The present disclosure relates to a light emitting device, a method for manufacturing a covering member, and a method for manufacturing a light emitting device.

近年の発光ダイオードは、その品質の向上に伴って、一般照明分野、車載照明分野等において種々の形態で利用されている。例えば、発光素子の上に外枠を備える板状光学部材を配置することで薄型化された発光装置が知られている。(特許文献1) 2. Description of the Related Art In recent years, light emitting diodes have been used in various forms in general lighting fields, in-vehicle lighting fields, etc. as their quality has improved. For example, there is known a light emitting device that is made thin by disposing a plate-shaped optical member having an outer frame on a light emitting element. (Patent Document 1)

特開2012−134355JP2012-134355A

従来の発光装置より更に薄型化された発光装置が求められている。本発明に係る実施形態は、薄型化が可能な発光装置及びその製造方法ならびに被覆部材の製造方法を提供することを目的とする。 There is a demand for a light emitting device that is thinner than conventional light emitting devices. An embodiment of the present invention aims to provide a light emitting device that can be thinned, a method of manufacturing the same, and a method of manufacturing a covering member.

(1)本発明の一実施形態に係る被覆部材の製造方法は、
貫通孔を有する第1光反射部材を準備する工程と、
前記貫通孔内に、波長変換物質を含有する透光性樹脂を配置する工程と、
前記波長変換物質を、前記透光性樹脂内で前記貫通孔の一方の開口側に偏在させる工程と、
前記波長変換物質を偏在させた後、前記貫通孔の他方の開口側から前記透光性樹脂の一部を除去する工程と、
を含む。
(2)本発明の他の実施形態に係る被覆部材の製造方法は、
凹部を有する第1光反射部材を準備する工程と、
前記凹部内に、波長変換物質を含有する透光性樹脂を配置する工程と、
前記波長変換物質を、前記透光性樹脂内で前記凹部の底面側に偏在させる工程と、
前記波長変換物質を偏在させた後、前記凹部の開口側から前記透光性樹脂の一部を除去する工程と、
前記波長変換物質を偏在させた後、前記第1光反射部材の一部を、前記凹部が形成された面の反対側の面から除去して、前記反対側の面に前記透光性樹脂を露出させる工程と、
を含む。
(3)本発明の実施形態に係る発光装置は、
貫通孔を有する第1光反射部材と前記貫通孔内に配置された透光性樹脂とを有する被覆部材と、
前記透光性樹脂と対向するように設けられた発光素子と、
前記発光素子の側面を覆い、前記発光素子の周りの第1光反射部材に対向して設けられた第2光反射部材と、を有し、
前記透光性樹脂は、前記発光素子に対向する下面側又は前記発光素子から離れた上面側に偏在する波長変換物質を含む。
(1) A method for manufacturing a covering member according to an embodiment of the present invention is
A step of preparing a first light reflecting member having a through hole,
In the through hole, a step of disposing a translucent resin containing a wavelength conversion substance,
A step of unevenly distributing the wavelength conversion substance in the translucent resin on one opening side of the through hole;
After unevenly distributing the wavelength conversion substance, a step of removing a part of the translucent resin from the other opening side of the through hole,
including.
(2) A method for manufacturing a covering member according to another embodiment of the present invention is
A step of preparing a first light reflecting member having a recess, and
A step of disposing a translucent resin containing a wavelength conversion substance in the recess,
A step of unevenly distributing the wavelength conversion substance in the translucent resin on the bottom surface side of the recess;
After unevenly distributing the wavelength conversion material, a step of removing a part of the transparent resin from the opening side of the recess,
After unevenly distributing the wavelength conversion material, a part of the first light reflecting member is removed from the surface opposite to the surface on which the recess is formed, and the transparent resin is applied to the opposite surface. Exposing step,
including.
(3) The light emitting device according to the embodiment of the present invention is
A covering member having a first light reflecting member having a through hole and a translucent resin arranged in the through hole;
A light emitting element provided so as to face the translucent resin,
A second light reflecting member which covers a side surface of the light emitting element and is provided to face a first light reflecting member around the light emitting element,
The translucent resin includes a wavelength conversion substance that is unevenly distributed on the lower surface side facing the light emitting element or on the upper surface side away from the light emitting element.

本発明の一実施形態によれば、薄型化が可能な発光装置を提供することができる。 According to an embodiment of the present invention, it is possible to provide a light emitting device that can be made thin.

図1Aは、実施の形態1に係る発光装置の製造方法において、被覆部材の製造方法について示す断面図である。FIG. 1A is a cross-sectional view showing the method of manufacturing the covering member in the method of manufacturing the light emitting device according to the first embodiment. 図1Bは、図1AのB−B線に沿った断面図である。1B is a cross-sectional view taken along the line BB of FIG. 1A. 図2Aは、実施の形態1に係る被覆部材の製造方法において、パンチングの際、第1光反射部材を保持した状態を示す断面図である。FIG. 2A is a sectional view showing a state in which the first light reflecting member is held during punching in the method for manufacturing the covering member according to the first embodiment. 図2Bは、実施の形態1に係る被覆部材の製造方法において、パンチングの際、上金型を打ち込んだときの状態を示す断面図である。FIG. 2B is a cross-sectional view showing a state when the upper die is driven in at the time of punching in the method for manufacturing the covering member according to the first embodiment. 図2Cは、図2Bの点線部の拡大図である。FIG. 2C is an enlarged view of a dotted line portion of FIG. 2B. 図3Aは、実施の形態1に係る被覆部材の製造方法において、第1光反射部材の貫通孔内に、波長変換物質を含有する透光性樹脂を配置したときの断面図である。FIG. 3A is a cross-sectional view when a translucent resin containing a wavelength conversion substance is arranged in the through hole of the first light reflecting member in the method for manufacturing the covering member according to the first embodiment. 図3Bは、実施の形態1に係る被覆部材の製造方法において、第1光反射部材の貫通孔内で、波長変換物質を偏在させたときの断面図である。FIG. 3B is a cross-sectional view when the wavelength conversion substance is unevenly distributed in the through hole of the first light reflecting member in the method for manufacturing the covering member according to the first embodiment. 図3Cは、実施の形態1に係る被覆部材の製造方法において、透光性樹脂と第1光反射部材の一部を除去したときの断面図である。FIG. 3C is a cross-sectional view when a part of the translucent resin and the first light reflecting member is removed in the method for manufacturing the covering member according to the first embodiment. 図4Aは、実施の形態1に係る発光装置の製造方法において、発光素子を固定したときの断面図である。FIG. 4A is a cross-sectional view when the light emitting element is fixed in the method for manufacturing the light emitting device according to the first embodiment. 図4Bは、実施の形態1に係る発光装置の製造方法において、第2光反射部材を形成したときの断面図である。FIG. 4B is a cross-sectional view when the second light reflecting member is formed in the method for manufacturing the light emitting device according to the first embodiment. 図4Cは、実施の形態1に係る発光装置の製造方法において、接合部材を含む場合に第2光反射部材を形成したときの断面図である。FIG. 4C is a cross-sectional view when the second light reflecting member is formed in the case where the bonding member is included in the method for manufacturing the light emitting device according to the first embodiment. 図4Dは、実施の形態1に係る発光装置の製造方法において、発光素子の電極を埋設するように第2光反射部材を形成したときの断面図である。FIG. 4D is a cross-sectional view when the second light reflecting member is formed so as to embed the electrode of the light emitting element in the method for manufacturing the light emitting device according to the first embodiment. 図5Aは、実施の形態1に係る発光装置の製造方法において、発光装置ごとに分割する際の切断線を示す平面図である。FIG. 5A is a plan view showing a cutting line when dividing each light emitting device in the method for manufacturing a light emitting device according to the first embodiment. 図5Bは、図5AのC−C線に沿った断面図である。5B is a cross-sectional view taken along the line CC of FIG. 5A. 図6Aは、実施の形態1に係る発光装置の製造方法において、個片化された後の発光装置を示す平面図である。FIG. 6A is a plan view showing the light emitting device after being divided into individual pieces in the method for manufacturing the light emitting device according to the first embodiment. 図6Bは、図6AのD−D線に沿った断面図である。FIG. 6B is a cross-sectional view taken along the line DD of FIG. 6A. 図6Cは、実施の形態1に係る発光装置の製造方法において、個片化の際の変形例を示す断面図である。FIG. 6C is a cross-sectional view showing a modified example of individualizing the light emitting device manufacturing method according to the first embodiment. 図7Aは、実施の形態2に係る被覆部材の製造方法において、支持部材上に、凹部を有する第1光反射部材を形成したときの断面図である。FIG. 7A is a cross-sectional view when a first light reflecting member having a recess is formed on a supporting member in the method for manufacturing a covering member according to the second embodiment. 図7Bは、実施の形態2に係る被覆部材の製造方法において、波長変換物質を含有する透光性樹脂を凹部内に配置したときの断面図である。FIG. 7B is a cross-sectional view when a translucent resin containing a wavelength conversion substance is arranged in the recess in the method for manufacturing the covering member according to the second embodiment. 図7Cは、実施の形態2に係る被覆部材の製造方法において、凹部内の透光性樹脂中で波長変換物質を偏在させたときの断面図である。FIG. 7C is a cross-sectional view when the wavelength conversion substance is unevenly distributed in the translucent resin in the recess in the method for manufacturing the covering member according to the second embodiment. 図7Dは、実施の形態2に係る被覆部材の製造方法において、第1光反射部材の支持部材を剥離して、第1光反射部材の反対側の面に支持部材を貼り付けたときの断面図である。FIG. 7D is a cross section when the support member of the first light reflecting member is peeled off and the support member is attached to the surface on the opposite side of the first light reflecting member in the method for manufacturing a covering member according to the second embodiment. It is a figure. 図7Eは、実施の形態2に係る被覆部材の製造方法において、凹部が貫通するように、第1光反射部材を除去したときの断面図である。FIG. 7E is a cross-sectional view when the first light reflecting member is removed so that the recess penetrates in the method for manufacturing the covering member according to the second embodiment. 図8Aは、実施の形態4に係る発光装置の平面図である。FIG. 8A is a plan view of the light emitting device according to the fourth embodiment. 図8Bは、図8AのA−A線に沿った断面図である。8B is a cross-sectional view taken along the line AA of FIG. 8A. 図9は、実施の形態5に係る発光装置の断面図である。FIG. 9 is a sectional view of the light emitting device according to the fifth embodiment. 図10は、実施の形態6に係る発光装置の断面図である。FIG. 10 is a sectional view of the light emitting device according to the sixth embodiment. 図11は、実施の形態7に係る発光装置の断面図である。FIG. 11 is a sectional view of the light emitting device according to the seventh embodiment. 図12は、実施の形態8に係る発光装置の断面図である。FIG. 12 is a sectional view of the light emitting device according to the eighth embodiment. 図13Aは、実施の形態8の変形例1に係る発光装置の断面図である。FIG. 13A is a cross-sectional view of a light emitting device according to the first modification of the eighth embodiment. 図13Bは、実施の形態8の変形例2に係る発光装置の断面図である。FIG. 13B is a cross-sectional view of a light emitting device according to Modification 2 of Embodiment 8. 図13Cは、実施の形態8の変形例3に係る発光装置の断面図である。FIG. 13C is a sectional view of a light emitting device according to Modification 3 of Embodiment 8. 図14Aは、実施の形態9に係る発光装置の断面図である。FIG. 14A is a cross-sectional view of the light emitting device according to the ninth embodiment. 図14Bは、実施の形態9の変形例に係る発光装置の断面図である。FIG. 14B is a sectional view of a light emitting device according to a modification of the ninth embodiment. 図15Aは、実施の形態10に係る発光装置の断面図である。FIG. 15A is a sectional view of a light emitting device according to the tenth embodiment. 図15Bは、実施の形態10の変形例に係る発光装置の断面図である。FIG. 15B is a sectional view of a light emitting device according to a modification of the tenth embodiment.

以下、図面に基づいて本発明の実施の形態を詳細に説明する。尚、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、および、それらの用語を含む別の用語)を用いる。それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、複数の図面に表れる同一符号の部分は同一の部分又は部材を示す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, terms indicating a specific direction or position (for example, “upper”, “lower”, and other terms including those terms) are used as necessary. The use of those terms is for facilitating the understanding of the invention with reference to the drawings, and the technical scope of the present invention is not limited by the meanings of the terms. Further, the portions having the same reference numerals appearing in a plurality of drawings indicate the same portions or members.

実施形態1.
次に図1A〜図6Cを参照しながら、実施形態1に係る発光装置の製造方法について説明する。
Embodiment 1.
Next, a method of manufacturing the light emitting device according to the first embodiment will be described with reference to FIGS. 1A to 6C.

実施形態1の発光装置の製造方法は、
(1)複数の貫通孔を有する第1光反射部材と、貫通孔内に第1光反射部材と実質的に同じ厚さになるように設けられた透光性樹脂と、貫通孔の一方の開口側に偏在するように透光性樹脂に含有された波長変換物質と、を有する被覆部材の製造工程と、
(2)貫通孔に設けられた透光性樹脂上にそれぞれ発光素子を固定する工程と、
(3)透光性樹脂上に設けられた発光素子間に第2光反射部材を形成する工程と、
(4)発光素子間において、第1光反射部材及び第2光反射部材を切断することにより個々の発光装置に分割する工程と、を含む。
以上のように構成された実施の形態の発光装置の製造方法によれば、波長変換物質が貫通孔の一方の開口側に偏在するように含有された透光性樹脂を含む被覆部材を用いて、発光装置を製造していることから、薄型の発光装置を製造することができる。
以下、本実施の形態の発光装置の製造方法について具体的説明する。
The method for manufacturing the light emitting device according to the first embodiment includes
(1) A first light reflecting member having a plurality of through holes, a translucent resin provided in the through hole so as to have substantially the same thickness as the first light reflecting member, and one of the through holes. A manufacturing process of a covering member having a wavelength conversion substance contained in a translucent resin so as to be unevenly distributed on the opening side,
(2) A step of fixing the light emitting element on each of the transparent resins provided in the through holes,
(3) a step of forming a second light reflecting member between the light emitting elements provided on the translucent resin,
(4) dividing the light emitting elements into individual light emitting devices by cutting the first light reflecting member and the second light reflecting member.
According to the method for manufacturing a light emitting device of the embodiment configured as described above, the wavelength conversion material is used with the covering member containing the translucent resin contained so as to be unevenly distributed on one opening side of the through hole. Since the light emitting device is manufactured, a thin light emitting device can be manufactured.
Hereinafter, the method for manufacturing the light emitting device of the present embodiment will be specifically described.

<被覆部材の作製>
図1A〜図3Cを参照しながら、実施の形態に係る被覆部材70の製造工程について説明する。尚、この製造工程で作製される被覆部材70は、第1光反射部材10と、波長変換物質20を含有する透光性樹脂30と、を備えている。
<Production of covering member>
A manufacturing process of the covering member 70 according to the embodiment will be described with reference to FIGS. 1A to 3C. The covering member 70 manufactured in this manufacturing process includes the first light reflecting member 10 and the translucent resin 30 containing the wavelength conversion substance 20.

