JP6698186B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP6698186B2
JP6698186B2 JP2019013436A JP2019013436A JP6698186B2 JP 6698186 B2 JP6698186 B2 JP 6698186B2 JP 2019013436 A JP2019013436 A JP 2019013436A JP 2019013436 A JP2019013436 A JP 2019013436A JP 6698186 B2 JP6698186 B2 JP 6698186B2
Authority
JP
Japan
Prior art keywords
low
semiconductor device
conductive member
semiconductor chip
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019013436A
Other languages
Japanese (ja)
Other versions
JP2019062245A (en
Inventor
林 健二
健二 林
哲広 須崎
哲広 須崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2019013436A priority Critical patent/JP6698186B2/en
Publication of JP2019062245A publication Critical patent/JP2019062245A/en
Application granted granted Critical
Publication of JP6698186B2 publication Critical patent/JP6698186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29034Disposition the layer connector covering only portions of the surface to be connected
    • H01L2224/29036Disposition the layer connector covering only portions of the surface to be connected covering only the central area of the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32014Structure relative to the bonding area, e.g. bond pad the layer connector being smaller than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7555Mechanical means, e.g. for planarising, pressing, stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83095Temperature settings
    • H01L2224/83096Transient conditions
    • H01L2224/83097Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/183Connection portion, e.g. seal
    • H01L2924/18301Connection portion, e.g. seal being an anchoring portion, i.e. mechanical interlocking between the encapsulation resin and another package part
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking

Description

本発明は、半導体装置、特にインバータ回路等に広く採用されるパワー半導体モジュールに関する。   The present invention relates to a semiconductor device, and more particularly to a power semiconductor module widely adopted in inverter circuits and the like.

たとえば、特許文献1および2は、それぞれ、ダイパッド等のアイランドと、当該アイランド上に配置された半導体チップとを備える半導体装置を開示している。半導体チップは、溶融半田を用いてアイランドに接合されている。   For example, Patent Documents 1 and 2 each disclose a semiconductor device including an island such as a die pad and a semiconductor chip arranged on the island. The semiconductor chip is bonded to the island using molten solder.

特開2011−155286号公報JP, 2011-155286, A 特開平6−37122号公報JP-A-6-37122

従来、半導体チップの接合は、溶融した板状半田や半田ペーストを半導体チップで押し潰して、半導体チップとアイランドとの間の空間に広く行き渡らせることによって達成されていた。しかしながら、従来の方法は、半田漏れおよび半田引けという問題を含んでいる。
半田漏れは、溶融半田が半導体チップの外側へ漏れ出す現象である。漏れ出した半田が半導体チップの表面に乗り上げ、これが、半導体チップへの裏面コンタクトの末端と半導体チップの表面との距離を短くして、半導体チップの耐圧を、チップの厚さに依存した本来の耐圧未満に低下させる。
Conventionally, joining of semiconductor chips has been achieved by crushing molten plate-shaped solder or solder paste with the semiconductor chips and spreading them widely in the space between the semiconductor chips and the islands. However, the conventional methods involve problems of solder leakage and solder shrinkage.
Solder leakage is a phenomenon in which molten solder leaks to the outside of the semiconductor chip. The leaked solder rides on the surface of the semiconductor chip, and this shortens the distance between the end of the back contact to the semiconductor chip and the surface of the semiconductor chip, and the withstand voltage of the semiconductor chip is the Reduce to less than withstand voltage.

一方、半田引けは、半導体チップとアイランドとの間に半田が存在しない空間(欠損領域)が生じる現象である。欠損領域は、最終的に熱伝導性が高くない樹脂で満たされるか、空領域のままボイド(void)として残るため、半導体チップの放熱性が低下するおそれがある。また、半導体チップの一部が半田で支持されず、当該一部が半田よりも外側に張り出した構造が形成されるため、当該構造の付け根部分にストレスが集中しやすくなる。そのため、高温と低温を繰り返す熱サイクルによって、クラックが発生しやすいというおそれがある。   On the other hand, solder shrinkage is a phenomenon in which a space in which solder does not exist (a defective region) is generated between a semiconductor chip and an island. Since the defective region is finally filled with a resin having a low thermal conductivity or remains as a void in the empty region, the heat dissipation of the semiconductor chip may be deteriorated. Further, since a structure in which a part of the semiconductor chip is not supported by the solder and the part of the semiconductor chip is projected to the outside of the solder is formed, stress is likely to be concentrated on the root portion of the structure. Therefore, there is a possibility that cracks are likely to occur due to a thermal cycle in which high temperature and low temperature are repeated.

そこで、このような半田漏れおよび半田引けの両方を、低コストで解決したいという要求がある。
本発明の目的は、低コストで、半田引けを防止すると共に、半田漏れが生じても耐圧の低下を抑制することができる半導体装置を提供することである。
Therefore, there is a demand to solve both such solder leakage and solder shrinkage at low cost.
An object of the present invention is to provide a semiconductor device that can prevent solder shrinkage at a low cost and can suppress a decrease in breakdown voltage even if solder leakage occurs.

本発明の半導体装置は、表面にパッドを有する半導体チップと、前記半導体チップを支持する導電部材と、前記導電部材と前記半導体チップとの間に設けられた接合材と、前記パッド上に一端が配置されたコンタクトブロックと、前記導電部材の表面に形成され、前記半導体チップの直下の領域から離れて配置された凹部と、前記半導体チップ、前記導電部材および前記コンタクトブロックを封止する樹脂パッケージとを含み、前記接合材は、前記半導体チップの外側に漏れ出した漏れ出し部分を有しており、かつ前記半導体チップの直下の領域から前記凹部まで、前記導電部材上の領域に延びており、前記凹部の深さは、前記コンタクトブロックの厚さの1/100〜1/10である。 The semiconductor device of the present invention has a semiconductor chip having a pad on the surface, a conductive member supporting the semiconductor chip, a bonding material provided between the conductive member and the semiconductor chip, and one end on the pad. A contact block arranged, a recess formed on the surface of the conductive member and spaced apart from a region immediately below the semiconductor chip, and a resin package sealing the semiconductor chip, the conductive member, and the contact block. Including, the bonding material has a leaking portion leaked to the outside of the semiconductor chip , and from the region immediately below the semiconductor chip to the recess, extending to the region on the conductive member, The depth of the recess is 1/100 to 1/10 of the thickness of the contact block.

