JP2017201666A - Method for manufacturing light-emitting device - Google Patents

Method for manufacturing light-emitting device Download PDF

Info

Publication number
JP2017201666A
JP2017201666A JP2016093235A JP2016093235A JP2017201666A JP 2017201666 A JP2017201666 A JP 2017201666A JP 2016093235 A JP2016093235 A JP 2016093235A JP 2016093235 A JP2016093235 A JP 2016093235A JP 2017201666 A JP2017201666 A JP 2017201666A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
region
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016093235A
Other languages
Japanese (ja)
Other versions
JP6940740B2 (en
Inventor
照人 東
Akito Higashi
照人 東
啓 橋本
Hiroshi Hashimoto
啓 橋本
忠男 守野
Tadao Morino
忠男 守野
大造 喜羽
Taizo Kiba
大造 喜羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2016093235A priority Critical patent/JP6940740B2/en
Publication of JP2017201666A publication Critical patent/JP2017201666A/en
Application granted granted Critical
Publication of JP6940740B2 publication Critical patent/JP6940740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a light-emitting device, which is superior in mass productivity.SOLUTION: The method for manufacturing a light-emitting device (100) according to an embodiment of the present invention comprises: a first step for using a die (80) having a plate-like base body (83) and protrusions (85) protruding from the base body (83) to form a first light reflective member (10) having holes (10p) formed by the protrusions (85); a second step for forming an optically-transmissive member (30) in each hole (10p); and a third step for gluing a light-emitting element (50) to the optically-transmissive member (30). The protrusions (85) each include a pillar portion (85a) and a frustum-like portion (85b) continuing to the base body (83) from the pillar portion (85a).SELECTED DRAWING: Figure 2A

Description

本開示は、発光装置の製造方法に関する。   The present disclosure relates to a method for manufacturing a light emitting device.

例えば特許文献1には、白色セラミック製外枠で外周を覆われた板状光学部材を、発光素子の上に、光学層を挟んで搭載する第1工程と、前記光学層の外周と前記板状光学部材の白色セラミック製外枠の外周を、光反射性樹脂材料により覆う第2工程とを有する発光装置の製造方法が記載されている。   For example, Patent Document 1 discloses a first step of mounting a plate-like optical member whose outer periphery is covered with an outer frame made of white ceramic on a light emitting element with an optical layer interposed therebetween, and an outer periphery of the optical layer and the plate. The manufacturing method of the light-emitting device which has the 2nd process of covering the outer periphery of the white ceramic outer frame of a glass-shaped optical member with a light-reflective resin material is described.

特開2012−134355号公報JP 2012-134355 A

しかしながら、特許文献1に記載の発光装置の製造方法においては、白色セラミック製外枠で外周を覆われた板状光学部材の生産コストが高く、量産性に劣る。   However, in the method for manufacturing a light emitting device described in Patent Document 1, the production cost of a plate-shaped optical member whose outer periphery is covered with a white ceramic outer frame is high, and is inferior in mass productivity.

そこで、本発明の一実施の形態は、量産性に優れる発光装置の製造方法を提供することを目的とする。   An object of one embodiment of the present invention is to provide a method for manufacturing a light-emitting device that is excellent in mass productivity.

本発明の一実施の形態の発光装置の製造方法は、板状の基体と前記基体から突き出した突起を有する金型を用いて、前記突起により形成される穴を有する第1光反射部材を形成する第1工程と、前記穴内に光透過部材を形成する第2工程と、前記光透過部材に発光素子を接着する第3工程と、を備え、前記突起が、柱状部と、前記柱状部から前記基体に連続する錐台状部と、を含むことを特徴とする。   In a method for manufacturing a light emitting device according to an embodiment of the present invention, a first light reflecting member having a hole formed by a protrusion is formed using a mold having a plate-like base and a protrusion protruding from the base. A first step, a second step of forming a light transmissive member in the hole, and a third step of bonding a light emitting element to the light transmissive member, wherein the protrusion is formed from a columnar portion and the columnar portion. And a frustum-shaped portion continuous to the base.

本発明の一実施の形態の発光装置の製造方法は、主として樹脂の成形により構成でき、量産性に優れている。   The method for manufacturing a light-emitting device according to an embodiment of the present invention can be configured mainly by resin molding, and is excellent in mass productivity.

本発明の一実施の形態に係る発光装置の概略前面図である。1 is a schematic front view of a light emitting device according to an embodiment of the present invention. 図1AのA−A断面における概略断面図である。It is a schematic sectional drawing in the AA cross section of FIG. 1A. 本発明の一実施の形態に係る発光装置の製造方法の第1工程を示す概略断面図である。It is a schematic sectional drawing which shows the 1st process of the manufacturing method of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の製造方法の第2工程を示す概略断面図である。It is a schematic sectional drawing which shows the 2nd process of the manufacturing method of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の製造方法の第3工程を示す概略断面図である。It is a schematic sectional drawing which shows the 3rd process of the manufacturing method of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の製造方法の第4工程を示す概略断面図である。It is a schematic sectional drawing which shows the 4th process of the manufacturing method of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の変形例の概略断面図である。It is a schematic sectional drawing of the modification of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の変形例の概略断面図である。It is a schematic sectional drawing of the modification of the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の変形例の概略断面図である。It is a schematic sectional drawing of the modification of the light-emitting device which concerns on one embodiment of this invention.

以下、発明の実施の形態について適宜図面を参照して説明する。但し、以下に説明する発光装置及びその製造方法は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light-emitting device and the manufacturing method thereof described below are for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. In addition, the size, positional relationship, and the like of members illustrated in the drawings may be exaggerated for clarity of explanation.

なお、可視光波長域は波長が380nm以上780nm以下の範囲とし、青色域は波長が420nm以上480nm以下の範囲、緑色域は波長が500nm以上570nm以下の範囲、黄色域は波長が570nmより長く590nm以下の範囲、赤色域は波長が610nm以上750nm以下の範囲とする。また、発光装置の主発光方向を「前方」とする。   The visible wavelength range is a wavelength range of 380 nm to 780 nm, the blue range is a wavelength range of 420 nm to 480 nm, the green range is a wavelength range of 500 nm to 570 nm, and the yellow range is longer than 570 nm to 590 nm. The following range, the red region, has a wavelength in the range of 610 nm to 750 nm. The main light emission direction of the light emitting device is “front”.

図1Aは実施の形態に係る発光装置100の概略前面図であり、図1BはそのA−A断面における概略断面図である。また、図3,4,5は其々、実施の形態に係る発光装置100の変形例の概略断面図である。   1A is a schematic front view of a light-emitting device 100 according to an embodiment, and FIG. 1B is a schematic cross-sectional view taken along the line AA. 3, 4, and 5 are schematic cross-sectional views of modifications of the light emitting device 100 according to the embodiment.

図1A,1Bに示すように、実施の形態に係る発光装置100は、チップ・サイズ・パッケージ(CSP;Chip Size Package)型の発光ダイオード(LED;Light Emitting Diode)装置である。発光装置100は、第1光反射部材10と、第2光反射部材20と、光透過部材30と、発光素子50と、接着部材60と、外部接続端子70と、を備えている。第1光反射部材10は、中央に開口部を有する枠体である。光透過部材30は、その開口部内に設けられている。光透過部材30は、全周にわたって第1光反射部材10の開口部内面に支持されている。光透過部材30は、前方に位置する柱状の第1領域30aと、その第1領域30aの後方に連続する錐台状の第2領域30bと、により構成されている。光透過部材30は、波長変換物質40を含有している。波長変換物質40は、光透過部材30中において前面側つまり第1領域30a側に偏在している。発光素子50は、光透過部材30の後面に接着部材60を介して接着されている。接着部材60は、発光素子50の側面の少なくとも一部を被覆している。発光素子50の後面には、正負の外部接続端子70が接続されている。第2光反射部材20は、第1光反射部材10の後面に接して形成されている。第2光反射部材20は、発光素子50の側方全周を、少なくとも一部領域については接着部材60を介して、その他の領域については直接、被覆している。また、第2光反射部材20は、正負の外部接続端子70の側方全周を被覆している。発光装置100の前面は、第1光反射部材10の前面と光透過部材30の前面により構成されている。発光装置100の後面は、第2光反射部材20の後面と正負の外部接続端子70の後面により構成されている。   As shown in FIGS. 1A and 1B, a light emitting device 100 according to an embodiment is a chip size package (CSP) type light emitting diode (LED) device. The light emitting device 100 includes a first light reflecting member 10, a second light reflecting member 20, a light transmitting member 30, a light emitting element 50, an adhesive member 60, and an external connection terminal 70. The first light reflecting member 10 is a frame having an opening at the center. The light transmitting member 30 is provided in the opening. The light transmitting member 30 is supported on the inner surface of the opening of the first light reflecting member 10 over the entire circumference. The light transmissive member 30 is configured by a columnar first region 30a located in front and a frustum-shaped second region 30b continuous behind the first region 30a. The light transmitting member 30 contains a wavelength conversion substance 40. The wavelength converting substance 40 is unevenly distributed in the light transmitting member 30 on the front surface side, that is, on the first region 30a side. The light emitting element 50 is bonded to the rear surface of the light transmitting member 30 via an adhesive member 60. The adhesive member 60 covers at least a part of the side surface of the light emitting element 50. Positive and negative external connection terminals 70 are connected to the rear surface of the light emitting element 50. The second light reflecting member 20 is formed in contact with the rear surface of the first light reflecting member 10. The second light reflecting member 20 covers the entire circumference of the side of the light emitting element 50 through at least a partial region via the adhesive member 60 and other regions directly. In addition, the second light reflecting member 20 covers the entire side periphery of the positive and negative external connection terminals 70. The front surface of the light emitting device 100 is configured by the front surface of the first light reflecting member 10 and the front surface of the light transmitting member 30. The rear surface of the light emitting device 100 is configured by the rear surface of the second light reflecting member 20 and the rear surface of the positive and negative external connection terminals 70.