工程1−1.貫通孔を有する第1光反射部材の準備
貫通孔106を有する第1光反射部材10を準備する。貫通孔106は第1光反射部材10の第1の面101と、第1の面の裏面である第2の面102とを貫通する(図1A、図1B)。尚、貫通孔106は第1光反射部材10に1つだけ形成してもよいし、複数形成してもよい。
第1光反射部材10に、貫通孔106を形成する際は、当該分野で公知の方法のいずれを利用してもよい。例えば、レーザー光の照射又は描写、パンチング、エッチング、ブラスト等が挙げられる。貫通孔106の側壁には、凸部が形成されていることが好ましく、この凸部により、後述するように、透光性樹脂30と第1光反射部材10との接着力を高めることができる。また、第1光反射部材10として、樹脂又は金属を用いた場合、パンチングで貫通孔106を形成することで、貫通孔106の側壁に凸部103を容易に形成することができる。すなわち、パンチングの際、図2Aに示すように、第1光反射部材10は、押さえ91と、下金型92と、で上下を挟むことにより保持されている。そのように保持した状態で、上金型90を下方向に打ち込むことにより、第1光反射部材10に貫通孔106を形成する。この時、上金型90と下金型92との隙間dの距離を制御することで、所定の位置に凸部103を形成することができる。上金型90と下金型92の隙間dとは、図2Aにおいてx方向(水平方向)における上金型90と下金型92との距離を示す。例えば、上方向から下方向に貫通孔106を形成する時に隙間dを調整することで下方向に突出した(傾いた)突出部である凸部103を形成することができる(図2B、図2C)。言い換えると、凸部103が下側に傾斜してもよい。これは第1光反射部材10に上金型90から加えられる力と、下金型92から加えられる力とが上金型90と下金型92の隙間dだけ離れているためである。また、隙間dの距離を調整することで複数の凸部103を側壁内に有する貫通孔を形成することもできる。上金型90と下金型92の隙間dの距離は特に限定されるものではないが、傾いた凸部を形成するためには1〜30μmが好ましく、複数の凸部を形成するためには0〜30μm(0を含まない)であることが好ましい。また、第1光反射部材10の厚みに対しての上金型90と下金型92の隙間dの距離は、傾いた凸部を形成するためには1〜30%であることが好ましく、複数の凸部を形成するためには0〜30%(0を含まない)であることが好ましい。
Step 1-1. Preparation of First Light Reflecting Member Having Through Holes First light reflecting member 10 having through holes 106 is prepared. The through hole 106 penetrates the first surface 101 of the first light reflecting member 10 and the second surface 102 that is the back surface of the first surface (FIGS. 1A and 1B ). Note that only one through hole 106 may be formed in the first light reflecting member 10 or a plurality of through holes 106 may be formed.
When forming the through hole 106 in the first light reflecting member 10, any method known in the art may be used. For example, irradiation or drawing of laser light, punching, etching, blasting, etc. may be mentioned. It is preferable that a convex portion is formed on the side wall of the through hole 106, and the convex portion can increase the adhesive force between the translucent resin 30 and the first light reflecting member 10, as described later. .. When resin or metal is used for the first light reflecting member 10, the through hole 106 is formed by punching, so that the convex portion 103 can be easily formed on the side wall of the through hole 106. That is, at the time of punching, as shown in FIG. 2A, the first light reflecting member 10 is held by sandwiching the upper and lower sides with the presser 91 and the lower die 92. In such a held state, the upper die 90 is driven downward to form the through hole 106 in the first light reflecting member 10. At this time, by controlling the distance of the gap d between the upper die 90 and the lower die 92, the convex portion 103 can be formed at a predetermined position. The gap d between the upper die 90 and the lower die 92 indicates the distance between the upper die 90 and the lower die 92 in the x direction (horizontal direction) in FIG. 2A. For example, when the through hole 106 is formed from the upper side to the lower side, by adjusting the gap d, it is possible to form the convex portion 103 that is a downwardly protruding (inclined) protruding portion (FIGS. 2B and 2C ). ). In other words, the convex portion 103 may be inclined downward. This is because the force applied from the upper mold 90 and the force applied from the lower mold 92 to the first light reflecting member 10 are separated by the gap d between the upper mold 90 and the lower mold 92. Further, by adjusting the distance of the gap d, it is possible to form a through hole having a plurality of convex portions 103 in the side wall. The distance of the gap d between the upper mold 90 and the lower mold 92 is not particularly limited, but is preferably 1 to 30 μm in order to form an inclined convex portion, and is required to form a plurality of convex portions. It is preferably 0 to 30 μm (not including 0). Further, the distance of the gap d between the upper mold 90 and the lower mold 92 with respect to the thickness of the first light reflecting member 10 is preferably 1 to 30% in order to form an inclined convex portion, In order to form a plurality of protrusions, it is preferably 0 to 30% (not including 0).

尚、貫通孔106を有する第1光反射部材10を、金型を使った圧縮成形やトランスファー成形、射出成形で形成してもよい。このように形成することで、貫通孔106を有する第1光反射部材10の形状のばらつきを防ぐことができる。 The first light reflecting member 10 having the through hole 106 may be formed by compression molding using a mold, transfer molding, or injection molding. By forming in this way, it is possible to prevent variations in the shape of the first light reflecting member 10 having the through holes 106.

貫通孔106を有する第1光反射部材10を準備した後、耐熱性シート等からなる支持部材80上に、貫通孔106を有する第1光反射部材10を載置する。 After the first light reflecting member 10 having the through holes 106 is prepared, the first light reflecting member 10 having the through holes 106 is placed on the support member 80 made of a heat resistant sheet or the like.

工程1−2.波長変換物質20を含む透光性樹脂30の配置
次に、各貫通孔106内に、波長変換物質20を含有する透光性樹脂30を配置する(図3A)。波長変換物質20を含有する透光性樹脂30を配置する際は、当該分野で公知の方法のいずれを利用してもよい。印刷、ポッティング等が挙げられる。尚、透光性樹脂30は、波長変換物質20が透光性樹脂30中で移動できる状態であればよい。つまり、透光性樹脂30は硬化前の液状の状態でもよいし、半硬化の状態でもよい。ただし、透光性樹脂30が液状の状態の方が、波長変換物質20が移動しやすいので好ましい。また、透光性樹脂30に光拡散材を含有させてもよい。
Step 1-2. Arrangement of Translucent Resin 30 Containing Wavelength Converting Material 20 Next, the translucent resin 30 containing the wavelength converting material 20 is arranged in each through hole 106 (FIG. 3A). When disposing the translucent resin 30 containing the wavelength conversion substance 20, any method known in the art may be used. Examples include printing and potting. The transparent resin 30 may be in any state as long as the wavelength conversion substance 20 can move in the transparent resin 30. That is, the translucent resin 30 may be in a liquid state before curing or in a semi-cured state. However, it is preferable that the translucent resin 30 is in a liquid state because the wavelength conversion substance 20 is easily moved. Further, the translucent resin 30 may contain a light diffusing material.

工程1−3.波長変換物質20を偏在させる
自然沈降または強制沈降により、透光性樹脂30中の波長変換物質20を、第1の面101側に偏在させる(図3B)。強制沈降には、例えば回転によって生じる遠心力により、波長変換物質20を沈降させる遠心沈降がある。波長変換物質20を沈降させた後、透光性樹脂30を加熱等により硬化させる。これにより、第1の面101側に波長変換物質20が偏在した透光性樹脂30が得られる。尚、透光性樹脂30に光拡散材を含有させた場合は、光拡散材が波長変換物質20と同様に偏在されてもよいが、透光性樹脂30中に偏在することなく分散して配置されることが好ましい。
Step 1-3. Uneven distribution of the wavelength conversion material 20 The wavelength conversion material 20 in the translucent resin 30 is unevenly distributed on the first surface 101 side by natural sedimentation or forced sedimentation (FIG. 3B). The forced sedimentation includes centrifugal sedimentation in which the wavelength conversion substance 20 is sedimented by a centrifugal force generated by rotation, for example. After the wavelength conversion substance 20 is allowed to settle, the translucent resin 30 is cured by heating or the like. Thereby, the transparent resin 30 in which the wavelength conversion substance 20 is unevenly distributed on the first surface 101 side is obtained. When the light transmissive resin 30 contains a light diffusing material, the light diffusing material may be unevenly distributed in the same manner as the wavelength conversion substance 20, but is dispersed in the light transmissive resin 30 without uneven distribution. It is preferably arranged.

工程1−4.第1光反射部材及び透光性樹脂の除去
図3BのCt−Ct線(破線)より上側を除去する。つまり、「第2の面側の第1光反射部材10」と「波長変換物質20を偏在させた側とは反対側の透光性樹脂30」とを、除去する(図3C)。第1光反射部材10と、透光性樹脂30と、を除去する際は、当該分野で公知の方法を利用することができる。例えば、エッチング、切削、研削、研磨、ブラスト等が挙げられる。これにより、波長変換物質20の含有量を実質的に変化させることなく透光性樹脂30を薄くすることができる。つまり、薄型化された被覆部材70を得ることができる。また、エッチング、切削、研削、研磨、ブラスト等により第1光反射部材及び透光性樹脂を除去する際に、「第2の面側の第1光反射部材10」と「波長変換物質20を偏在させた側とは反対側の透光性樹脂30」とを粗面にしてもよい。粗面にすることでタック性(粘着性)が下がり、例えば、実装時に取扱いやすくなる。
ここで、本明細書において、透光性樹脂30等の除去の前後を問わず、第1光反射部材10において波長変換物質20が偏在されている側の面を第1の面といい、その反対側の面を第2の面という。
以上の工程を経て、支持部材80に保持された被覆部材70を得ることができる。
Step 1-4. Removal of First Light Reflecting Member and Translucent Resin The portion above the Ct-Ct line (broken line) in FIG. 3B is removed. That is, the “first light reflecting member 10 on the second surface side” and the “transparent resin 30 on the side opposite to the side where the wavelength conversion material 20 is unevenly distributed” are removed (FIG. 3C). When removing the first light reflecting member 10 and the transparent resin 30, a method known in the art can be used. For example, etching, cutting, grinding, polishing, blasting, etc. may be mentioned. Thereby, the transparent resin 30 can be thinned without substantially changing the content of the wavelength conversion substance 20. That is, the thinned covering member 70 can be obtained. Further, when removing the first light reflecting member and the transparent resin by etching, cutting, grinding, polishing, blasting or the like, the “first light reflecting member 10 on the second surface side” and the “wavelength conversion material 20” are removed. The translucent resin 30″ on the side opposite to the unevenly distributed side may be roughened. The rough surface reduces the tackiness (adhesiveness) and, for example, facilitates handling during mounting.
Here, in the present specification, the surface on the side where the wavelength conversion substance 20 is unevenly distributed in the first light reflecting member 10 is referred to as a first surface regardless of before and after the removal of the translucent resin 30 and the like. The opposite surface is called the second surface.
Through the above steps, the covering member 70 held by the supporting member 80 can be obtained.

<発光装置の作製>
工程A−1.発光素子40の固定
上述の方法で製造した被覆部材70の透光性樹脂30上に発光素子を固定する(図4A)。例えば、透光性樹脂30と、発光素子40の光取り出し面401とを、接合部材60を介して接着させる(図4C)。接合部材60を用いることで透光性樹脂30が接着性を有していなくても発光素子40と接着することができる。また、接合部材60は発光素子40の側面まで形成されることで発光素子40と透光性樹脂30の接着力が向上するので好ましい。尚、透光性樹脂30の波長変換物質20が偏在された側の面と、発光素子40の光取り出し面401と、が接着されてもよいし、透光性樹脂30の波長変換物質20が偏在された側の面とは反対側の面と、発光素子の光取り出し面401と、が接着されてもよい。
<Production of light emitting device>
Process A-1. Fixing Light-Emitting Element 40 The light-emitting element is fixed on the transparent resin 30 of the covering member 70 manufactured by the method described above (FIG. 4A). For example, the translucent resin 30 and the light extraction surface 401 of the light emitting element 40 are bonded via the joining member 60 (FIG. 4C). By using the joining member 60, the light-transmissive resin 30 can be bonded to the light emitting element 40 even if it does not have adhesiveness. Further, since the bonding member 60 is formed up to the side surface of the light emitting element 40, the adhesive force between the light emitting element 40 and the transparent resin 30 is improved, which is preferable. The surface of the translucent resin 30 on which the wavelength conversion material 20 is unevenly distributed may be adhered to the light extraction surface 401 of the light emitting element 40, or the wavelength conversion material 20 of the translucent resin 30 may be bonded. The surface opposite to the unevenly distributed surface and the light extraction surface 401 of the light emitting element may be bonded.

工程A−2.第2光反射部材の形成
発光素子40の側面の一部と、第1光反射部材10とを覆う第2光反射部材50を形成する(図4B)。第2光反射部材50は、発光素子40の周りで第1光反射部材10に接合される。尚、接合部材60を用いて発光素子40と透光性樹脂30を接着させた場合は、第2光反射部材50は接合部材60も覆ってもよい(図4C)。さらに、発光素子40の電極形成面402のうち、電極43、44で覆われていない部分も、第2光反射部材50で覆ってもよい。このとき、電極43、44の一部が第2光反射部材50から露出するように、第2光反射部材50の厚さ(z方向の寸法)を調節してもよい。つまり、第1光反射部材10の第1の面101を基準としたときに、第2光反射部材50の第1光反射部材10と対面する面と反対側の面52までの高さが、電極43、44の露出面431、441の高さ以下にしてもよい。
Step A-2. Formation of Second Light Reflecting Member A second light reflecting member 50 that covers a part of the side surface of the light emitting element 40 and the first light reflecting member 10 is formed (FIG. 4B). The second light reflecting member 50 is joined to the first light reflecting member 10 around the light emitting element 40. When the light emitting element 40 and the translucent resin 30 are bonded together using the joining member 60, the second light reflecting member 50 may cover the joining member 60 (FIG. 4C). Further, a portion of the electrode formation surface 402 of the light emitting element 40 which is not covered with the electrodes 43 and 44 may be covered with the second light reflecting member 50. At this time, the thickness (dimension in the z direction) of the second light reflecting member 50 may be adjusted so that the electrodes 43 and 44 are partially exposed from the second light reflecting member 50. That is, when the first surface 101 of the first light reflecting member 10 is used as a reference, the height of the second light reflecting member 50 to the surface 52 opposite to the surface facing the first light reflecting member 10 is: The height may be less than or equal to the height of the exposed surfaces 431 and 441 of the electrodes 43 and 44.

また、電極43、44を埋設する厚みの第2光反射部材50を形成してもよい(図4D)。その後、図4DのCt−Ct線(破線)より上側を除去する。つまり、第2光反射部材50を除去し、電極43、44を露出させるようにしてもよい。第2光反射部材50を除去する際は、当該分野で公知の方法のいずれを利用してもよい。例えば、エッチング、切削、研削、研磨、ブラスト等が挙げられる。第2光反射部材50をエッチング、切削、研削、研磨、ブラスト等により除去することで第2光反射部材50の第1光反射部材10と対面する面と反対側の面52を平らな状態にできるので好ましい。 Moreover, you may form the 2nd light reflection member 50 of the thickness which embeds the electrodes 43 and 44 (FIG. 4D). After that, the upper side of the Ct-Ct line (broken line) in FIG. 4D is removed. That is, the second light reflecting member 50 may be removed and the electrodes 43 and 44 may be exposed. When removing the second light reflecting member 50, any method known in the art may be used. For example, etching, cutting, grinding, polishing, blasting, etc. may be mentioned. By removing the second light reflecting member 50 by etching, cutting, grinding, polishing, blasting or the like, the surface 52 of the second light reflecting member 50 opposite to the surface facing the first light reflecting member 10 is made flat. It is preferable because it is possible.