図1は、本発明の一実施形態を示すパワー半導体モジュールの模式的な平面図である。FIG. 1 is a schematic plan view of a power semiconductor module showing an embodiment of the present invention. 図2は、図1のパワー半導体モジュールをII−II切断線で切断したときに表れる断面図である。FIG. 2 is a cross-sectional view that appears when the power semiconductor module of FIG. 1 is cut along the II-II cutting line. 図3は、図1のパワー半導体モジュールをIII−III切断線で切断したときに表れる断面図である。FIG. 3 is a cross-sectional view that appears when the power semiconductor module of FIG. 1 is cut along a III-III cutting line. 図4は、図1のパワー半導体モジュールをIV−IV切断線で切断したときに表れる断面図である。FIG. 4 is a cross-sectional view that appears when the power semiconductor module of FIG. 1 is cut along the line IV-IV. 図5は、図3の破線Vで囲まれた領域の拡大図である。FIG. 5 is an enlarged view of a region surrounded by a broken line V in FIG. 図6は、半導体チップへの荷重と半田の漏れ量との関係を示す折れ線グラフである。FIG. 6 is a line graph showing the relationship between the load on the semiconductor chip and the amount of solder leakage. 図7は、半導体チップへの荷重と半田の引け量との関係を示す折れ線グラフである。FIG. 7 is a line graph showing the relationship between the load on the semiconductor chip and the amount of shrinkage of solder. 図8は、半導体チップへの荷重およびチップ面積/半田面積を変化させたときの半田の漏れ量の分布を示す等高線グラフである。FIG. 8 is a contour line graph showing the distribution of the amount of solder leakage when the load on the semiconductor chip and the chip area/solder area are changed. 図9は、半導体チップへの荷重およびチップ面積/半田面積を変化させたときの半田の引け量の分布を示す等高線グラフである。FIG. 9 is a contour line graph showing the distribution of the amount of solder shrinkage when the load on the semiconductor chip and the chip area/solder area are changed. 図10(a)(b)は、図1のパワー半導体モジュールの製造工程の一部を示す図であって、図10(a)が平面図、図10(b)が断面図を示す。10A and 10B are views showing a part of the manufacturing process of the power semiconductor module of FIG. 1, in which FIG. 10A is a plan view and FIG. 10B is a sectional view. 図11(a)(b)は、図10(a)(b)の次の工程を示す図であって、図11(a)が平面図、図11(b)が断面図を示す。11A and 11B are views showing the next step of FIGS. 10A and 10B, where FIG. 11A is a plan view and FIG. 11B is a sectional view. 図12(a)(b)は、図11(a)(b)の次の工程を示す図であって、図12(a)が平面図、図12(b)が断面図を示す。12A and 12B are views showing the next step of FIGS. 11A and 11B, wherein FIG. 12A is a plan view and FIG. 12B is a sectional view. 図13(a)(b)は、図12(a)(b)の次の工程を示す図であって、図13(a)が平面図、図13(b)が断面図を示す。13A and 13B are views showing the next step of FIGS. 12A and 12B, wherein FIG. 13A is a plan view and FIG. 13B is a sectional view. 図14(a)(b)は、図13(a)(b)の次の工程を示す図であって、図14(a)が平面図、図14(b)が断面図を示す。14A and 14B are views showing the next step of FIGS. 13A and 13B, wherein FIG. 14A is a plan view and FIG. 14B is a sectional view.

以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
<本発明の実施形態に係るモジュールの構成>
図1は、本発明の一実施形態を示すパワー半導体モジュール1の模式的な平面図である。図2は、図1のパワー半導体モジュール1をII−II切断線で切断したときに表れる断面図である。図3は、図1のパワー半導体モジュール1をIII−III切断線で切断したときに表れる断面図である。図4は、図1のパワー半導体モジュール1をIV−IV切断線で切断したときに表れる断面図である。図5は、図3の破線Vで囲まれた領域の拡大図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<Configuration of Module According to Embodiment of Present Invention>
FIG. 1 is a schematic plan view of a power semiconductor module 1 showing an embodiment of the present invention. FIG. 2 is a cross-sectional view that appears when the power semiconductor module 1 of FIG. 1 is cut along the II-II cutting line. FIG. 3 is a cross-sectional view that appears when the power semiconductor module 1 of FIG. 1 is cut along the III-III cutting line. FIG. 4 is a cross-sectional view that appears when the power semiconductor module 1 of FIG. 1 is cut along the IV-IV cutting line. FIG. 5 is an enlarged view of a region surrounded by a broken line V in FIG.

パワー半導体モジュール1は、ハイサイドアセンブリ2と、ローサイドアセンブリ3と、中継端子4と、樹脂パッケージ5とを含む。ハイサイドアセンブリ2およびローサイドアセンブリ3は、図1および図2に示すように、隙間62を隔てて互いに隣り合って配置されている。
ハイサイドアセンブリ2は、ハイサイド放熱ブロック6と、ハイサイドIGBT7(IGBT:Insulated Gate Bipolar Transistor)およびハイサイドFRD8(FRD:Fast Recovery Diode)と、ハイサイドコンタクトブロック9と、ハイサイドエミッタ端子10と、ハイサイドゲート端子11とを含む。以下では、ハイサイドIGBT7およびハイサイドFRD8を、単にチップ7およびチップ8ということがある(後述するローサイドIGBT30およびローサイドFRD31についても同じ)。
The power semiconductor module 1 includes a high side assembly 2, a low side assembly 3, a relay terminal 4, and a resin package 5. As shown in FIGS. 1 and 2, the high side assembly 2 and the low side assembly 3 are arranged adjacent to each other with a gap 62 therebetween.
The high-side assembly 2 includes a high-side heat dissipation block 6, a high-side IGBT 7 (IGBT: Insulated Gate Bipolar Transistor) and a high-side FRD 8 (FRD: Fast Recovery Diode), a high-side contact block 9, and a high-side emitter terminal 10. , And the high side gate terminal 11. Hereinafter, the high-side IGBT 7 and the high-side FRD 8 may be simply referred to as the chip 7 and the chip 8 (the same applies to the low-side IGBT 30 and the low-side FRD 31 described later).

ハイサイド放熱ブロック6は、たとえば銅(Cu)からなる。ハイサイド放熱ブロック6は、この実施形態では、やや扁平な直方体形状(平面視長方形状)に形成されている。
ハイサイド放熱ブロック6の表面12には、逃がし溝13が複数本形成されている。ここで、逃がし溝13は、ハイサイド放熱ブロック6の表面12近傍の領域(表面部)に浅く形成されたものである。言い換えれば、ハイサイド放熱ブロック6において、比較的浅い逃がし溝13の下方には、金属部分が厚く残っている。この構造は、熱や応力等によって、ハイサイド放熱ブロック6が、逃がし溝13を境に折れ曲がることを防止する。たとえば、ハイサイド放熱ブロック6の厚さが1mm〜20mmである場合に、逃がし溝13の深さは0.01mm〜2mm程度であってよい。
The high side heat dissipation block 6 is made of, for example, copper (Cu). In this embodiment, the high-side heat dissipation block 6 is formed in a slightly flat rectangular parallelepiped shape (rectangular shape in plan view).
A plurality of escape grooves 13 are formed on the surface 12 of the high-side heat dissipation block 6. Here, the escape groove 13 is shallowly formed in a region (surface portion) near the surface 12 of the high side heat dissipation block 6. In other words, in the high side heat dissipation block 6, a thick metal portion remains below the relatively shallow escape groove 13. This structure prevents the high side heat dissipation block 6 from bending at the escape groove 13 as a boundary due to heat or stress. For example, when the high-side heat dissipation block 6 has a thickness of 1 mm to 20 mm, the escape groove 13 may have a depth of about 0.01 mm to 2 mm.

各逃がし溝13は、この実施形態では、図1に示すように、ハイサイド放熱ブロック6の一対の長辺の端面14同士を繋ぐように、ハイサイド放熱ブロック6の一対の短辺に沿って形成されている。これにより、各逃がし溝13の一端および他端は、それぞれ、ハイサイド放熱ブロック6の端面14において開放されている。
また、各逃がし溝13の側面には、段差構造15が形成されている。段差構造15は、この実施形態では、図5に示すように、逃がし溝13が深さ方向に二段に区分されることによって形成された構造である。これにより、段差構造15は、第1の溝16と、第1の溝16の底部がさらに窪むことによって形成され、第1の溝16よりも幅狭な第2の溝17とを含む。段差構造15は、図1に示すように、逃がし溝13の長手方向に沿ってハイサイド放熱ブロック6の一方の端面14から他方の端面14に至るまで連続して形成されている。
In this embodiment, each of the escape grooves 13 extends along a pair of short sides of the high-side heat dissipation block 6 so as to connect the pair of long-side end surfaces 14 of the high-side heat dissipation block 6 as shown in FIG. 1. Has been formed. As a result, one end and the other end of each escape groove 13 are opened at the end face 14 of the high side heat dissipation block 6, respectively.
A step structure 15 is formed on the side surface of each escape groove 13. In this embodiment, the step structure 15 is a structure formed by dividing the escape groove 13 into two steps in the depth direction, as shown in FIG. Thus, the step structure 15 includes the first groove 16 and the second groove 17 which is formed by further recessing the bottom of the first groove 16 and is narrower than the first groove 16. As shown in FIG. 1, the step structure 15 is formed continuously along the longitudinal direction of the escape groove 13 from one end surface 14 of the high side heat dissipation block 6 to the other end surface 14.