このような構成を有する発光装置100は、例えば、回路基板などに正負の外部接続端子70を半田付けされ、回路を通じて給電されることにより発光する。このとき、第1光反射部材10及び第2光反射部材20の高い光反射性によって、発光素子50及び光透過部材30から側方に出射される多くの光が前方へ偏向され、発光装置100の主たる発光領域は光透過部材30の前面になる。したがって、発光領域の輪郭が鮮明であり、レンズなどの光学系による配光調整に好適な発光が得られる。   The light emitting device 100 having such a configuration emits light when, for example, a positive and negative external connection terminal 70 is soldered to a circuit board or the like and power is supplied through the circuit. At this time, due to the high light reflectivity of the first light reflecting member 10 and the second light reflecting member 20, a lot of light emitted from the light emitting element 50 and the light transmitting member 30 to the side is deflected forward, and the light emitting device 100. The main light emitting region is the front surface of the light transmitting member 30. Therefore, the outline of the light emitting region is clear and light emission suitable for light distribution adjustment by an optical system such as a lens can be obtained.

図2A〜図2Dは其々、実施の形態に係る発光装置100の製造方法の第1工程〜第4工程を示す概略断面図である。   2A to 2D are schematic cross-sectional views illustrating the first to fourth steps of the method for manufacturing the light emitting device 100 according to the embodiment.

なお、本明細書及び図面中の括弧付きの符号は、その構成要素が最終形態に至る前の状態、より詳細には液状若しくは半硬化の状態にあることを意味する。また、本明細書における「液状」は、ゾル状、スラリー状を含むものとする。   In addition, the code | symbol with the parenthesis in this specification and drawing means that the component is in the state before reaching the final form, and more specifically, in a liquid or semi-cured state. Further, “liquid” in this specification includes sol form and slurry form.

図2A〜図2Cに示すように、実施の形態に係る発光装置100の製造方法は、以下の第1工程〜第3工程を備えている。また、実施の形態に係る発光装置100の製造方法は、図2Dに示すような第4工程を付加的に備えている。   As shown in FIGS. 2A to 2C, the method of manufacturing the light emitting device 100 according to the embodiment includes the following first to third steps. Further, the method for manufacturing the light emitting device 100 according to the embodiment additionally includes a fourth step as shown in FIG. 2D.

第1工程は、図2A,2Bに示すように、板状の基体83と基体83から突き出した突起85を有する金型(第1金型)80を用いて、突起85により形成される穴10pを有する第1光反射部材10を形成する工程である。ここで、突起85は、柱状部85aと、柱状部85aから基体83に連続する錐台状部85bと、を含んでいる。具体的には、第1金型80と第2金型82は、例えばトランスファ成形機の上下金型の一方と他方である。そして、第1光反射部材の液状材料(10)を、第1金型80と第2金型82の型閉じにより形成される成形空間すなわちキャビティ内に充填して、加熱処理により硬化させる。図示する例では、成形空間内に板状治具90を設置しているが、板状治具90は省略することができる。本第1工程により、第1光反射部材10は、穴10pを有する、板状若しくは枠体状の部材となる。穴10pは、図2Bに示すように、柱状部85aにより形成される第1空間10paと、錐台状部85bにより形成される第2空間10pbと、を含むようになる。なお、1つの金型80に設けられる突起85の数は、1つでもよいが、量産性の観点から、複数であることが好ましく、その複数の突起85は基体83上に規則的に配置されていることが好ましい。また、突起85、主として柱状部85aの平面視形状は、所望する光透過部材30の平面視形状に応じて適宜選択すればよく、矩形状のほか、円形状、三角形状、六角形状などでもよい。但し、多角形状の場合、加工精度上、角部が丸みを帯びることがある。   2A and 2B, the first step uses a mold (first mold) 80 having a plate-like base 83 and a protrusion 85 protruding from the base 83 to form a hole 10p formed by the protrusion 85. It is the process of forming the 1st light reflection member 10 which has these. Here, the protrusion 85 includes a columnar portion 85 a and a frustum-shaped portion 85 b continuous from the columnar portion 85 a to the base body 83. Specifically, the first mold 80 and the second mold 82 are, for example, one and the other of the upper and lower molds of the transfer molding machine. Then, the liquid material (10) of the first light reflecting member is filled into a molding space formed by closing the first mold 80 and the second mold 82, that is, a cavity, and is cured by heat treatment. In the illustrated example, the plate-like jig 90 is installed in the molding space, but the plate-like jig 90 can be omitted. By the first step, the first light reflecting member 10 becomes a plate-like or frame-like member having the hole 10p. As illustrated in FIG. 2B, the hole 10p includes a first space 10pa formed by the columnar portion 85a and a second space 10pb formed by the frustum-shaped portion 85b. The number of the protrusions 85 provided on one mold 80 may be one, but a plurality of protrusions 85 are preferable from the viewpoint of mass productivity, and the plurality of protrusions 85 are regularly arranged on the base 83. It is preferable. Further, the planar view shape of the protrusion 85, mainly the columnar portion 85a, may be appropriately selected according to the desired planar view shape of the light transmitting member 30, and may be a circular shape, a triangular shape, a hexagonal shape, etc. in addition to a rectangular shape. . However, in the case of a polygonal shape, the corner may be rounded due to processing accuracy.

第2工程は、図2Bに示すように、穴10p内に光透過部材30を形成する工程である。具体的には、光透過部材の液状材料(30)を、例えば滴下(ポッティング)法によって第1光反射部材の穴10p内に注入して、オーブンなどでの加熱処理により硬化させる。本第2工程により、光透過部材30は、図2Cに示すように、第1空間10paに形成される第1領域30aと、第2空間10pbに形成される第2領域30bと、を含むようになる。なお、光透過部材30中において波長変換物質40を第1領域30a側若しくは第2領域30b側に偏在させるには、穴10p内に注入した光透過部材の液状材料(30)を完全に硬化させるまでに、第1光反射部材10の主面すなわち穴10pの重力に対する向きを調整することによって、波長変換物質40を所望する側へ沈降させる。また、遠心沈降法などによって、波長変換物質40を強制的に所望する側に偏在させてもよい。   The second step is a step of forming the light transmitting member 30 in the hole 10p as shown in FIG. 2B. Specifically, the liquid material (30) of the light transmitting member is injected into the hole 10p of the first light reflecting member by, for example, a dropping (potting) method, and is cured by heat treatment in an oven or the like. As shown in FIG. 2C, the light transmitting member 30 includes the first region 30a formed in the first space 10pa and the second region 30b formed in the second space 10pb by the second step. become. In order to make the wavelength converting substance 40 unevenly distributed in the first region 30a side or the second region 30b side in the light transmitting member 30, the liquid material (30) of the light transmitting member injected into the hole 10p is completely cured. By the time, the wavelength conversion substance 40 is settled to the desired side by adjusting the orientation of the main surface of the first light reflecting member 10, that is, the hole 10p with respect to gravity. Further, the wavelength converting substance 40 may be forcibly unevenly distributed on a desired side by a centrifugal sedimentation method or the like.

第3工程は、図2Cに示すように、光透過部材30に発光素子50を接着する工程である。ここでは、光透過部材30の一方の主面に接着部材60を介して発光素子50を接着する。具体的には、光透過部材30の一方の主面上に接着部材の液状材料(60)を塗布し、その上に発光素子50の前面側を載置して、接着部材の液状材料(60)をオーブンなどでの加熱処理により硬化させる。このとき、光の閉じ込め領域の形成を抑え、発光素子50が発する光を光透過部材30に効率良く導光させる観点から、接着部材60は光透過部材30の接着主面内に収まっていることが好ましい。また、光透過部材30の接着主面(第1領域30a側若しくは第2領域30b側)は、接着作業時に第1光反射部材10すなわち光透過部材30の設置方向を反転させることにより選択することができる。なお、接着部材の液状材料(60)の塗布は、発光素子50側に行ってもよい。また、発光素子50への外部接続端子70の接続は、本第3工程の前に行ってもよいし、本第3工程の後に行ってもよい。   The third step is a step of bonding the light emitting element 50 to the light transmitting member 30 as shown in FIG. 2C. Here, the light emitting element 50 is bonded to one main surface of the light transmitting member 30 via the bonding member 60. Specifically, the liquid material (60) of the adhesive member is applied on one main surface of the light transmitting member 30, and the front side of the light emitting element 50 is placed thereon, and the liquid material (60 of the adhesive member) ) Is cured by heat treatment in an oven or the like. At this time, from the viewpoint of suppressing the formation of the light confinement region and efficiently guiding the light emitted from the light emitting element 50 to the light transmitting member 30, the adhesive member 60 should be within the main bonding surface of the light transmitting member 30. Is preferred. Moreover, the main bonding surface (the first region 30a side or the second region 30b side) of the light transmitting member 30 is selected by reversing the installation direction of the first light reflecting member 10, that is, the light transmitting member 30, during the bonding operation. Can do. The liquid material (60) for the adhesive member may be applied to the light emitting element 50 side. Further, the connection of the external connection terminal 70 to the light emitting element 50 may be performed before the third step or after the third step.

第4工程は、図2Dに示すように、発光素子50の周囲を第2光反射部材20で被覆する工程である。具体的には、例えば滴下(ポッティング)法によって、第1光反射部材10上に、発光素子50、接着部材60、及び外部接続端子70を埋め込むように、第2光反射部材の液状材料(20)を充填して、オーブンなどでの加熱処理により硬化させる。このほか、第1工程と同様に、圧縮成形機若しくはトランスファ成形機などの成形機を用いて、第2光反射部材20を成形してもよい。そして、この後、研削若しくはブラストなどによって、過剰に形成された第2光反射部材20を除去して、外部接続端子70の表面を露出させる。また、成形機を用いる場合は、外部接続端子70の表面が露出するように、外部接続端子70の表面を金型で押さえながら、第2光反射部材20を成形してもよい。なお、本第4工程の後、第1光反射部材10と第2光反射部材20の界面は、観察されてもよいが、両部材の密着性の観点から観察されないことが好ましい。   The fourth step is a step of covering the periphery of the light emitting element 50 with the second light reflecting member 20 as shown in FIG. 2D. Specifically, the liquid material (20 of the second light reflecting member) so as to embed the light emitting element 50, the adhesive member 60, and the external connection terminal 70 on the first light reflecting member 10 by, for example, a dropping (potting) method. ) And cured by heat treatment in an oven or the like. In addition, similarly to the first step, the second light reflecting member 20 may be molded using a molding machine such as a compression molding machine or a transfer molding machine. Thereafter, the excessively formed second light reflecting member 20 is removed by grinding or blasting, and the surface of the external connection terminal 70 is exposed. Moreover, when using a molding machine, you may shape | mold the 2nd light reflection member 20, pressing the surface of the external connection terminal 70 with a metal mold | die so that the surface of the external connection terminal 70 may be exposed. In addition, after this 4th process, although the interface of the 1st light reflection member 10 and the 2nd light reflection member 20 may be observed, it is preferable not to be observed from a viewpoint of the adhesiveness of both members.