工程A−3.発光装置の個片化
発光素子間において、第1光反射部材及び第2光反射部材を切断することにより個々の発光装置に分割する。具体的には、隣接する発光素子40の中間を通る破線X、破線X、破線Xおよび破線X(図5A、図5B)に沿って、第1光反射部材10と、第2光反射部材50と、支持部材80とを、例えば、ダイサー等で切断し個片化する。最後に、支持部材80を除去(剥離)することにより、発光装置を得る(図6A、図6B)。また、第1光反射部材10と、第2光反射部材50と、支持部材80と、を切断する時に支持部材80は完全に切断しない方が好ましい。つまり、図6(c)に示すように、切断部108により第1光反射部材10と、第2光反射部材50と、は切り離され、支持部材80は切り離されていないことが好ましい。このようにすることで支持部材80が複数に分割されないので、支持部材80を一度に除去(剥離)することができる。尚、切断前に支持部材80を除去し、その後に、第1光反射部材10と、第2光反射部材50と、を切断してもよい。これにより、発光素子40を1つ含む発光装置を、同時に複数製造することができる。また、複数の発光素子40を含む位置で切断してもよい。
Step A-3. Dividing the light emitting device into individual light emitting devices is divided into individual light emitting devices by cutting the first light reflecting member and the second light reflecting member between the light emitting elements. Specifically, along the broken line X 1 , the broken line X 2 , the broken line X 3 and the broken line X 4 (FIGS. 5A and 5B) passing through the middles of the adjacent light emitting elements 40, the first light reflecting member 10 and the second light reflecting member 10 The light reflection member 50 and the support member 80 are cut into individual pieces by, for example, a dicer. Finally, the support member 80 is removed (peeled) to obtain a light emitting device (FIGS. 6A and 6B). Further, it is preferable that the support member 80 is not completely cut when the first light reflection member 10, the second light reflection member 50, and the support member 80 are cut. That is, as shown in FIG. 6C, it is preferable that the cutting portion 108 separates the first light reflecting member 10 and the second light reflecting member 50, and the supporting member 80 is not separated. By doing so, the support member 80 is not divided into a plurality of parts, so that the support member 80 can be removed (peeled) at once. The support member 80 may be removed before cutting, and then the first light reflecting member 10 and the second light reflecting member 50 may be cut. Thereby, a plurality of light emitting devices including one light emitting element 40 can be simultaneously manufactured. Moreover, you may cut|disconnect at the position containing several light emitting element 40.

以上の実施形態1では、工程1−4を経て、第1光反射部材及び/又は透光性樹脂30を除去して薄型化された被覆部材70を用いて、工程A−1〜A−3を実施するようにしている。
しかしながら、実施形態1の発光装置の製造方法では、工程1−3に続いて、工程A−1〜A−2を実施した後に、第1光反射部材及び/又は透光性樹脂30を除去して被覆部材70を薄くしてもよい。さらに、実施形態1の発光装置の製造方法では、工程1−3に続いて、工程A−1〜A−3を実施した後に、各発光装置においてそれぞれ第1光反射部材及び/又は透光性樹脂30を除去して被覆部材70を薄くしてもよい。
In the above-described first embodiment, through the steps 1-4, the first light reflecting member and/or the translucent resin 30 is removed to use the thinned covering member 70, and the steps A-1 to A-3 are performed. I am trying to carry out.
However, in the method for manufacturing the light emitting device of the first embodiment, after performing steps A-1 and A-2 after step 1-3, the first light reflecting member and/or the translucent resin 30 is removed. The covering member 70 may be thinned. Further, in the method for manufacturing a light emitting device of Embodiment 1, after performing steps A-1 to A-3 after step 1-3, the first light reflecting member and/or the translucent property is provided in each light emitting device. The resin 30 may be removed to thin the covering member 70.

実施形態2.
以下、実施形態2に係る発光装置の製造方法について説明する。
実施形態2の発光装置の製造方法は、実施形態1の被覆部材の作製方法とは異なる方法で被覆部材を作製する以外は、実施形態1の発光装置の製造方法と同様である。
以下、実施形態に係る被覆部材の作製方法について説明する。
Embodiment 2.
Hereinafter, a method for manufacturing the light emitting device according to the second embodiment will be described.
The manufacturing method of the light emitting device of the second embodiment is the same as the manufacturing method of the light emitting device of the first embodiment except that the covering member is manufactured by a method different from the manufacturing method of the covering member of the first embodiment.
Hereinafter, a method for manufacturing the covering member according to the embodiment will be described.

<被覆部材の作製>
工程2−1.第1光反射部材の準備
耐熱性シート等からなる支持部材80上に、凹部107を有する第1光反射部材10を形成する。第1光反射部材10の支持部材80に対向する面を第1の面101とし、第1の面の反対側の面を第2の面102としたとき、凹部107は第2の面102側に開口して形成される(図7A)。
<Production of covering member>
Step 2-1. Preparation of First Light Reflecting Member The first light reflecting member 10 having the recess 107 is formed on the support member 80 made of a heat resistant sheet or the like. When the surface of the first light reflecting member 10 facing the support member 80 is the first surface 101 and the surface opposite to the first surface is the second surface 102, the recess 107 is on the second surface 102 side. Is formed by opening (FIG. 7A).

工程2−2.波長変換物質20を含有する透光性樹脂30の配置
次に、各凹部107内に、波長変換物質20を含有する透光性樹脂30を配置する(図7A)。波長変換物質20を含有する透光性樹脂30を配置する際は、当該分野で公知の方法のいずれを利用してもよい。例えば、印刷、ポッティング等が挙げられる。尚、透光性樹脂30は波長変換物質20が透光性樹脂30中で移動できる状態であればよい。つまり、透光性樹脂30は硬化前の液状の状態でもよいし、半硬化の状態でもよい。ただし、透光性樹脂30が液状の状態の方が、波長変換物質20が移動しやすいので好ましい。
Step 2-2. Arrangement of Translucent Resin 30 Containing Wavelength Converting Material 20 Next, the translucent resin 30 containing the wavelength converting material 20 is arranged in each recess 107 (FIG. 7A). When disposing the translucent resin 30 containing the wavelength conversion substance 20, any method known in the art may be used. Examples include printing and potting. The transparent resin 30 may be in any state as long as the wavelength conversion substance 20 can move in the transparent resin 30. That is, the translucent resin 30 may be in a liquid state before curing or in a semi-cured state. However, it is preferable that the translucent resin 30 is in a liquid state because the wavelength conversion substance 20 is easily moved.

工程2−3.波長変換物質20を偏在させる
自然沈降または強制沈降により、透光性樹脂30中の波長変換物質20を、第1の面101側(凹部の底面側)に偏在させる(図7C)。その後、透光性樹脂30を加熱等により硬化させる。これにより、第1の面101側に波長変換物質20が偏在された透光性樹脂が得られる。
Step 2-3. Uneven distribution of the wavelength conversion material 20 The wavelength conversion material 20 in the translucent resin 30 is unevenly distributed on the first surface 101 side (bottom surface side of the recess) by natural sedimentation or forced sedimentation (FIG. 7C). Then, the translucent resin 30 is cured by heating or the like. Thereby, the translucent resin in which the wavelength conversion substance 20 is unevenly distributed on the first surface 101 side is obtained.

工程2−4.第1光反射部材及び透光性樹脂の除去
図7CのCt1−Ct1線(破線)より上側を除去する。つまり「第2の面側の第1光反射部材」と「波長変換物質20を偏在させた側とは反対側の透光性樹脂30」とを、除去する。第1光反射部材10と、透光性樹脂30と、を除去する際は、当該分野で公知の方法のいずれを利用してもよい。エッチング、切削、研削、研磨、ブラスト等が挙げられる。これにより、波長変換物質20を偏在させた側の透光性樹脂30を有しながら、薄くすることができる。また、エッチング、切削、研削、研磨、ブラスト等により第1光反射部材及び透光性樹脂を除去する際に、「第2の面側の第1光反射部材10」と「波長変換物質20を偏在させた側とは反対側の透光性樹脂30」とを粗面にしてもよい。粗面にすることでタック性が下がり取扱いやすくなる。
Step 2-4. Removal of First Light Reflecting Member and Translucent Resin The portion above the Ct1-Ct1 line (broken line) in FIG. 7C is removed. That is, the “first light reflecting member on the second surface side” and the “transparent resin 30 on the side opposite to the side where the wavelength conversion material 20 is unevenly distributed” are removed. When removing the first light reflecting member 10 and the translucent resin 30, any method known in the art may be used. Etching, cutting, grinding, polishing, blasting and the like can be mentioned. Accordingly, it is possible to make the wavelength conversion substance 20 thin while having the light-transmissive resin 30 on the side where the wavelength conversion substance 20 is unevenly distributed. Further, when removing the first light reflecting member and the transparent resin by etching, cutting, grinding, polishing, blasting or the like, the “first light reflecting member 10 on the second surface side” and the “wavelength conversion material 20” are removed. The translucent resin 30″ on the side opposite to the unevenly distributed side may be roughened. A rough surface reduces tackiness and makes handling easier.

工程2−5.第1光反射部材の除去
第1光反射部材10の第1の面から支持部材80を剥離して、第1光反射部材10の第2の面(第1の面の反対側の面)に支持部材80を貼り付ける(図7D)。この時、第1光反射部材10の第2の面に、別の支持部材80を貼り付けた後に第1の面から支持部材80を剥離するようにしてもよい。次に、図7DのCt2−Ct2線(破線)より上側にある「第1の面側の第1光反射部材」を、除去する(図7E)。第1光反射部材10を除去する際は、当該分野で公知の方法のいずれを利用してもよい。エッチング、切削、研削、研磨、ブラスト等が挙げられる。これにより第1の面101側からも波長変換物質20を含有する透光性樹脂30が露出するようにする。つまり、薄型化された被覆部材70を得ることができる。尚、工程2−4と工程2−5の除去工程はどちらを先に実施してもよい。
Step 2-5. Removal of First Light Reflecting Member The support member 80 is peeled off from the first surface of the first light reflecting member 10 to form a second surface (a surface opposite to the first surface) of the first light reflecting member 10. The support member 80 is attached (FIG. 7D). At this time, another support member 80 may be attached to the second surface of the first light reflecting member 10 and then the support member 80 may be peeled off from the first surface. Next, the “first light reflecting member on the first surface side” above the Ct2-Ct2 line (broken line) in FIG. 7D is removed (FIG. 7E). When removing the first light reflecting member 10, any method known in the art may be used. Etching, cutting, grinding, polishing, blasting and the like can be mentioned. Thereby, the translucent resin 30 containing the wavelength conversion substance 20 is exposed from the first surface 101 side. That is, the thinned covering member 70 can be obtained. Either of steps 2-4 and 2-5 may be performed first.

実施形態3.
実施形態3の発光装置の製造方法は、以下の点で実施形態1の製造方法とは異なっている。
(1)実施形態1では、工程1−3において、透光性樹脂30を硬化させているのに対して、実施形態3の発光装置の製造方法では、工程1−3において透光性樹脂30を半硬化状態とし、発光素子40を固定する段階まで、透光性樹脂30が接着性を保持するようにしている。
(2)実施形態1では、工程A−1において、発光素子40と透光性樹脂30を接着部材により接着しているのに対して、実施形態3の発光装置の製造方法では、工程A−1において、発光素子40と透光性樹脂30とを半硬化状態の透光性樹脂30による接着性を利用して固定している。
実施形態3の発光装置の製造方法は、上記(1)(2)を除いて実施形態1の製造方法と同様に構成される。
Embodiment 3.
The manufacturing method of the light emitting device of the third embodiment is different from the manufacturing method of the first embodiment in the following points.
(1) In the first embodiment, the transparent resin 30 is cured in the step 1-3, whereas in the method for manufacturing the light emitting device of the third embodiment, the transparent resin 30 is processed in the step 1-3. Is set in a semi-cured state, and the translucent resin 30 maintains the adhesive property until the light emitting element 40 is fixed.
(2) In the first embodiment, the light emitting element 40 and the translucent resin 30 are bonded by the adhesive member in the step A-1, whereas in the method for manufacturing the light emitting device of the third embodiment, the step A- 1, the light emitting element 40 and the translucent resin 30 are fixed by utilizing the adhesiveness of the translucent resin 30 in the semi-cured state.
The manufacturing method of the light emitting device of the third embodiment is configured in the same manner as the manufacturing method of the first embodiment except for the above (1) and (2).

尚、実施形態3の発光装置の製造方法では、実施形態1の製造方法において、発光素子40と透光性樹脂30とを半硬化状態の透光性樹脂30における接着性を利用して固定した。
しかしながら、実施形態2の製造方法において、発光素子40と透光性樹脂30とを半硬化状態の透光性樹脂30における接着性を利用して固定するようにしてもよい。
In the manufacturing method of the light emitting device of the third embodiment, in the manufacturing method of the first embodiment, the light emitting element 40 and the translucent resin 30 are fixed by utilizing the adhesiveness of the semi-cured translucent resin 30. ..
However, in the manufacturing method of the second embodiment, the light emitting element 40 and the translucent resin 30 may be fixed by utilizing the adhesiveness of the translucent resin 30 in the semi-cured state.

また、以上の実施形態3の発光装置の製造方法では、工程1−3に続いて、工程A−1〜A−2を実施した後に、第1光反射部材及び/又は透光性樹脂30を除去して被覆部材70を薄くすることが好ましい。 In addition, in the method for manufacturing a light-emitting device of Embodiment 3 described above, after performing Steps A-1 to A-2 after Step 1-3, the first light reflecting member and/or the translucent resin 30 is added. It is preferable that the covering member 70 is thinned by removing it.

以上の実施形態1〜3の発光装置の製造方法によれば、被覆部材70を研削、研磨等により薄くできるので、薄型の発光装置を容易に製造することができる。 According to the method for manufacturing a light emitting device of Embodiments 1 to 3 described above, since the covering member 70 can be thinned by grinding, polishing, etc., it is possible to easily manufacture a thin light emitting device.

また、以上の実施形態1〜3の発光装置の製造方法では、波長変換物質20を透光性樹脂30の一方の面側に偏在させた後、透光性樹脂30における波長変換物質20が偏在していない領域を除去して被覆部材70を薄型化している。これにより、波長変換物質20の含有量のバラツキが小さい薄型の被覆部材70を形成することができ、発光装置の色調バラツキを小さくできる。
すなわち、波長変換物質20を偏在させ、波長変換物質20が偏在していない領域を除去することなく、波長変換物質を含む薄型の被覆部材を作製しようとすると、薄い第1光反射部材の貫通孔又は開口部に少ない量の透光性樹脂を塗布して製造することになる。
しかしながら、樹脂の塗布は塗布量が少ないと、塗布量のバラツキが大きくなる傾向があり、その結果、透光性樹脂に含有させた波長変換物質の含有量もバラツキが大きくなる。波長変換物質20を透光性樹脂30の一方の面側に偏在させた後、透光性樹脂30における波長変換物質20が偏在していない領域を除去して被覆部材70を薄型にすると、第1光反射部材の貫通孔又は開口部への透光性樹脂の塗布量を比較的多くできる結果、波長変換物質20の含有量のバラツキが小さい薄型の被覆部材70を形成することが可能になる。
In addition, in the method for manufacturing a light-emitting device according to Embodiments 1 to 3 described above, after the wavelength conversion substance 20 is unevenly distributed on one surface side of the transparent resin 30, the wavelength conversion substance 20 is unevenly distributed in the transparent resin 30. The covering member 70 is thinned by removing the non-coated region. As a result, it is possible to form a thin coating member 70 with a small variation in the content of the wavelength conversion substance 20, and it is possible to reduce the variation in color tone of the light emitting device.
That is, if the thin wavelength-converting material 20 is unevenly distributed and a thin covering member containing the wavelength-converting material is produced without removing the region in which the wavelength-converting material 20 is not unevenly distributed, a through hole of the thin first light-reflecting member is formed. Alternatively, a small amount of translucent resin is applied to the opening to manufacture.
However, when the coating amount of the resin is small, the dispersion of the coating amount tends to be large, and as a result, the dispersion of the wavelength conversion substance contained in the translucent resin also becomes large. After the wavelength conversion substance 20 is unevenly distributed on one surface side of the translucent resin 30, the region where the wavelength conversion substance 20 is not unevenly distributed in the translucent resin 30 is removed to reduce the thickness of the covering member 70. As a result of being able to relatively increase the amount of the translucent resin applied to the through hole or opening of the single light reflecting member, it is possible to form the thin covering member 70 in which the variation in the content of the wavelength conversion substance 20 is small. ..