なお、段差構造15の段数は、二段に限らず、三段、四段およびそれ以上であってもよい。また、複数の溝(この実施形態では、第1および第2の溝16,17)の深さは、互いに同じであっても異なっていてもよい。さらに、段差構造15は、逃がし溝13の長手方向に選択的に形成されていてもよい。たとえば、第2の溝17が、逃がし溝13の長手方向に沿って間隔を空けて複数形成されていてもよい。さらに言えば、段差構造15は、形成されていなくてもよい。   Note that the number of steps of the step structure 15 is not limited to two, and may be three, four, or more. Further, the depths of the plurality of grooves (the first and second grooves 16 and 17 in this embodiment) may be the same or different from each other. Further, the step structure 15 may be selectively formed in the longitudinal direction of the escape groove 13. For example, a plurality of second grooves 17 may be formed at intervals along the longitudinal direction of the escape groove 13. Furthermore, the step structure 15 may not be formed.

このような逃がし溝13がハイサイド放熱ブロック6の長辺に沿って互いに間隔を空けて形成されることによって、ハイサイド放熱ブロック6の表面12は、複数の領域に分割されている。この実施形態では、図1に示すように、逃がし溝13は、互いに平行に4本形成されている。これにより、ハイサイド放熱ブロック6の表面12には、隣り合う逃がし溝13で挟まれた平面視四角形状のチップ領域18が3つ形成されている。   Since the escape grooves 13 are formed along the long sides of the high-side heat dissipation block 6 at intervals, the surface 12 of the high-side heat dissipation block 6 is divided into a plurality of regions. In this embodiment, as shown in FIG. 1, four escape grooves 13 are formed in parallel with each other. As a result, on the surface 12 of the high-side heat dissipation block 6, three chip regions 18 having a quadrangular shape in plan view, which are sandwiched by the escape grooves 13 adjacent to each other, are formed.

各チップ領域18には、ハイサイドIGBT7およびハイサイドFRD8が1つずつ配置されている。具体的には、ハイサイドIGBT7およびハイサイドFRD8は、ローサイドアセンブリ3に遠い側からこの順に、逃がし溝13に沿って間隔を空けて配置されている。ハイサイドIGBT7およびハイサイドFRD8と、逃がし溝13との間には、所定の間隔が空けられている。   One high side IGBT 7 and one high side FRD 8 are arranged in each chip region 18. Specifically, the high-side IGBT 7 and the high-side FRD 8 are arranged along the escape groove 13 in this order from the side distant from the low-side assembly 3 in this order. A predetermined space is provided between the high side IGBT 7 and the high side FRD 8 and the escape groove 13.

ハイサイドIGBT7は、その上面にエミッタパッド19およびゲートパッド20を有し、その裏面にコレクタパッド21を有している。一方、ハイサイドFRD8は、その上面にアノードパッド22を有し、その裏面にカソードパッド(図示せず)を有している。
ハイサイドIGBT7およびハイサイドFRD8は、それぞれ、半田材23を使用して、裏面でハイサイド放熱ブロック6に接合されている。これにより、ハイサイドIGBT7のコレクタおよびハイサイドFRD8のカソードは、それぞれ、ハイサイド放熱ブロック6に電気的に接続されている。なお、図2および図3では、明瞭化のため、エミッタパッド19、ゲートパッド20およびコレクタパッド21の図示を省略している。
The high-side IGBT 7 has an emitter pad 19 and a gate pad 20 on its upper surface and a collector pad 21 on its back surface. On the other hand, the high side FRD8 has an anode pad 22 on its upper surface and a cathode pad (not shown) on its back surface.
The high-side IGBT 7 and the high-side FRD 8 are joined to the high-side heat dissipation block 6 on the back surface by using the solder material 23, respectively. Thus, the collector of the high side IGBT 7 and the cathode of the high side FRD 8 are electrically connected to the high side heat dissipation block 6, respectively. 2 and 3, the emitter pad 19, the gate pad 20, and the collector pad 21 are not shown for clarity.

半田材23は、ハイサイドIGBT7およびハイサイドFRD8と、ハイサイド放熱ブロック6との間に設けられている。また、半田材23は、ハイサイドIGBT7およびハイサイドFRD8の周縁から外側に漏れ出した部分26を有していてもよい。漏れ出し部分26は、たとえば、図5に破線で示すように、逃がし溝13に入っていてもよい。
また、ハイサイド放熱ブロック6には、P(Positive)端子25が一体的に接続されている。P端子25は、回路電源の正極側(Positive side)に接続されるものである。P端子25から供給される電源電圧は、ハイサイド放熱ブロック6を介して、ハイサイドIGBT7のコレクタおよびハイサイドFRD8のカソードに印加される。この実施形態では、P端子25は、図3に示すようにハイサイド放熱ブロック6と同じ厚さで、樹脂パッケージ5の内外に跨るように、ハイサイド放熱ブロック6の短辺の端面24から突出している。つまり、P端子25は、ハイサイド放熱ブロック6の逃がし溝13が開放している端面14とは異なる端面24に接続されている。P端子25の露出部分には、貫通孔54が形成されている。
The solder material 23 is provided between the high side IGBT 7 and the high side FRD 8 and the high side heat dissipation block 6. In addition, the solder material 23 may have a portion 26 that leaks outward from the peripheral edges of the high side IGBT 7 and the high side FRD 8. The leak-out portion 26 may enter the escape groove 13 as shown by a broken line in FIG. 5, for example.
Further, a P (Positive) terminal 25 is integrally connected to the high side heat dissipation block 6. The P terminal 25 is connected to the positive side (Positive side) of the circuit power supply. The power supply voltage supplied from the P terminal 25 is applied to the collector of the high side IGBT 7 and the cathode of the high side FRD 8 via the high side heat dissipation block 6. In this embodiment, the P terminal 25 has the same thickness as the high-side heat dissipation block 6 as shown in FIG. 3, and protrudes from the end face 24 of the short side of the high-side heat dissipation block 6 so as to straddle the inside and outside of the resin package 5. ing. That is, the P terminal 25 is connected to the end surface 24 different from the end surface 14 where the escape groove 13 of the high side heat dissipation block 6 is open. A through hole 54 is formed in the exposed portion of the P terminal 25.

ハイサイドコンタクトブロック9は、たとえば銅(Cu)からなる。ハイサイドコンタクトブロック9は、半田材27を使用して、ハイサイドIGBT7のエミッタパッド19およびハイサイドFRD8のアノードパッド22上に1つずつ配置されている。これにより、ハイサイドコンタクトブロック9は、ハイサイドIGBT7のエミッタパッド19およびハイサイドFRD8のアノードパッド22に電気的に接続されている。   The high side contact block 9 is made of, for example, copper (Cu). The high-side contact blocks 9 are arranged one by one on the emitter pad 19 of the high-side IGBT 7 and the anode pad 22 of the high-side FRD 8 using the solder material 27. As a result, the high-side contact block 9 is electrically connected to the emitter pad 19 of the high-side IGBT 7 and the anode pad 22 of the high-side FRD8.

