JP6699175B2 - Polyethylene resin composition and medical container comprising the same - Google Patents

Polyethylene resin composition and medical container comprising the same Download PDF

Info

Publication number
JP6699175B2
JP6699175B2 JP2016000579A JP2016000579A JP6699175B2 JP 6699175 B2 JP6699175 B2 JP 6699175B2 JP 2016000579 A JP2016000579 A JP 2016000579A JP 2016000579 A JP2016000579 A JP 2016000579A JP 6699175 B2 JP6699175 B2 JP 6699175B2
Authority
JP
Japan
Prior art keywords
density
molecular weight
medical container
polyethylene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016000579A
Other languages
Japanese (ja)
Other versions
JP2017122141A (en
Inventor
英誉 中尾
英誉 中尾
元三 菊地
元三 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016000579A priority Critical patent/JP6699175B2/en
Publication of JP2017122141A publication Critical patent/JP2017122141A/en
Application granted granted Critical
Publication of JP6699175B2 publication Critical patent/JP6699175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、ポリエチレン樹脂及びポリエチレン製医療容器に関する。さらに詳しくは、プラスチックアンプルのような薬液等の充填に好適なポリエチレン製医療容器に関するものである。   The present invention relates to a polyethylene resin and a polyethylene medical container. More specifically, the present invention relates to a polyethylene medical container suitable for filling a drug solution such as a plastic ampoule.

薬液、血液等を充填する医療容器には、滅菌処理等に耐えられる耐熱性、異物の混入や薬剤配合による変化を確認するために透明性や肌荒れが少ないことなどが要求される。   A medical container filled with a drug solution, blood or the like is required to have heat resistance to withstand sterilization and the like, and to have transparency and less rough skin in order to confirm changes due to mixing of foreign substances and drug formulation.

従来、このような性能を満たす医療容器としてガラス製容器が使用されていたが、衝撃や落下による容器の破損、薬液投与時の容器内への外気の浸入による汚染等の問題があるため、耐衝撃性に優れ、柔軟で内容液の排出が容易で廃棄処分も容易なプラスチック製容器が用いられるようになった。プラスチック製容器としては、軟質塩化ビニル樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリプロピレン樹脂および高圧法低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン等のポリエチレン系樹脂が用いられている。しかし、軟質塩化ビニル樹脂は可塑剤が薬液中に溶出するなど衛生面で問題があり、エチレン−酢酸ビニル共重合体樹脂は耐熱性に劣り、ポリプロピレン樹脂は柔軟性やクリーン性(低微粒子性)が課題となっている。また、ポリエチレン系樹脂においても、透明性を満足するために密度を低くすると耐熱性等が低下するなどの問題がある。   Conventionally, a glass container has been used as a medical container satisfying such performance, but there is a problem such as damage to the container due to impact or drop, contamination due to invasion of outside air into the container at the time of administering a chemical solution, and the like. Plastic containers, which have excellent impact resistance, are flexible, can be easily discharged, and can be easily disposed of, have come to be used. As the plastic container, polyethylene resin such as soft vinyl chloride resin, ethylene-vinyl acetate copolymer resin, polypropylene resin and high-pressure low density polyethylene, linear low density polyethylene, and high density polyethylene are used. However, soft vinyl chloride resin has a problem in hygiene such as the plasticizer being eluted in the chemical liquid, ethylene-vinyl acetate copolymer resin is inferior in heat resistance, and polypropylene resin is flexible and clean (low particle size). Is an issue. Further, polyethylene resins also have a problem that the heat resistance and the like decrease when the density is lowered to satisfy transparency.

医療用のプラスチックアンプルにおいては、優れた加工性のために、高圧法低密度ポリエチレン等のポリエチレン系樹脂が広く用いられ、ブロー成型により生産されている。しかしながら、無菌状態を保つために110℃以上の温度での滅菌処理を行う場合、高圧法低密度ポリエチレンを用いると耐熱性が不足して滅菌処理時に変形しやすい問題点があった。比較的密度が高い高圧法低密度ポリエチレンを選定して用いた場合には、耐熱性が良好である一方で、透明性が不十分で内溶液の視認性が悪かった。   In plastic ampules for medical use, polyethylene-based resins such as high-pressure low-density polyethylene are widely used because of their excellent workability and are produced by blow molding. However, when performing sterilization at a temperature of 110° C. or higher in order to maintain the sterility, the use of high-pressure low-density polyethylene has a problem that heat resistance is insufficient and deformation is likely to occur during sterilization. When high-pressure low-density polyethylene having a relatively high density was selected and used, the heat resistance was good, but the transparency was insufficient and the visibility of the inner solution was poor.

近年、いわゆるメタロセン触媒に代表されるシングルサイト系触媒で製造されたエチレン−α−オレフィン共重合体が開発され、それらをブロー成型することで、耐熱性、透明性及びクリーン性を向上した容器(例えば特許文献1〜2参照)が提案されている。しかしながら、高圧法低密度ポリエチレン同等の加工性が得られないため、高圧法低密度ポリエチレン仕様の現行設備での使用が困難である。特に、小口径かつ肉厚が厚い医療用アンプルを生産した場合、肌荒れが生じて内溶液の視認性が劣る場合や、ドローダウンにより厚みが不均一になるなど、成型自体が困難である問題があった。   In recent years, ethylene-α-olefin copolymers produced by single-site catalysts typified by so-called metallocene catalysts have been developed, and by blow molding them, heat resistance, transparency, and a container with improved cleanliness ( For example, refer to Patent Documents 1 and 2). However, since it is not possible to obtain the same processability as that of high-pressure low-density polyethylene, it is difficult to use it in the current equipment of high-pressure low-density polyethylene specifications. In particular, when producing a small-diameter and thick-walled medical ampoule, when the skin is rough and the visibility of the inner solution is poor, or the drawdown makes the thickness uneven, there is a problem that molding itself is difficult. there were.

特開2010−150522号公報JP, 2010-150522, A 特開平11−19183号公報JP-A-11-19183

本発明の目的は、従来両立が困難であった透明性、耐熱性及び加工性に優れ、かつ滅菌処理後も高い透明性が保持されるポリエチレン製医療容器を提供することにある。   An object of the present invention is to provide a medical container made of polyethylene, which has excellent transparency, heat resistance, and processability, which have been difficult to achieve at the same time, and which maintains high transparency even after sterilization.

本発明者らは、鋭意検討を行なった結果、特定の物性を有するエチレン−α−オレフィン共重合体に高圧法低密度ポリエチレンを特定量配合した樹脂組成物を用いて医療容器とすることで、上記課題が解決できることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the present inventors have made a medical container by using an ethylene-α-olefin copolymer having specific physical properties and a resin composition in which a specific amount of high-pressure low-density polyethylene is blended, The inventors have found that the above problems can be solved and have completed the present invention.

すなわち、本発明は、下記特性(a)〜(d)を満足するエチレン−α−オレフィン共重合体(A)が5重量%以上30重量%未満、下記特性(e)〜(f)を満足する高圧法低密度ポリエチレン(B)が70重量%を超えて95重量%未満を含むポリエチレン樹脂組成物およびそれよりなる医療容器に関するものである。
(a)密度が920〜950kg/mである。
(b)メルトフローレート(以下MFRという)が0.1〜15g/10分である。
(c)ゲル・パーミエーション・クロマトグラフィーによる分子量測定において2つのピークを示し、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.0〜7.0の範囲である。
(d)分子量分別した際のMnが10万以上のフラクション中に長鎖分岐を主鎖1000炭素数あたり0.15個以上有する。
(e)密度が915〜940kg/mである。
(f)MFRが0.1〜15g/10分である。
That is, in the present invention, the ethylene-α-olefin copolymer (A) satisfying the following characteristics (a) to (d) is 5% by weight or more and less than 30% by weight, and the following characteristics (e) to (f) are satisfied. The present invention relates to a polyethylene resin composition containing the high-pressure low-density polyethylene (B) in an amount of more than 70% by weight and less than 95% by weight, and a medical container comprising the same.
(A) The density is 920 to 950 kg/m 3 .
(B) The melt flow rate (hereinafter referred to as MFR) is 0.1 to 15 g/10 minutes.
(C) Two peaks are shown in the molecular weight measurement by gel permeation chromatography, and the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is in the range of 2.0 to 7.0. Is.
(D) 0.15 or more long chain branches per 1000 carbon atoms in the main chain are contained in the fraction having Mn of 100,000 or more when the molecular weight is fractionated.
(E) The density is 915 to 940 kg/m 3 .
(F) MFR is 0.1 to 15 g/10 minutes.

以下に、本発明のポリエチレン樹脂組成物およびそれよりなる医療容器について説明する。
[1]エチレン−α−オレフィン共重合体(A)
本発明に関わるエチレン−α−オレフィン共重合体(A)は、エチレンとα−オレフィンを共重合したものであればよい。α−オレフィンとしては、例えばプロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、3−メチル−1−ブテン等が挙げられ、これらのα−オレフィンを2種類以上併用してもよい。
The polyethylene resin composition of the present invention and a medical container made of the same will be described below.
[1] Ethylene-α-olefin copolymer (A)
The ethylene-α-olefin copolymer (A) according to the present invention may be a copolymer of ethylene and α-olefin. Examples of the α-olefin include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-butene, and the like. Even if two or more of these α-olefins are used in combination. Good.