最後に、ダイシングなどによって、第1光反射部材10及び第2光反射部材20を切断して、図1A,1Bに示すように、発光装置100を個片化する。なお、以上の研削及びダイシングにおいて、光透過部材30が波長変換物質40として耐水性に比較的劣るマンガン賦活フッ化物系蛍光体を含む場合には、乾式の装置を用いることが好ましい。   Finally, the first light reflecting member 10 and the second light reflecting member 20 are cut by dicing or the like, and the light emitting device 100 is singulated as shown in FIGS. 1A and 1B. In the above grinding and dicing, when the light transmitting member 30 includes a manganese-activated fluoride-based phosphor that is relatively inferior in water resistance as the wavelength conversion material 40, it is preferable to use a dry apparatus.

以上、実施の形態に係る発光装置100の製造方法は、主として樹脂の成形により構成でき、セラミックに比べ低コストで成形性に富み、量産性に優れている。また、金型を用いることで、発光装置の品質を安定させ、量産性を更に高めることができる。また、金型を用いることで、第1光反射部材の穴10pの内面すなわち光透過部材30の側面を比較的滑らかに形成することができ、発光素子50が発する光を効率良く取り出しやすい。   As described above, the method for manufacturing the light-emitting device 100 according to the embodiment can be mainly configured by molding a resin, is low in cost and rich in moldability, and has excellent mass productivity. In addition, by using a mold, the quality of the light emitting device can be stabilized and mass productivity can be further improved. Further, by using the mold, the inner surface of the hole 10p of the first light reflecting member, that is, the side surface of the light transmitting member 30 can be formed relatively smoothly, and the light emitted from the light emitting element 50 can be easily extracted efficiently.

以下、実施の形態に係る発光装置100の製造方法における好ましい形態について詳述する。   Hereinafter, the preferable form in the manufacturing method of the light-emitting device 100 which concerns on embodiment is explained in full detail.

図2Aに示すように、第1工程において、錐台状部85bの外面は凹曲面状であることが好ましい。金型80の突起85は、エンドミルを用いた金属板の切削加工により形成されることが量産性の観点において好ましく、そのような切削加工により形成される錐台状部85bの外面は凹曲面状になりやすいからである。   As shown in FIG. 2A, in the first step, the outer surface of the frustum-shaped portion 85b is preferably a concave curved surface. The projection 85 of the mold 80 is preferably formed by cutting a metal plate using an end mill from the viewpoint of mass productivity, and the outer surface of the frustum-shaped portion 85b formed by such cutting is a concave curved surface. It is because it is easy to become.

図2Aに示すように、第1工程において、貫通孔90hを有する板状治具90を準備し、第1光反射部材10の一部を貫通孔90h内に形成することが好ましい。これにより、第1光反射部材10を板状治具90上に保持し、また第1光反射部材10の反りを抑えることができ、後の工程において第1光反射部材10をハンドリングしやすい。貫通孔90hの平面視形状は、適宜選択でき、円形状が加工のしやすさの観点で好ましい。なお、貫通孔90h内に形成された第1光反射部材10の一部は、第1光反射部材10を板状治具90から取り外すと凸部となって残るが、研削若しくはダイシングなどにより除去することができる。   As shown in FIG. 2A, in the first step, it is preferable to prepare a plate-like jig 90 having a through hole 90h and form a part of the first light reflecting member 10 in the through hole 90h. Thereby, the 1st light reflection member 10 can be hold | maintained on the plate-shaped jig | tool 90, the curvature of the 1st light reflection member 10 can be suppressed, and it is easy to handle the 1st light reflection member 10 in a next process. The planar view shape of the through-hole 90h can be selected as appropriate, and a circular shape is preferable from the viewpoint of ease of processing. A part of the first light reflecting member 10 formed in the through hole 90h remains as a convex portion when the first light reflecting member 10 is removed from the plate-shaped jig 90, but is removed by grinding or dicing. can do.

図2Cに示すように、第3工程において、発光素子50を光透過部材30の第2領域30b側に接着することが好ましい。光透過部材30の第2領域30b側の主面の面積は、光透過部材30の第1領域30a側の主面の面積より大きいため、光透過部材30の主面内に発光素子50を接着しやすく、発光素子50が発する光を取り込みやすい。また、第1領域30aの側面よりも側方に張り出した第2領域30bの張り出し部(以下、「第2領域30bの張り出し部」とする)が、発光装置100の内部側に位置し、その前方と後方をそれぞれ第1光反射部材10と第2光反射部材20に被覆されることで、光透過部材30の剥離乃至脱落を抑制することができる。   As shown in FIG. 2C, in the third step, it is preferable that the light emitting element 50 is bonded to the second region 30 b side of the light transmitting member 30. Since the area of the main surface of the light transmitting member 30 on the second region 30 b side is larger than the area of the main surface of the light transmitting member 30 on the first region 30 a side, the light emitting element 50 is bonded to the main surface of the light transmitting member 30. It is easy to capture light emitted from the light emitting element 50. In addition, a projecting portion of the second region 30b projecting laterally from the side surface of the first region 30a (hereinafter referred to as “projecting portion of the second region 30b”) is located on the inner side of the light emitting device 100, and By covering the front and the rear with the first light reflecting member 10 and the second light reflecting member 20, respectively, the light transmitting member 30 can be prevented from peeling or dropping.

図2Cに示すように、光透過部材30が発光素子50の光によって励起される波長変換物質40を含有する場合、第2工程において、波長変換物質40を第1領域30a側に偏在させることが好ましい。発光素子50を光透過部材30の第2領域30b側に接着する場合(図1B参照)、第2領域30bの張り出し部は、第1光反射部材10に被覆されることで、光を閉じ込めやすい部位となる。このため、波長変換物質40を第2領域30bの張り出し部から第1領域30a側に遠ざけて配置することで、波長変換物質40が発する光を効率良く取り出すことができる。一方、発光素子50を光透過部材30の第1領域30a側に接着する場合(図3参照)には、波長変換物質40を発光装置100の内部側に位置させ、波長変換物質40を水分など外部環境から保護しやすい。また、光透過部材30の第2領域30b側の主面を研削する工程を含む場合、光透過部材30の研削に伴う波長変換物質40の劣化を抑制乃至回避することができる。   As shown in FIG. 2C, when the light transmitting member 30 contains the wavelength conversion material 40 excited by the light of the light emitting element 50, in the second step, the wavelength conversion material 40 is unevenly distributed on the first region 30a side. preferable. When the light emitting element 50 is bonded to the second region 30b side of the light transmitting member 30 (see FIG. 1B), the protruding portion of the second region 30b is covered with the first light reflecting member 10 so that light is easily confined. It becomes a part. For this reason, the wavelength conversion substance 40 can be efficiently extracted by disposing the wavelength conversion substance 40 away from the projecting portion of the second area 30b toward the first area 30a. On the other hand, when the light emitting element 50 is bonded to the first region 30a side of the light transmissive member 30 (see FIG. 3), the wavelength converting substance 40 is positioned on the inner side of the light emitting device 100, and the wavelength converting substance 40 is moisture or the like. Easy to protect from the external environment. Moreover, when including the process of grinding the main surface by the side of the 2nd area | region 30b of the light transmissive member 30, degradation of the wavelength conversion substance 40 accompanying grinding of the light transmissive member 30 can be suppressed thru | or avoided.

第2工程において、第1領域30a若しくは第2領域30bに凹部30rを形成することが好ましい。そして、第3工程において、凹部30r内に発光素子50を接着することが好ましい。これにより、接着部材60の濡れ広がりを抑えて光透過部材30に発光素子50を接着しやすい。また、第2領域30bに凹部30rを形成する場合(図4参照)には、凹部30rによって発光素子50の位置が前方に寄ることで、第2領域30bの張り出し部への光入射及びそれによる光の閉じ込めを抑えることができ、光を効率良く取り出しやすい。なお、図4において、凹部30rは、第1光反射部材10と第2光反射部材20の境界線を基準として、第1領域30a側に窪んだ部分である。このような凹部30rは、穴10p内の一部の領域を金型若しくは治具で塞いだ状態において光透過部材の液状材料(30)を注入、硬化させることで形成することができる。このほか、凹部30rは、光透過部材の液状材料(30)の量を穴10pの容積より少なくし、光透過部材の液状材料(30)の周縁部を穴10pの内面に這い上がらせる、言い換えれば光透過部材の液状材料(30)の中央部をヒケさせる、ことで形成することができる。   In the second step, it is preferable to form the recess 30r in the first region 30a or the second region 30b. In the third step, it is preferable to bond the light emitting element 50 in the recess 30r. Accordingly, it is easy to adhere the light emitting element 50 to the light transmitting member 30 while suppressing the wetting and spreading of the adhesive member 60. When the recess 30r is formed in the second region 30b (see FIG. 4), the position of the light emitting element 50 is moved forward by the recess 30r, so that light is incident on the projecting portion of the second region 30b and thereby Light confinement can be suppressed and light can be extracted efficiently. In FIG. 4, the recess 30 r is a portion that is recessed toward the first region 30 a with reference to the boundary line between the first light reflecting member 10 and the second light reflecting member 20. Such a recess 30r can be formed by injecting and curing the liquid material (30) of the light transmitting member in a state where a partial region in the hole 10p is closed with a mold or a jig. In addition, the recess 30r makes the amount of the liquid material (30) of the light transmitting member smaller than the volume of the hole 10p, and causes the peripheral portion of the liquid material (30) of the light transmitting member to crawl up on the inner surface of the hole 10p. For example, it can be formed by sinking the central portion of the liquid material (30) of the light transmitting member.