また、以上の実施形態1〜3の発光装置の製造方法では、波長変換物質20を透光性樹脂30の一方の面側に偏在させた後、透光性樹脂30における波長変換物質20が偏在していない領域を除去して被覆部材70を薄型化している。これにより、加工精度の良い薄型の被覆部材70を形成することができる。
すなわち、貫通孔又は開口部を有する薄い第1光反射部材を用いて、その貫通孔又は開口部に透光性樹脂30を充填して薄い被覆部材を作製しようとすると、製造過程において、例えば、貫通孔又は開口部に透光性樹脂30が充填されていない状態の薄い第1光反射部材の変形、貫通孔又は開口部に透光性樹脂30を充填して硬化させる際の薄い第1光反射部材の変形などにより、高い加工精度で被覆部材を作製することが難しい。
しかしながら、以上の実施形態1〜3の発光装置の製造方法では、製造過程での取り扱いが容易な比較的厚い第1光反射部材を用いて、貫通孔又は開口部に透光性樹脂30を充填及び硬化した後の強度の高い被覆部材を研磨又は研削等により薄くしているので、加工精度よく薄い被覆部材を作製して発光装置を製造することができる。
したがって、実施形態1〜3の発光装置の製造方法によれば、加工精度よく発光装置を製造することができる。
In addition, in the method for manufacturing a light-emitting device according to Embodiments 1 to 3 described above, after the wavelength conversion substance 20 is unevenly distributed on one surface side of the transparent resin 30, the wavelength conversion substance 20 is unevenly distributed in the transparent resin 30. The covering member 70 is thinned by removing the non-coated region. As a result, it is possible to form the thin covering member 70 with good processing accuracy.
That is, when a thin first light reflecting member having a through hole or opening is used to fill the through hole or opening with the light-transmissive resin 30 to make a thin covering member, in the manufacturing process, for example, Deformation of the thin first light-reflecting member in a state where the transparent resin 30 is not filled in the through hole or opening, and the thin first light when the transparent resin 30 is filled in the through hole or opening and cured It is difficult to manufacture the covering member with high processing accuracy due to deformation of the reflecting member.
However, in the method for manufacturing a light emitting device according to Embodiments 1 to 3 described above, the through hole or the opening is filled with the transparent resin 30 by using the relatively thick first light reflecting member that is easy to handle in the manufacturing process. Further, since the covering member having high strength after being hardened is thinned by polishing or grinding, the light emitting device can be manufactured by manufacturing the thin covering member with high processing accuracy.
Therefore, according to the method for manufacturing a light emitting device of Embodiments 1 to 3, the light emitting device can be manufactured with high processing accuracy.

さらに、以上の実施形態1〜3の発光装置の製造方法では、上述したように、加工精度よく薄い被覆部材を作製して発光装置を製造している。これにより、配光特性のバラツキの少ない発光装置を製造することができる。
すなわち、貫通孔又は開口部を有する薄い第1光反射部材を用いて、その貫通孔又は開口部に透光性樹脂を充填して、研磨又は研削等により薄型化することなく、薄い被覆部材を作製しようとすると、硬化後の透光性樹脂の形状のばらつきが大きくなりやすく、配光特性のバラツキが大きくなることが懸念される。
例えば、第1光反射部材の貫通孔又は開口部に、ポッティング等により透光性樹脂を塗布して硬化すると、いわゆる引けという現象が生じて、表面が凹形状になることがある。このように表面が凹形状になると、発光装置における光の取り出し効率が悪くなる。引けの量のバラツキにより、表面形状(例えば、凹形状における凹み量)がばらつくと、配光特性にバラツキを生じる。
しかしながら、以上の実施形態1〜3の発光装置の製造方法では、透光性樹脂30における波長変換物質20が偏在していない領域を除去して被覆部材70を薄型化しているので、引けにより形成された表面の凹形状部分を除去して平坦にでき、かつ表面形状のバラツキを小さくできる。
したがって、光の取り出し効率が高くかつ配光特性にバラツキの小さい発光装置を製造することが可能になる。
Furthermore, in the method for manufacturing a light emitting device according to Embodiments 1 to 3 described above, as described above, the light emitting device is manufactured by manufacturing the thin covering member with high processing accuracy. As a result, it is possible to manufacture a light emitting device with less variation in light distribution characteristics.
That is, a thin first light reflecting member having a through hole or an opening is used, and the through hole or the opening is filled with a translucent resin, so that a thin covering member can be formed without thinning by polishing or grinding. If it is attempted to be manufactured, there is a concern that the shape of the translucent resin after curing tends to become large and the dispersion of the light distribution characteristics may become large.
For example, when a translucent resin is applied to the through hole or the opening of the first light reflecting member by potting or the like and cured, a phenomenon called so-called shrinkage may occur and the surface may have a concave shape. When the surface has a concave shape as described above, the light extraction efficiency of the light emitting device is deteriorated. When the surface shape (for example, the amount of depression in the concave shape) varies due to the variation in the amount of shrinkage, the light distribution characteristics also vary.
However, in the method for manufacturing a light emitting device according to Embodiments 1 to 3 described above, since the region where the wavelength conversion substance 20 is not unevenly distributed in the translucent resin 30 is removed to reduce the thickness of the covering member 70, the covering member 70 is formed by shrinking. The recessed portion of the surface thus formed can be removed to make the surface flat, and variations in the surface shape can be reduced.
Therefore, it becomes possible to manufacture a light emitting device with high light extraction efficiency and small variation in light distribution characteristics.

<実施の形態4>
実施の形態4に係る発光装置1000は、実施の形態1〜3の発光装置の製造方法により作製された発光装置の一例である。実施の形態4に係る発光装置1000は、貫通孔を有する第1光反射部材10と、第1光反射部材10の貫通孔内に配置された波長変換物質20を含有する透光性樹脂30とを有する被覆部材と、透光性樹脂30と対向して配置された発光素子40と、発光素子40の側面を覆い、発光素子40の周りの第1光反射部材に対向して設けられた第2光反射部材50と、を有する。そして、透光性樹脂30中において波長変換物質20が発光素子40に対向する面側に偏在されている。すなわち、透光性樹脂30の波長変換物質20が偏在された側の面と、発光素子40の光取り出し面401が対向している。発光素子40の光取り出し面401は、発光素子40を基体に実装する場合に、発光素子40において基体と対面する面と反対側の面を示す。言い換えると、発光素子40をフェイスダウン実装する場合は、発光素子40の電極を有する面の反対側の面を示す。また、発光素子40をフェイスアップ実装する場合は、発光素子40の電極を有する面を示す。また、電極を有する面を電極形成面とする。
<Embodiment 4>
The light emitting device 1000 according to the fourth embodiment is an example of the light emitting device manufactured by the method for manufacturing the light emitting device according to the first to third embodiments. The light emitting device 1000 according to the fourth embodiment includes a first light reflecting member 10 having a through hole, and a translucent resin 30 containing the wavelength conversion substance 20 arranged in the through hole of the first light reflecting member 10. A light-emitting element 40 arranged to face the translucent resin 30, a side surface of the light-emitting element 40, and a first light-reflecting member around the light-emitting element 40 facing the first light-reflecting member. And two light reflecting members 50. The wavelength conversion substance 20 is unevenly distributed in the translucent resin 30 on the side facing the light emitting element 40. That is, the surface of the translucent resin 30 on which the wavelength conversion material 20 is unevenly distributed faces the light extraction surface 401 of the light emitting element 40. The light extraction surface 401 of the light emitting element 40 is a surface opposite to the surface of the light emitting element 40 facing the base when the light emitting element 40 is mounted on the base. In other words, when the light emitting element 40 is mounted face down, the surface opposite to the surface having the electrode of the light emitting element 40 is shown. Further, when the light emitting element 40 is mounted face up, the surface having the electrodes of the light emitting element 40 is shown. In addition, the surface having the electrode is the electrode formation surface.

図8Bは、図8AのA−A線に沿った断面図である。図8Bに示すように、発光素子40は、透光性基板41と、透光性基板41の下面側に形成された半導体積層体42とを含む。発光素子40は、透光性基板41側の光取り出し面401(上面)と、光取り出し面の反対側の面である電極形成面402(下面)とを有し、電極形成面402(下面)に一対の電極43、44と、を有する。一対の電極を構成する2つの電極43、44の各々は、任意の形状にすることができる。尚、本明細書において、発光素子40の「電極形成面」は、電極43、44を含まない状態における発光素子40の面を指している。本実施の形態では、電極形成面402は、半導体積層体42の下面と一致する。 8B is a cross-sectional view taken along the line AA of FIG. 8A. As shown in FIG. 8B, the light emitting element 40 includes a transparent substrate 41 and a semiconductor laminated body 42 formed on the lower surface side of the transparent substrate 41. The light emitting element 40 has a light extraction surface 401 (upper surface) on the transparent substrate 41 side and an electrode formation surface 402 (lower surface) opposite to the light extraction surface, and the electrode formation surface 402 (lower surface). And a pair of electrodes 43 and 44. Each of the two electrodes 43 and 44 forming the pair of electrodes can have any shape. In the present specification, the “electrode formation surface” of the light emitting element 40 refers to the surface of the light emitting element 40 in a state where the electrodes 43 and 44 are not included. In the present embodiment, the electrode formation surface 402 coincides with the lower surface of the semiconductor stacked body 42.

また、第1光反射部材10に形成された貫通孔の形状は円、楕円、半円、半楕円等のような曲線を含む形状や、三角形、四角形等の多角形、T及びL等の変則的な形等の任意の形状でよい。また、貫通孔内に配置される透光性樹脂30の大きさは、発光素子40からの光取出し効率を高める場合は、発光素子40の外縁よりも大きい方が好ましい。発光素子40の外縁よりも透光性樹脂30が大きいことで第1光反射部材10に反射され発光素子40に戻る光を少なくできるためである。また、発光装置の見切り性を高めたい場合は、発光素子40の外縁よりも透光性樹脂30が小さい方が好ましい。発光素子40の外縁よりも透光性樹脂30が小さいことで光が取り出される面積が小さくなるためである。 Further, the shape of the through hole formed in the first light reflecting member 10 is a shape including a curved line such as a circle, an ellipse, a semicircle, and a semi-ellipse, a polygon such as a triangle or a quadrangle, and irregularities such as T and L. Any shape such as a geometrical shape may be used. Further, the size of the translucent resin 30 arranged in the through hole is preferably larger than the outer edge of the light emitting element 40 in order to improve the light extraction efficiency from the light emitting element 40. This is because the translucent resin 30 is larger than the outer edge of the light emitting element 40, so that the amount of light reflected by the first light reflecting member 10 and returning to the light emitting element 40 can be reduced. Further, in order to improve the parting property of the light emitting device, it is preferable that the light transmitting resin 30 is smaller than the outer edge of the light emitting element 40. This is because the light transmissive resin 30 is smaller than the outer edge of the light emitting element 40, so that the area from which light is extracted becomes smaller.

第2光反射部材50は発光素子40の側面と、第1光反射部材10と、を覆っている。また、第2光反射部材50は、電極43、44の一部が露出するように、発光素子40の電極形成面402を覆っていてもよい。 The second light reflecting member 50 covers the side surface of the light emitting element 40 and the first light reflecting member 10. The second light reflecting member 50 may cover the electrode formation surface 402 of the light emitting element 40 so that the electrodes 43 and 44 are partially exposed.

発光装置1000では、透光性樹脂30中において波長変換物質20が第1の面101側に偏在されている。このため、第1光反射部材10及び透光性樹脂30の波長変換物質20が偏在されていない側(第2の面102側)を除去しても、透光性樹脂30中に含まれる波長変換物質20の含有量の減少が抑制できる。つまり、透光性樹脂30中に含まれる波長変換物質20の量を大きく変えることなく、発光装置が薄型化されている。また、仮に、透光性樹脂30の厚さが多少ばらついても、透光性樹脂30中に含まれる波長変換物質20の量が大きく変わることはない。また、波長変換物質20が偏在されていない側(第2の面102側)の透光性樹脂30の表面(上面)と第1光反射部材10の上面である第2の面102は、実質的に同一平面上に位置し(面一)、両者の面において段差がなく平坦であることが好ましい。このようにすることで、更に発光装置を薄型化することができる。尚、ここでの面一及び段差がないとは、いずれか一方が他方から突出する形態に積極的に加工されていないことを意味し、50μm程度、好ましくは30μm程度の凹凸があっても面一又は段差がないという。 In the light emitting device 1000, the wavelength conversion substance 20 is unevenly distributed on the first surface 101 side in the translucent resin 30. Therefore, even if the side where the wavelength conversion material 20 of the first light reflecting member 10 and the transparent resin 30 is not unevenly distributed (the side of the second surface 102) is removed, the wavelength contained in the transparent resin 30. A decrease in the content of the conversion substance 20 can be suppressed. That is, the light emitting device is thinned without largely changing the amount of the wavelength conversion substance 20 contained in the translucent resin 30. Further, even if the thickness of the translucent resin 30 varies to some extent, the amount of the wavelength conversion substance 20 contained in the translucent resin 30 does not change significantly. Further, the surface (upper surface) of the translucent resin 30 on the side where the wavelength conversion substance 20 is not unevenly distributed (the second surface 102 side) and the second surface 102 which is the upper surface of the first light reflecting member 10 are substantially. Are preferably on the same plane (flush), and both surfaces are flat with no step. By doing so, the light emitting device can be further thinned. It should be noted that the term "no flush or stepped" here means that one of them is not positively processed to project from the other, and even if there is unevenness of about 50 μm, preferably about 30 μm. There is one or no step.