本発明に関わるエチレン−α−オレフィン共重合体(A)は、JIS K6922−1に準拠し、190℃、荷重2.16kgで測定したMFRが0.1〜15g/10分、好ましくは0.1〜10g/10分、より好ましくは0.1〜5g/10分である。MFRが0.1g/10分未満だと、成形加工時の押出負荷が大きくなると共に、成型時に表面荒れが発生するため好ましくない。また、MFRが15g/10分を超える場合、ドローダウンが大きくなり、成型時の加工性が低下するため好ましくない。   The ethylene-α-olefin copolymer (A) according to the present invention has an MFR measured according to JIS K6922-1 at 190° C. and a load of 2.16 kg of 0.1 to 15 g/10 minutes, preferably 0.1. It is 1 to 10 g/10 minutes, more preferably 0.1 to 5 g/10 minutes. If the MFR is less than 0.1 g/10 min, the extrusion load during molding will be large and the surface will be roughened during molding, which is not preferable. Further, if the MFR exceeds 15 g/10 minutes, the drawdown becomes large and the workability at the time of molding deteriorates, which is not preferable.

本発明に関わるエチレン−α−オレフィン共重合体(A)は、JIS K6922−1に準拠した密度が920〜950kg/mの範囲であり、好ましくは925〜945kg/m、特に好ましくは925〜935kg/mの範囲である。密度が920kg/m未満だと耐熱性が不足し、950kg/mを超える場合は透明性が低下するため好ましくない。 Ethylene -α- olefin copolymer according to the present invention (A) has a density conforming to JIS K6922-1 ranges from 920~950kg / m 3, preferably 925~945kg / m 3, particularly preferably 925 The range is up to 935 kg/m 3 . If the density is less than 920 kg/m 3 , the heat resistance will be insufficient, and if it exceeds 950 kg/m 3 , the transparency will be reduced, which is not preferable.

本発明に関わるエチレン−α−オレフィン共重合体(A)は、ゲル・パーミエーション・クロマトグラフィー(以下、GPCという。)による分子量測定において2つのピークを示す。ピークトップ分子量(Mp)はGPC測定によって得られた分子量分布曲線を後述の方法で2個のピークに分割し、高分子量側のピークと低分子量側のピークのトップ分子量を評価し、その差が100,000以上である場合を2つのMpを有するとした。100,000未満である場合は、実測された分子量分布曲線のトップ分子量を1つのMpとした。   The ethylene-α-olefin copolymer (A) according to the present invention shows two peaks in the molecular weight measurement by gel permeation chromatography (hereinafter, referred to as GPC). The peak top molecular weight (Mp) is obtained by dividing the molecular weight distribution curve obtained by GPC measurement into two peaks by the method described below and evaluating the top molecular weights of the high molecular weight side peak and the low molecular weight side peak, and the difference between them. When it was 100,000 or more, it was determined to have two Mp. When it was less than 100,000, the top molecular weight of the actually measured molecular weight distribution curve was defined as one Mp.

分子量分布曲線の分割方法は以下のとおりに行った。GPC測定によって得られた、分子量の対数であるLogMに対して重量割合がプロットされた分子量分布曲線のLogMに対して、標準偏差が0.30であり、任意の平均値(ピークトップ位置の分子量)を有する2つの対数分布曲線を任意の割合で足し合わせることによって、合成曲線を作成する。さらに、実測された分子量分布曲線と合成曲線との同一分子量(M)値に対する重量割合の偏差平方和が最小値になるように、平均値と割合を求める。偏差平方和の最小値は、各ピークの割合がすべて0の場合の偏差平方和に対して0.5%以下にした。偏差平方和の最小値を与える平均値と割合が得られた時に、2つの対数正規分布曲線に分割して得られるそれぞれの対数分布曲線のピークトップの分子量をMpとした。   The method for dividing the molecular weight distribution curve was as follows. The standard deviation is 0.30 with respect to LogM of the molecular weight distribution curve in which the weight ratio is plotted against LogM, which is the logarithm of the molecular weight, obtained by GPC measurement, and any standard value (molecular weight at the peak top position ) Is added to create a synthetic curve. Further, the average value and the ratio are calculated so that the sum of squared deviations of the weight ratios with respect to the same molecular weight (M) value of the actually measured molecular weight distribution curve and the synthetic curve becomes the minimum value. The minimum value of the sum of squared deviations was 0.5% or less with respect to the sum of squared deviations when the ratio of each peak was all zero. The molecular weight at the peak top of each logarithmic distribution curve obtained by dividing into two lognormal distribution curves when the average value and the ratio giving the minimum value of the sum of squared deviations were obtained was defined as Mp.

GPCによる分子量測定においてピークが1つのエチレン−α−オレフィン共重合体は、本発明のポリエチレン樹脂組成物を得るための一成分に使用しても、2つのピークを有するエチレン−α−オレフィン共重合体(C)を配合した場合のように透明性が高く、かつ滅菌処理後も透明性を維持した医療容器が得られない。   The ethylene-α-olefin copolymer having one peak in the molecular weight measurement by GPC has two peaks even if it is used as one component for obtaining the polyethylene resin composition of the present invention. It is not possible to obtain a medical container having high transparency as in the case of blending the combination (C) and maintaining the transparency even after sterilization.

本発明に関わるエチレン−α−オレフィン共重合体(A)は、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.0〜7.0、好ましくは2.5〜6.5、さらに好ましくは3.0〜6.0である。Mw/Mnが2.0未満の場合は、成形加工時の押出負荷が大きいばかりでなく、得られた医療容器の外観(表面肌)が悪化するため好ましくない。Mw/Mnが7.0を超えると得られた医療容器の強度が低下するばかりか、成形体を医療容器として使用した際に、充填した薬液中の微粒子が増加する恐れがある。   The ethylene-α-olefin copolymer (A) according to the present invention has a ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of 2.0 to 7.0, preferably 2. It is 5 to 6.5, and more preferably 3.0 to 6.0. When Mw/Mn is less than 2.0, not only the extrusion load during molding is large, but also the appearance (surface skin) of the obtained medical container is deteriorated, which is not preferable. When Mw/Mn exceeds 7.0, not only the strength of the obtained medical container is lowered, but also when the molded product is used as a medical container, the amount of fine particles in the filled liquid medicine may increase.

本発明に関わるエチレン−α−オレフィン共重合体(A)は、GPCにより測定した数平均分子量(Mn)が15,000以上であることが好ましく、さらに好ましくは15,000〜100,000、特に15,000〜50,000が好ましい。Mnが15,000以上である場合、得られた医療容器の強度が高くなる。   The ethylene-α-olefin copolymer (A) according to the present invention preferably has a number average molecular weight (Mn) measured by GPC of 15,000 or more, more preferably 15,000 to 100,000, particularly 15,000 to 50,000 is preferable. When Mn is 15,000 or more, the strength of the obtained medical container increases.

本発明に関わるエチレン−α−オレフィン共重合体(C)は、分子量分別で得られたMnが10万以上のフラクションの長鎖分岐数が主鎖1000炭素数あたり0.15個以上である。Mnが10万以上のフラクションの長鎖分岐数が主鎖1000炭素数あたり0.15個未満である場合、本発明のポリエチレン樹脂組成物を得るための一成分に使用しても、顕著な透明性改良効果や、滅菌処理後の透明性維持効果は得られない。   In the ethylene-α-olefin copolymer (C) according to the present invention, the number of long chain branches of the fraction having Mn of 100,000 or more obtained by molecular weight fractionation is 0.15 or more per 1000 carbon atoms of the main chain. When the number of long chain branches in the fraction having Mn of 100,000 or more is less than 0.15 per 1000 carbon atoms in the main chain, even if it is used as one component for obtaining the polyethylene resin composition of the present invention, it is remarkably transparent. The effect of improving the transparency and the effect of maintaining transparency after sterilization cannot be obtained.

また、本発明に関わるエチレン−α−オレフィン共重合体(A)は、分子量分別で得られたMnが10万以上のフラクションの割合が、ポリマー全体の40%未満であることが好ましい。分子量分別で得られたMnが10万以上のフラクションの割合が、ポリマー全体の40%未満である場合、成形加工時の押出負荷が大きくなりにくく、外観(表面肌)が平滑な医療容器が得られる。   Further, in the ethylene-α-olefin copolymer (A) according to the present invention, it is preferable that the ratio of the fraction having Mn of 100,000 or more obtained by molecular weight fractionation is less than 40% of the whole polymer. When the ratio of the Mn fraction of 100,000 or more obtained by molecular weight fractionation is less than 40% of the whole polymer, the extrusion load during molding is less likely to increase and a medical container with a smooth appearance (surface skin) is obtained. Be done.