第3工程において、発光素子50を光透過部材30の第1領域30a側に接着してもよい(図3,5参照)。これにより、第2領域30bの張り出し部を外部環境に露出させて配置することができ、上述のような第2領域30bの張り出し部による光の閉じ込めを抑制乃至回避することができる。また、光透過部材30の面積の大きい第2領域30b側の主面を発光装置100の発光面とすることで、光取り出しの窓部が広がり、効率良く光を取り出すことができる。   In the third step, the light emitting element 50 may be bonded to the first region 30a side of the light transmitting member 30 (see FIGS. 3 and 5). As a result, the projecting portion of the second region 30b can be exposed to the external environment, and light confinement by the projecting portion of the second region 30b as described above can be suppressed or avoided. Further, by making the main surface on the second region 30b side where the area of the light transmitting member 30 is large as the light emitting surface of the light emitting device 100, the light extraction window is widened and light can be extracted efficiently.

光透過部材30が発光素子50の光によって励起される波長変換物質40を含有し、且つ発光素子50を光透過部材30の第1領域30a側に接着する場合、第2工程において、波長変換物質40を第2領域30b側に偏在させてもよい(図5参照)。これにより、波長変換物質40付近の光密度を比較的低くでき、それにより波長変換物質40の発熱が抑えられ、波長変換物質40の温度消光を抑制することができる。   When the light transmitting member 30 contains the wavelength converting material 40 excited by the light of the light emitting element 50 and the light emitting element 50 is bonded to the first region 30a side of the light transmitting member 30, in the second step, the wavelength converting material 40 may be unevenly distributed on the second region 30b side (see FIG. 5). As a result, the light density in the vicinity of the wavelength converting substance 40 can be relatively lowered, whereby heat generation of the wavelength converting substance 40 can be suppressed, and temperature quenching of the wavelength converting substance 40 can be suppressed.

第1工程の後、第1光反射部材10の主面を研削して、第1空間10paの一部及び/若しくは第2空間10pbの少なくとも一部を除去する工程(第5工程)を備えていてもよい。また、第2工程の後、光透過部材30の主面を研削して、第1領域30aの一部及び/若しくは第2領域30bの少なくとも一部を除去する工程(第5工程若しくは第6工程)を備えていてもよい。特に、発光素子50を光透過部材30の第2領域30b側に接着する場合、第2領域30bの一部、より好ましくは全部を除去することで、上述のような第2領域30bの張り出し部による光の閉じ込めを抑制乃至回避することができる。   After the first step, the method includes a step (fifth step) of grinding the main surface of the first light reflecting member 10 and removing at least a part of the first space 10pa and / or the second space 10pb. May be. In addition, after the second step, the main surface of the light transmitting member 30 is ground to remove a part of the first region 30a and / or at least a part of the second region 30b (fifth step or sixth step). ) May be provided. In particular, when the light emitting element 50 is bonded to the second region 30b side of the light transmissive member 30, a part of the second region 30b, more preferably all of the second region 30b is removed, so that the protruding portion of the second region 30b as described above is obtained. Light confinement due to can be suppressed or avoided.

以下、本発明の実施の形態に係る発光装置における各構成要素について説明する。   Hereafter, each component in the light-emitting device concerning embodiment of this invention is demonstrated.

(発光装置100)
発光装置は、例えばLED装置である。上記実施の形態の発光装置は、上面発光型(「トップビュー型」とも呼ばれる)であるが、外部接続端子の構成により、側面発光型(「サイドビュー型」とも呼ばれる)にすることも可能である。上面発光型の発光装置は、実装方向と主発光方向が互いに平行である。側面発光型の発光装置は、実装方向と主発光方向が互いに垂直である。発光装置の前面視形状すなわち主発光方向から見た形状は、適宜選択できるが、矩形状が量産性において好ましい。特に、発光装置が上面発光型である場合の前面視形状は、正方形状が好ましい。一方、発光装置が側面発光型である場合の前面視形状は、長手方向と短手方向を有する長方形状が好ましい。また、発光素子も、発光装置と同様の前面視形状であることが好ましい。
(Light Emitting Device 100)
The light emitting device is, for example, an LED device. The light-emitting device of the above embodiment is a top emission type (also referred to as “top view type”), but can also be a side emission type (also referred to as “side view type”) depending on the configuration of the external connection terminal. is there. In the top emission type light emitting device, the mounting direction and the main light emitting direction are parallel to each other. In the side-emitting type light emitting device, the mounting direction and the main light emitting direction are perpendicular to each other. The front view shape of the light emitting device, that is, the shape viewed from the main light emitting direction can be selected as appropriate, but a rectangular shape is preferable in mass productivity. In particular, the shape of the front view when the light emitting device is a top emission type is preferably a square shape. On the other hand, the shape of the front view when the light emitting device is a side emission type is preferably a rectangular shape having a longitudinal direction and a short direction. Moreover, it is preferable that a light emitting element is also the shape of the front view similar to a light-emitting device.

(第1光反射部材10、第2光反射部材20)
第1光反射部材及び第2光反射部材は、前方への光取り出し効率の観点から、発光素子の発光ピーク波長における光反射率が、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりいっそう好ましい。さらに、第1光反射部材及び第2光反射部材は、白色であることが好ましい。よって、第1光反射部材及び第2光反射部材は、母材中に白色顔料を含有してなることが好ましい。
(First light reflecting member 10, second light reflecting member 20)
From the viewpoint of forward light extraction efficiency, the first light reflecting member and the second light reflecting member preferably have a light reflectance at a light emission peak wavelength of 70% or more, preferably 80% or more. Is more preferable and 90% or more is even more preferable. Furthermore, the first light reflecting member and the second light reflecting member are preferably white. Therefore, it is preferable that the first light reflecting member and the second light reflecting member contain a white pigment in the base material.

第1光反射部材及び第2光反射部材の母材は、樹脂を用いることができ、特に熱硬化性樹脂が好ましく、例えばシリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、ジアリルフタレート樹脂、又はこれらの変性樹脂が挙げられる。なかでも、シリコーン樹脂及び変性シリコーン樹脂は、耐熱性及び耐光性に優れ、好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。なお、本明細書における「変性樹脂」は、ハイブリッド樹脂を含むものとする。また、第1光反射部材及び第2光反射部材の母材は、後述の光透過部材の母材と同様のフィラーを含有してもよい。また、第1光反射部材の母材と、第2光反射部材の母材は、同種であることが好ましい。   As the base material of the first light reflecting member and the second light reflecting member, a resin can be used, and a thermosetting resin is particularly preferable. For example, silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, diallyl phthalate resin Or these modified resins. Of these, silicone resins and modified silicone resins are preferred because they are excellent in heat resistance and light resistance. Specific examples of the silicone resin include dimethyl silicone resin, phenyl-methyl silicone resin, and diphenyl silicone resin. The “modified resin” in this specification includes a hybrid resin. Moreover, the base material of a 1st light reflection member and a 2nd light reflection member may contain the filler similar to the base material of the below-mentioned light transmissive member. Moreover, it is preferable that the base material of the first light reflecting member and the base material of the second light reflecting member are the same type.

白色顔料は、酸化チタン、酸化亜鉛、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、珪酸マグネシウム、チタン酸バリウム、硫酸バリウム、水酸化アルミニウム、酸化アルミニウム、酸化ジルコニウムのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。白色顔料の形状は、適宜選択でき、不定形若しくは破砕状でもよいが、流動性の観点では球状が好ましい。また、白色顔料の粒径は、例えば0.1μm以上0.5μm以下程度が挙げられるが、光反射や被覆の効果を高めるためには小さい程好ましい。第1光反射部材及び第2光反射部材中の白色顔料の含有量は、適宜選択できるが、光反射性及び液状時における粘度などの観点から、例えば10wt%以上80wt%以下が好ましく、20wt%以上75wt%以下がより好ましく、30wt%以上70wt%以下がよりいっそう好ましい。なお、「wt%」は、重量パーセントであり、第1光反射部材及び第2光反射部材の全重量に対する当該材料の重量の比率を表す。   White pigments are titanium oxide, zinc oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, magnesium silicate, barium titanate, barium sulfate, aluminum hydroxide, aluminum oxide, zirconium oxide. One of them can be used alone, or two or more of them can be used in combination. The shape of the white pigment can be appropriately selected and may be indefinite or crushed, but is preferably spherical from the viewpoint of fluidity. The particle size of the white pigment is, for example, about 0.1 μm or more and 0.5 μm or less, but it is preferable that the white pigment is smaller in order to enhance the effect of light reflection and coating. The content of the white pigment in the first light reflecting member and the second light reflecting member can be selected as appropriate, but is preferably 10 wt% or more and 80 wt% or less, for example, from the viewpoint of light reflectivity and viscosity in liquid state, and 20 wt%. It is more preferably 75 wt% or less, and even more preferably 30 wt% or more and 70 wt% or less. Note that “wt%” is weight percent and represents the ratio of the weight of the material to the total weight of the first light reflecting member and the second light reflecting member.

(光透過部材30)
光透過部材は、発光素子上に設けられ、発光素子から発せられる光を装置外部に透過させる部材である。光透過部材は、少なくとも以下のような母材により構成される。また、光透過部材は、以下のような波長変換物質を母材中に含有することで、波長変換部材として機能させることができる。但し、波長変換物質の含有は必須ではない。
(Light transmission member 30)
The light transmissive member is a member that is provided on the light emitting element and transmits light emitted from the light emitting element to the outside of the apparatus. The light transmitting member is composed of at least the following base material. Moreover, a light transmissive member can be functioned as a wavelength conversion member by containing the following wavelength conversion substances in a base material. However, the inclusion of the wavelength converting substance is not essential.