ハイサイドエミッタ端子10およびハイサイドゲート端子11は、ハイサイド放熱ブロック6に対してローサイドアセンブリ3の反対側に配置され、樹脂パッケージ5の内外に跨っている。ハイサイドエミッタ端子10およびハイサイドゲート端子11は、それぞれ、エミッタパッド19およびゲートパッド20に、ボンディングワイヤ28を使用して電気的に接続されている。   The high-side emitter terminal 10 and the high-side gate terminal 11 are arranged on the opposite side of the low-side assembly 3 with respect to the high-side heat dissipation block 6 and extend inside and outside the resin package 5. The high side emitter terminal 10 and the high side gate terminal 11 are electrically connected to the emitter pad 19 and the gate pad 20, respectively, using a bonding wire 28.

ローサイドアセンブリ3は、ローサイド放熱ブロック29と、ローサイドIGBT30およびローサイドFRD31と、ローサイドコンタクトブロック32と、ローサイドエミッタ端子33と、ローサイドゲート端子34と、N(Negative)端子50とを含む。   The low-side assembly 3 includes a low-side heat dissipation block 29, a low-side IGBT 30 and a low-side FRD 31, a low-side contact block 32, a low-side emitter terminal 33, a low-side gate terminal 34, and an N (Negative) terminal 50.

ローサイド放熱ブロック29は、たとえば銅(Cu)からなる。ローサイド放熱ブロック29は、この実施形態では、ハイサイド放熱ブロック6と同じ、やや扁平な直方体形状(平面視長方形状)に形成されている。ハイサイド放熱ブロック6およびローサイド放熱ブロック29は、それらの長辺の端面14,37が互いに対向するように、隣り合って配置されている。   The low side heat dissipation block 29 is made of, for example, copper (Cu). In this embodiment, the low-side heat dissipation block 29 is formed in the same flattened rectangular parallelepiped shape (rectangular shape in plan view) as the high-side heat dissipation block 6. The high-side heat dissipation block 6 and the low-side heat dissipation block 29 are arranged adjacent to each other such that their long side end faces 14 and 37 face each other.

ローサイド放熱ブロック29の表面35には、逃がし溝36が複数本形成されている。ここで、逃がし溝36は、ローサイド放熱ブロック29の表面35近傍の領域(表面部)に浅く形成されたものである。言い換えれば、ローサイド放熱ブロック29において、比較的浅い逃がし溝36の下方には、金属部分が厚く残っている。この構造は、熱や応力等によって、ローサイド放熱ブロック29が、逃がし溝36を境に折れ曲がることを防止する。たとえば、ローサイド放熱ブロック29の厚さが1mm〜20mmである場合に、逃がし溝36の深さは0.01mm〜2mm程度であってよい。   A plurality of escape grooves 36 are formed on the surface 35 of the low-side heat dissipation block 29. Here, the escape groove 36 is shallowly formed in a region (surface portion) near the surface 35 of the low-side heat dissipation block 29. In other words, in the low-side heat dissipation block 29, a thick metal portion remains below the relatively shallow escape groove 36. This structure prevents the low-side heat dissipation block 29 from bending around the escape groove 36 due to heat or stress. For example, when the low-side heat dissipation block 29 has a thickness of 1 mm to 20 mm, the escape groove 36 may have a depth of about 0.01 mm to 2 mm.

各逃がし溝36は、この実施形態では、図1に示すように、ローサイド放熱ブロック29の一対の長辺の端面37同士を繋ぐように、ローサイド放熱ブロック29の一対の短辺に沿って形成されている。これにより、各逃がし溝36の一端および他端は、それぞれ、ローサイド放熱ブロック29の端面37において開放されている。
また、各逃がし溝36の側面には、段差構造38が形成されている。段差構造38は、この実施形態では、図5の段差構造15と同様に、逃がし溝36が深さ方向に二段に区分されることによって形成された構造である。つまり、段差構造38は、図5の第1の溝16および第2の溝17と同じ構造の、第1の溝および第2の溝(いずれも図示せず)を含む。段差構造38は、図1に示すように、逃がし溝36の長手方向に沿ってローサイド放熱ブロック29の一方の端面37から他方の端面37に至るまで連続して形成されている。
In this embodiment, each escape groove 36 is formed along a pair of short sides of the low side heat dissipation block 29 so as to connect the pair of long side end faces 37 of the low side heat dissipation block 29, as shown in FIG. 1. ing. As a result, one end and the other end of each escape groove 36 are open at the end surface 37 of the low-side heat dissipation block 29.
A step structure 38 is formed on the side surface of each escape groove 36. In this embodiment, the step structure 38 is a structure formed by dividing the escape groove 36 into two steps in the depth direction, like the step structure 15 of FIG. That is, the step structure 38 includes a first groove and a second groove (both not shown) having the same structure as the first groove 16 and the second groove 17 in FIG. As shown in FIG. 1, the step structure 38 is continuously formed along the longitudinal direction of the escape groove 36 from one end surface 37 of the low side heat dissipation block 29 to the other end surface 37.

このような逃がし溝36がローサイド放熱ブロック29の長辺に沿って互いに間隔を空けて形成されることによって、ローサイド放熱ブロック29の表面35は、複数の領域に分割されている。この実施形態では、逃がし溝36は、互いに平行に4本形成されている。これにより、ローサイド放熱ブロック29の表面35には、隣り合う逃がし溝36で挟まれた平面視四角形状のチップ領域41が3つ形成されている。なお、逃がし溝36は、図1に示すように、ハイサイド放熱ブロック6の逃がし溝13の長手方向に沿って形成されていてもよいし、逃がし溝13の長手方向に直交する方向に沿って形成されていてもよい。   The escape grooves 36 are formed at intervals along the long sides of the low-side heat dissipation block 29, so that the surface 35 of the low-side heat dissipation block 29 is divided into a plurality of regions. In this embodiment, four escape grooves 36 are formed in parallel with each other. As a result, on the surface 35 of the low-side heat dissipation block 29, three chip regions 41 having a quadrangular shape in plan view, which are sandwiched by the escape grooves 36 adjacent to each other, are formed. The escape groove 36 may be formed along the longitudinal direction of the escape groove 13 of the high side heat dissipation block 6 as shown in FIG. 1, or along the direction orthogonal to the longitudinal direction of the escape groove 13. It may be formed.

各チップ領域41には、ローサイドIGBT30およびローサイドFRD31が1つずつ配置されている。具体的には、ローサイドIGBT30およびローサイドFRD31は、ハイサイドアセンブリ2に遠い側からこの順に、逃がし溝36に沿って間隔を空けて配置されている。ローサイドIGBT30およびローサイドFRD31と、逃がし溝36との間には、所定の間隔が空けられている。   One low side IGBT 30 and one low side FRD 31 are arranged in each chip region 41. Specifically, the low-side IGBT 30 and the low-side FRD 31 are arranged along the escape groove 36 at intervals in this order from the side distant from the high-side assembly 2. A predetermined space is provided between the low side IGBT 30 and the low side FRD 31 and the escape groove 36.

ローサイドIGBT30は、その上面にエミッタパッド42およびゲートパッド43を有し、その裏面にコレクタパッド(図示せず)を有している。一方、ローサイドFRD31は、その上面にアノードパッド44を有し、その裏面にカソードパッド(図示せず)を有している。ローサイドIGBT30およびローサイドFRD31は、それぞれ、半田材45を使用して、裏面でローサイド放熱ブロック29に接合されている。これにより、ローサイドIGBT30のコレクタおよびローサイドFRD31のカソードは、それぞれ、ローサイド放熱ブロック29に電気的に接続されている。   The low-side IGBT 30 has an emitter pad 42 and a gate pad 43 on its upper surface and a collector pad (not shown) on its back surface. On the other hand, the low side FRD 31 has an anode pad 44 on its upper surface and a cathode pad (not shown) on its back surface. The low-side IGBT 30 and the low-side FRD 31 are joined to the low-side heat dissipation block 29 on the back surface using a solder material 45, respectively. As a result, the collector of the low-side IGBT 30 and the cathode of the low-side FRD 31 are electrically connected to the low-side heat dissipation block 29, respectively.