本発明に関わるエチレン−α−オレフィン共重合体(A)は、融点が115℃以上であることが好ましい。融点が115℃以上である場合は耐熱性に優れ、110℃で滅菌をした場合にも医療容器の変形が抑制され、滅菌後においても外観が良好な医療容器が得られる。
[2]高圧法低密度ポリエチレン(B)
本発明に用いる高圧法低密度ポリエチレン(B)は、JIS K6922−1に準拠し、190℃、荷重2.16kgで測定したMFRが0.1〜15g/10分であり、0.1〜10g/10分が好ましく、0.1〜5g/10分がより好ましく、特に0.1〜2g/10分が好ましい。MFRが0.1g/10分未満だと、成形加工時の押出負荷が大きくなると共に、成型時に表面荒れが発生するため好ましくない。また、MFRが15g/10分を超える場合、ドローダウンが大きくなり、成型時の加工性が低下するため好ましくない。
The ethylene-α-olefin copolymer (A) according to the present invention preferably has a melting point of 115°C or higher. When the melting point is 115° C. or higher, heat resistance is excellent, deformation of the medical container is suppressed even when sterilized at 110° C., and a medical container having a good appearance even after sterilization can be obtained.
[2] High pressure low density polyethylene (B)
The high-pressure method low-density polyethylene (B) used in the present invention has an MFR of 0.1 to 15 g/10 min, measured at 190° C. and a load of 2.16 kg, according to JIS K6922-1, and 0.1 to 10 g. /10 minutes is preferable, 0.1-5 g/10 minutes is more preferable, and 0.1-2 g/10 minutes is particularly preferable. If the MFR is less than 0.1 g/10 min, the extrusion load during molding will be large and the surface will be roughened during molding, which is not preferable. Further, if the MFR exceeds 15 g/10 minutes, the drawdown becomes large and the workability at the time of molding deteriorates, which is not preferable.

本発明に関わる高圧法低密度ポリエチレン(B)は、JIS K6922−1に準拠した密度が915〜940kg/mの範囲であり、好ましくは920〜935kg/m、特に好ましくは922〜932kg/mの範囲である。密度が915kg/m未満だと耐熱性が不足し、940kg/mを超える場合は透明性が低下するため好ましくない。 High-pressure low-density polyethylene according to the present invention (B) is in the range density conforming to JIS K6922-1 of 915~940kg / m 3, preferably 920~935kg / m 3, particularly preferably 922~932Kg / It is in the range of m 3 . Density insufficient heat resistance is less than 915 kg / m 3, is not preferred to lower the transparency when it exceeds 940 kg / m 3.

本発明に関わる高圧法低密度ポリエチレン(B)は、1種類のみを用いてもよいが、密度の異なる高圧法低密度ポリエチレン(B−1)及び高圧法低密度ポリエチレン(B−2)の2種を混合して使用する方が、透明性と耐熱性のバランスが向上するために好ましい。高圧法低密度ポリエチレン(B−1)及び高圧法低密度ポリエチレン(B−2)は、下記(i)を満足する高圧法低密度ポリエチレン(B−1)と、下記(j)を満足する高圧法低密度ポリエチレン(B−2)を用いることがより好ましい。
(i)密度が915kg/m以上で925kg/m未満である。
(j)密度が925kg/m以上で940kg/m以下である。
The high-pressure low-density polyethylene (B) according to the present invention may use only one kind, but it has two types of high-pressure low-density polyethylene (B-1) and high-pressure low-density polyethylene (B-2) having different densities. It is preferable to mix and use the seeds because the balance between transparency and heat resistance is improved. The high-pressure process low-density polyethylene (B-1) and the high-pressure process low-density polyethylene (B-2) are a high-pressure process low-density polyethylene (B-1) satisfying the following (i) and a high pressure satisfying the following (j). It is more preferable to use the method low density polyethylene (B-2).
(I) a density of less than 925 kg / m 3 at 915 kg / m 3 or more.
(J) The density is 925 kg/m 3 or more and 940 kg/m 3 or less.

高圧法低密度ポリエチレン(B−1)及び高圧法低密度ポリエチレン(B−2)の比率は、(B−1)/((B−1)+(B−2))が0.1〜0.6の範囲にあるのが好ましい。   The ratio of the high-pressure method low-density polyethylene (B-1) and the high-pressure method low-density polyethylene (B-2) is (B-1)/((B-1)+(B-2)) 0.1 to 0. It is preferably in the range of 0.6.

本発明のポリエチレン製医療容器に関わるエチレン−α−オレフィン共重合体(A)は、例えば、特開2012−126862号公報、特開2012−126863号公報、特開2012−158654号公報、特開2012−158656号公報、特開2013−28703号公報等に記載の方法により得ることができる。
[3]ポリエチレン樹脂組成物
本発明のポリエチレン製医療容器を製造するための樹脂材料は、エチレン−α−オレフィン共重合体(A)と高圧法低密度ポリエチレン(B)を配合することにより、耐熱性と加工性を低下させることなく、透明性を高めた医療容器を製造することが可能となる。
Examples of the ethylene-α-olefin copolymer (A) relating to the polyethylene medical container of the present invention include, for example, JP2012-126862A, JP2012-126863A, JP2012-158654A, and JP2012-158654A. It can be obtained by the method described in 2012-158656, JP-A-2013-28703, or the like.
[3] Polyethylene resin composition The resin material for producing the polyethylene medical container of the present invention is heat resistant by blending the ethylene-α-olefin copolymer (A) and the high-pressure low-density polyethylene (B). It is possible to manufacture a medical container having enhanced transparency without deteriorating the workability and processability.

本発明に用いるエチレン−α−オレフィン共重合体(A)および高圧法低密度ポリエチレン(B)の配合割合は、エチレン−α−オレフィン共重合体(A)が5重量%以上30重量%未満、好ましくは10〜25重量%、より好ましくは20〜25重量%、高圧法低密度ポリエチレン(B)が70重量%を超えて95重量%未満、好ましくは75〜90重量%、より好ましくは75〜80重量%である。エチレン−α−オレフィン共重合体(A)が5重量%未満だと耐熱性が不足し、30重量%を超える場合は、ドローダウンが大きくなり加工性が低下するため好ましくない。高圧法低密度ポリエチレン(B)が70重量%以下だと加工性が低下し、95重量%を超える場合は耐熱性が低下するため好ましくない。   The mixing ratio of the ethylene-α-olefin copolymer (A) and the high-pressure low-density polyethylene (B) used in the present invention is such that the ethylene-α-olefin copolymer (A) is 5% by weight or more and less than 30% by weight, Preferably 10 to 25% by weight, more preferably 20 to 25% by weight, high-pressure low density polyethylene (B) is more than 70% by weight and less than 95% by weight, preferably 75 to 90% by weight, more preferably 75 to 90% by weight. It is 80% by weight. When the ethylene-α-olefin copolymer (A) is less than 5% by weight, heat resistance is insufficient, and when it exceeds 30% by weight, drawdown becomes large and workability is deteriorated, which is not preferable. If the high-pressure low-density polyethylene (B) is 70% by weight or less, the processability is deteriorated, and if it exceeds 95% by weight, the heat resistance is deteriorated, which is not preferable.

エチレン−α−オレフィン共重合体(A)を前記範囲内で配合した場合は、該エチレン−α−オレフィン共重合体(A)を配合しない場合に比べて医療容器の耐熱性が向上すると共に、滅菌処理後も高いレベルの透明性を維持することが可能となる。   When the ethylene-α-olefin copolymer (A) is blended within the above range, the heat resistance of the medical container is improved as compared with the case where the ethylene-α-olefin copolymer (A) is not blended, It is possible to maintain a high level of transparency even after sterilization.

このような効果が発現する理由は、必ずしも明確ではないが、該エチレン−α−オレフィン共重合体(A)を配合することで、冷却結晶化時に形成される球晶の大きさが著しく小さくなることが確認されており、該エチレン−α−オレフィン共重合体(A)が成形過程および滅菌処理過程の球晶成長を阻害する効果を有するものと考えられる。   The reason why such an effect is exhibited is not always clear, but by blending the ethylene-α-olefin copolymer (A), the size of spherulites formed during cooling and crystallization is significantly reduced. It has been confirmed that the ethylene-α-olefin copolymer (A) has an effect of inhibiting spherulite growth in the molding process and the sterilization process.

これにより、本発明では、滅菌処理後も高いレベルの透明性を維持した医療容器を得ることができる。   Thus, in the present invention, it is possible to obtain a medical container that maintains a high level of transparency even after sterilization.

本発明のポリエチレン樹脂組成物は、エチレン−α−オレフィン共重合体(A)、高圧法低密度ポリエチレン(B)を、従来公知の方法、例えばヘンシェルミキサー、V−ブレンダー、リボンブレンダー、タンブラーブレンダー等で混合する方法、あるいはこのような方法で得られた混合物をさらに一軸押出機、二軸押出機、ニーダー、バンバリーミキサー等で溶融混練した後、造粒することによって得ることができる。   The polyethylene resin composition of the present invention is obtained by using the ethylene-α-olefin copolymer (A) and the high-pressure low-density polyethylene (B) in a conventionally known method, for example, a Henschel mixer, a V-blender, a ribbon blender, a tumbler blender and the like. Can be obtained by melt-kneading the mixture obtained by the above method or the mixture obtained by such a method with a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, etc., and then granulating.

本発明のポリエチレン樹脂組成物は、密度が925〜935kg/mの範囲にあることが、滅菌処理後の医療容器の耐熱性と透明性のバランスが特に優れるため、より好ましい。 The polyethylene resin composition of the present invention preferably has a density in the range of 925 to 935 kg/m 3 because the heat resistance and transparency of the medical container after sterilization are particularly excellent.