発光装置1000において、透光性樹脂30の波長変換物質20が偏在された側の面と、発光素子40の光取り出し面401と、は対向(対面)している。つまり、発光装置1000の上面の一部を構成する、透光性樹脂30の外気に曝される表面は、透光性樹脂30の波長変換物質20が偏在されていない側の面である。したがって、透光性樹脂30の外気に曝される表面の近くには、実質的に波長変換物質20が存在していない。これにより、例えば波長変換物質20として水分に弱いものを使用しても、透光性樹脂30が保護層としての機能を果たすので、波長変換物質20が劣化されることを抑制し、良好な色度を保つことができる。例えば、水分に弱い波長変換物質20としてはフッ化物系蛍光体、硫化物系蛍光体、塩化物系蛍光体、ケイ酸塩系蛍光体、リン酸塩系蛍光体等がある。特にフッ化物系蛍光体であるKSiF:Mnは、赤色蛍光体として好適な蛍光体であるが、水分に弱いために適用範囲が限られていた。しかしながら、実施形態4の発光装置がフッ化物系蛍光体であるKSiF:Mnを含んでいても使用による色度の変化を抑制できる。また、発光素子40から出射された光は波長変換物質20に当たると屈折し散乱する。発光装置1000の上面は透光性樹脂30の波長変換物質20が偏在されていない面で形成されているので、透光性樹脂30中に波長変換物質20が分散されて配置されている発光装置と比較して、主に散乱が発生する箇所が発光装置の下側になる。このため、発光装置の上面が透光性樹脂30の波長変換物質20が偏在されていない面で形成されていると見切り性が良くなる。 In the light emitting device 1000, the surface of the translucent resin 30 on which the wavelength conversion material 20 is unevenly distributed and the light extraction surface 401 of the light emitting element 40 face (oppose) each other. That is, the surface of the translucent resin 30 exposed to the outside air, which constitutes a part of the upper surface of the light emitting device 1000, is the surface of the translucent resin 30 on which the wavelength conversion substance 20 is not unevenly distributed. Therefore, the wavelength conversion substance 20 does not substantially exist near the surface of the translucent resin 30 exposed to the outside air. Thereby, for example, even if the wavelength conversion substance 20 that is weak against moisture is used, the light-transmissive resin 30 functions as a protective layer, so that the wavelength conversion substance 20 is prevented from being deteriorated and a good color is obtained. You can keep the degree. For example, as the wavelength conversion substance 20 that is weak against moisture, there are a fluoride-based phosphor, a sulfide-based phosphor, a chloride-based phosphor, a silicate-based phosphor, a phosphate-based phosphor, and the like. In particular, K 2 SiF 6 :Mn, which is a fluoride-based phosphor, is a phosphor suitable as a red phosphor, but its application range is limited because it is weak against moisture. However, even if the light emitting device of Embodiment 4 contains K 2 SiF 6 :Mn, which is a fluoride-based phosphor, it is possible to suppress a change in chromaticity due to use. Further, the light emitted from the light emitting element 40 is refracted and scattered when it hits the wavelength conversion substance 20. Since the upper surface of the light emitting device 1000 is formed by the surface of the light transmissive resin 30 in which the wavelength conversion material 20 is not unevenly distributed, the light conversion device in which the wavelength conversion material 20 is dispersed and arranged in the light transmissive resin 30. Compared with, the place where scattering mainly occurs is on the lower side of the light emitting device. Therefore, if the upper surface of the light emitting device is formed by the surface of the translucent resin 30 on which the wavelength conversion material 20 is not unevenly distributed, the parting property is improved.

<実施の形態5>
実施の形態5に係る発光装置2000は、図9に示すように、実施の形態4に係る発光装置1000と比較して、透光性樹脂30の波長変換物質20が偏在された側の面とは反対側の面と、発光素子40の光取り出し面401と、が対向して配置される点で相違する。その他の点については、実施の形態1と同様である。
<Embodiment 5>
As shown in FIG. 9, the light emitting device 2000 according to the fifth embodiment is different from the light emitting device 1000 according to the fourth embodiment in that a surface of the translucent resin 30 on the side where the wavelength conversion material 20 is unevenly distributed. Is different in that the surface on the opposite side and the light extraction surface 401 of the light emitting element 40 are arranged to face each other. The other points are similar to those of the first embodiment.

また、波長変換物質20が偏在されていない側(第2の面102側)を形成する第1光反射部材10及び透光性樹脂30が面一、つまり、両者の面において段差がなく平坦であることが好ましい。このようにすることで、更に発光装置を薄型化することができる。尚、ここでの面一及び段差がないとは実施の形態1同様に、いずれか一方が他方から突出する形態に積極的に加工されていないことを意味し、50μm程度、好ましくは30μm程度の凹凸は含んでいても良い。 In addition, the first light reflecting member 10 and the transparent resin 30 forming the side where the wavelength conversion material 20 is not unevenly distributed (the side of the second surface 102) are flush with each other, that is, there is no step on both surfaces and they are flat. Preferably. By doing so, the light emitting device can be further thinned. It is to be noted that, as in the case of the first embodiment, the absence of the flush surface and the level difference means that one of them is not actively processed so as to project from the other, and the thickness is about 50 μm, preferably about 30 μm. Unevenness may be included.

実施の形態5では、波長変換物質20が偏在された側と、発光素子40と、の間に波長変換物質20が偏在されていない透光性樹脂30が配置されている。こうすることにより、発光素子40と波長変換物質20との距離を、透光性樹脂30中において波長変換物質20が分散されて配置される場合よりも、離すことができる。これにより、例えば熱に弱い波長変換物質20や、温度による励起効率の変化が大きい波長変換物質20を使用しても発光素子40から発生する熱が波長変換物質20に伝わることを抑制することができるので、良好な色度を保つことができる。熱に弱い波長変換物質20または温度による励起効率の変化が大きい波長変換物質20としては量子ドット蛍光体、クロロシリケート蛍光体、βサイアロン蛍光体等が挙げられる。 In the fifth embodiment, the translucent resin 30 in which the wavelength conversion material 20 is not unevenly distributed is arranged between the side where the wavelength conversion material 20 is unevenly distributed and the light emitting element 40. By doing so, the distance between the light emitting device 40 and the wavelength conversion substance 20 can be made larger than that in the case where the wavelength conversion substance 20 is dispersed and arranged in the translucent resin 30. Thereby, for example, even if the wavelength conversion material 20 which is weak to heat or the wavelength conversion material 20 whose excitation efficiency changes greatly with temperature is used, it is possible to suppress the heat generated from the light emitting element 40 from being transmitted to the wavelength conversion material 20. Therefore, good chromaticity can be maintained. Examples of the wavelength conversion substance 20 that is weak against heat or the wavelength conversion substance 20 that has a large change in excitation efficiency due to temperature include a quantum dot phosphor, a chlorosilicate phosphor, a β-sialon phosphor, and the like.

<実施の形態6>
図10に示す実施の形態6に係る発光装置3000は、実施の形態4に係る発光装置1000と比較して、発光装置3000の上面が発光装置3000の下面よりも粗面とされている点で相違する。言い換えると、発光装置3000の下面が発光装置3000の上面よりも平坦とされている。その他の点については、実施の形態4と同様である。
<Sixth Embodiment>
The light emitting device 3000 according to the sixth embodiment shown in FIG. 10 is different from the light emitting device 1000 according to the fourth embodiment in that the upper surface of the light emitting device 3000 is rougher than the lower surface of the light emitting device 3000. Be different. In other words, the lower surface of the light emitting device 3000 is flatter than the upper surface of the light emitting device 3000. The other points are the same as in the fourth embodiment.

発光装置3000の上面は、第1光反射部材10の第2の面と、透光性樹脂30の波長変換物質が偏在された側の面とは反対側の面と、を含む。発光装置3000の下面は、第2光反射部材50の第1光反射部材10と対面する面とは反対側の面52と、第2光反射部材から露出された発光素子の電極の一面である露出面431、441と、を含む。発光装置3000の上面を構成する第1光反射部材10の第2の面102は、露出面431、441よりも粗面化されることが好ましい。または、発光装置3000の上面を形成する透光性樹脂30の波長変換物質が偏在された側の面とは反対側の面は、露出面431、441より粗面化されることが好ましい。 The upper surface of the light emitting device 3000 includes a second surface of the first light reflecting member 10 and a surface opposite to the surface of the translucent resin 30 on which the wavelength conversion substance is unevenly distributed. The lower surface of the light emitting device 3000 is a surface 52 of the second light reflecting member 50 opposite to the surface facing the first light reflecting member 10, and one surface of the electrode of the light emitting element exposed from the second light reflecting member. And exposed surfaces 431 and 441. The second surface 102 of the first light reflecting member 10 that constitutes the upper surface of the light emitting device 3000 is preferably roughened than the exposed surfaces 431 and 441. Alternatively, the surface of the translucent resin 30 forming the upper surface of the light emitting device 3000 opposite to the surface on which the wavelength conversion material is unevenly distributed is preferably roughened from the exposed surfaces 431 and 441.

発光装置3000の上面が粗面化されることによりタック性が下がり、例えば、発光装置3000を実装する際に、取扱いやすくなる。尚、発光装置3000の下面を形成する、第2光反射部材から露出された発光素子の電極の一面である露出面431、441は平坦であることが好ましい。また、露出面431、441は、第2光反射部材の下面(露出面431、441の周りの面)より、鏡面反射率が高いことが好ましい。これにより、第2光反射部材50とのコントラスト差が高くなる。露出面431、441と露出面431、441の周りの面のコントラスト差が大きくなるので、電極43、44を認識しやすくなる。尚、第2の面102と、透光性樹脂30の波長変換物質が偏在された側の面とは反対側の面と、の算術平均粗さRaは特に限定されないが、取扱いやすくするためには、第2の面の算術平均粗さRaが0.05〜10μmであることが好ましく、0.07〜5μmであることがより好ましい。透光性樹脂30において波長変換物質20を偏在させた側とは反対側の面の算術平均粗さRaは、特に限定されないが、取扱いやすくするためには、0.05〜10μmであることが好ましく、0.07〜5μmであることがより好ましい。また、露出面431、441の算術平均粗さRaは特に限定されないが、認識しやすくするためには算術平均粗さRaが0.1μm以下であることが好ましく、0.05μm以下であることがより好ましく、0.025μm以下であることが更に好ましい。 By roughening the upper surface of the light emitting device 3000, the tackiness is reduced, and for example, when the light emitting device 3000 is mounted, it becomes easy to handle. In addition, it is preferable that exposed surfaces 431 and 441, which are the one surface of the electrodes of the light emitting element exposed from the second light reflecting member, which form the lower surface of the light emitting device 3000, are flat. Further, it is preferable that the exposed surfaces 431 and 441 have higher specular reflectance than the lower surface of the second light reflecting member (the surface around the exposed surfaces 431 and 441). As a result, the contrast difference with the second light reflecting member 50 increases. Since the contrast difference between the exposed surfaces 431 and 441 and the surfaces around the exposed surfaces 431 and 441 becomes large, the electrodes 43 and 44 can be easily recognized. The arithmetic mean roughness Ra of the second surface 102 and the surface of the translucent resin 30 opposite to the surface on which the wavelength conversion substance is unevenly distributed is not particularly limited, but is easy to handle. Of the second surface preferably has an arithmetic average roughness Ra of 0.05 to 10 μm, more preferably 0.07 to 5 μm. The arithmetic mean roughness Ra of the surface of the translucent resin 30 opposite to the side on which the wavelength conversion substance 20 is unevenly distributed is not particularly limited, but is 0.05 to 10 μm for easy handling. It is more preferably 0.07 to 5 μm. The arithmetic average roughness Ra of the exposed surfaces 431 and 441 is not particularly limited, but the arithmetic average roughness Ra is preferably 0.1 μm or less, and 0.05 μm or less for easy recognition. More preferably, it is even more preferably 0.025 μm or less.

Raは、JIS0601−1976表面粗さの測定方法に準拠して、測定することができる。具体的には、Raは、粗さ曲線からその中心線の方向に測定長さLの部分を抜き取り、この抜き取り部分の中心線をX軸、縦倍率の方向をY軸とし、粗さ曲線をy=f(x)としたとき次式で表される。 Ra can be measured according to the measuring method of JIS0601-1976 surface roughness. Specifically, Ra is obtained by extracting a portion of the measurement length L from the roughness curve in the direction of the center line, the center line of the extracted portion as the X axis, and the vertical magnification direction as the Y axis. It is expressed by the following equation when y=f(x).

Figure 0006702280
Figure 0006702280

Raの値は、マイクロメートルで表したものである。このRaは、接触式表面粗さ測定機やレーザー顕微鏡を用いて測定することができる。尚、本明細書においては算術平均粗さ:Raの値は東京精密製のSURFCOM480A-12を用いて測定した値である。 The value of Ra is expressed in micrometers. This Ra can be measured using a contact-type surface roughness measuring device or a laser microscope. In this specification, the value of arithmetic average roughness: Ra is a value measured using SURFCOM480A-12 manufactured by Tokyo Seimitsu.

また、発光装置2000においても上面である第1光反射部材10の第1の面101と、透光性樹脂30の波長変換物質20が偏在された側の面と、が発光装置2000の下面を形成する露出面431、441よりも粗面とされている方が好ましい。このようにすることで、発光装置3000と同様に取扱いやすくなる。 In addition, the first surface 101 of the first light reflecting member 10 which is the upper surface of the light emitting device 2000 and the surface of the translucent resin 30 on the side where the wavelength conversion material 20 is unevenly distributed form the lower surface of the light emitting device 2000. It is preferable that the exposed surfaces 431 and 441 to be formed are rough surfaces. By doing so, it becomes easy to handle like the light emitting device 3000.

<実施の形態7>
図11に示す実施の形態7に係る発光装置4000は、実施の形態4に係る発光装置1000と比較して、発光素子40と透光性樹脂30とが接合部材60を介して接合される点で相違する。その他の点については、実施の形態4と同様である。
<Embodiment 7>
The light emitting device 4000 according to the seventh embodiment shown in FIG. 11 is different from the light emitting device 1000 according to the fourth embodiment in that the light emitting element 40 and the translucent resin 30 are bonded via the bonding member 60. It makes a difference. The other points are the same as in the fourth embodiment.

発光素子40と透光性樹脂30の間に透光性の接合部材60を配置することにより発光素子40と、透光性樹脂30と、を容易に接合させることができるので好ましい。また、接合部材60を介することで、接合部材60と、透光性樹脂30と、の界面で屈折又は反射が生じる。これにより色ムラや輝度ムラが抑制できる。接合部材60の屈折率を、透光性樹脂30の屈折率より、発光素子40の光取り出し面401の屈折率に近い値で形成することで、発光素子40からの光の取り出し効率を高めることができるので好ましい。 It is preferable to dispose the translucent joining member 60 between the light emitting element 40 and the translucent resin 30 because the light emitting element 40 and the translucent resin 30 can be easily joined. Further, through the joining member 60, refraction or reflection occurs at the interface between the joining member 60 and the translucent resin 30. As a result, color unevenness and brightness unevenness can be suppressed. By increasing the refractive index of the bonding member 60 to be closer to the refractive index of the light extraction surface 401 of the light emitting element 40 than the refractive index of the translucent resin 30, the efficiency of extracting light from the light emitting element 40 is improved. It is possible to do so, which is preferable.

また、接合部材60が発光素子40の側面まで形成されると、発光素子40の側面から出射される光が接合部材60を通って発光装置4000から取り出すことができるので光取出し効率を高めることができる。 Further, when the joining member 60 is formed up to the side surface of the light emitting element 40, the light emitted from the side surface of the light emitting element 40 can be extracted from the light emitting device 4000 through the joining member 60, so that the light extraction efficiency can be improved. it can.

透光性樹脂30が発光素子40の外縁よりも大きい場合は、接合部材60が、発光素子40の光取り出し面401の面積よりも大きい面積で、透光性樹脂30と接合されることが好ましい。これにより、発光素子40から出射された光が、光取り出し面401よりも大きい面積である接合部材60と透光性樹脂30とが接合される面積で、導入されるので、色ムラや輝度ムラを抑制できる。また、接合部材60が、透光性樹脂30の発光素子40と対面する面全てを覆うことがより好ましい。このようにすることで、透光性樹脂30の発光素子40と対面する面の全てで、発光素子40から出射された光を導入できるので更に色ムラや輝度ムラが抑制できる。 When the translucent resin 30 is larger than the outer edge of the light emitting element 40, the joining member 60 is preferably joined to the translucent resin 30 in an area larger than the area of the light extraction surface 401 of the light emitting element 40. .. As a result, the light emitted from the light emitting element 40 is introduced in the area where the bonding member 60 and the translucent resin 30 are bonded to each other, which is larger than the light extraction surface 401. Can be suppressed. Further, it is more preferable that the bonding member 60 covers the entire surface of the translucent resin 30 facing the light emitting element 40. By doing so, the light emitted from the light emitting element 40 can be introduced into all of the surfaces of the translucent resin 30 facing the light emitting element 40, so that color unevenness and brightness unevenness can be further suppressed.