光透過部材の母材は、発光素子から発せられる光に対して透光性を有するものであればよい。なお、本明細書における「透光性」とは、発光素子の発光ピーク波長における光透過率が、好ましくは60%以上であること、より好ましくは70%以上であること、よりいっそう好ましくは80%以上であることを言うものとする。光透過部材の母材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、ジアリルフタレート樹脂、又はこれらの変性樹脂を用いることができる。なかでも、シリコーン樹脂及び変性シリコーン樹脂は、耐熱性及び耐光性に優れ、好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。光透過部材は、これらの母材のうちの1種を単層で、若しくはこれらの母材のうちの2種以上を積層して構成することができる。   The base material of the light transmissive member may be any material that transmits light emitted from the light emitting element. Note that “translucency” in the present specification means that the light transmittance at the emission peak wavelength of the light-emitting element is preferably 60% or more, more preferably 70% or more, and still more preferably 80%. % And more. As the base material of the light transmitting member, silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, diallyl phthalate resin, or modified resins thereof can be used. Of these, silicone resins and modified silicone resins are preferred because they are excellent in heat resistance and light resistance. Specific examples of the silicone resin include dimethyl silicone resin, phenyl-methyl silicone resin, and diphenyl silicone resin. The light transmissive member can be configured by a single layer of one of these base materials or a stack of two or more of these base materials.

光透過部材の母材は、上記樹脂に各種のフィラーを含有してもよい。このフィラーとしては、酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛などが挙げられる。フィラーは、これらのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。特に、熱膨張係数の小さい酸化珪素が好ましい。また、フィラーとして、ナノ粒子を用いることで、発光素子の青色光のレイリー散乱を含む散乱を増大させ、波長変換物質の使用量を低減することもできる。なお、ナノ粒子とは、粒径が1nm以上100nm以下の粒子とする。また、本明細書における「粒径」は、例えば、D50で定義される。 The base material of the light transmitting member may contain various fillers in the resin. Examples of the filler include silicon oxide, aluminum oxide, zirconium oxide, and zinc oxide. A filler can be used individually by 1 type of these or in combination of 2 or more types of these. In particular, silicon oxide having a small thermal expansion coefficient is preferable. Further, by using nanoparticles as the filler, scattering including blue light Rayleigh scattering of the light emitting element can be increased, and the amount of the wavelength conversion substance used can be reduced. Nanoparticles are particles having a particle size of 1 nm to 100 nm. Further, "particle size" herein, for example, it is defined by the D 50.

(波長変換物質40)
波長変換物質は、発光素子が発する一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を発する。これにより、可視波長の一次光及び二次光の混色光、例えば白色光を発する発光装置とすることができる。波長変換物質は、以下に示す具体例のうちの1種を単独で、又は2種以上を組み合わせて用いることができる。例えば、1種の場合は黄色発光する蛍光体を用い、2種の場合は緑色乃至黄色発光する第1蛍光体と赤色発光する第2蛍光体の組み合わせとすることができる。
(Wavelength converting material 40)
The wavelength converting material absorbs at least a part of the primary light emitted from the light emitting element and emits secondary light having a wavelength different from that of the primary light. Thereby, it can be set as the light-emitting device which emits the mixed color light of the primary light of a visible wavelength, and secondary light, for example, white light. The wavelength converting substance can be used alone or in combination of two or more of the specific examples shown below. For example, in the case of one type, a phosphor emitting yellow light can be used, and in the case of two types, a first phosphor emitting green to yellow light and a second phosphor emitting red light can be used.

緑色発光する蛍光体としては、イットリウム・アルミニウム・ガーネット系蛍光体(例えばY(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えばLu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えばTb(Al,Ga)12:Ce)系蛍光体、シリケート系蛍光体(例えば(Ba,Sr)SiO:Eu)、クロロシリケート系蛍光体(例えばCaMg(SiOCl:Eu)、βサイアロン系蛍光体(例えばSi6−zAl8−z:Eu(0<z<4.2))、SGS系蛍光体(例えばSrGa:Eu)などが挙げられる。黄色発光の蛍光体としては、αサイアロン系蛍光体(例えばM(Si,Al)12(O,N)16(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素)などが挙げられる。このほか、上記緑色発光する蛍光体の中には黄色発光する蛍光体もある。また例えば、イットリウム・アルミニウム・ガーネット系蛍光体は、Yの一部をGdで置換することで発光ピーク波長を長波長側にシフトさせることができ、黄色発光が可能である。また、これらの中には、橙色発光が可能な蛍光体もある。赤色発光する蛍光体としては、窒素含有アルミノ珪酸カルシウム(CASN又はSCASN)系蛍光体(例えば(Sr,Ca)AlSiN:Eu)などが挙げられる。このほか、マンガン賦活フッ化物系蛍光体(一般式(I)A[M1−aMn]で表される蛍光体である(但し、上記一般式(I)中、Aは、K、Li、Na、Rb、Cs及びNHからなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす))が挙げられる。このマンガン賦活フッ化物系蛍光体の代表例としては、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSiF:Mn)がある。 Examples of phosphors that emit green light include yttrium / aluminum / garnet phosphors (for example, Y 3 (Al, Ga) 5 O 12 : Ce) and lutetium / aluminum / garnet phosphors (for example, Lu 3 (Al, Ga) 5 ). O 12 : Ce), terbium / aluminum / garnet phosphor (for example, Tb 3 (Al, Ga) 5 O 12 : Ce) phosphor, silicate phosphor (for example (Ba, Sr) 2 SiO 4 : Eu) Chlorosilicate phosphor (for example, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu), β sialon phosphor (for example, Si 6-z Al z O z N 8 -z : Eu (0 <z <4. 2)), SGS type phosphors (for example, SrGa 2 S 4 : Eu) and the like. As a phosphor emitting yellow light, an α sialon-based phosphor (for example, M z (Si, Al) 12 (O, N) 16 (where 0 <z ≦ 2 and M is Li, Mg, Ca, Y, In addition, among the phosphors emitting green light, there are phosphors emitting yellow light, for example, yttrium / aluminum / garnet phosphors are Y By substituting part with Gd, the emission peak wavelength can be shifted to the longer wavelength side, and yellow light emission is possible, and some of these phosphors can emit orange light. Examples of the phosphor to be used include a nitrogen-containing calcium aluminosilicate (CASN or SCASN) phosphor (for example, (Sr, Ca) AlSiN 3 : Eu), etc. In addition, a manganese activated fluoride-based phosphor Phosphor (general formula (I) A 2 [M 1-a Mn a F 6 ] phosphor represented by formula (I) wherein A represents K, Li, Na, Rb, At least one selected from the group consisting of Cs and NH 4 , M is at least one element selected from the group consisting of Group 4 elements and Group 14 elements, and a is 0 <a <0. A typical example of this manganese-activated fluoride phosphor is a manganese-activated potassium fluorosilicate phosphor (for example, K 2 SiF 6 : Mn).

(発光素子50)
発光素子は、少なくとも半導体素子構造を備え、多くの場合に基板をさらに備える。発光素子としては、例えばLEDチップが挙げられる。発光素子の前面視形状は、矩形、特に正方形状又は一方向に長い長方形状であることが量産性の観点から好ましいが、その他の形状であってもよい。例えば、六角形状であれば、発光素子の側面からその側面を被覆する接着部材への光結合効率を高められ、発光効率を高めることもできる。発光素子若しくはその基板の側面は、前面に対して、垂直であってもよいし、内側又は外側に傾斜していてもよい。発光素子は、同一面側に正負(p,n)電極を有することが好ましい。1つの発光装置に搭載される発光素子の個数は1つに限られず複数でもよい。光透過部材についても同様である。複数の発光素子は、直列又は並列に接続することができる。
(Light emitting element 50)
The light emitting element includes at least a semiconductor element structure, and in many cases further includes a substrate. Examples of the light emitting element include an LED chip. The front-view shape of the light-emitting element is preferably a rectangle, particularly a square shape or a rectangular shape that is long in one direction, from the viewpoint of mass productivity, but may be other shapes. For example, the hexagonal shape can increase the light coupling efficiency from the side surface of the light emitting element to the adhesive member covering the side surface, and can also increase the light emission efficiency. The side surface of the light emitting element or its substrate may be perpendicular to the front surface, or may be inclined inward or outward. The light emitting element preferably has positive and negative (p, n) electrodes on the same surface side. The number of light emitting elements mounted on one light emitting device is not limited to one and may be plural. The same applies to the light transmitting member. The plurality of light emitting elements can be connected in series or in parallel.

半導体素子構造は、半導体層の積層体、即ち少なくともn型半導体層とp型半導体層を含み、また活性層をその間に介することが好ましい。半導体素子構造は、正負電極及び/若しくは絶縁膜を含んでもよい。正負電極は、金、銀、錫、白金、ロジウム、チタン、アルミニウム、タングステン、パラジウム、ニッケル又はこれらの合金で構成することができる。絶縁膜は、珪素、チタン、ジルコニウム、ニオブ、タンタル、アルミニウムからなる群より選択される少なくとも一種の元素の酸化物又は窒化物で構成することができる。発光素子の発光ピーク波長は、半導体材料やその混晶比によって、紫外域から赤外域まで選択することができる。半導体材料としては、波長変換物質を効率良く励起できる短波長の光を発光可能な材料である、窒化物半導体を用いることが好ましい。窒化物半導体は、主として一般式InAlGa1−x−yN(0≦x、0≦y、x+y≦1)で表される。発光素子の発光ピーク波長は、発光効率、波長変換物質の励起、及び演色性・色再現性等の観点から、400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましく、450nm以上475nm以下がよりいっそう好ましい。このほか、InAlGaAs系半導体、InAlGaP系半導体、硫化亜鉛、セレン化亜鉛、炭化珪素などを用いることもできる。 The semiconductor element structure preferably includes a stack of semiconductor layers, that is, at least an n-type semiconductor layer and a p-type semiconductor layer, and an active layer interposed therebetween. The semiconductor element structure may include positive and negative electrodes and / or an insulating film. The positive and negative electrodes can be composed of gold, silver, tin, platinum, rhodium, titanium, aluminum, tungsten, palladium, nickel, or an alloy thereof. The insulating film can be made of an oxide or nitride of at least one element selected from the group consisting of silicon, titanium, zirconium, niobium, tantalum, and aluminum. The emission peak wavelength of the light-emitting element can be selected from the ultraviolet region to the infrared region depending on the semiconductor material and its mixed crystal ratio. As the semiconductor material, it is preferable to use a nitride semiconductor, which is a material capable of emitting light with a short wavelength that can efficiently excite the wavelength conversion substance. The nitride semiconductor is mainly represented by a general formula In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1). The light emission peak wavelength of the light emitting element is preferably 400 nm or more and 530 nm or less, more preferably 420 nm or more and 490 nm or less, and more preferably 450 nm or more and 475 nm or less, from the viewpoints of light emission efficiency, excitation of the wavelength conversion substance, color rendering properties and color reproducibility. Even more preferable. In addition, an InAlGaAs-based semiconductor, an InAlGaP-based semiconductor, zinc sulfide, zinc selenide, silicon carbide, or the like can also be used.