本発明のポリエチレン樹脂組成物には、本発明の効果を著しく損なわない範囲において、通常用いられる公知の添加剤、例えば酸化防止剤、帯電防止剤、滑剤、アンチブロッキング剤、防曇剤、有機系あるいは無機系の顔料、紫外線吸収剤、分散剤等を適宜必要に応じて配合することができる。本発明に関わる樹脂材料に前記の添加剤を配合する方法は特に制限されるものではないが、例えば、重合後のペレット造粒工程で直接添加する方法、また、予め高濃度のマスターバッチを作製し、これを成形時にドライブレンドする方法等が挙げられる。   In the polyethylene resin composition of the present invention, as long as the effect of the present invention is not significantly impaired, known additives commonly used, for example, antioxidants, antistatic agents, lubricants, antiblocking agents, antifog agents, organic systems are used. Alternatively, an inorganic pigment, an ultraviolet absorber, a dispersant, etc. can be appropriately added as needed. The method of blending the above-mentioned additive to the resin material according to the present invention is not particularly limited, but for example, a method of directly adding it in a pellet granulation step after polymerization, or preparing a high-concentration master batch in advance Then, a method of dry blending this during molding may be used.

また、本発明のポリエチレン樹脂組成物には、本発明の効果を損なわない程度の範囲内で、直鎖状低密度ポリエチレン、エチレン−プロピレン共重合体ゴム、ポリ−1−ブテン等の他の熱可塑性樹脂を配合して用いることもできる。
[4]医療容器
本発明のポリエチレン製医療容器は、薬液を収容する収容部を備えた医療容器であって、少なくとも収容部が前記[3]のポリエチレン樹脂組成物からなるものである。
In addition, the polyethylene resin composition of the present invention contains other heat-resistant materials such as linear low-density polyethylene, ethylene-propylene copolymer rubber, and poly-1-butene within a range that does not impair the effects of the present invention. It is also possible to mix and use a plastic resin.
[4] Medical Container The polyethylene medical container of the present invention is a medical container having a container for containing a drug solution, and at least the container is made of the polyethylene resin composition described in [3].

前記樹脂組成物を、ブロー成形等によりアンプル状またはボトル状に成形して、収容部を形成させることができる。ブロー成形では、前記エチレン−α−オレフィン共重合体(A)と高圧法低密度ポリエチレン(B)の樹脂組成物からなるパリソンを押出し、金型でパリソンを挟み込んだ後、パリソン中に清浄エアーを吹き込むこと収容部を形成させることができる。また、ポート部の形成は、収容部との一体成形用金型を使用する方法、ポート部を収容部にヒートシールする方法、インサートブロー成形により収容部の成形と同時に一体化する方法等が挙げられる。   The accommodating portion can be formed by molding the resin composition into an ampoule shape or a bottle shape by blow molding or the like. In blow molding, a parison composed of the resin composition of the ethylene-α-olefin copolymer (A) and the high-pressure low-density polyethylene (B) is extruded, the parison is sandwiched by a mold, and then clean air is introduced into the parison. Blowing can form a housing. Further, the formation of the port portion includes a method of using a mold for integral molding with the housing portion, a method of heat sealing the port portion to the housing portion, a method of integrating the housing portion simultaneously with molding of the housing portion by insert blow molding, and the like. Be done.

本発明のポリエチレン樹脂組成物を使用して製造される医療容器の肉厚は特に限定されず、必要に応じて適宜決定することができるが、好ましくは0.01〜1mm、より好ましくは0.1〜0.8mm、更に好ましくは0.3〜0.7mmである。   The thickness of the medical container produced using the polyethylene resin composition of the present invention is not particularly limited and can be appropriately determined as necessary, but is preferably 0.01 to 1 mm, more preferably 0. It is 1 to 0.8 mm, more preferably 0.3 to 0.7 mm.

本発明の樹脂組成物を使用して製造される医療容器は、110℃での滅菌処理後において、純水中で波長450nmで測定した光線透過率が55%以上であるものが好ましい。光線透過率が55%以上であると、異物の混入がないことや、薬剤配合による変化を目視で容易に確認できる。   A medical container produced using the resin composition of the present invention preferably has a light transmittance of 55% or more measured in pure water at a wavelength of 450 nm after sterilization treatment at 110°C. When the light transmittance is 55% or more, it is possible to easily confirm visually that a foreign substance is not mixed in and a change due to the drug formulation.

本発明の樹脂組成物を使用して製造される医療容器は、110℃での滅菌処理後においても変形が抑制される耐熱性を有しているものが好ましい。110℃の滅菌処理後においても変形が小さい場合は、110℃滅菌処理を行うことが可能であり、無菌状態を担保できる。   The medical container manufactured using the resin composition of the present invention preferably has heat resistance such that deformation is suppressed even after sterilization treatment at 110°C. If the deformation is small even after the sterilization treatment at 110° C., the sterilization treatment at 110° C. can be performed, and the aseptic condition can be secured.

本発明の樹脂組成物を用いて医療容器を製造する方法は特に限定されないが、ブロー成形法、インジェクションブロー成形法等が挙げられる。ブロー成形法やインジェクションブロー成形法を用いた場合、透明性、耐熱性、加工性等の点で多くの利点を有する。ブロー成形の場合は、耐熱性と透明性の観点から、医療容器の肉厚が0.5mm以上が好ましく、0.5〜0.6mmがより好ましい。   The method for producing a medical container using the resin composition of the present invention is not particularly limited, and examples thereof include a blow molding method and an injection blow molding method. When the blow molding method or the injection blow molding method is used, there are many advantages in terms of transparency, heat resistance, processability, and the like. In the case of blow molding, from the viewpoint of heat resistance and transparency, the wall thickness of the medical container is preferably 0.5 mm or more, more preferably 0.5 to 0.6 mm.

本発明のポリエチレン組成物は、透明性、耐熱性、成形加工性に優れ、さらに滅菌処理後も透明性を維持できるため、高い透明性が求められる医療用のプラアンプルのような医療容器に好適に用いることができる。   The polyethylene composition of the present invention is excellent in transparency, heat resistance, moldability, and can maintain transparency even after sterilization treatment, and thus is suitable for medical containers such as plastic ampoules for which high transparency is required. Can be used.

以下に、実施例を示して本発明を更に詳細に説明するが、本発明はこれら実施例により制限されるものではない。
A.樹脂材料
実施例、比較例に用いた樹脂材料の諸性質は下記の方法により評価した。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
A. Resin Material Various properties of the resin materials used in Examples and Comparative Examples were evaluated by the following methods.

<分子量、分子量分布>
重量平均分子量(Mw)、数平均分子量(Mn)、重量平均分子量と数平均分子量の比(Mw/Mn)およびピークトップ分子量(Mp)は、GPCによって測定した。GPC装置(東ソー(株)製(商品名)HLC−8121GPC/HT)およびカラム(東ソー(株)製(商品名)TSKgel GMHhr−H(20)HT)を用い、カラム温度を140℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いて測定した。測定試料は1.0mg/mlの濃度で調製し、0.3ml注入して測定した。分子量の検量線は、分子量既知のポリスチレン試料を用いて校正した。なお、MwおよびMnは直鎖状ポリエチレン換算の値として求めた。
<Molecular weight, molecular weight distribution>
The weight average molecular weight (Mw), the number average molecular weight (Mn), the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn), and the peak top molecular weight (Mp) were measured by GPC. A column temperature was set to 140° C. using a GPC device (Tosoh Corp. (trade name) HLC-8121GPC/HT) and a column (Tosoh Corp. (trade name) TSKgel GMHhr-H(20)HT). , 1,2,4-trichlorobenzene was used as an eluent. A measurement sample was prepared at a concentration of 1.0 mg/ml, and 0.3 ml was injected for measurement. The calibration curve of the molecular weight was calibrated using a polystyrene sample of known molecular weight. In addition, Mw and Mn were calculated as linear polyethylene conversion values.

<分子量分別>
分子量分別は、カラムとしてガラスビーズ充填カラム(直径:21mm、長さ:60cm)を用い、カラム温度を130℃に設定して、サンプル1gをキシレン30mLに溶解させたものを注入する。次に、キシレン/2−エトキシエタノールの比率が5/5のものを展開溶媒として用い、留出物を除去する。その後、キシレンを展開溶媒として用い、カラム中に残った成分を留出させ、ポリマー溶液を得る。得られたポリマー溶液に5倍量のメタノールを添加しポリマー分を沈殿させ、ろ過および乾燥することにより、Mnが10万以上である成分を回収した。
<Molecular weight fractionation>
For the molecular weight fractionation, a glass bead-packed column (diameter: 21 mm, length: 60 cm) is used as a column, the column temperature is set to 130° C., and 1 g of a sample dissolved in 30 mL of xylene is injected. Next, a distillate is removed by using a xylene/2-ethoxyethanol ratio of 5/5 as a developing solvent. Then, xylene is used as a developing solvent to distill off the components remaining in the column to obtain a polymer solution. A 5-fold amount of methanol was added to the obtained polymer solution to precipitate a polymer component, which was filtered and dried to recover a component having Mn of 100,000 or more.

<長鎖分岐>
長鎖分岐数は、日本電子(株)製JNM−GSX400型核磁気共鳴装置を用いて、13C−NMRによってヘキシル基以上の分岐数を測定した。溶媒はベンゼン−d6/オルトジクロロベンゼン(体積比30/70)である。主鎖メチレン炭素(化学シフト:30ppm)1,000個当たりの個数として、α−炭素(34.6ppm)およびβ−炭素(27.3ppm)のピークの平均値から求めた。
<Long-chain branch>
For the number of long chain branches, the number of branches of hexyl groups or more was measured by 13 C-NMR using a JNM-GSX400 type nuclear magnetic resonance apparatus manufactured by JEOL Ltd. The solvent is benzene-d6/orthodichlorobenzene (volume ratio 30/70). The number per 1,000 main chain methylene carbons (chemical shift: 30 ppm) was determined from the average value of the peaks of α-carbon (34.6 ppm) and β-carbon (27.3 ppm).