半田材45は、ローサイドIGBT30およびローサイドFRD31と、ローサイド放熱ブロック29との間に設けられている。半田材45は、半田材23と同様に、ローサイドIGBT30およびローサイドFRD31の周縁から外側に漏れ出した部分39を有していてもよい。漏れ出し部分39は、図5の漏れ出し部分26と同様に、逃がし溝36に入っていてもよい。   The solder material 45 is provided between the low-side IGBT 30 and the low-side FRD 31 and the low-side heat dissipation block 29. Like the solder material 23, the solder material 45 may have a portion 39 that leaks outward from the peripheral edges of the low-side IGBT 30 and the low-side FRD 31. The leak-out portion 39 may be in the escape groove 36 like the leak-out portion 26 of FIG.

また、ローサイド放熱ブロック29には、出力端子46が一体的に接続されている。出力端子46は、回路の負荷に接続されるものである。この実施形態では、出力端子46は、図4に示すようにローサイド放熱ブロック29と同じ厚さで、樹脂パッケージ5の内外に跨るように、ローサイド放熱ブロック29の短辺の端面47から突出している。つまり、出力端子46は、ローサイド放熱ブロック29の逃がし溝36が開放している端面37とは異なる端面47に接続されている。また、この実施形態では、出力端子46が接続される端面47は、P端子25と隣り合う端面47の反対側の端面47である。これにより、出力端子46は、P端子25とは反対方向に延びている。出力端子46の露出部分には、貫通孔55が形成されている。   The output terminal 46 is integrally connected to the low-side heat dissipation block 29. The output terminal 46 is connected to the load of the circuit. In this embodiment, the output terminal 46 has the same thickness as the low-side heat dissipation block 29, as shown in FIG. 4, and protrudes from the end surface 47 of the short side of the low-side heat dissipation block 29 so as to extend over the inside and outside of the resin package 5. . That is, the output terminal 46 is connected to the end surface 47 different from the end surface 37 where the escape groove 36 of the low-side heat dissipation block 29 is open. Further, in this embodiment, the end face 47 to which the output terminal 46 is connected is the end face 47 opposite to the end face 47 adjacent to the P terminal 25. As a result, the output terminal 46 extends in the direction opposite to the P terminal 25. A through hole 55 is formed in the exposed portion of the output terminal 46.

ローサイドコンタクトブロック32は、たとえば銅(Cu)からなる。ローサイドコンタクトブロック32は、半田材45を使用して、ローサイドIGBT30のエミッタパッド42およびローサイドFRD31のアノードパッド44上に1つずつ配置されている。これにより、ローサイドコンタクトブロック32は、ローサイドIGBT30のエミッタパッド42およびローサイドFRD31のアノードパッド44に電気的に接続されている。   The low side contact block 32 is made of, for example, copper (Cu). The low-side contact blocks 32 are arranged one by one on the emitter pad 42 of the low-side IGBT 30 and the anode pad 44 of the low-side FRD 31 using the solder material 45. As a result, the low-side contact block 32 is electrically connected to the emitter pad 42 of the low-side IGBT 30 and the anode pad 44 of the low-side FRD 31.

ローサイドエミッタ端子33およびローサイドゲート端子34は、ローサイド放熱ブロック29に対してハイサイドアセンブリ2の反対側に配置され、樹脂パッケージ5の内外に跨っている。ローサイドエミッタ端子33およびローサイドゲート端子34は、それぞれ、エミッタパッド42およびゲートパッド43に、ボンディングワイヤ49を使用して電気的に接続されている。   The low-side emitter terminal 33 and the low-side gate terminal 34 are arranged on the opposite side of the high-side assembly 2 with respect to the low-side heat dissipation block 29, and extend inside and outside the resin package 5. The low side emitter terminal 33 and the low side gate terminal 34 are electrically connected to the emitter pad 42 and the gate pad 43, respectively, using a bonding wire 49.

N端子50は、たとえば銅(Cu)からなり、ハイサイド放熱ブロック6およびローサイド放熱ブロック29と同じ厚さのブロック状に形成されている。N端子50は、半田材51を使用して、ローサイドIGBT30およびローサイドFRD31上のローサイドコンタクトブロック32に一括して接合されている。
具体的には、N端子50は、平面視において、ローサイド放熱ブロック29の長辺に沿って、複数のチップ領域41を横切るように延びている。N端子50の長手方向の敷設領域は、たとえば、ローサイド放熱ブロック29の一方の端面47から樹脂パッケージ5の外側に至っている。これにより、N端子50は、樹脂パッケージ5から突出すると共に、樹脂パッケージ5の内側において、ローサイド放熱ブロック29との間に空間52を区画している。N端子50の露出部分には、貫通孔56が形成されている。なお、この実施形態では、N端子50の突出方向は、P端子25の突出方向と同じであり、つまり、同じローサイドアセンブリ3に含まれる出力端子46の突出方向とは反対である。これにより、N端子50と出力端子46とは、互いに重ならないので干渉し合うことがない。
The N terminal 50 is made of, for example, copper (Cu), and is formed in a block shape having the same thickness as the high-side heat dissipation block 6 and the low-side heat dissipation block 29. The N terminal 50 is collectively joined to the low side contact block 32 on the low side IGBT 30 and the low side FRD 31 using a solder material 51.
Specifically, the N terminal 50 extends along the long side of the low-side heat dissipation block 29 so as to cross the plurality of chip regions 41 in a plan view. The laying region of the N terminal 50 in the longitudinal direction extends from one end surface 47 of the low-side heat dissipation block 29 to the outside of the resin package 5, for example. As a result, the N terminal 50 projects from the resin package 5 and defines a space 52 between the N-side terminal 50 and the low-side heat dissipation block 29 inside the resin package 5. A through hole 56 is formed in the exposed portion of the N terminal 50. In this embodiment, the protruding direction of the N terminal 50 is the same as the protruding direction of the P terminal 25, that is, the protruding direction of the output terminal 46 included in the same low-side assembly 3 is opposite. As a result, the N terminal 50 and the output terminal 46 do not overlap with each other and do not interfere with each other.

一方、幅方向に関して、N端子50は、ローサイド放熱ブロック29よりも狭く形成されている。この両者の幅の差は、ローサイド放熱ブロック29に、N端子50から横側に引き出され、チップ領域41の一部からなるコンタクト領域53が形成されることを許容する。
このN端子50は、回路電源の負極側(Negative side)に接続されるものである。N端子50から供給される電源電圧は、ローサイドコンタクトブロック32を介して、ローサイドIGBT30のエミッタおよびローサイドFRD31のアノードに印加される。
On the other hand, in the width direction, the N terminal 50 is formed narrower than the low-side heat dissipation block 29. The difference in width between the two allows the low-side heat dissipation block 29 to have a contact region 53 formed laterally from the N terminal 50 and formed of a part of the chip region 41.
The N terminal 50 is connected to the negative side (Negative side) of the circuit power supply. The power supply voltage supplied from the N terminal 50 is applied to the emitter of the low side IGBT 30 and the anode of the low side FRD 31 via the low side contact block 32.