尚、実施の形態5に係る発光装置2000のように透光性樹脂30の波長変換物質20が偏在された側の面とは反対側の面と、発光素子40の光取り出し面401と、が対面して配置されていても上述の効果が得られる。 In addition, as in the light emitting device 2000 according to the fifth embodiment, the surface of the translucent resin 30 opposite to the surface on which the wavelength conversion material 20 is unevenly distributed and the light extraction surface 401 of the light emitting element 40 are formed. Even if they are arranged facing each other, the above effects can be obtained.

<実施の形態8>
図12、図13A、13B、13Cに示す実施の形態8に係る発光装置5000は、実施の形態4に係る発光装置1000と比較して、第1光反射部材10の貫通孔の側壁に凸部103を有する点で相違する。その他の点については、実施の形態4と同様である。
<Embodiment 8>
The light emitting device 5000 according to the eighth embodiment shown in FIGS. 12, 13A, 13B, and 13C is different from the light emitting device 1000 according to the fourth embodiment in that a protrusion is formed on the sidewall of the through hole of the first light reflecting member 10. The difference is that it has 103. The other points are the same as in the fourth embodiment.

貫通孔の側壁に凸部103を有することで、発光素子40から出射された光が凸部103より反射され、波長変換物質20により多くの光が当たるので色ムラが改善されるため好ましい。また、凸部103の位置は特に限定されるものではないが、図12に示す発光装置5000のように発光装置の上面が第1光反射部材10の第2の面102で形成されている場合は、凸部103が第1光反射部材10の第1の面101よりも第2の面102に近い位置に形成されていることが好ましい。このようにすることで、凸部103より反射された光が波長変換物質20に、より当たりやすいので色ムラが改善される。また、凸部103は、発光素子の光取り出し面より発光装置の上面に近い位置に形成される方が好ましい。こうすることにより、発光装置の見切り性が良くなる。凸部103により見切り性を高くした方が、貫通孔を小さくした場合より透光性樹脂30の量を多くできるので色ムラを抑制することができる。尚、本明細書では、凸部103の位置とは凸部103の先端の位置とする。 By providing the convex portion 103 on the side wall of the through hole, the light emitted from the light emitting element 40 is reflected by the convex portion 103, and more light impinges on the wavelength conversion material 20, which improves color unevenness, which is preferable. Although the position of the convex portion 103 is not particularly limited, when the upper surface of the light emitting device is formed by the second surface 102 of the first light reflecting member 10 as in the light emitting device 5000 shown in FIG. Is preferably formed at a position closer to the second surface 102 than the first surface 101 of the first light reflecting member 10. By doing so, the light reflected from the convex portion 103 is more likely to hit the wavelength conversion material 20, and thus color unevenness is improved. Further, it is preferable that the convex portion 103 is formed at a position closer to the upper surface of the light emitting device than the light extraction surface of the light emitting element. This improves the parting property of the light emitting device. Since the amount of the light-transmissive resin 30 can be increased by increasing the parting property by using the convex portion 103, it is possible to suppress color unevenness. In the present specification, the position of the convex portion 103 is the position of the tip of the convex portion 103.

貫通孔の側壁に凸部103を有することで第1光反射部材10と波長変換物質20を含有する透光性樹脂30と接着面積が大きくなり、接着力も高くなるので好ましい。また、図13Aに示すように凸部103が第1の面101側に傾いて突き出ていてもよい。言い換えると、凸部103が第1の面101側に傾斜していてもよい。凸部103が傾いていることにより接着面積が大きくなり、接着力を高くできる。また、図13Bに示すように凸部103が第2の面102側に傾いて突き出ていてもよい。言い換えると、凸部103が第2の面102側に傾斜していてもよい。このようにすることでも、第1光反射部材10と透光性樹脂30との接着面積が大きくなり、接着力を高くできる。更に、発光素子40から出射された光が凸部103により反射されることで発光装置の上面に向かいやすくなるので、光の取り出しが良くなる。また、図13Cに示すように、発光素子40と透光性樹脂30とが接合部材60を介して接合されてもよい。このようにすることで、接合部材60と、透光性樹脂30と、の界面で屈折又は反射が生じ、凸部103によっても反射が生じるので、更に色ムラが改善される。 By having the convex portion 103 on the side wall of the through hole, the adhesion area between the first light reflection member 10 and the translucent resin 30 containing the wavelength conversion substance 20 is increased, and the adhesion is also increased, which is preferable. Further, as shown in FIG. 13A, the convex portion 103 may be inclined and projected toward the first surface 101 side. In other words, the convex portion 103 may be inclined toward the first surface 101 side. Since the convex portion 103 is inclined, the adhesive area is increased and the adhesive force can be increased. In addition, as shown in FIG. 13B, the convex portion 103 may be inclined and projected toward the second surface 102 side. In other words, the convex portion 103 may be inclined toward the second surface 102 side. Also by doing so, the adhesion area between the first light reflecting member 10 and the translucent resin 30 is increased, and the adhesive force can be increased. Further, since the light emitted from the light emitting element 40 is reflected by the convex portion 103, it becomes easier to go to the upper surface of the light emitting device, so that the light can be taken out better. Further, as shown in FIG. 13C, the light emitting element 40 and the translucent resin 30 may be joined via the joining member 60. By doing so, refraction or reflection occurs at the interface between the joining member 60 and the translucent resin 30, and reflection also occurs at the convex portions 103, so that color unevenness is further improved.

<実施の形態9>
図14に示す実施の形態に係る発光装置6000は、実施の形態4に係る発光装置1000と比較して、透光性樹脂30に光拡散材が含有されている点で相違する。図14Aは透光性樹脂30に第1光拡散材31が含有されており、図14Bは透光性樹脂30に第1光拡散材31及び第2光拡散材32が含有されている。その他の点については、実施の形態4と同様である。
<Embodiment 9>
The light emitting device 6000 according to the embodiment shown in FIG. 14 is different from the light emitting device 1000 according to the fourth embodiment in that the translucent resin 30 contains a light diffusing material. In FIG. 14A, the transparent resin 30 contains the first light diffusing material 31, and in FIG. 14B, the transparent resin 30 contains the first light diffusing material 31 and the second light diffusing material 32. The other points are the same as in the fourth embodiment.

図14Aに示すように透光性樹脂30に第1光拡散材31を含有することで、透光性樹脂30の屈折率を調整できるので好ましい。また、25℃(常温)における第1光拡散材の屈折率が、25℃(常温)における透光性樹脂の屈折率より高い方が好ましい。これにより、透光性樹脂30と第1光拡散材31との屈折率の差が常温(25℃)時より高温(100℃)時の方が大きくなる。これは、駆動等により温度が上昇すると、熱膨張により透光性樹脂30の屈折率が低下するためである。一般的に第1光拡散材31は温度上昇しても透光性樹脂30より屈折率は低下しない。また、波長変換物質20の波長変換効率は温度が上昇すると低下する。高温(100℃)時には透光性樹脂30と第1光拡散材31との屈折率の差が大きくなるので、発光素子40から出射された光が第1光拡散材31により反射される率が高くなり、透光性樹脂30を通過する発光素子40から出射された光の光路長を長くできる。これにより波長変換物質20に当たる光が増えるので、波長変換物質20の蛍光発光効率が低下しても色ムラを抑制することができる。 It is preferable to include the first light diffusing material 31 in the transparent resin 30 as shown in FIG. 14A because the refractive index of the transparent resin 30 can be adjusted. Further, the refractive index of the first light diffusing material at 25° C. (normal temperature) is preferably higher than the refractive index of the translucent resin at 25° C. (normal temperature). As a result, the difference in refractive index between the translucent resin 30 and the first light diffusing material 31 becomes larger at high temperature (100° C.) than at room temperature (25° C.). This is because when the temperature rises due to driving or the like, the refractive index of the transparent resin 30 decreases due to thermal expansion. In general, the refractive index of the first light diffusing material 31 does not decrease as compared with the translucent resin 30 even when the temperature rises. Further, the wavelength conversion efficiency of the wavelength conversion material 20 decreases as the temperature rises. At a high temperature (100° C.), the difference in refractive index between the translucent resin 30 and the first light diffusing material 31 becomes large, so that the rate of light emitted from the light emitting element 40 being reflected by the first light diffusing material 31 increases. As a result, the light path length of the light emitted from the light emitting element 40 that passes through the transparent resin 30 can be increased. As a result, the amount of light that hits the wavelength conversion substance 20 increases, so that color unevenness can be suppressed even if the fluorescence emission efficiency of the wavelength conversion substance 20 decreases.

また、第1光拡散材31は透光性樹脂30中に均一に分散されていることが好ましい。第1光拡散材31が分散されていることで、透光性樹脂30中での色ムラを抑制できる。透光性樹脂30中に分散された第1光拡散材31を有し、第1光拡散材31と、発光素子40の光取り出し面401と、の間に波長変換物質20が偏在されていることが好ましい。すなわち、透光性樹脂中において、波長変換物質が偏在している領域を除く領域に第1光拡散材が含まれていることが好ましい。このように配置することで発光素子40から出射された光が第1光拡散材31に反射されて波長変換物質20に当たりやすくなるので、更に透光性樹脂30中での色ムラを抑制できる。このため波長変換物質20は偏在するが、第1光拡散材31は、未硬化又は半硬化の状態の透光性樹脂30中で波長変換物質20に比較して沈降しにくく、均一に分散された状態を維持できる材料を選択することが好ましい。具体的には、波長変換物質20として、平均粒径が5μm〜20μmの範囲にある蛍光体粒子を選択する場合、第1光拡散材31として、例えば、平均粒径が0.1μm〜3μmの範囲にある粉体材料、好ましくは、平均粒径が0.2μm〜1μmの範囲にある粉体材料を用いることができる。更に、第1光拡散材31を含有させることで透光性樹脂30の粘度を調整することができる。これにより、透光性樹脂30の成形が容易になるので好ましい。 Further, it is preferable that the first light diffusing material 31 is uniformly dispersed in the transparent resin 30. Since the first light diffusing material 31 is dispersed, it is possible to suppress color unevenness in the transparent resin 30. The first light diffusing material 31 is dispersed in the transparent resin 30, and the wavelength conversion substance 20 is unevenly distributed between the first light diffusing material 31 and the light extraction surface 401 of the light emitting element 40. Preferably. That is, in the translucent resin, it is preferable that the first light diffusing material is included in the region excluding the region where the wavelength conversion substance is unevenly distributed. With such an arrangement, the light emitted from the light emitting element 40 is reflected by the first light diffusing material 31 and easily hits the wavelength conversion material 20, so that color unevenness in the translucent resin 30 can be further suppressed. Therefore, the wavelength conversion substance 20 is unevenly distributed, but the first light diffusing material 31 is less likely to settle in the uncured or semi-cured translucent resin 30 as compared with the wavelength conversion substance 20, and is uniformly dispersed. It is preferable to select a material that can maintain the above state. Specifically, when selecting phosphor particles having an average particle size in the range of 5 μm to 20 μm as the wavelength conversion substance 20, the first light diffusing material 31 has, for example, an average particle size of 0.1 μm to 3 μm. A powder material in the range, preferably, a powder material having an average particle diameter in the range of 0.2 μm to 1 μm can be used. Furthermore, by including the first light diffusing material 31, the viscosity of the transparent resin 30 can be adjusted. This is preferable because it facilitates the molding of the translucent resin 30.

また、図14Bに示すように透光性樹脂30に第1光拡散材31及び第2光拡散材32を含有させてもよい。この時、25℃(常温)における第1光拡散材の屈折率が、25℃(常温)における透光性樹脂30の屈折率より高く、100℃(高温)における第2光拡散材の屈折率が、100℃(高温)における透光性樹脂30の屈折率より低い方が好ましい。このようにすることで、高温(100℃)時には常温(25℃)時と比較して、透光性樹脂30と第1光拡散材31との屈折率差は大きくなり、透光性樹脂30と第2光拡散材32との屈折率差は小さくなる。こうすることにより、透光性樹脂30と第1光拡散材31との屈折率差と、透光性樹脂30と第2光拡散材32との屈折率差と、がそれぞれ補完関係となることで更に温度変化による色ムラを抑制することができる。また、第1光拡散材31及び第2光拡散材32は透光性樹脂30中に分散されていることが好ましい。第1光拡散材31及び第2光拡散材32が分散されていることで透光性樹脂30中での色ムラを抑制できる。また、透光性樹脂30に2種類以上の光拡散材を含有させてもよい。 Further, as shown in FIG. 14B, the translucent resin 30 may contain a first light diffusing material 31 and a second light diffusing material 32. At this time, the refractive index of the first light diffusing material at 25° C. (normal temperature) is higher than the refractive index of the transparent resin 30 at 25° C. (normal temperature), and the refractive index of the second light diffusing material at 100° C. (high temperature). However, it is preferably lower than the refractive index of the transparent resin 30 at 100° C. (high temperature). By doing so, the difference in refractive index between the transparent resin 30 and the first light diffusing material 31 at the high temperature (100° C.) becomes larger than that at the normal temperature (25° C.), and the transparent resin 30 The difference in refractive index between the second light diffusing material 32 and By doing so, the refractive index difference between the translucent resin 30 and the first light diffusing material 31 and the refractive index difference between the translucent resin 30 and the second light diffusing material 32 have a complementary relationship. Thus, color unevenness due to temperature change can be further suppressed. Further, it is preferable that the first light diffusing material 31 and the second light diffusing material 32 are dispersed in the light transmissive resin 30. Since the first light diffusing material 31 and the second light diffusing material 32 are dispersed, color unevenness in the transparent resin 30 can be suppressed. Further, the translucent resin 30 may contain two or more kinds of light diffusing materials.

尚、本明細書において、特に限定されない限り、屈折率とは発光素子のピーク波長における値とする。また、特に限定されない限り、屈折率の差とは絶対値とする。また、屈折率は例えばアッベ屈折計で測定することができる。部材の大きさ等によりアッベ屈折計で測定できない場合には、部材を特定し、その特定した部材と類似の部材の測定結果より屈折率を求めることができる。 In the present specification, unless otherwise specified, the refractive index is a value at the peak wavelength of the light emitting element. Further, unless otherwise limited, the difference in refractive index is an absolute value. The refractive index can be measured with, for example, an Abbe refractometer. When the Abbe refractometer cannot measure due to the size of the member or the like, the member can be specified, and the refractive index can be obtained from the measurement result of the member similar to the specified member.

<実施の形態10>
図15Aに示す実施の形態10に係る発光装置7000は、実施の形態4に係る発光装置1000と比較して、発光装置7000の上面が発光装置7000の下面よりも粗面とされている点と、発光素子40と透光性樹脂30とが接合部材60を介して接合される点と、第1光反射部材10の貫通孔の側壁に凸部103を有する点と、透光性樹脂30に光拡散材が含有されている点とで相違する。その他の点については、実施の形態4と同様である。
<Embodiment 10>
The light emitting device 7000 according to the tenth embodiment shown in FIG. 15A is that the upper surface of the light emitting device 7000 is rougher than the lower surface of the light emitting device 7000 as compared with the light emitting device 1000 according to the fourth embodiment. The light emitting element 40 and the transparent resin 30 are bonded to each other via the bonding member 60, the convex portion 103 is provided on the side wall of the through hole of the first light reflecting member 10, and the transparent resin 30 The difference is that a light diffusing material is contained. The other points are the same as in the fourth embodiment.