<密度>
密度は、JIS K6760(1995)に準拠して密度勾配管法で測定した。
<Density>
The density was measured by the density gradient tube method according to JIS K6760 (1995).

<MFR>
MFR(メルトフローレート)は、ASTM D1238条件Eに準ずる方法にて測定を行った。
<MFR>
The MFR (melt flow rate) was measured by a method according to ASTM D1238 condition E.

<溶融張力>
溶融張力の測定用試料は、サンプルに耐熱安定剤(チバスペシャリティケミカルズ社製、イルガノックス1010TM;1,500ppm、イルガフォス168TM;1,500ppm)を添加したものを、インターナルミキサー(東洋精機製作所製、商品名ラボプラストミル)を用いて、窒素気流下、190℃、回転数30rpmで30分間混練したものを用いた。
<Melt tension>
The sample for measuring the melt tension was prepared by adding a heat-resistant stabilizer (Ciba Specialty Chemicals Co., Irganox 1010TM; 1,500 ppm, Irgafos 168TM; 1,500 ppm) to an internal mixer (manufactured by Toyo Seiki Seisakusho, A product obtained by kneading for 30 minutes at 190° C. and a rotation speed of 30 rpm under a nitrogen stream was used.

溶融張力の測定は、バレル直径9.55mmの毛管粘度計(東洋精機製作所、商品名キャピログラフ)に、長さが8mm,直径が2.095mmのダイスを流入角が90°になるように装着し測定した。温度を160℃に設定し、ピストン降下速度を10mm/分、延伸比を47に設定し、引き取りに必要な荷重(mN)を溶融張力とした。最大延伸比が47未満の場合、破断しない最高の延伸比での引き取りに必要な荷重(mN)を溶融張力とした。   To measure the melt tension, a capillary viscometer with a barrel diameter of 9.55 mm (Toyo Seiki Seisakusho, trade name Capillograph) was attached to a die with a length of 8 mm and a diameter of 2.095 mm at an inflow angle of 90°. It was measured. The temperature was set to 160° C., the piston descending speed was set to 10 mm/min, the stretching ratio was set to 47, and the load (mN) required for take-up was the melt tension. When the maximum draw ratio was less than 47, the load (mN) required for taking-up at the highest draw ratio that did not break was taken as the melt tension.

<融点>
示差走査型熱量計、パーキンエルマー製「DSC−7」を用いて測定した。装置内で試料を220℃で5分間融解させた後に、40℃/分の冷却速度で40℃まで冷却し、再度10℃/分の昇温速度で220℃まで昇温させたときに得られる融解吸熱曲線のピーク温度を融点とした。
<Melting point>
The measurement was performed using a differential scanning calorimeter, "DSC-7" manufactured by Perkin Elmer. Obtained when the sample is melted at 220° C. for 5 minutes in the apparatus, then cooled to 40° C. at a cooling rate of 40° C./min, and again heated to 220° C. at a heating rate of 10° C./min. The peak temperature of the melting endothermic curve was taken as the melting point.