発光素子の基板は、主として半導体素子構造を構成する半導体の結晶を成長可能な結晶成長用基板であるが、結晶成長用基板から分離した半導体素子構造に接合させる接合用基板であってもよい。基板が透光性を有することで、フリップチップ実装を採用しやすく、また光の取り出し効率を高めやすい。基板としては、サファイア、スピネル、窒化ガリウム、窒化アルミニウム、シリコン、炭化珪素、ガリウム砒素、ガリウム燐、インジウム燐、硫化亜鉛、酸化亜鉛、セレン化亜鉛、ダイヤモンドなどが挙げられる。なかでも、サファイアが好ましい。基板の厚さは、適宜選択でき、例えば0.02mm以上1mm以下であり、基板の強度及び/若しくは発光装置の厚さの観点において、0.05mm以上0.3mm以下であることが好ましい。   The substrate of the light emitting element is a crystal growth substrate capable of mainly growing a semiconductor crystal constituting the semiconductor element structure, but may be a bonding substrate bonded to a semiconductor element structure separated from the crystal growth substrate. Since the substrate has a light-transmitting property, it is easy to adopt flip chip mounting, and it is easy to increase the light extraction efficiency. Examples of the substrate include sapphire, spinel, gallium nitride, aluminum nitride, silicon, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, zinc sulfide, zinc oxide, zinc selenide, diamond and the like. Of these, sapphire is preferable. The thickness of the substrate can be appropriately selected, and is, for example, 0.02 mm or more and 1 mm or less, and is preferably 0.05 mm or more and 0.3 mm or less in terms of the strength of the substrate and / or the thickness of the light emitting device.

(接着部材60)
接着部材は、透光性を有し、発光素子と光透過部材を接着して、発光素子からの光を光透過部材に導光する部材である。接着部材の母材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、ジアリルフタレート樹脂、又はこれらの変性樹脂が挙げられる。なかでも、シリコーン樹脂及び変性シリコーン樹脂は、耐熱性及び耐光性に優れ、好ましい。具体的なシリコーン樹脂としては、ジメチルシリコーン樹脂、フェニル−メチルシリコーン樹脂、ジフェニルシリコーン樹脂が挙げられる。また、接着部材の母材は、上述の光透過部材の母材と同様のフィラーを含有してもよい。
(Adhesive member 60)
The adhesive member is a member that has translucency and guides light from the light emitting element to the light transmitting member by bonding the light emitting element and the light transmitting member. Examples of the base material of the adhesive member include silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, diallyl phthalate resin, and modified resins thereof. Of these, silicone resins and modified silicone resins are preferred because they are excellent in heat resistance and light resistance. Specific examples of the silicone resin include dimethyl silicone resin, phenyl-methyl silicone resin, and diphenyl silicone resin. Moreover, the base material of the adhesive member may contain the same filler as the base material of the above-described light transmitting member.

(外部接続端子70)
外部接続端子は、突起電極でもよいし、リード電極でもよい。また、外部接続端子は、発光素子の正負電極を兼ねてもよい。突起電極としては、例えばバンプ若しくはピラーが挙げられる。リード電極としては、例えば個片化されたリードフレームが挙げられる。外部接続端子は、金属又は合金の小片で構成することができる。具体的には、例えば、金、銀、銅、鉄、錫、白金、亜鉛、ニッケル、アルミニウム、タングステン、及びこれらの合金が挙げられる。なかでも、銅は、熱伝導性に優れ、比較的安価であるため、銅又は銅合金が特に好適である。また、金は、化学的に安定であり表面酸化が少なく接合しやすい性質を有するため、金又は金合金も好ましい。外部接続端子は、めっき法、スタッド法などにより形成することができる。外部接続端子は、半田接合性の観点から、表面に金又は銀などの被膜を有してもよい。
(External connection terminal 70)
The external connection terminal may be a protruding electrode or a lead electrode. The external connection terminal may also serve as the positive and negative electrodes of the light emitting element. Examples of the protruding electrode include a bump or a pillar. An example of the lead electrode is an individual lead frame. The external connection terminal can be composed of a small piece of metal or alloy. Specific examples include gold, silver, copper, iron, tin, platinum, zinc, nickel, aluminum, tungsten, and alloys thereof. Especially, since copper is excellent in thermal conductivity and relatively inexpensive, copper or a copper alloy is particularly suitable. Gold or a gold alloy is also preferable because it is chemically stable and has a property of being less susceptible to surface oxidation and bonding. The external connection terminal can be formed by a plating method, a stud method, or the like. The external connection terminal may have a coating such as gold or silver on the surface from the viewpoint of solderability.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

実施例の発光装置は、図1A,1Bに示す例の発光装置100の構造を有する、横幅1.7mm、縦幅1.7mm、厚さ0.38mmの直方体状の上面発光型のCSP型LED装置である。   The light emitting device of the embodiment has the structure of the light emitting device 100 of the example shown in FIGS. 1A and 1B, and is a rectangular parallelepiped top-emitting CSP type LED having a width of 1.7 mm, a height of 1.7 mm, and a thickness of 0.38 mm Device.

第1光反射部材10は光透過部材30の側方全周を、第2光反射部材20は発光素子50及び一対の外部接続端子70の側方全周を、其々被覆している。第1光反射部材10及び第2光反射部材20は、酸化チタンを60wt%含有するフェニル−メチルシリコーン樹脂の硬化物である。第1光反射部材10及び第2光反射部材20の大きさは其々、横幅1.7mm、縦幅1.7mm、厚さ0.19mmであるが、第1光反射部材10と第2光反射部材20は一体化されており、両部材の界面は観察されない。   The first light reflecting member 10 covers the entire side periphery of the light transmitting member 30, and the second light reflecting member 20 covers the entire side periphery of the light emitting element 50 and the pair of external connection terminals 70, respectively. The first light reflecting member 10 and the second light reflecting member 20 are a cured product of phenyl-methyl silicone resin containing 60 wt% titanium oxide. The first light reflecting member 10 and the second light reflecting member 20 have a width of 1.7 mm, a length of 1.7 mm, and a thickness of 0.19 mm, respectively. The reflecting member 20 is integrated, and the interface between the two members is not observed.

発光素子50は、サファイア基板と、窒化物半導体のn型層、活性層、p型層が順次積層された半導体素子構造と、を有し、青色(発光ピーク波長445nm)発光可能な、横幅1mm、縦幅1mm、厚さ0.15mmの直方体状のLEDチップである。   The light emitting element 50 has a sapphire substrate and a semiconductor element structure in which an n-type layer, an active layer, and a p-type layer of a nitride semiconductor are sequentially stacked, and can emit blue light (emission peak wavelength 445 nm) and has a width of 1 mm. A rectangular parallelepiped LED chip having a vertical width of 1 mm and a thickness of 0.15 mm.

発光素子50の前面すなわちサファイア基板の裏面には、光透過部材30が接着部材60を介して接着されている。光透過部材30は、最大横幅1.24mm、最大縦幅1.24mmの前面視矩形状(四隅は丸みを帯びている)で、厚さ0.19mmであり、波長変換物質40としてYAG:Ce蛍光体を含有した、酸化珪素のナノ粒子のフィラーを0.4wt%含むフェニル−メチルシリコーン樹脂の硬化物である。この光透過部材30は、前方側の第1領域30aと、後方側の第2領域30bと、から成っている。第1領域30aは、横幅1.2mm、縦幅1.2mm、厚さ0.17mmの正方柱状(四隅は丸みを帯びている)の領域である。第2領域30bは、横幅1.2mm、縦幅1.2mmの平面視矩形状の前面、断面視半径0.02mmの四半円状(前面視において凹)の側面、横幅1.24mm、縦幅1.24mmの平面視矩形状の後面を有する錐台状である。第1領域30aの側面と第2領域30bの側面は滑らかに連続している。波長変換物質40は、第1領域30a内に存在し、第2領域30b内には実質的に存在しておらず、更に第1領域30a内の前方側に偏在している。光透過部材30の前面すなわち第1領域30aの前面と第1光反射部材10の前面は、実質的に同一面を成し、本発光装置の前面を構成している。接着部材60は、酸化珪素のナノ粒子のフィラーを2wt%含むフェニル−メチルシリコーン樹脂(光透過部材30と同じ樹脂)である。接着部材60は、発光素子50の前面と各側面の前方側の一部を被覆している。接着部材60は、前面視において第1領域30aの輪郭より内側に収まっている。   The light transmitting member 30 is bonded to the front surface of the light emitting element 50, that is, the back surface of the sapphire substrate via an adhesive member 60. The light transmitting member 30 has a rectangular shape when viewed from the front with a maximum width of 1.24 mm and a maximum length of 1.24 mm (four corners are rounded), has a thickness of 0.19 mm, and uses YAG: Ce as the wavelength converting material 40. This is a cured product of phenyl-methylsilicone resin containing 0.4 wt% of a filler of silicon oxide nanoparticles containing a phosphor. The light transmission member 30 includes a first region 30a on the front side and a second region 30b on the rear side. The first region 30a is a square pillar-shaped region (four corners are rounded) having a lateral width of 1.2 mm, a vertical width of 1.2 mm, and a thickness of 0.17 mm. The second region 30b has a rectangular front surface with a horizontal width of 1.2 mm and a vertical width of 1.2 mm, a quadrilateral shape (concave when viewed from the front) with a sectional view radius of 0.02 mm, a lateral width of 1.24 mm, and a vertical width. It is a frustum shape having a rear surface of a rectangular shape in plan view of 1.24 mm. The side surface of the first region 30a and the side surface of the second region 30b are smoothly continuous. The wavelength converting substance 40 exists in the first region 30a, does not substantially exist in the second region 30b, and is further unevenly distributed on the front side in the first region 30a. The front surface of the light transmitting member 30, that is, the front surface of the first region 30a and the front surface of the first light reflecting member 10 are substantially the same surface, and constitute the front surface of the light emitting device. The adhesive member 60 is a phenyl-methyl silicone resin (the same resin as the light transmitting member 30) containing 2 wt% of a filler of silicon oxide nanoparticles. The adhesive member 60 covers the front surface of the light emitting element 50 and a part of the front side of each side surface. The adhesive member 60 is located inside the outline of the first region 30a in front view.