中継端子4は、たとえば銅(Cu)からなり、ハイサイド放熱ブロック6およびローサイド放熱ブロック29と同じ厚さで形成されている。中継端子4は、ハイサイド放熱ブロック6およびローサイド放熱ブロック29の上方で、これらに跨って配置されている。これにより、中継端子4は、ハイサイド放熱ブロック6およびローサイド放熱ブロック29との間に空間57を区画している。具体的には、中継端子4は、平面視において、ハイサイド放熱ブロック6およびローサイド放熱ブロック29の長辺に沿って、複数のチップ領域18,41を横切るように延びている。中継端子4の長手方向の敷設領域は、たとえば、各放熱ブロック6,29の一方の端面24,47から他方の端面24,47に至っている。   The relay terminal 4 is made of copper (Cu), for example, and is formed with the same thickness as the high-side heat dissipation block 6 and the low-side heat dissipation block 29. The relay terminal 4 is arranged above the high-side heat dissipation block 6 and the low-side heat dissipation block 29, straddling them. As a result, the relay terminal 4 defines a space 57 between the high-side heat dissipation block 6 and the low-side heat dissipation block 29. Specifically, the relay terminal 4 extends along the long sides of the high-side heat dissipation block 6 and the low-side heat dissipation block 29 so as to cross the plurality of chip regions 18 and 41 in a plan view. The laying region of the relay terminal 4 in the longitudinal direction extends from one end surface 24, 47 of each heat dissipation block 6, 29 to the other end surface 24, 47, for example.

中継端子4は、ハイサイドアセンブリ2において、半田材58を使用して、ハイサイドIGBT7およびハイサイドFRD8上のハイサイドコンタクトブロック9に一括して接合されている。一方、中継端子4は、ローサイドアセンブリ3において、中継ブロック59を使用して、ローサイド放熱ブロック29に接合されている。
中継ブロック59は、ローサイド放熱ブロック29の各コンタクト領域53に、半田材60を挟んで一つずつ配置されている。また、各中継ブロック59と中継端子4との間にも、それぞれ、半田材61が設けられている。
In the high side assembly 2, the relay terminals 4 are collectively joined to the high side contact blocks 9 on the high side IGBT 7 and the high side FRD 8 using the solder material 58. On the other hand, the relay terminal 4 is joined to the low-side heat dissipation block 29 using the relay block 59 in the low-side assembly 3.
The relay blocks 59 are arranged one by one in each contact region 53 of the low-side heat dissipation block 29 with the solder material 60 interposed therebetween. Further, the solder material 61 is also provided between each relay block 59 and the relay terminal 4.

ハイサイドIGBT7のエミッタおよびハイサイドFRD8のアノードからの電流は、図2に示すように、中継端子4、中継ブロック59およびローサイド放熱ブロック29と順に通り、ローサイドIGBT30のコレクタおよびローサイドFRD31のカソードに流れる。
樹脂パッケージ5は、たとえば、エポキシ樹脂からなる。樹脂パッケージ5は、ハイサイド放熱ブロック6およびローサイド放熱ブロック29の各裏面63,64を露出させるように、ハイサイドアセンブリ2、ローサイドアセンブリ3および中継端子4等を覆っている。各チップ7,8,30,31で発生した熱は、ハイサイド放熱ブロック6およびローサイド放熱ブロック29の裏面63,64から放散される。また、この実施形態では、樹脂パッケージ5の一部が空間52,57に入り込む。これにより、樹脂パッケージ5の当該一部が、下側の導電部材(ハイサイド放熱ブロック6およびローサイド放熱ブロック29)と、上側の導電部材(中継端子4およびN端子50)とで挟まれて保持される。その結果、ハイサイドアセンブリ2、ローサイドアセンブリ3および中継端子4等に対する樹脂パッケージ5の密着性を向上させることができる。
<本発明に至るまでの前評価>
本願発明者らは、半導体チップの接合時における半田漏れおよび半田引けの原因を探るべく、半田漏れ量(半田引け量)と、半導体チップ(IGBT)への荷重との関係を実験によって評価した。その結果を図6〜図9に示す。図6および図7は、半導体チップへの荷重と半田の漏れ量(半田の引け量)との関係を示す折れ線グラフである。ここでは、半導体チップに対する半田の漏れ量(半田の引け量)を考えており、後述する逃がし溝は考慮していない。図8および図9は、半導体チップへの荷重およびチップ面積/半田面積を変化させたときの半田の漏れ量(半田の引け量)の分布を示す等高線グラフである。実験を行った範囲について、等高線を記入した。なお、図8および図9では、各引き出し線に付された数値が、それぞれ、当該引き出し線が示す領域における半田漏れ量(mm)および半田引け量(mm)を示している。
As shown in FIG. 2, the current from the emitter of the high-side IGBT 7 and the anode of the high-side FRD 8 passes through the relay terminal 4, the relay block 59, and the low-side heat dissipation block 29 in order, and flows to the collector of the low-side IGBT 30 and the cathode of the low-side FRD 31. ..
The resin package 5 is made of, for example, an epoxy resin. The resin package 5 covers the high side assembly 2, the low side assembly 3, the relay terminal 4, and the like so that the back surfaces 63 and 64 of the high side heat dissipation block 6 and the low side heat dissipation block 29 are exposed. The heat generated in each of the chips 7, 8, 30, 31 is dissipated from the back surfaces 63, 64 of the high side heat dissipation block 6 and the low side heat dissipation block 29. Further, in this embodiment, a part of the resin package 5 enters the spaces 52 and 57. As a result, the part of the resin package 5 is held by being sandwiched between the lower conductive member (the high side heat dissipation block 6 and the low side heat dissipation block 29) and the upper conductive member (the relay terminal 4 and the N terminal 50). To be done. As a result, the adhesion of the resin package 5 to the high side assembly 2, the low side assembly 3, the relay terminal 4, etc. can be improved.
<Pre-evaluation until the present invention>
The present inventors evaluated the relationship between the solder leak amount (solder shrinkage amount) and the load on the semiconductor chip (IGBT) by experiments in order to investigate the causes of solder leak and solder shrinkage at the time of joining the semiconductor chips. The results are shown in FIGS. 6 and 7 are line graphs showing the relationship between the load on the semiconductor chip and the amount of solder leakage (solder shrinkage). Here, the amount of solder leakage to the semiconductor chip (the amount of solder shrinkage) is considered, and the escape groove described later is not considered. 8 and 9 are contour line graphs showing the distribution of the amount of solder leakage (solder shrinkage amount) when the load on the semiconductor chip and the chip area/solder area are changed. Contour lines were drawn for the range in which the experiment was conducted. Note that in FIGS. 8 and 9, the numerical values attached to the respective lead lines indicate the solder leak amount (mm 3 ) and the solder shrinkage amount (mm 2 ) in the regions indicated by the lead lines, respectively.

図6〜図9によると、半田漏れ量は、チップ面積/半田面積の大きさに関わらず、荷重を小さくすればするほど、概ね抑制できることが分かった。しかしながら、半田引け量については、従来、半導体チップへの荷重不足や半田量不足が原因と考えられていたが、荷重や半田量だけでは完全に制御できないことが分かった。たとえば、図7のデータ(IGBT)によれば、荷重を40gから160gに増加しているにも関わらず、半田引け量が約1.6mmから約2.2mmまで増加している。つまり、従来、半田漏れと半田引けは、背反の関係にあると考えられていたが、この背反は、図6〜図9によって、必ずしも正しいとは限らないことが分かった。 According to FIGS. 6 to 9, it has been found that the solder leakage amount can be suppressed substantially as the load is reduced, regardless of the size of the chip area/the solder area. However, regarding the amount of solder shrinkage, it was conventionally thought that the load on the semiconductor chip was insufficient and the amount of solder was insufficient. For example, according to the data of FIG. 7 (IGBT), despite the increased load from 40g to 160 g, the solder shrinkage amount is increased from about 1.6 mm 2 to about 2.2 mm 2. That is, conventionally, it has been considered that the solder leakage and the solder shrinkage have a trade-off relationship, but it has been found from FIGS. 6 to 9 that this trade-off is not always correct.