実施例、比較例では、下記の方法により製造した樹脂材料および市販品を用いた。
(1)エチレン−α−オレフィン共重合体(A)
A−1:
[変性粘土の調製]
1Lのフラスコに工業用アルコール(日本アルコール販売社製(商品名)エキネンF−3)300mL及び蒸留水300mLを入れ、濃塩酸17.5g及びジメチルベヘニルアミン(ライオン株式会社製(商品名)アーミンDM22D)49.4g(140mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mLで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより132gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を15μmとした。
[重合触媒の調製]
温度計と還流管が装着された300mLのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108mL入れ、次いでジメチルシリレン(シクロペンタジエニル)(2,4,7−トリメチルインデニル)ジルコニウムジクロリドを0.4406g、及び20%トリイソブチルアルミニウム142mLを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mLのヘキサンにて5回洗浄後、ヘキサンを200ml加えて触媒懸濁液を得た(固形重量分:12.4wt%)。
[重合]
2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を52mg(固形分6.4mg相当)加え、70℃に昇温後、1−ブテンを17.6g加え、分圧が0.80MPaになるようにエチレン/水素混合ガスを連続的に供給した(エチレン/水素混合ガス中の水素の濃度:590ppm)。90分経過後に脱圧し、スラリーを濾別後、乾燥することで61.8gのエチレン−α−オレフィン共重合体(イ)を得た(活性:9,700g/g触媒)。このエチレン−α−オレフィン共重合体(イ)のMFRは1.6g/10分、密度は930kg/mであり、融点は118.3℃であった。また、数平均分子量は17,600、重量平均分子量は86,700であり、分子量30,500および155,300の位置にピークが観測された。また、ポリマー中に含まれる長鎖分岐数は、主鎖1000炭素数あたり0.14個であり、分子量分別した際のMn10万以上のフラクション中に含まれる長鎖分岐数は、主鎖1000炭素数あたり0.27個であった。また、分子量分別した際のMn10万以上のフラクションの割合は、全ポリマーの20.1wt%であった。また、溶融張力は75mNであった。
A−2:
[変性粘土の調製]
1Lのフラスコに工業用アルコール(日本アルコール販売社製(商品名)エキネンF−3)300mL及び蒸留水300mLを入れ、濃塩酸18.8g及びジメチルヘキサコシルアミン(Me2N(C26H53)、常法によって合成)49.1g(120mmol)を添加し、45℃に加熱して合成ヘクトライト(Rockwood Additives社製(商品名)ラポナイトRDS)を100g分散させた後、60℃に昇温させてその温度を保持したまま1時間攪拌した。このスラリーを濾別後、60℃の水600mLで2回洗浄し、85℃の乾燥機内で12時間乾燥させることにより140gの有機変性粘土を得た。この有機変性粘土はジェットミル粉砕して、メジアン径を14μmとした。
[重合触媒の調製]
温度計と還流管が装着された300mLのフラスコを窒素置換した後に(1)で得られた有機変性粘土25.0gとヘキサンを108mL入れ、次いでジメチルシリレン(シクロペンタジエニル)(2、4,7−トリメチル−1−インデニル)ジルコニウムジクロリドを0.4406g、及び20%トリイソブチルアルミニウム142mLを添加して60℃で3時間攪拌した。45℃まで冷却した後に上澄み液を抜き取り、200mLのヘキサンにて5回洗浄後、ヘキサンを200ml加えて触媒懸濁液を得た(固形重量分:12.0wt%)
[重合]
2Lのオートクレーブにヘキサンを1.2L、20%トリイソブチルアルミニウムを1.0mL、(2)で得られた触媒懸濁液を75mg(固形分9.0mg相当)加え、80℃に昇温後、1−ブテンを8.3g加え、分圧が0.85MPaになるようにエチレン/水素混合ガスを連続的に供給した(エチレン/水素混合ガス中の水素の濃度:850ppm)。90分経過後に脱圧し、スラリーを濾別後、乾燥することで58.5gのエチレン−α−オレフィン共重合体(イ)を得た(活性:6,500g/g触媒)。このエチレン−α−オレフィン共重合体(イ)のMFRは4.0g/10分、密度は941kg/mであり、融点は124.9℃であった。また、数平均分子量は21,200、重量平均分子量は74,000であり、分子量41,500および217,100の位置にピークが観測された。また、ポリマー中に含まれる長鎖分岐数は、主鎖1000炭素数あたり0.07個であり、分子量分別した際のMn10万以上のフラクション中に含まれる長鎖分岐数は、主鎖1000炭素数あたり0.18個であった。また、分子量分別した際のMn10万以上のフラクションの割合は、全ポリマーの14.1wt%であった。また、溶融張力は49mNであった。
(2)高圧法低密度ポリエチレン(B)
LD−1:
東ソー(株)製、(商品名)ペトロセン 173K(MFR=0.3g/10分、密度=924kg/m
LD−2:
東ソー(株)製、(商品名)ペトロセン 220K(MFR=1.0g/10分、密度=931kgm
(3)高密度ポリエチレン(C)
HD−1:
[変性粘土の調製]
脱イオン水4.8L、エタノール3.2Lの混合溶媒に、ジメチルベヘニルアミン;(C2245)(CHN 354gと37%塩酸83.3mLを加え、ジメチルベヘニルアミン塩酸塩溶液を調製した。この溶液に合成ヘクトライト1,000gを加え終夜撹拌し、得られた反応液をろ過した後、固体分を水で十分洗浄した。固体分を乾燥させたところ、1,180gの有機変性粘土化合物を得た。赤外線水分計で測定した含液量は0.8%であった。次に、この有機変性粘土化合物を粉砕し、平均粒径を6.0μmに調製した。
[重合触媒の調製]
5Lのフラスコに、[変性粘土の調製]の項で得た有機変性粘土化合物450g、ヘキサン1.4kgを加え、その後トリイソブチルアルミニウムのヘキサン20重量%溶液1.78kg(1.8モル)、ビス(n−ブチル−シクロペンタジエニル)ジルコニウムジクロライド7.32g(18ミリモル)を加え、60℃に加熱して1時間撹拌した。反応溶液を45℃に冷却し、2時間静置した後に傾斜法で上澄液を除去した。次に、トリイソブチルアルミニウムのヘキサン1重量%溶液1.78kg(0.09モル)を添加し、45℃で30分間反応させた。反応溶液を45℃で2時間静置した後に傾斜法で上澄液を除去し、トリイソブチルアルミニウムのヘキサン20重量%溶液0.45kg(0.45モル)を加え、ヘキサンで再希釈して全量を4.5Lとし重合触媒を調製した。
[重合]
内容量300Lの重合器に、ヘキサンを135kg/時、エチレンを20.0kg/時、ブテン−1を0.3kg/時、水素5NL/時および[重合触媒の調製]の項で得られた重合触媒を連続的に供給した。また、助触媒として液中のトリイソブチルアルミニウムの濃度を0.93ミリモル/kgヘキサンとなるように、それぞれ連続的に供給した。重合温度は85℃に制御した。得られた高密度ポリエチレン(C−1)はMFR=1.0g/10分、密度952kg/mであった。
(4)直鎖状低密度ポリエチレン(D)
LL−1:
東ソー(株)製、(商品名)ニポロン−Z HF250K(MFR=2.0g/10分、密度=930kg/m、メタロセン触媒系)
B.医療容器
実施例、比較例に用いた医療容器は下記の方法により製造し、滅菌処理を行ない評価した。
<樹脂ペレットの製造>
上記のエチレン−α−オレフィン共重合体(A)、高圧法低密度ポリエチレン(B)、高密度ポリエチレン(C)および直鎖状低密度ポリエチレン(D)を実施例、比較例に記載の比率でドライブレンドを行い、これをプラコー社製50mm径単軸押出機にて溶融混合し、評価樹脂ペレットを作製した。バレルの温度はC1:180℃、C2:190℃、C3:200℃、C4:200℃、ダイヘッド:200℃とした。
<医療容器の製造>
評価樹脂を180℃に設定した50mmφの押出スクリューを有するダイレクトブロー成型機(タハラ社製)に投入し、スクリュー回転数8rpmでパリソンを押し出して、内容積500mLのプラスチックボトルを作製した。ダイは長径16.8mm、短径16.5mmの扁平ダイを用い、コアは16.0mm径のものを用いた。このプラスチックボトルは、胴部の肉厚が0.5mmであった。
In Examples and Comparative Examples, resin materials and commercially available products manufactured by the following methods were used.
(1) Ethylene-α-olefin copolymer (A)
A-1:
[Preparation of modified clay]
300 mL of industrial alcohol (Nippon Alcohol Sales Company (trade name) Ekinen F-3) and 300 mL of distilled water were put into a 1 L flask, concentrated hydrochloric acid 17.5 g and dimethylbehenylamine (Lion Co., Ltd. (trade name) Armin DM22D). ) 49.4 g (140 mmol) was added and heated to 45° C. to disperse 100 g of synthetic hectorite (Rackwood Additives (trade name) Laponite RDS), and then the temperature was raised to 60° C. to maintain the temperature. It was stirred for 1 hour. This slurry was separated by filtration, washed twice with 600 mL of water at 60° C., and dried in a dryer at 85° C. for 12 hours to obtain 132 g of organically modified clay. This organically modified clay was pulverized by a jet mill to have a median diameter of 15 μm.
[Preparation of polymerization catalyst]
After replacing a 300 mL flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 mL of hexane were added, and then dimethylsilylene (cyclopentadienyl) (2, 4, 0.4406 g of 7-trimethylindenyl)zirconium dichloride and 142 mL of 20% triisobutylaluminum were added, and the mixture was stirred at 60° C. for 3 hours. After cooling to 45° C., the supernatant was taken out, washed with 200 mL of hexane 5 times, and 200 ml of hexane was added to obtain a catalyst suspension (solid weight: 12.4 wt %).
[polymerization]
To a 2 L autoclave, 1.2 L of hexane, 1.0 mL of 20% triisobutylaluminum, and 52 mg (corresponding to a solid content of 6.4 mg) of the catalyst suspension obtained in (2) were added, and the temperature was raised to 70°C. 17.6 g of 1-butene was added, and an ethylene/hydrogen mixed gas was continuously supplied so that the partial pressure became 0.80 MPa (hydrogen concentration in the ethylene/hydrogen mixed gas: 590 ppm). After 90 minutes, the pressure was released, the slurry was filtered off, and dried to obtain 61.8 g of ethylene-α-olefin copolymer (a) (activity: 9,700 g/g catalyst). The ethylene-α-olefin copolymer (a) had an MFR of 1.6 g/10 minutes, a density of 930 kg/m 3 and a melting point of 118.3°C. The number average molecular weight was 17,600, the weight average molecular weight was 86,700, and peaks were observed at the positions of molecular weights 30,500 and 155,300. The number of long-chain branches contained in the polymer is 0.14 per 1000 carbons of the main chain, and the number of long-chain branches contained in the fraction of Mn of 100,000 or more when the molecular weight is separated is 1000 carbons of the main chain. It was 0.27 per number. Further, the fraction of Mn of 100,000 or more when the molecular weight was fractionated was 20.1 wt% of the total polymer. The melt tension was 75 mN.
A-2:
[Preparation of modified clay]
300 mL of industrial alcohol (Nippon Alcohol Sales Company (trade name) Ekinen F-3) and 300 mL of distilled water were placed in a 1 L flask, concentrated hydrochloric acid 18.8 g and dimethylhexacosylamine (Me2N (C26H53), synthesized by a conventional method. ) 49.1 g (120 mmol) was added and heated to 45° C. to disperse 100 g of synthetic hectorite (Rackwood Additives (trade name) Laponite RDS), and then the temperature was raised to 60° C. to maintain the temperature. It was stirred for 1 hour. This slurry was separated by filtration, washed twice with 600 mL of water at 60° C., and dried in a dryer at 85° C. for 12 hours to obtain 140 g of organically modified clay. This organically modified clay was pulverized by a jet mill to have a median diameter of 14 μm.
[Preparation of polymerization catalyst]
After replacing a 300 mL flask equipped with a thermometer and a reflux tube with nitrogen, 25.0 g of the organically modified clay obtained in (1) and 108 mL of hexane were added, and then dimethylsilylene (cyclopentadienyl) (2, 4, 0.4406 g of 7-trimethyl-1-indenyl)zirconium dichloride and 142 mL of 20% triisobutylaluminum were added, and the mixture was stirred at 60° C. for 3 hours. After cooling to 45° C., the supernatant was drawn off, washed 5 times with 200 mL of hexane, and 200 ml of hexane was added to obtain a catalyst suspension (solid weight: 12.0 wt %).
[polymerization]
To a 2 L autoclave, 1.2 L of hexane, 1.0 mL of 20% triisobutylaluminum, and 75 mg (corresponding to a solid content of 9.0 mg) of the catalyst suspension obtained in (2) were added, and the temperature was raised to 80°C. 8.3 g of 1-butene was added, and an ethylene/hydrogen mixed gas was continuously supplied so that the partial pressure became 0.85 MPa (hydrogen concentration in the ethylene/hydrogen mixed gas: 850 ppm). After 90 minutes, the pressure was released, the slurry was filtered off, and then dried to obtain 58.5 g of an ethylene-α-olefin copolymer (a) (activity: 6,500 g/g catalyst). The ethylene-α-olefin copolymer (a) had an MFR of 4.0 g/10 minutes, a density of 941 kg/m 3 , and a melting point of 124.9°C. The number average molecular weight was 21,200, the weight average molecular weight was 74,000, and peaks were observed at the positions of the molecular weights of 41,500 and 217,100. Further, the number of long chain branches contained in the polymer is 0.07 per 1000 carbon atoms of the main chain, and the number of long chain branches contained in the fraction having Mn of 100,000 or more when the molecular weight is fractionated is 1000 carbons of the main chain. The number was 0.18 per number. Further, the fraction of Mn of 100,000 or more when the molecular weight was fractionated was 14.1 wt% of the total polymer. The melt tension was 49 mN.
(2) High-pressure method low-density polyethylene (B)
LD-1:
Tosoh Corporation, (trade name) Petrosen 173K (MFR=0.3 g/10 minutes, density=924 kg/m 3 ).
LD-2:
Tosoh Corporation, (trade name) Petrosen 220K (MFR=1.0 g/10 minutes, density=931 kgm 3 ).
(3) High density polyethylene (C)
HD-1:
[Preparation of modified clay]
Deionized water 4.8 L, in a mixed solvent of ethanol 3.2 L, dimethyl behenyl amine; (C 22 H 45) ( CH 3) a 2 N 354 g 37% hydrochloric acid 83.3mL added dimethyl behenyl amine hydrochloride solution Prepared. To this solution, 1,000 g of synthetic hectorite was added, and the mixture was stirred overnight, the obtained reaction solution was filtered, and then the solid content was sufficiently washed with water. When the solid content was dried, 1,180 g of an organically modified clay compound was obtained. The liquid content measured by an infrared moisture meter was 0.8%. Next, the organically modified clay compound was pulverized to have an average particle size of 6.0 μm.
[Preparation of polymerization catalyst]
To a 5 L flask, 450 g of the organically modified clay compound obtained in the section of [Preparation of modified clay] and 1.4 kg of hexane were added, and then 1.78 kg (1.8 mol) of a 20% by weight hexane solution of triisobutylaluminum, bis. (32-Butyl-cyclopentadienyl)zirconium dichloride (7.32 g, 18 mmol) was added, and the mixture was heated to 60° C. and stirred for 1 hour. The reaction solution was cooled to 45° C., allowed to stand for 2 hours, and then the supernatant was removed by a gradient method. Next, 1.78 kg (0.09 mol) of a 1 wt% hexane solution of triisobutylaluminum was added, and the mixture was reacted at 45° C. for 30 minutes. After leaving the reaction solution at 45°C for 2 hours, the supernatant was removed by a gradient method, 0.45 kg (0.45 mol) of a 20% by weight hexane solution of triisobutylaluminum was added, and the solution was diluted with hexane to obtain the total amount. To 4.5 L to prepare a polymerization catalyst.
[polymerization]
In a polymerization vessel having an internal capacity of 300 L, hexane was 135 kg/hr, ethylene was 20.0 kg/hr, butene-1 was 0.3 kg/hr, hydrogen was 5 NL/hr, and the polymerization obtained in the section of [Preparation of polymerization catalyst] The catalyst was fed continuously. Further, triisobutylaluminum in the liquid as a co-catalyst was continuously supplied so that the concentration of the liquid was 0.93 mmol/kg hexane. The polymerization temperature was controlled at 85°C. The obtained high-density polyethylene (C-1) had an MFR of 1.0 g/10 minutes and a density of 952 kg/m 3 .
(4) Linear low density polyethylene (D)
LL-1:
Tosoh Corp. (trade name) Nipolon-Z HF250K (MFR=2.0 g/10 min, density=930 kg/m 3 , metallocene catalyst system)
B. Medical containers The medical containers used in Examples and Comparative Examples were manufactured by the following method, and sterilized for evaluation.
<Manufacture of resin pellets>
The above ethylene-α-olefin copolymer (A), high-pressure low-density polyethylene (B), high-density polyethylene (C) and linear low-density polyethylene (D) were used at the ratios described in Examples and Comparative Examples. Dry blending was performed, and this was melt-mixed with a 50 mm diameter single-screw extruder manufactured by Placo Co. to prepare resin pellets for evaluation. The barrel temperature was C1:180° C., C2:190° C., C3:200° C., C4:200° C., and die head: 200° C.
<Manufacture of medical containers>
The evaluation resin was put into a direct blow molding machine (manufactured by Tahara) having a 50 mmφ extrusion screw set to 180° C., and the parison was extruded at a screw rotation speed of 8 rpm to produce a plastic bottle having an internal volume of 500 mL. A flat die having a long diameter of 16.8 mm and a short diameter of 16.5 mm was used as a die, and a core having a diameter of 16.0 mm was used. The thickness of the body of this plastic bottle was 0.5 mm.