発光素子50の後面の正負電極には、一対の外部接続端子70が接続されている。一対の外部接続端子70は其々、横幅0.33mm、縦幅0.86mm、厚さ0.04mmの直方体状の銅の母体の表面にニッケル/金の被膜が形成された小片(間隔0.2mm)である。一対の外部接続端子70の後面は其々、第2光反射部材20から露出されている。一対の外部接続端子70の後面と第2光反射部材20の後面は、実質的に同一面を成し、本発光装置の後面を構成している。   A pair of external connection terminals 70 are connected to the positive and negative electrodes on the rear surface of the light emitting element 50. Each of the pair of external connection terminals 70 is a small piece (interval of 0. 30 mm) having a nickel / gold film formed on the surface of a rectangular parallelepiped copper base having a lateral width of 0.33 mm, a longitudinal width of 0.86 mm, and a thickness of 0.04 mm. 2 mm). The rear surfaces of the pair of external connection terminals 70 are exposed from the second light reflecting member 20, respectively. The rear surfaces of the pair of external connection terminals 70 and the rear surface of the second light reflecting member 20 are substantially the same surface, and constitute the rear surface of the light emitting device.

本実施例の発光装置は、以下のようにして製造される。
(第1工程)
トランスファ成形機を用いて、複数の穴10pを有する第1光反射部材10を板状治具90上に成形する。下金型である第1金型80は、ステンレス製であり、横幅70mm、縦幅55mm、厚さ8.8mmの平面視矩形状の基体83と、その基体83から突き出した複数の突起85と、を有している。複数の突起85は、横方向に中心間距離1.75mmで39個、縦方向に中心間距離2.43mmで19個、形成されている。突起85は其々、エンドミルを用いた切削加工により形成されており、柱状部85aと、柱状部85aから基体83に連続した錐台状部85bと、から成っている。柱状部85aは、横幅1.2mm、縦幅1.2mm、厚さ0.18mmの正方柱状(四隅は丸みを帯びている)の部位である。錐台状部85bは、柱状部85aから基体83まで滑らかに連続した断面視半径0.02mmの四半円状(突起85を外側から見て凹)の外面を有する錐台状の部位である。上金型である第2金型82は、ステンレス製の平板である。板状治具90は、横幅90mm、縦幅60mm、厚さ1mmの平面視矩形状のステンレス製の板であり、直径0.8mmの平面視円形状の貫通孔90hを、横方向に中心間距離1.325mmで52個、縦方向に中心間距離2.43mmで20個有している。
The light emitting device of this example is manufactured as follows.
(First step)
The first light reflecting member 10 having a plurality of holes 10p is formed on the plate-like jig 90 using a transfer molding machine. The first mold 80, which is a lower mold, is made of stainless steel, and has a rectangular base 83 in plan view with a width of 70 mm, a length of 55 mm, and a thickness of 8.8 mm, and a plurality of protrusions 85 protruding from the base 83. ,have. A plurality of protrusions 85 are formed in the horizontal direction with a center-to-center distance of 1.75 mm and 19 in the vertical direction with a center-to-center distance of 2.43 mm. Each of the protrusions 85 is formed by cutting using an end mill, and includes a columnar portion 85a and a frustum-shaped portion 85b continuous from the columnar portion 85a to the base body 83. The columnar portion 85a is a square columnar portion (four corners are rounded) having a horizontal width of 1.2 mm, a vertical width of 1.2 mm, and a thickness of 0.18 mm. The frustum-shaped portion 85 b is a frustum-shaped portion having a quarter-circular shape (concave when viewed from the outside) having a radius of 0.02 mm in cross-sectional view that is smoothly continuous from the columnar portion 85 a to the base body 83. The second mold 82 which is an upper mold is a flat plate made of stainless steel. The plate-like jig 90 is a plate made of stainless steel having a rectangular shape in plan view with a width of 90 mm, a length of 60 mm, and a thickness of 1 mm. There are 52 pieces at a distance of 1.325 mm and 20 pieces at a center distance of 2.43 mm in the vertical direction.

(第2工程)
光透過部材の液状材料(30)を、第1光反射部材10の各穴10p内に、ディスペンサを用いて注入し、遠心分離装置を用いて波長変換物質40を強制的に第1空間10pa側に偏在させた後、オーブンで加熱して硬化させる。
(Second step)
The liquid material (30) of the light transmitting member is injected into each hole 10p of the first light reflecting member 10 by using a dispenser, and the wavelength conversion substance 40 is forcibly used by the centrifugal separator to the first space 10pa side. And then cured by heating in an oven.

(第3工程)
各光透過部材30の第2領域30b側の主面上に接着部材の液状材料(60)をピン転写により塗布し、外部接続端子70が後面側にめっきにより形成された発光素子50の前面側をその上に各々載置して、オーブンで加熱して接着部材の液状材料(60)を硬化させる。
(Third step)
The front surface side of the light emitting element 50 in which the liquid material (60) of the adhesive member is applied onto the main surface of each light transmitting member 30 on the second region 30b side by pin transfer, and the external connection terminals 70 are formed on the rear surface side by plating. And the liquid material (60) of the adhesive member is cured by heating in an oven.

(第4工程)
圧縮成形機を用いて、第1光反射部材10上に、全ての発光素子50、接着部材60、及び外部接続端子70を完全に埋め込むように、第2光反射部材20を成形する。その後、研削によって、過剰に形成された第2光反射部材20を除去して、各外部接続端子70の表面を露出させる。また、第1光反射部材10を板状治具90から取り外して、貫通孔90h内に形成されていた凸部を研削により除去する。これにより、光透過部材の第1領域30aが若干量除去される。最後に、ダイシング装置を用いて、各発光素子50間の第1光反射部材10及び第2光反射部材20を切断して、発光装置100を個片化する。
(4th process)
Using the compression molding machine, the second light reflecting member 20 is formed so that all the light emitting elements 50, the adhesive members 60, and the external connection terminals 70 are completely embedded on the first light reflecting member 10. Thereafter, the excessively formed second light reflecting member 20 is removed by grinding, and the surface of each external connection terminal 70 is exposed. Moreover, the 1st light reflection member 10 is removed from the plate-shaped jig | tool 90, and the convex part formed in the through-hole 90h is removed by grinding. Thereby, a small amount of the first region 30a of the light transmitting member is removed. Finally, using a dicing device, the first light reflecting member 10 and the second light reflecting member 20 between the light emitting elements 50 are cut to separate the light emitting device 100 into individual pieces.

以上のように構成された実施例の発光装置及びその製造方法は、実施の形態の発光装置100及びその製造方法と同様の効果を奏することができる。   The light emitting device of the example configured as described above and the manufacturing method thereof can achieve the same effects as the light emitting device 100 of the embodiment and the manufacturing method thereof.

本発明の一実施の形態に係る発光装置は、液晶ディスプレイのバックライト装置、各種照明器具、大型ディスプレイ、広告や行き先案内等の各種表示装置、プロジェクタ装置、さらには、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナ等における画像読取装置などに利用することができる。   A light emitting device according to an embodiment of the present invention includes a backlight device for a liquid crystal display, various lighting fixtures, a large display, various display devices such as advertisements and destination guidance, a projector device, a digital video camera, a facsimile, a copy It can be used for an image reading apparatus in a machine, a scanner or the like.

10…第1光反射部材(10p…穴(10pa…第1空間、10pb…第2空間))
20…第2光反射部材
30…光透過部材(30a…第1領域、30b…第2領域、30r…凹部)
40…波長変換物質
50…発光素子
60…接着部材
70…外部接続端子
80…金型(第1金型;83…基体、85…突起(85a…柱状部、85b…錐台状部))
82…第2金型
90…板状治具(90h…貫通孔)
100…発光装置
10 ... 1st light reflection member (10p ... hole (10pa ... 1st space, 10pb ... 2nd space))
20 ... 2nd light reflection member 30 ... Light transmission member (30a ... 1st area | region, 30b ... 2nd area | region, 30r ... recessed part)
DESCRIPTION OF SYMBOLS 40 ... Wavelength converting substance 50 ... Light emitting element 60 ... Adhesive member 70 ... External connection terminal 80 ... Metal mold | die (1st metal mold | die; 83 ... Base | substrate, 85 ... Protrusion (85a ... Columnar part, 85b ... Frustum-shaped part))
82 ... Second mold 90 ... Plate-shaped jig (90h ... Through hole)
100: Light emitting device

Claims (9)