発光装置7000の上面を形成する透光性樹脂30の上面が粗面化されている。発光素子40から出射された光が、透光性樹脂30の上面によって反射されやすくなる。これにより透光性樹脂30中での色ムラを抑制できる。また、発光素子40と透光性樹脂30とが、接合部材60を介して接合されている。接合部材60を介することで、接合部材60と、透光性樹脂30と、の界面で発光素子40から出射された光の一部が屈折又は反射するので色ムラを抑制できる。第1光反射部材10の貫通孔の側壁に凸部103を有している。これにより発光素子40から出射された光の一部が、凸部103によって反射されるので色ムラを抑制できる。透光性樹脂30に光拡散材(第1光拡散材31、第2光拡散材32)が含有されている。これにより発光素子40から出射された光の一部が、光拡散材によって屈折又は反射されるので色ムラを抑制できる。このような構成にすることで、透光性樹脂30中での発光素子40から出射された光の光路長を長くすることができるので更に色ムラを抑制することができる。 The upper surface of the translucent resin 30 forming the upper surface of the light emitting device 7000 is roughened. The light emitted from the light emitting element 40 is easily reflected by the upper surface of the translucent resin 30. Thereby, color unevenness in the translucent resin 30 can be suppressed. Further, the light emitting element 40 and the translucent resin 30 are joined via the joining member 60. Through the joining member 60, a part of the light emitted from the light emitting element 40 is refracted or reflected at the interface between the joining member 60 and the translucent resin 30, so that color unevenness can be suppressed. The first light reflecting member 10 has a convex portion 103 on the side wall of the through hole. As a result, part of the light emitted from the light emitting element 40 is reflected by the convex portion 103, so that color unevenness can be suppressed. The translucent resin 30 contains a light diffusion material (first light diffusion material 31, second light diffusion material 32). As a result, a part of the light emitted from the light emitting element 40 is refracted or reflected by the light diffusing material, so that color unevenness can be suppressed. With such a configuration, the optical path length of the light emitted from the light emitting element 40 in the translucent resin 30 can be increased, and thus color unevenness can be further suppressed.

図15Bに示す実施の形態に係る発光装置7000は、図15Aの変形例であり、透光性樹脂30の波長変換物質20が偏在された側の面とは反対側の面と、発光素子40の光取り出し面401と、が対面して配置される点で相違する。その他の点については、図15Aと同様である。このような構成でも透光性樹脂30中での発光素子40から出射された光の光路長を長くすることができるので色ムラを抑制することができる。 A light emitting device 7000 according to the embodiment shown in FIG. 15B is a modified example of FIG. 15A, and includes a surface of the translucent resin 30 opposite to the surface on which the wavelength conversion material 20 is unevenly distributed, and the light emitting element 40. The light extraction surface 401 and the light extraction surface 401 are different from each other. The other points are the same as in FIG. 15A. Even with such a configuration, the optical path length of the light emitted from the light emitting element 40 in the translucent resin 30 can be lengthened, so that color unevenness can be suppressed.

以下に、実施の形態4〜10の発光装置の各構成部材に適した材料等について説明する。
(発光素子40)
発光素子40としては、例えば発光ダイオード等の半導体発光素子を用いることができる。半導体発光素子は、透光性基板41と、その上に形成された半導体積層体42とを含むことができる。
Materials suitable for the constituent members of the light emitting devices of the fourth to tenth embodiments will be described below.
(Light emitting element 40)
As the light emitting element 40, for example, a semiconductor light emitting element such as a light emitting diode can be used. The semiconductor light emitting device may include a translucent substrate 41 and a semiconductor laminated body 42 formed thereon.

(透光性基板41)
発光素子40の透光性基板41には、例えば、サファイア(Al)、スピネル(MgA1)のような透光性の絶縁性材料や、半導体積層体42からの発光を透過する半導体材料(例えば、窒化物系半導体材料)を用いることができる。
(Transparent substrate 41)
The light-transmissive substrate 41 of the light-emitting element 40 transmits a light-transmissive insulating material such as sapphire (Al 2 O 3 ) or spinel (MgA1 2 O 4 ) or light emitted from the semiconductor stacked body 42. A semiconductor material (for example, a nitride-based semiconductor material) can be used.

(半導体積層体42)
半導体積層体42は、複数の半導体層を含む。半導体積層体42の一例としては、第1導電型半導体層(例えばn型半導体層)、発光層(活性層)および第2導電型半導体層(例えばp型半導体層)の3つの半導体層を含むことができる。半導体層には、例えば、III−V族化合物半導体、II−VI族化合物半導体等の半導体材料から形成することができる。具体的には、InAlGa1−X−YN(0≦X、0≦Y、X+Y≦1)等の窒化物系の半導体材料(例えばInN、AlN、GaN、InGaN、AlGaN、InGaAlN等)を用いることができる。
(Semiconductor laminate 42)
The semiconductor stacked body 42 includes a plurality of semiconductor layers. An example of the semiconductor stacked body 42 includes three semiconductor layers of a first conductive type semiconductor layer (for example, an n type semiconductor layer), a light emitting layer (active layer), and a second conductive type semiconductor layer (for example, a p type semiconductor layer). be able to. The semiconductor layer can be formed of a semiconductor material such as a III-V group compound semiconductor or a II-VI group compound semiconductor. Specifically, a nitride-based semiconductor material such as In X Al Y Ga 1-X-Y N (0≦X, 0≦Y, X+Y≦1) (for example, InN, AlN, GaN, InGaN, AlGaN, InGaAlN). Etc.) can be used.

(電極43、44)
発光素子40の電極43、44としては、電気良導体を用いることができ、例えばCu等の金属が好適である。
(Electrodes 43, 44)
As the electrodes 43 and 44 of the light emitting element 40, a good electric conductor can be used, and for example, a metal such as Cu is suitable.

(第1光反射部材10)
第1光反射部材とは、発光素子からの光に対する反射率が60%以上、好ましくは70%以上の部材であればよい。こうすることにより、第1光反射部材に達した光が反射され、光が透光性樹脂の外側に向かうことにより、発光装置の光取出し効率を高めることができる。
(First light reflecting member 10)
The first light reflecting member may be a member having a reflectance of 60% or more, preferably 70% or more, with respect to the light from the light emitting element. By doing so, the light that reaches the first light reflecting member is reflected, and the light goes toward the outside of the translucent resin, so that the light extraction efficiency of the light emitting device can be improved.

第1光反射部材の材料としては、金属、光反射性物質(例えば、酸化チタン、二酸化ケイ素、二酸化チタン、二酸化ジルコニウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ホウ素、ムライト、酸化ニオブ、硫酸バリウム、各種希土類酸化物(例えば、酸化イットリウム、酸化ガドリニウム))等が挙げられる。また、樹脂、無機材料、ガラス等やその複合体に光反射性物質を含有させたものでもよい。尚、樹脂、無機材料、ガラス等やその複合体に光反射性物質を含有させる量は、特に限定されるものではないが、光反射性物質を第1光反射部材の重量に対して10〜95重量%、好ましくは30〜80重量%、より好ましくは40〜70重量%程度含有させることが好ましい。また、樹脂中に光反射性物質を分散させて第1光反射部材を形成することで、エッチング、切削、研削、研磨、ブラスト等の加工が容易になるので好ましい。 Examples of the material of the first light reflecting member include a metal and a light reflecting substance (for example, titanium oxide, silicon dioxide, titanium dioxide, zirconium dioxide, potassium titanate, alumina, aluminum nitride, boron nitride, mullite, niobium oxide, barium sulfate). , Various rare earth oxides (eg, yttrium oxide, gadolinium oxide) and the like. Further, a resin, an inorganic material, glass or the like or a composite thereof containing a light reflecting substance may be used. The amount of the light-reflecting substance contained in the resin, the inorganic material, the glass or the like or a composite thereof is not particularly limited, but the light-reflecting substance is 10 to 10 parts by weight of the first light-reflecting member. It is preferable to contain 95% by weight, preferably 30 to 80% by weight, more preferably 40 to 70% by weight. In addition, it is preferable to disperse the light-reflecting substance in the resin to form the first light-reflecting member, because processing such as etching, cutting, grinding, polishing, and blasting becomes easy.

第1光反射部材に使用できる樹脂材料としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂、ポリカーボネート樹脂、アクリル樹脂、メチルペンテン樹脂、ポリノルボルネン樹脂などの熱可塑性樹脂を用いることができる。特に、耐光性、耐熱性に優れるシリコーン樹脂が好適である。 Examples of the resin material that can be used for the first light reflecting member include thermosetting resins such as silicone resin, silicone modified resin, epoxy resin, and phenol resin, polycarbonate resin, acrylic resin, methylpentene resin, polynorbornene resin, and the like. A plastic resin can be used. In particular, a silicone resin having excellent light resistance and heat resistance is suitable.

第1光反射部材に使用できる無機材料としては、酸化アルミニウム、窒化アルミニウム、酸化ジルコニウム、窒化ジルコニウム、酸化チタン、窒化チタン、酸化亜鉛又はこれらの混合物等のセラミックス又は低温焼成セラミックス等を含む単層膜又は積層膜が挙げられる。 As the inorganic material that can be used for the first light reflecting member, a single layer film containing ceramics such as aluminum oxide, aluminum nitride, zirconium oxide, zirconium nitride, titanium oxide, titanium nitride, zinc oxide, or a mixture thereof, or low temperature firing ceramics, etc. Alternatively, a laminated film may be used.

(第2光反射部材50)
第2光反射部材の材料は、第1光反射部材と同様の材料を用いて形成することができる。第2光反射部材の材料は、第1光反射部材の材料と同じでもよいが、特性に応じて変えてもよい。例えば、第1光反射部材と、第2光反射部材と、に含有される光反射性物質の含有量を変えてもよい。第2光反射部材は発光素子の側面を覆うので、第1光反射部材より強度を求められることがある。このため、光反射性物質を含有させた樹脂から第1光反射部材と、第2光反射部材と、を形成する場合には、第2光反射部材に含有する光反射性物質の量を第1光反射部材に含有する光反射性物質の量より減らし強度を高めてもよい。こうすることにより、より反射性を求められる第1光反射部材の反射率を高くすることが出来る。また、第1光反射部材は、その一部が除去される工程を有するため強度が求められることがある。この場合は、第1光反射部材に含有する光反射性物質の量を第2光反射部材に含有する光反射性物質の量より減らしてもよい。このようにすることで第1光反射部材の強度を第2光反射部材の強度より高くすることができる。尚、第1光反射部材は金属又は光反射性物質で形成され、第2光反射部材は光反射性物質を含有させた樹脂で形成されるような異種の材料で形成されてもよい。
(Second light reflecting member 50)
The material of the second light reflecting member can be formed using the same material as that of the first light reflecting member. The material of the second light reflecting member may be the same as the material of the first light reflecting member, but may be changed according to the characteristics. For example, you may change the content of the light-reflecting substance contained in a 1st light reflection member and a 2nd light reflection member. Since the second light reflecting member covers the side surface of the light emitting element, strength may be required more than that of the first light reflecting member. For this reason, when forming the first light reflecting member and the second light reflecting member from the resin containing the light reflecting substance, the amount of the light reflecting substance contained in the second light reflecting member is set to the first amount. The strength may be increased by reducing the amount of the light-reflecting substance contained in the single light-reflecting member. By doing so, it is possible to increase the reflectance of the first light reflecting member which is required to have higher reflectivity. Further, the first light reflection member may be required to have strength because it has a step of removing a part thereof. In this case, the amount of the light reflecting substance contained in the first light reflecting member may be smaller than the amount of the light reflecting substance contained in the second light reflecting member. By doing so, the strength of the first light reflecting member can be made higher than the strength of the second light reflecting member. The first light reflecting member may be made of a metal or a light reflecting substance, and the second light reflecting member may be made of a different material such as a resin containing a light reflecting substance.

(透光性樹脂30)
透光性樹脂は発光素子を外部環境から保護するとともに、発光素子から出力される光を光学的に制御するため、発光素子の光取り出し面側に配置させる部材である。透光性樹脂の材料としては、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂、ポリカーボネート樹脂、アクリル樹脂、メチルペンテン樹脂、ポリノルボルネン樹脂などの熱可塑性樹脂を用いることができる。特に、耐光性、耐熱性に優れるシリコーン樹脂が好適である。尚、透光性樹脂は、光の透過率が高いことが好ましい。そのため、通常は、透光性樹脂に、光を反射、吸収又は散乱する添加物は添加されないことが好ましい。しかし、望ましい特性を付与するために、透光性樹脂に添加物を添加するのが好ましい場合もある。
(Translucent resin 30)
The translucent resin is a member disposed on the light extraction surface side of the light emitting element in order to protect the light emitting element from the external environment and to optically control the light output from the light emitting element. As a material of the light-transmitting resin, a thermosetting resin such as a silicone resin, a silicone-modified resin, an epoxy resin, or a phenol resin, a thermoplastic resin such as a polycarbonate resin, an acrylic resin, a methylpentene resin, or a polynorbornene resin may be used. it can. In particular, a silicone resin having excellent light resistance and heat resistance is suitable. The translucent resin preferably has a high light transmittance. Therefore, it is usually preferable that the light-transmissive resin is not added with an additive that reflects, absorbs, or scatters light. However, in some cases it may be preferable to add additives to the translucent resin to impart the desired properties.

(波長変換物質20)
波長変換物質としては、例えば発光素子からの発光で励起可能な蛍光体粒子が使用される。例えば、青色発光素子又は紫外線発光素子で励起可能な蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体(Ce:YAG)、セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体(Ce:LAG)、ユウロピウムおよび/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体(CaO−Al−SiO)、ユウロピウムで賦活されたシリケート系蛍光体((Sr,Ba)SiO)、βサイアロン蛍光体、CASN系蛍光体、SCASN系蛍光体等の窒化物系蛍光体;KSF系蛍光体等のフッ化物系蛍光体、硫化物系蛍光体、塩化物系蛍光体、ケイ酸塩系蛍光体、リン酸塩系蛍光体、量子ドット蛍光体などが挙げられる。尚、KSF系蛍光体の一般式はA[M1−aMn4+ ]…(I)で表すことができる。(式中、Aは、K、Li、Na、Rb、Cs及びNH からなる群から選択される少なくとも1種の陽イオンを示し、Mは、第4族元素及び第14族元素からなる群から選択される少なくとも1種の元素を示し、aは0.01<a<0.20を満たす。)また、一般式(I)におけるAがKを含み、MがSiを含むフッ化物系蛍光体でもよい。これらの蛍光体と、青色発光素子又は紫外線発光素子と組み合わせることにより、様々な色の発光装置(例えば白色系の発光装置)を製造することができる。
(Wavelength conversion material 20)
As the wavelength conversion substance, for example, phosphor particles that can be excited by light emission from a light emitting element are used. For example, as a phosphor that can be excited by a blue light emitting element or an ultraviolet light emitting element, a cerium-activated yttrium-aluminum-garnet-based phosphor (Ce:YAG), a cerium-activated lutetium-aluminum-garnet-based phosphor (Ce:LAG), a nitrogen-containing calcium aluminosilicate phosphor activated by europium and/or chromium (CaO—Al 2 O 3 —SiO 2 ), a silicate phosphor activated by europium ((Sr,Ba)) 2 SiO 4 ), β-sialon phosphor, nitride phosphor such as CASN phosphor, SCASN phosphor; fluoride phosphor such as KSF phosphor, sulfide phosphor, chloride phosphor , Silicate-based phosphors, phosphate-based phosphors, quantum dot phosphors, and the like. The general formula of the KSF-based phosphor can be represented by A 2 [M 1-a Mn 4+ a F 6 ]... (I). (In the formula, A represents at least one cation selected from the group consisting of K + , Li + , Na + , Rb + , Cs +, and NH 4 + , and M represents a Group 4 element and a group 4 element. At least one element selected from the group consisting of Group 14 elements is shown, and a satisfies 0.01<a<0.20.) Further, A in the general formula (I) includes K + , and M is A fluoride-based phosphor containing Si may be used. By combining these phosphors with a blue light emitting element or an ultraviolet light emitting element, a light emitting device of various colors (for example, a white light emitting device) can be manufactured.