<滅菌処理>
前記医療容器を、蒸気滅菌装置((株)日阪製作所製)を用いて、温度110℃で30分間滅菌処理を行なった。
実施例、比較例に用いた医療容器の諸性質は下記の方法により評価した。
<Sterilization>
The medical container was sterilized at a temperature of 110° C. for 30 minutes using a steam sterilizer (manufactured by HISAKA CORPORATION).
The properties of the medical containers used in Examples and Comparative Examples were evaluated by the following methods.

<加工性>
ブロー成形機による、成型時の加工性を厚み計により評価した。
<Workability>
The workability at the time of molding by a blow molding machine was evaluated by a thickness meter.

○:パリソンコントロールの調整により、厚みが均一なボトルが得られた。   ◯: A bottle having a uniform thickness was obtained by adjusting the parison control.

×:パリソンコントロールを調整しても、厚みが不均一または0.5mmでの成形できなかった。   X: Even if the parison control was adjusted, the thickness was not uniform or molding at 0.5 mm could not be performed.

<肌>
前記成型ボトルの表面状態を目視により観察、評価した。
<Skin>
The surface condition of the molded bottle was visually observed and evaluated.

○:表面平滑性良好
×:表面荒れ大
<耐熱性>
前記成形ボトルの形状を目視により観察、評価した。
○: Good surface smoothness ×: Large surface roughness <Heat resistance>
The shape of the molded bottle was visually observed and evaluated.

○:変形なしまたは変形小
×:変形大
また、示差走査型熱量計、パーキンエルマー製「DSC−7」を用いて110℃残存結晶化度を測定した。前記成型ボトルからサンプルピースを切り出し、装置内で10℃/分の昇温速度で220℃まで昇温して融解させたときに得られる融解吸熱曲線から、110℃以上の温度での吸熱量を求めた。吸熱量を288.7mJ/mgで除した値を110℃残存結晶化度として求めた。
◯: No deformation or small deformation x: Large deformation Further, the residual crystallinity was measured at 110° C. using a differential scanning calorimeter “DSC-7” manufactured by Perkin Elmer. From the melting endothermic curve obtained when a sample piece was cut out from the molding bottle and heated to 220° C. in the apparatus at a heating rate of 10° C./min to melt, the endothermic amount at a temperature of 110° C. or higher was determined. I asked. The value obtained by dividing the endotherm by 288.7 mJ/mg was determined as the 110° C. residual crystallinity.

目視評価が○で、かつ110℃残存結晶化度が21.0%以上である場合に耐熱性良好とした。   When the visual evaluation was ◯ and the residual crystallinity at 110° C. was 21.0% or more, the heat resistance was good.

<透明性>
滅菌処理前後の前記成型ボトルから、幅10mm×長さ50mmの試験片を切り出し、紫外可視分光光度計(型式220A、日立製作所製)を用いて、純水中で波長450nmにおける光線透過率を測定した。滅菌処理前、滅菌処理後それぞれで55%以上の光線透過率が維持される場合を透明性が良好な医療容器の目安とした。
<Transparency>
A test piece with a width of 10 mm and a length of 50 mm was cut out from the molded bottle before and after the sterilization treatment, and the light transmittance at a wavelength of 450 nm was measured in pure water using an ultraviolet-visible spectrophotometer (model 220A, manufactured by Hitachi, Ltd.). did. The case where the light transmittance of 55% or more was maintained before and after the sterilization treatment was used as a standard for a medical container having good transparency.

実施例1
表1に示す樹脂材料を用いて、ブロー成型機により胴部の肉厚が0.5mm、内容積500mLの角型ボトルを成型し、加工性および肌、耐熱性(110℃残存結晶化度)、透明性(滅菌前光線透過率)を評価した。次いで、得られた成型ボトルに超純水を充填して密封した医療容器を作製して、110℃で30分間高圧蒸気滅菌を行い、耐熱性(目視)、透明性(滅菌後光線透過率)を評価した。結果を表1に示す。
Example 1
Using the resin materials shown in Table 1, a blow molding machine was used to mold a rectangular bottle with a wall thickness of 0.5 mm and an internal volume of 500 mL, and the workability, skin, and heat resistance (110°C residual crystallinity) , And the transparency (light transmittance before sterilization) was evaluated. Then, the obtained molded bottle was filled with ultrapure water and sealed to prepare a medical container, which was subjected to high-pressure steam sterilization at 110°C for 30 minutes to obtain heat resistance (visual inspection) and transparency (light transmittance after sterilization). Was evaluated. The results are shown in Table 1.

実施例2〜4、参考例1
樹脂材料を表1に示すように変更した以外は、実施例1と同様にしてプラスチックボトルを作製し、評価を行った。結果を表1に示す。
Examples 2 to 4, Reference Example 1
A plastic bottle was prepared and evaluated in the same manner as in Example 1 except that the resin material was changed as shown in Table 1. The results are shown in Table 1.

比較例1
樹脂材料を表2に示すように変更した以外は、実施例1と同様にしてプラスチックボトルを作製し、評価を行った。結果を表2に示す。
Comparative Example 1
A plastic bottle was prepared and evaluated in the same manner as in Example 1 except that the resin material was changed as shown in Table 2. The results are shown in Table 2.

作製した成型ボトルは、110℃残存結晶化度が11.8%と耐熱性に劣り、滅菌処理後に大きく変形してしまった。   The produced molded bottle had a residual crystallinity of 110° C. of 11.8%, which was inferior in heat resistance, and was greatly deformed after the sterilization treatment.

比較例2
樹脂材料を表2に示すように変更した以外は、実施例1と同様にしてプラスチックボトルを作製し、評価を行った。結果を表2に示す。
Comparative example 2
A plastic bottle was prepared and evaluated in the same manner as in Example 1 except that the resin material was changed as shown in Table 2. The results are shown in Table 2.

作製した成型ボトルは、滅菌処理後に光線透過率が48.2%まで低下してしまい、透明性に劣った。   The molded bottle produced had a light transmittance of 48.2% after sterilization, and thus was inferior in transparency.

比較例3
樹脂材料を表2に示すように変更した以外は、実施例1と同様にしてプラスチックボトルを作製し、評価を行った。結果を表2に示す。
Comparative Example 3
A plastic bottle was prepared and evaluated in the same manner as in Example 1 except that the resin material was changed as shown in Table 2. The results are shown in Table 2.

作製した成型ボトルは、110℃残存結晶化度が20.5%と耐熱性に劣り、滅菌処理後に大きく変形してしまった。   The produced molded bottle had a residual crystallinity of 110.degree. C. of 20.5%, which was inferior in heat resistance, and was greatly deformed after the sterilization treatment.

比較例4
樹脂材料を表2に示すように変更した以外は、実施例1と同様にしてプラスチックボトルを作製し、評価を行った。結果を表2に示す。
Comparative Example 4
A plastic bottle was prepared and evaluated in the same manner as in Example 1 except that the resin material was changed as shown in Table 2. The results are shown in Table 2.

作製した成型ボトルは、滅菌処理前後に関わらず光線透過率が55%未満であり、透明性に劣った。   The prepared molded bottle had a light transmittance of less than 55% before and after the sterilization treatment, and was inferior in transparency.