板状の基体と前記基体から突き出した突起を有する金型を用いて、前記突起により形成される穴を有する第1光反射部材を形成する第1工程と、
前記穴内に光透過部材を形成する第2工程と、
前記光透過部材に発光素子を接着する第3工程と、を備え、
前記突起が、柱状部と、前記柱状部から前記基体に連続する錐台状部と、を含む、発光装置の製造方法。
A first step of forming a first light reflecting member having a hole formed by the protrusion, using a mold having a plate-like base and a protrusion protruding from the base;
A second step of forming a light transmitting member in the hole;
A third step of bonding a light emitting element to the light transmissive member,
The manufacturing method of the light-emitting device in which the said protrusion contains a columnar part and the frustum-shaped part which continues to the said base | substrate from the said columnar part.
前記第1工程において、前記錐台状部の外面が凹曲面状である、請求項1に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, wherein in the first step, an outer surface of the frustum-shaped portion is a concave curved surface. 前記第1工程において、貫通孔を有する板状治具を準備し、前記第1光反射部材の一部を前記貫通孔内に形成する、請求項1又は2に記載の発光装置の製造方法。   3. The method for manufacturing a light emitting device according to claim 1, wherein in the first step, a plate-shaped jig having a through hole is prepared, and a part of the first light reflecting member is formed in the through hole. 前記穴が、前記柱状部により形成される第1空間と、前記錐台状部により形成される第2空間と、を含み、
前記光透過部材が、前記第1空間に形成される第1領域と、前記第2空間に形成される第2領域と、を含み、
前記第2工程において、前記第1領域若しくは前記第2領域に凹部を形成し、
前記第3工程において、前記凹部内に前記発光素子を接着する、請求項1乃至3のいずれか一項に記載の発光装置の製造方法。
The hole includes a first space formed by the columnar portion and a second space formed by the frustum-shaped portion;
The light transmission member includes a first region formed in the first space and a second region formed in the second space;
In the second step, forming a recess in the first region or the second region,
4. The method for manufacturing a light emitting device according to claim 1, wherein in the third step, the light emitting element is bonded in the recess. 5.
前記穴が、前記柱状部により形成される第1空間と、前記錐台状部により形成される第2空間と、を含み、
前記光透過部材が、前記第1空間に形成される第1領域と、前記第2空間に形成される第2領域と、を含み、
前記第3工程において、前記発光素子を前記光透過部材の前記第2領域側に接着する、請求項1乃至4のいずれか一項に記載の発光装置の製造方法。
The hole includes a first space formed by the columnar portion and a second space formed by the frustum-shaped portion;
The light transmission member includes a first region formed in the first space and a second region formed in the second space;
5. The method of manufacturing a light emitting device according to claim 1, wherein, in the third step, the light emitting element is bonded to the second region side of the light transmitting member.
前記穴が、前記柱状部により形成される第1空間と、前記錐台状部により形成される第2空間と、を含み、
前記光透過部材が、前記第1空間に形成される第1領域と、前記第2空間に形成される第2領域と、を含み、
前記第3工程において、前記発光素子を前記光透過部材の前記第1領域側に接着する、請求項1乃至4のいずれか一項に記載の発光装置の製造方法。
The hole includes a first space formed by the columnar portion and a second space formed by the frustum-shaped portion;
The light transmission member includes a first region formed in the first space and a second region formed in the second space;
5. The method for manufacturing a light emitting device according to claim 1, wherein, in the third step, the light emitting element is bonded to the first region side of the light transmitting member.
前記光透過部材が、前記発光素子の光によって励起される波長変換物質を含有しており、
前記第2工程において、前記波長変換物質を前記第1領域側に偏在させる、請求項5又は6に記載の発光装置の製造方法。
The light transmissive member contains a wavelength converting substance excited by light of the light emitting element;
The manufacturing method of the light-emitting device according to claim 5 or 6, wherein in the second step, the wavelength converting substance is unevenly distributed on the first region side.
前記光透過部材が、前記発光素子の光によって励起される波長変換物質を含有しており、
前記第2工程において、前記波長変換物質を前記第2領域側に偏在させる、請求項6に記載の発光装置の製造方法。
The light transmissive member contains a wavelength converting substance excited by light of the light emitting element;
The manufacturing method of the light-emitting device according to claim 6, wherein in the second step, the wavelength converting substance is unevenly distributed on the second region side.
前記発光素子の周囲を第2光反射部材で被覆する第4工程を更に備える、請求項1乃至8のいずれか一項に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 1, further comprising a fourth step of covering the periphery of the light-emitting element with a second light reflecting member.
JP2016093235A 2016-05-06 2016-05-06 Manufacturing method of light emitting device Active JP6940740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093235A JP6940740B2 (en) 2016-05-06 2016-05-06 Manufacturing method of light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093235A JP6940740B2 (en) 2016-05-06 2016-05-06 Manufacturing method of light emitting device

Publications (2)

Publication Number Publication Date
JP2017201666A true JP2017201666A (en) 2017-11-09
JP6940740B2 JP6940740B2 (en) 2021-09-29

Family

ID=60264808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093235A Active JP6940740B2 (en) 2016-05-06 2016-05-06 Manufacturing method of light emitting device

Country Status (1)

Country Link
JP (1) JP6940740B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035938A (en) * 2018-08-31 2020-03-05 日亜化学工業株式会社 Light-emitting device and method of manufacturing the same
JP7032680B1 (en) 2020-08-28 2022-03-09 日亜化学工業株式会社 Light emitting device
US11391884B2 (en) 2018-03-30 2022-07-19 Nichia Corporation Method of manufacturing light emitting device
WO2023127585A1 (en) * 2021-12-28 2023-07-06 株式会社東海理化電機製作所 Display device manufacturing jig, display device manufacturing method, display device manufactured using display device manufacturing jig, and display device manufactured using display device manufacturing method
JP7389333B2 (en) 2019-07-31 2023-11-30 日亜化学工業株式会社 light emitting device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166734A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
US20120153330A1 (en) * 2010-12-15 2012-06-21 Tsuyoshi Tsutsui Light emitting device and method of manufacturing thereof
JP2012134355A (en) * 2010-12-22 2012-07-12 Stanley Electric Co Ltd Light emitting device and manufacturing method of the same
JP2012169189A (en) * 2011-02-15 2012-09-06 Koito Mfg Co Ltd Light-emitting module and vehicular lamp
WO2013005646A1 (en) * 2011-07-01 2013-01-10 シチズンホールディングス株式会社 Method for manufacturing semiconductor light-emitting element
JP2013077679A (en) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2013536592A (en) * 2010-08-27 2013-09-19 クォークスター・エルエルシー Solid light sheet or strip for general lighting
JP2014130918A (en) * 2012-12-28 2014-07-10 Nitto Denko Corp Sealing layer coating optical semiconductor element, manufacturing method of the same, and optical semiconductor device
WO2015014874A1 (en) * 2013-07-30 2015-02-05 Osram Opto Semiconductors Gmbh Method for producing a cover element and an optoelectronic component, cover element and optoelectronic component
JP2015513213A (en) * 2012-02-02 2015-04-30 ザ プロクター アンド ギャンブルカンパニー Bidirectional light sheet
US20150171286A1 (en) * 2013-12-17 2015-06-18 Lextar Electronics Corporation Light-emitting diode package and method for manufacturing the same
WO2015198220A1 (en) * 2014-06-25 2015-12-30 Koninklijke Philips N.V. Packaged wavelength converted light emitting device
US20160093781A1 (en) * 2014-09-30 2016-03-31 Nichia Corporation Light emitting device and method for manufacturing thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166734A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
JP2013536592A (en) * 2010-08-27 2013-09-19 クォークスター・エルエルシー Solid light sheet or strip for general lighting
US20120153330A1 (en) * 2010-12-15 2012-06-21 Tsuyoshi Tsutsui Light emitting device and method of manufacturing thereof
JP2012134355A (en) * 2010-12-22 2012-07-12 Stanley Electric Co Ltd Light emitting device and manufacturing method of the same
JP2012169189A (en) * 2011-02-15 2012-09-06 Koito Mfg Co Ltd Light-emitting module and vehicular lamp
WO2013005646A1 (en) * 2011-07-01 2013-01-10 シチズンホールディングス株式会社 Method for manufacturing semiconductor light-emitting element
JP2013077679A (en) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
JP2015513213A (en) * 2012-02-02 2015-04-30 ザ プロクター アンド ギャンブルカンパニー Bidirectional light sheet
JP2014130918A (en) * 2012-12-28 2014-07-10 Nitto Denko Corp Sealing layer coating optical semiconductor element, manufacturing method of the same, and optical semiconductor device
WO2015014874A1 (en) * 2013-07-30 2015-02-05 Osram Opto Semiconductors Gmbh Method for producing a cover element and an optoelectronic component, cover element and optoelectronic component
US20150171286A1 (en) * 2013-12-17 2015-06-18 Lextar Electronics Corporation Light-emitting diode package and method for manufacturing the same
WO2015198220A1 (en) * 2014-06-25 2015-12-30 Koninklijke Philips N.V. Packaged wavelength converted light emitting device
US20160093781A1 (en) * 2014-09-30 2016-03-31 Nichia Corporation Light emitting device and method for manufacturing thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391884B2 (en) 2018-03-30 2022-07-19 Nichia Corporation Method of manufacturing light emitting device
JP2020035938A (en) * 2018-08-31 2020-03-05 日亜化学工業株式会社 Light-emitting device and method of manufacturing the same
JP7389333B2 (en) 2019-07-31 2023-11-30 日亜化学工業株式会社 light emitting device
JP7032680B1 (en) 2020-08-28 2022-03-09 日亜化学工業株式会社 Light emitting device
JP2022044527A (en) * 2020-08-28 2022-03-17 日亜化学工業株式会社 Light-emitting device
WO2023127585A1 (en) * 2021-12-28 2023-07-06 株式会社東海理化電機製作所 Display device manufacturing jig, display device manufacturing method, display device manufactured using display device manufacturing jig, and display device manufactured using display device manufacturing method

Also Published As

Publication number Publication date
JP6940740B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
US10825968B2 (en) Method for manufacturing light-emitting device
JP6384508B2 (en) Light emitting device
JP6337859B2 (en) Light emitting device
JP6131986B2 (en) Method for manufacturing light emitting device
JP6940740B2 (en) Manufacturing method of light emitting device
JP2016225501A (en) Light-emitting device and manufacturing method of the same
JP2006156668A (en) Light emitting device and its manufacturing method
JP2018129424A (en) Light-emitting device
US11168865B2 (en) Light-emitting device and backlight
JP4771800B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP6524624B2 (en) Light emitting device
US10439097B2 (en) Method for manufacturing light emitting device
US11038084B2 (en) Light-emitting device
JP6699580B2 (en) Light emitting device
JP6658829B2 (en) Light emitting device manufacturing method
JP2020017585A (en) Light-emitting device
JP2019041094A (en) Light-emitting device
JP6528872B2 (en) Method of manufacturing light emitting device
JP2019057627A (en) Method of manufacturing light-emitting device
JP2019134150A (en) Light emitting device
JP2019083343A (en) Light-emitting device
JP2018088554A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6940740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150