(接合部材60)
接合部材は、透光性を有する樹脂から形成することができる。接合部材の材料としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性の透光性樹脂であるのが好ましい。接合部材は発光素子の側面と接触しているので、点灯時に発光素子で発生する熱の影響を受けやすい。熱硬化性樹脂は、耐熱性に優れているので、接合部材に適している。尚、接合部材は、光の透過率が高いことが好ましい。そのため、通常は、接合部材に、光を反射、吸収又は散乱する添加物は添加されないことが好ましい。しかし、望ましい特性を付与するために、接合部材に添加物を添加するのが好ましい場合もある。例えば、接合部材の屈折率を調整するため、または硬化前の接合部材の粘度を調整するために、各種フィラーを添加してもよい。
(Joining member 60)
The joining member can be formed of a translucent resin. The material of the joining member is preferably a thermosetting light-transmitting resin such as silicone resin, silicone-modified resin, epoxy resin, or phenol resin. Since the joining member is in contact with the side surface of the light emitting element, it is easily affected by heat generated in the light emitting element during lighting. Thermosetting resins have excellent heat resistance and are suitable for joining members. The joining member preferably has a high light transmittance. Therefore, it is usually preferable that an additive that reflects, absorbs, or scatters light is not added to the bonding member. However, in some cases it may be preferable to add additives to the joining members to impart the desired properties. For example, various fillers may be added to adjust the refractive index of the joining member or to adjust the viscosity of the joining member before curing.

(第1光拡散材31、第2光拡散材32)
第1光拡散材31及び第2光拡散材32の材料としては、具体的には、SiO、Al、Al(OH)、MgCO、TiO、ZrO、ZnO、Nb、MgO、Mg(OH)、SrO、In、TaO、HfO、SeO、Y、CaO、NaO、B、SnO、ZrSiOなどの酸化物、SiN、AlN、AlONなどの窒化物、MgF、CaF、NaF、LiF、NaAlFのようなフッ化物などが挙げられる。これらは、単独で用いてもよいし、各種を溶融混合させてガラス等として用いてもよい。あるいは、複数の層に分けてこれらを積層させるようにしてもよい。
(First light diffusing material 31, second light diffusing material 32)
As the material of the first light diffusing material 31 and the second light diffusing material 32, specifically, SiO 2 , Al 2 O 3 , Al(OH) 3 , MgCO 3 , TiO 2 , ZrO 2 , ZnO, Nb 2 are used. O 5, MgO, Mg (OH ) 2, SrO, in 2 O 3, TaO 2, HfO, SeO, Y 2 O 3, CaO, Na 2 O, B 2 O 3, SnO, oxides such as ZrSiO 4, Examples thereof include nitrides such as SiN, AlN and AlON, and fluorides such as MgF 2 , CaF 2 , NaF, LiF and Na 3 AlF 6 . These may be used alone or may be melt-mixed with each other and used as glass or the like. Alternatively, it may be divided into a plurality of layers and laminated.

特にガラスとすることで屈折率を任意に制御する事が出来る。光拡散材の粒径としては0.01〜100umまで任意に選ぶ事が出来る。また、光拡散材の含有量は、それぞれ調整が必要で被覆樹脂の体積や光拡散材の粒径により一義的には決められない。 Especially when glass is used, the refractive index can be arbitrarily controlled. The particle diameter of the light diffusing material can be arbitrarily selected from 0.01 to 100 μm. Further, the content of the light diffusing material needs to be adjusted, and cannot be uniquely determined by the volume of the coating resin and the particle diameter of the light diffusing material.

以上、本発明に係るいくつかの実施形態について例示したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り任意のものとすることができることは言うまでもない。 Although some embodiments according to the present invention have been exemplified above, it is needless to say that the present invention is not limited to the above-mentioned embodiments and may be any one without departing from the gist of the present invention. ..

1000、2000、3000、4000、5000、6000、7000 発光装置
10 第1光反射部材
20 波長変換物質
30 透光性樹脂
31 第1光拡散材
32 第2光拡散材
40 発光素子
41 透光性基板
42 半導体積層体
43、44 電極
50 第2光反射部材
60 接合部材
70 被覆部材
80 支持部材
90 上金型
91 押さえ
92 下金型
101 第1の面
102 第2の面
103 凸部
106 貫通孔
107 凹部
108 切断部
401 光取り出し面
402 電極形成面
1000, 2000, 3000, 4000, 5000, 6000, 7000 Light emitting device 10 First light reflecting member 20 Wavelength conversion material 30 Light transmissive resin 31 First light diffusing material 32 Second light diffusing material 40 Light emitting element 41 Light transmissive substrate 42 semiconductor laminated body 43, 44 electrode 50 second light reflecting member 60 joining member 70 covering member 80 supporting member 90 upper mold 91 pressing 92 lower mold 101 first surface 102 second surface 103 convex portion 106 through hole 107 Recessed portion 108 Cut portion 401 Light extraction surface 402 Electrode formation surface

Claims (8)

発光素子と、
前記発光素子の上面および側面を被覆する透光性の接合部材と、
前記発光素子の上面より大きい面積で前記接合部材に接合された透光性部材と、
前記透光性部材の側面を覆う第1光反射部材と前記発光素子の下面の一部を覆う第2反射部材からなる光反射部材と、を有し、
前記透光性部材は、前記発光素子に対向する下面側に配置される波長変換物質含有領域と、前記発光素子から離れた上面側に配置される波長変換部材非含有領域とを有し、
前記第1光反射部材の上面は、粗面である発光装置。
A light emitting element,
A translucent joining member that covers the upper surface and the side surface of the light emitting element,
A translucent member bonded to the bonding member in an area larger than the upper surface of the light emitting element;
A first light reflecting member that covers a side surface of the translucent member, and a light reflecting member that includes a second light reflecting member that covers a part of a lower surface of the light emitting element,
The translucent member, possess the wavelength converting material-containing region disposed on a lower surface side opposed to the light emitting element, and a wavelength conversion member-free region disposed on the upper surface side remote from the light emitting element,
The light emitting device in which the upper surface of the first light reflecting member is a rough surface .
前記第2光反射部材は、前記接合部材の側面をさらに被覆する請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein the second light reflecting member further covers a side surface of the joining member. 前記光反射部材の上面と前記透光性部材の上面とが、実質的に同一平面上に位置する請求項1または2のいずれか1項に記載の発光装置。 The light emitting device according to claim 1, wherein an upper surface of the light reflecting member and an upper surface of the translucent member are located substantially on the same plane. 前記透光性部材の上面は、粗面である請求項1〜3のいずれか1項に記載の発光装置。 The light emitting device according to claim 1, wherein an upper surface of the translucent member is a rough surface. 前記第1反射部材の側面は、凸部を有する請求項1〜のいずれか1項に記載の発光装置。 The side of the first light reflecting member, the light emitting device according to any one of claims 1 to 4 having the convex portions. 前記発光素子は下面に電極を有し、
前記第2反射部材は前記電極形成部を除く前記発光素子の下面及び、前記電極の一部が露出するように被覆し、
前記電極の前記第2光反射部材から露出された表面は、前記第2光反射部材の下面より鏡面反射率が高い請求項1〜のいずれか1項に記載の発光装置。
The light emitting element has an electrode on the lower surface,
The second light reflecting member covers the lower surface of the light emitting device excluding the electrode forming portion and a part of the electrode so as to be exposed,
Exposed surface from said second light reflecting member of said electrodes, the light emitting device according to any one of the second light reflective claim mirror reflectivity is higher than the lower surface of the member 1 to 5.
前記第1光反射部材および前記第2光反射部材は、同じ材料からなる、請求項1〜のいずれか1項に記載の発光装置。 The first light reflecting member and the second light reflecting member is made of the same material, the light-emitting device according to any one of claims 1-6. 前記透光性部材中に第1光拡散材を有する、請求項1〜のいずれか1項に記載の発光装置。 Wherein the light-transmitting member first light diffusion material into the light-emitting device according to any one of claims 1-7.
JP2017145576A 2015-05-29 2017-07-27 Light emitting device, method for manufacturing covering member, and method for manufacturing light emitting device Active JP6702280B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015109807 2015-05-29
JP2015109807 2015-05-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016031940A Division JP6183486B2 (en) 2015-05-29 2016-02-23 LIGHT EMITTING DEVICE, METHOD FOR PRODUCING COVER MEMBER, AND METHOD FOR PRODUCING LIGHT EMITTING DEVICE

Publications (3)

Publication Number Publication Date
JP2017199933A JP2017199933A (en) 2017-11-02
JP2017199933A5 JP2017199933A5 (en) 2019-04-04
JP6702280B2 true JP6702280B2 (en) 2020-06-03

Family

ID=57748573

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016031940A Active JP6183486B2 (en) 2015-05-29 2016-02-23 LIGHT EMITTING DEVICE, METHOD FOR PRODUCING COVER MEMBER, AND METHOD FOR PRODUCING LIGHT EMITTING DEVICE
JP2017145576A Active JP6702280B2 (en) 2015-05-29 2017-07-27 Light emitting device, method for manufacturing covering member, and method for manufacturing light emitting device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016031940A Active JP6183486B2 (en) 2015-05-29 2016-02-23 LIGHT EMITTING DEVICE, METHOD FOR PRODUCING COVER MEMBER, AND METHOD FOR PRODUCING LIGHT EMITTING DEVICE

Country Status (1)

Country Link
JP (2) JP6183486B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174908A (en) * 2016-03-22 2017-09-28 豊田合成株式会社 Method of manufacturing light emitting device
JP6686780B2 (en) 2016-08-05 2020-04-22 日本電気硝子株式会社 Wavelength conversion member and manufacturing method thereof
JP7011143B2 (en) 2016-11-30 2022-01-26 日亜化学工業株式会社 Manufacturing method of light emitting device
JP6699634B2 (en) 2017-07-28 2020-05-27 日亜化学工業株式会社 Method for manufacturing light emitting device
JP6729525B2 (en) * 2017-09-14 2020-07-22 日亜化学工業株式会社 Method for manufacturing light emitting device
EP3915151B1 (en) * 2019-01-25 2023-08-23 Lumileds LLC Method of manufacturing a wavelength-converting pixel array structure
US11362243B2 (en) 2019-10-09 2022-06-14 Lumileds Llc Optical coupling layer to improve output flux in LEDs
WO2021166772A1 (en) * 2020-02-19 2021-08-26 ソニーグループ株式会社 Light-emitting device, and method for manufacturing light-emitting device
JP7054020B2 (en) * 2020-04-28 2022-04-13 日亜化学工業株式会社 Light emitting device
WO2024071218A1 (en) * 2022-09-28 2024-04-04 日亜化学工業株式会社 Light emitting device and method for manufacturing light emitting device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228321B2 (en) * 1997-08-29 2001-11-12 日亜化学工業株式会社 Chip type LED
JP4292794B2 (en) * 2002-12-04 2009-07-08 日亜化学工業株式会社 Light emitting device, method for manufacturing light emitting device, and method for adjusting chromaticity of light emitting device
WO2006101174A1 (en) * 2005-03-24 2006-09-28 Kyocera Corporation Light emitting element storing package, light emitting device and lighting apparatus
JP2007042686A (en) * 2005-07-29 2007-02-15 Toshiba Lighting & Technology Corp Light emitting diode device
JP2007214249A (en) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd Light-emitting module and method of manufacturing same
JP2007227791A (en) * 2006-02-24 2007-09-06 Nichia Chem Ind Ltd Luminescent device manufacturing method and light emitting device manufactured thereby
US7674641B2 (en) * 2006-04-12 2010-03-09 Atomic Energy Council Method for fabricating white-light-emitting flip-chip diode having silicon quantum dots
JP5431706B2 (en) * 2008-10-01 2014-03-05 ミネベア株式会社 Light emitting device
JP2010129655A (en) * 2008-11-26 2010-06-10 Toyoda Gosei Co Ltd Led light emitting device
JP5326705B2 (en) * 2009-03-17 2013-10-30 日亜化学工業株式会社 Light emitting device
JP5849702B2 (en) * 2009-10-29 2016-02-03 日亜化学工業株式会社 Resin package and manufacturing method thereof, and light emitting device and manufacturing method thereof
US20110215348A1 (en) * 2010-02-03 2011-09-08 Soraa, Inc. Reflection Mode Package for Optical Devices Using Gallium and Nitrogen Containing Materials
JP5679701B2 (en) * 2010-06-07 2015-03-04 日東電工株式会社 Optical epoxy resin composition, optical component using the same, and optical semiconductor device obtained using the same
JP5700544B2 (en) * 2011-04-14 2015-04-15 日東電工株式会社 Method for manufacturing light emitting diode device
JP5777952B2 (en) * 2011-06-28 2015-09-09 シチズン電子株式会社 Light emitting device and manufacturing method thereof
JP2013038115A (en) * 2011-08-04 2013-02-21 Koito Mfg Co Ltd Light wavelength conversion unit
JP2013077679A (en) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP5889646B2 (en) * 2012-01-26 2016-03-22 シャープ株式会社 Phosphor plate, light emitting device using phosphor plate, and method of manufacturing phosphor plate
KR101957700B1 (en) * 2012-02-01 2019-03-14 삼성전자주식회사 Ligt Emitting Device
JP2013197309A (en) * 2012-03-19 2013-09-30 Toshiba Corp Light-emitting device
US8907502B2 (en) * 2012-06-29 2014-12-09 Nitto Denko Corporation Encapsulating layer-covered semiconductor element, producing method thereof, and semiconductor device
US9379293B2 (en) * 2012-07-20 2016-06-28 Koninklijke Philips N.V. LED with ceramic green phosphor and protected red phosphor layer
JP2014041993A (en) * 2012-07-24 2014-03-06 Toyoda Gosei Co Ltd Light-emitting device and method of manufacturing the same
CN202957294U (en) * 2012-12-13 2013-05-29 佛山市国星光电股份有限公司 TOP light-emitting diode (LED) bracket for display screen and TOPLED device thereof
DE102013214877A1 (en) * 2013-07-30 2015-02-19 Osram Opto Semiconductors Gmbh Method for producing a cover element and an optoelectronic component, cover element and optoelectronic component

Also Published As

Publication number Publication date
JP2017199933A (en) 2017-11-02
JP6183486B2 (en) 2017-08-23
JP2016225596A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
US20210013385A1 (en) Light emitting device, method of manufacturing covering member, and method of manufacturing light emitting device
JP6702280B2 (en) Light emitting device, method for manufacturing covering member, and method for manufacturing light emitting device
US9954153B2 (en) Light-emitting device and method of manufacturing same
JP6444299B2 (en) Light emitting device
US9728678B2 (en) Light emitting element and method of manufacturing the same
JP6554914B2 (en) Light emitting device and manufacturing method thereof
JP6179555B2 (en) Light emitting device
KR102393760B1 (en) Light emitting device and method for manufacturing the same
US10680149B2 (en) Method for manufacturing light-emitting device
US9722156B2 (en) Light-emitting device
JP2019176081A (en) Light-emitting device and method for manufacturing the same
JP2016086059A (en) Light emitting device, package, and manufacturing methods of light emitting device and package
JP2017224667A (en) Method of manufacturing light transmitting member and method of manufacturing light emitting device
JP2017201666A (en) Method for manufacturing light-emitting device
JP6627316B2 (en) Light emitting device manufacturing method
JP2019040895A (en) Light-emitting device
JP7417067B2 (en) light emitting device
JP2020053617A (en) Light-emitting device
JP2017216304A (en) Light emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6702280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250