そこで、本願発明者らは、前述のようにハイサイド放熱ブロック6やローサイド放熱ブロック29に、両端が開放した逃がし溝13,36を形成すると共に、製造工程におけるチップ面積/半田面積を適切な範囲に設定することを見出した。これにより、低コストで、半田引けを防止すると共に、半田漏れが生じても耐圧の低下を抑制することができる半導体装置を提供できることが分かった。
<本発明の実施形態に係るモジュールの製造工程>
以下では、図6〜図9を検証した結果、半導体装置の製造工程における半導体チップの接合を、具体的にどのような形態で実施すればよいかについて、前述のハイサイドアセンブリ2を例に挙げて説明する。
Therefore, the inventors of the present application form the escape grooves 13 and 36 whose both ends are open in the high-side heat dissipation block 6 and the low-side heat dissipation block 29 as described above, and the chip area/solder area in the manufacturing process in an appropriate range. Found to set. As a result, it has been found that it is possible to provide a semiconductor device that can prevent solder shrinkage and can suppress a decrease in breakdown voltage even if solder leakage occurs at low cost.
<Process of Manufacturing Module According to Embodiment of Present Invention>
Below, as a result of verifying FIG. 6 to FIG. 9, the above-mentioned high side assembly 2 will be taken as an example of what kind of form should be specifically joined in the manufacturing process of the semiconductor device. Explain.

図10(a)(b)〜図14(a)(b)は、図1のパワー半導体モジュール1の製造工程の一部(ハイサイドアセンブリ2の作製工程)を工程順に示す図である。図10(a)が図1に対応する平面図であり、図10(b)が図5に対応する断面図である。なお、図10(a)(b)〜図14(a)(b)では、明瞭化のため、図1および図5で示した参照符号を省略している場合がある。   10(a), (b) to 14(a), (b) are views showing a part of the manufacturing process of the power semiconductor module 1 of FIG. 1 (manufacturing process of the high side assembly 2) in process order. 10A is a plan view corresponding to FIG. 1, and FIG. 10B is a cross-sectional view corresponding to FIG. 10(a)(b) to 14(a)(b), the reference numerals shown in FIGS. 1 and 5 may be omitted for clarity.

ハイサイドアセンブリ2を作製するには、まず、図10(a)(b)に示すように、逃がし溝13が形成されたハイサイド放熱ブロック6が用意される。逃がし溝13は、たとえば、ハイサイド放熱ブロック6を金型で成形した後、表面12にプレス加工を施すことによって形成することができる。
次に、図11(a)(b)に示すように、チップ領域18の所定の位置に、板状半田65が配置される。板状半田65のサイズは、ハイサイドIGBT7およびハイサイドFRD8のチップサイズ(面積)との比(チップ面積/半田面積)が、1以下となるように設定される。この実施形態では、上記範囲内において、各チップ7,8よりも小さなサイズの板状半田65が使用される。なお、板状半田65に代えて、半田ペーストを用いてもよい。
In order to manufacture the high side assembly 2, first, as shown in FIGS. 10A and 10B, the high side heat dissipation block 6 in which the escape groove 13 is formed is prepared. The escape groove 13 can be formed, for example, by molding the high side heat dissipation block 6 with a mold and then pressing the surface 12.
Next, as shown in FIGS. 11A and 11B, the plate-shaped solder 65 is arranged at a predetermined position in the chip area 18. The size of the plate-shaped solder 65 is set such that the ratio (chip area/solder area) to the chip size (area) of the high side IGBT 7 and the high side FRD 8 is 1 or less. In this embodiment, the plate-like solder 65 having a size smaller than that of each of the chips 7 and 8 is used within the above range. A solder paste may be used instead of the plate-shaped solder 65.

次に、図12(a)(b)に示すように、各板状半田65上に、それぞれ、ハイサイドIGBT7およびハイサイドFRD8が配置される。
次に、図13(a)(b)に示すように、ハイサイド放熱ブロック6上に、荷重をかけるための治具66が設置される。
治具66は、ハイサイドIGBT7およびハイサイドFRD8の配置パターンに応じた複数の開口67を有している。各開口67は、それぞれ、ハイサイドIGBT7およびハイサイドFRD8よりも小さな面積を有している。また、治具66は、逃がし溝13に対向する部分に、開口67の周縁68よりも選択的に隆起したガイド部69を有している。ガイド部69は、逃がし溝13と同様にストライプ状に形成されていてもよいし、開口67の周辺に選択的に形成されていてもよい。
Next, as shown in FIGS. 12A and 12B, the high-side IGBT 7 and the high-side FRD 8 are arranged on the respective plate-shaped solders 65.
Next, as shown in FIGS. 13A and 13B, a jig 66 for applying a load is installed on the high side heat dissipation block 6.
The jig 66 has a plurality of openings 67 according to the arrangement pattern of the high side IGBT 7 and the high side FRD 8. Each of the openings 67 has a smaller area than the high side IGBT 7 and the high side FRD8. Further, the jig 66 has a guide portion 69 that is selectively raised from the peripheral edge 68 of the opening 67 in a portion facing the escape groove 13. The guide portion 69 may be formed in a stripe shape like the escape groove 13 or may be selectively formed around the opening 67.

そして、治具66は、各開口67と各チップ7,8とを位置合わせし、各開口67の周縁68が各チップ7,8の周縁に接するように設置される。この状態から、さらに、開口67から露出した各チップ7,8上に、板状半田70およびハイサイドコンタクトブロック9が設置される。   Then, the jig 66 aligns the openings 67 with the chips 7 and 8, and is installed so that the peripheral edges 68 of the openings 67 contact the peripheral edges of the chips 7 and 8. From this state, the plate-shaped solder 70 and the high side contact block 9 are further placed on the chips 7 and 8 exposed from the opening 67.

次に、図14(a)(b)に示すように、加熱と共に、ハイサイドコンタクトブロック9および治具66に荷重がかけられる。これにより、溶融した板状半田65が各チップ7,8に押し潰されて広がり、半田材23が形成される。また、板状半田70も溶融して半田材27が形成される。この際、各チップ7,8の周縁が、治具66の開口周縁68で押圧されるので、チップ7,8に均等に荷重をかけることができる。その結果、溶融した半田が特定の方向に偏って漏れ出すことを防止することができる。これにより、半田材23が漏れ出したときの漏れ出し量をチップ7,8の周縁に沿って分散することができる。以上の工程を経ることによって、ハイサイドアセンブリ2が得られる。   Next, as shown in FIGS. 14A and 14B, a load is applied to the high side contact block 9 and the jig 66 together with heating. As a result, the melted plate-shaped solder 65 is crushed and spread by the chips 7 and 8 to form the solder material 23. Further, the plate-shaped solder 70 is also melted to form the solder material 27. At this time, since the peripheral edges of the chips 7 and 8 are pressed by the opening peripheral edge 68 of the jig 66, the chips 7 and 8 can be evenly loaded. As a result, it is possible to prevent the molten solder from leaking out in a specific direction. Thereby, the amount of leakage when the solder material 23 leaks can be dispersed along the peripheral edges of the chips 7 and 8. Through the above steps, the high side assembly 2 is obtained.