比較例5
樹脂材料を表2に示すように変更した以外は、実施例1と同様にしてプラスチックボトルを作製し、結果を表2に示す。
Comparative Example 5
A plastic bottle was prepared in the same manner as in Example 1 except that the resin material was changed as shown in Table 2, and the results are shown in Table 2.

成型時のドローダウンが大きく、パリソンコントロールを調整しても、肉厚0.5mmのボトルを成型することができなかった。   The drawdown during molding was large, and even if the parison control was adjusted, it was not possible to mold a bottle having a wall thickness of 0.5 mm.

比較例6
樹脂材料を表2に示すように変更した以外は、実施例1と同様にしてプラスチックボトルを作製し、評価を行った。結果を表2に示す。
Comparative Example 6
A plastic bottle was prepared and evaluated in the same manner as in Example 1 except that the resin material was changed as shown in Table 2. The results are shown in Table 2.

作製した成型ボトルは、肌荒れが生じて、表面が平滑なボトルを作製することができなかった。   The molded bottle produced had rough skin, and it was not possible to produce a bottle having a smooth surface.

比較例7
樹脂材料を表2に示すように変更した以外は、実施例1と同様にしてプラスチックボトルを作製し、評価を行った。結果を表2に示す。
Comparative Example 7
A plastic bottle was prepared and evaluated in the same manner as in Example 1 except that the resin material was changed as shown in Table 2. The results are shown in Table 2.

成型時のドローダウンが大きく、パリソンコントロールを調整しても、肉厚0.5mmのボトルを成型することができなかった。また、成型したボトルには肌荒れが生じていた。   The drawdown during molding was large, and even if the parison control was adjusted, it was not possible to mold a bottle having a wall thickness of 0.5 mm. Also, the molded bottle had rough skin.

Claims (8)

下記特性(a)〜(d)を満足するエチレン−α−オレフィン共重合体(A)5重量%以上30重量%未満、下記特性(e)〜(f)を満足する高圧法低密度ポリエチレン(B)70重量%を超えて95重量%以下からなり、高圧法低密度ポリエチレン(B)が、下記(i)を満足する高圧法低密度ポリエチレン(B−1)、および下記(j)を満足する高圧法低密度ポリエチレン(B−2)の2種を混合してなることを特徴とするポリエチレン樹脂組成物。
(a)密度が920〜950kg/mである。
(b)MFRが0.1〜15g/10分である。
(c)ゲル・パーミエーション・クロマトグラフィーによる分子量測定において2つのピークを示し、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が2.0〜7.0の範囲である。
(d)分子量分別した際のMnが10万以上のフラクション中に長鎖分岐を主鎖1000炭素数あたり0.15個以上有する。
(e)密度が915〜940kg/mである。
(f)MFRが0.1〜15g/10分である。
(i)密度が915kg/m 以上で925kg/m 未満である。
(j)密度が925kg/m 以上で940kg/m 以下である。
Ethylene-α-olefin copolymer (A) satisfying the following properties (a) to (d) 5% by weight or more and less than 30% by weight, and high-pressure low density polyethylene ((a) satisfying the following properties (e) to (f) ( B) Ri Do from 70 wt% 95 wt% greater than the following, the high-pressure low-density polyethylene (B) is high-pressure low-density polyethylene (B-1 satisfying the following (i)), and the following (j) A polyethylene resin composition comprising a mixture of two high-pressure low-density polyethylenes (B-2) which satisfy the requirements.
(A) The density is 920 to 950 kg/m 3 .
(B) MFR is 0.1 to 15 g/10 minutes.
(C) Two peaks are shown in the molecular weight measurement by gel permeation chromatography, and the ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is in the range of 2.0 to 7.0. Is.
(D) 0.15 or more long chain branches per 1000 carbon atoms of the main chain are contained in the fraction having Mn of 100,000 or more when the molecular weight is fractionated.
(E) The density is 915 to 940 kg/m 3 .
(F) MFR is 0.1 to 15 g/10 minutes.
(I) a density of less than 925 kg / m 3 at 915 kg / m 3 or more.
(J) The density is 925 kg/m 3 or more and 940 kg/m 3 or less.
エチレン−α−オレフィン共重合体(A)が下記(g)を満足する請求項1に記載のポリエチレン樹脂組成物。
(g)密度が925〜935kg/mである。
The polyethylene resin composition according to claim 1, wherein the ethylene-α-olefin copolymer (A) satisfies the following (g).
(G) The density is 925 to 935 kg/m 3 .
高圧法低密度ポリエチレン(B)が下記(h)を満足する請求項1または請求項2に記載のポリエチレン樹脂組成物。
(h)密度が920〜935kg/mである。
The polyethylene resin composition according to claim 1 or 2, wherein the high-pressure low-density polyethylene (B) satisfies the following (h).
(H) The density is 920 to 935 kg/m 3 .
高圧法低密度ポリエチレン(B−1)及び高圧法低密度ポリエチレン(B−2)の比率が下記(k)を満足する請求項1〜のいずれかに記載のポリエチレン樹脂組成物。
(k)(B−1)/((B−1)+(B−2))が0.1〜0.6である。
Polyethylene resin composition according to any one of claims 1 to 3, the ratio of the high-pressure low-density polyethylene (B-1) and high-pressure low-density polyethylene (B-2) satisfies the following (k).
(K)(B-1)/((B-1)+(B-2)) is 0.1 to 0.6.
薬液を収容する収容部を備えた医療容器であって、少なくとも前記収容部は、請求項1〜のいずれかに記載のポリエチレン樹脂組成物からなることを特徴とする医療容器。 A medical container comprising a storage portion for storing liquid medicine, at least the receiving portion, the medical container, characterized in that a polyethylene resin composition according to any one of claims 1-4. 肉厚が0.5mm以上であることを特徴とする請求項に記載の医療容器。 The medical container according to claim 5 , wherein the wall thickness is 0.5 mm or more. 110℃での滅菌処理後、純水中で波長450nmで測定した光線透過率が55%以上の請求項5または6記載の医療用容器。 The medical container according to claim 5 or 6 , which has a light transmittance of 55% or more measured in pure water at a wavelength of 450 nm after sterilization at 110°C. ブロー成型により成型することを特徴とする請求項のいずれかに記載の医療容器の製造方法。 Method for producing a medical container according to any one of claims 5-7, characterized in that the molded by blow molding.
JP2016000579A 2016-01-05 2016-01-05 Polyethylene resin composition and medical container comprising the same Active JP6699175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016000579A JP6699175B2 (en) 2016-01-05 2016-01-05 Polyethylene resin composition and medical container comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016000579A JP6699175B2 (en) 2016-01-05 2016-01-05 Polyethylene resin composition and medical container comprising the same

Publications (2)

Publication Number Publication Date
JP2017122141A JP2017122141A (en) 2017-07-13
JP6699175B2 true JP6699175B2 (en) 2020-05-27

Family

ID=59305409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016000579A Active JP6699175B2 (en) 2016-01-05 2016-01-05 Polyethylene resin composition and medical container comprising the same

Country Status (1)

Country Link
JP (1) JP6699175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7310445B2 (en) * 2018-09-12 2023-07-19 東ソー株式会社 Polyethylene resin composition, laminate and medical container
CN115558189B (en) * 2022-11-22 2023-03-03 成都普什制药有限公司 Colored plastic ampoule bottle and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6163952B2 (en) * 2013-08-08 2017-07-19 東ソー株式会社 Polyethylene laminate and medical container comprising the same
JP6343886B2 (en) * 2013-08-08 2018-06-20 東ソー株式会社 Polyethylene medical container
JP6393995B2 (en) * 2014-01-30 2018-09-26 東ソー株式会社 Spherulite growth rate inhibitor for polyethylene

Also Published As

Publication number Publication date
JP2017122141A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
KR101789950B1 (en) Polyethylene resin composition, laminate comprising same, and medical container using laminate
JP5845756B2 (en) Propylene-based resin sheet and package for heat treatment using the same
JP6295588B2 (en) Polyethylene resin composition and medical container comprising the same
CN117801414A (en) Polymer composition with improved impact strength
EP2889328A1 (en) Blow-molded container, and resin composition for blow-molded container
JP2015074197A (en) Laminate made of polyethylene and medical container comprising the same
JP6699175B2 (en) Polyethylene resin composition and medical container comprising the same
JP2006314490A (en) Medical container
JP7375165B2 (en) Injection molded products for medical applications
JP6343886B2 (en) Polyethylene medical container
JP4962151B2 (en) Pharmaceutical low density polyethylene container
JP6840950B2 (en) Polyethylene resin composition and container
JP2015033783A (en) Laminate made of polyethylene and medical container consisting of the same
JP2019111805A (en) Laminate and medical container formed from the same
JP4359850B2 (en) Packaging film
JP2013081494A (en) Medical container
JP2018115268A (en) Film and medical container
KR102528749B1 (en) Polyolefin resin composition and medical hose manufactured therefrom
JP7110630B2 (en) Polyethylene resin composition and container
EP3887407A1 (en) Composition comprising polypropylene for injection stretch blow molding, methods of making and using the same
JP2020142399A (en) Method of producing film for heat seal
JP2017141408A (en) Tube comprising polyethylene resin composition
JP6357841B2 (en) Transparent liquid container
JP2014234403A (en) Polyethylene resin composition and blow-molded body comprising the same
JP3368625B2 (en) Polyolefin resin packaging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200413

R151 Written notification of patent or utility model registration

Ref document number: 6699175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151