そして、パワー半導体モジュール1を製造するには、ハイサイドアセンブリ2と同様の方法によってローサイドアセンブリ3を作製した後、両アセンブリ2,3を中継端子4で接続し、その後、これらを樹脂パッケージ5で封止すればよい。
以上の製造方法によれば、ハイサイドIGBT7およびハイサイドFRD8の接合に当たって、チップ7,8と板状半田65との面積比(チップ面積/半田面積)が、1以下と設定される。これにより、ハイサイドIGBT7およびハイサイドFRD8にかかる荷重の大きさに関係なく、半田引けを抑制することができる。特に、面積比を0.8以下にして半田を多めにすれば、半田引けを防止することができる。
Then, in order to manufacture the power semiconductor module 1, after the low side assembly 3 is manufactured by the same method as the high side assembly 2, both the assemblies 2 and 3 are connected by the relay terminal 4, and then these are connected by the resin package 5. It may be sealed.
According to the above manufacturing method, the area ratio (chip area/solder area) between the chips 7 and 8 and the plate-like solder 65 is set to 1 or less when joining the high side IGBT 7 and the high side FRD 8. As a result, solder shrinkage can be suppressed regardless of the magnitude of the load applied to the high side IGBT 7 and the high side FRD 8. In particular, if the area ratio is 0.8 or less and a large amount of solder is used, solder shrinkage can be prevented.

一方、チップ7,8の面積に対して板状半田65の面積が比較的大きいので、図14に示すように、チップ7,8に対する半田漏れは発生する場合がある。しかしながら、たとえ半田が漏れ出しても、その半田を逃がし溝13に導くことができる。特に、この実施形態では、各チップ領域18の両側に逃がし溝13が形成されていると共に、治具66にガイド部69が形成されている。そのため、漏れ出した半田を、逃がし溝13に導くことができる。すなわち、ここで新たに、逃がし溝13まで含めた領域外への半田漏れ(領域外半田漏れ)を考えた場合、面積比が1以下で、領域外半田漏れを0(ゼロ)にすることができる。その結果、半田材23の一部がチップ7,8の表面へ乗り上げることを防止できるので、耐圧の低下を抑制することができる。一方、面積比が0.6未満であれば、余分な半田が逃がし溝13の開放端から溢れるため、面積比は0.6以上であるとよい。   On the other hand, since the area of the plate-like solder 65 is relatively large with respect to the area of the chips 7 and 8, solder leakage to the chips 7 and 8 may occur as shown in FIG. However, even if the solder leaks out, the solder can be guided to the escape groove 13. Particularly, in this embodiment, the escape grooves 13 are formed on both sides of each chip region 18, and the guide portions 69 are formed on the jig 66. Therefore, the leaked solder can be guided to the escape groove 13. That is, here, when considering a new solder leak to the outside of the region including the escape groove 13 (solder leak outside the region), the area ratio is 1 or less and the outside solder leak can be set to 0 (zero). it can. As a result, it is possible to prevent a part of the solder material 23 from riding on the surfaces of the chips 7 and 8, and thus it is possible to suppress a decrease in withstand voltage. On the other hand, if the area ratio is less than 0.6, excess solder overflows from the open end of the escape groove 13, so the area ratio is preferably 0.6 or more.

また、各逃がし溝13の一端および他端が、それぞれ、ハイサイド放熱ブロック6の端面14において開放されている。したがって、たとえば、ハイサイド放熱ブロック6をプレス加工して逃がし溝13を形成する際に、押し出される余分な銅材料を、逃がし溝13の開放端へ逃がすことができる。これにより、当該押し出された銅材料が逃がし溝13の周辺で隆起物として残ることを抑制できるので、プレス加工後、当該隆起物を除去するための加工作業が不要になる。その結果、逃がし溝13を形成するために必要なコスト上昇を比較的低く抑えることができる。しかも、この実施形態では、逃がし溝13がハイサイド放熱ブロック6の短辺に沿って形成されている。そのため、逃がし溝13を長辺に沿って形成する場合に比べて、逃がし溝13を形成するためのハイサイド放熱ブロック6の加工寸法を短くすることができる。その結果、逃がし溝13の形成に伴うコスト上昇を一層抑えることができる。   Further, one end and the other end of each escape groove 13 are open at the end face 14 of the high side heat dissipation block 6, respectively. Therefore, for example, when the escape groove 13 is formed by pressing the high-side heat dissipation block 6, excess copper material that is extruded can escape to the open end of the escape groove 13. As a result, it is possible to prevent the extruded copper material from remaining as a raised object in the vicinity of the escape groove 13, so that a working operation for removing the raised object is not necessary after pressing. As a result, the cost increase required to form the escape groove 13 can be suppressed to a relatively low level. Moreover, in this embodiment, the escape groove 13 is formed along the short side of the high side heat dissipation block 6. Therefore, as compared with the case where the escape groove 13 is formed along the long side, the processing size of the high side heat dissipation block 6 for forming the escape groove 13 can be shortened. As a result, the cost increase due to the formation of the escape groove 13 can be further suppressed.

そして、逃がし溝13に半田が一旦入ると、その自重によって、相対的に深い位置にある第2の溝17に導くことができる。そのため、第2の溝17の容積程度の半田漏れ量であれば、漏れ出た半田の全部を、逃がし溝13の深い領域(第2の溝17)に留めることができる。これにより、逃がし溝13内の半田が逆流することを抑制できるので、パワー半導体モジュール1の耐圧信頼性を向上させることができる。   Then, once the solder enters the escape groove 13, it can be guided to the second groove 17 located at a relatively deep position by its own weight. Therefore, if the amount of solder leakage is about the volume of the second groove 17, all the leaked solder can be retained in the deep region (second groove 17) of the escape groove 13. As a result, it is possible to suppress the backflow of the solder in the escape groove 13, and it is possible to improve the withstand voltage reliability of the power semiconductor module 1.

以上、本発明の実施形態を説明したが、本発明は、他の形態で実施することもできる。
たとえば、前述の実施形態では、ヒートシンクとして使用されるハイサイド放熱ブロック6およびローサイド放熱ブロック29に逃がし溝13,36が形成された例が示されている。しかしながら、逃がし溝13,36のような構造は、たとえば、リードフレームのアイランド等に形成することもできる。
Although the embodiments of the present invention have been described above, the present invention can be implemented in other forms.
For example, the above-described embodiment shows an example in which the escape grooves 13 and 36 are formed in the high-side heat dissipation block 6 and the low-side heat dissipation block 29 used as heat sinks. However, the structure such as the escape grooves 13 and 36 can be formed in, for example, the island of the lead frame.

また、ハイサイド放熱ブロック6およびローサイド放熱ブロック29は、平面視四角形状である必要はない。たとえば、平面視において、他の多角形(たとえば三角形、五角形等)、円形等であってもよい。
また、逃がし溝13,36は、ストライプ状に形成されている必要はなく、たとえば、蛇行状に形成されていてもよい。
Further, the high-side heat dissipation block 6 and the low-side heat dissipation block 29 do not have to be rectangular in plan view. For example, in a plan view, it may be another polygon (for example, a triangle, a pentagon, etc.), a circle, or the like.
Further, the escape grooves 13 and 36 do not have to be formed in a stripe shape, and may be formed in a meandering shape, for example.

また、本発明は、パワー半導体モジュールに限らず、その他のモジュール製品、ディスクリート製品等に適用することもできる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
なお、前述の実施形態の内容から、特許請求の範囲に記載した発明以外にも、以下のような特徴が抽出され得る。
Further, the present invention can be applied not only to power semiconductor modules, but also to other module products, discrete products and the like.
In addition, various design changes can be made within the scope of the matters described in the claims.
In addition to the inventions described in the claims, the following features can be extracted from the contents of the above-described embodiments.

たとえば、半導体チップと、前記半導体チップを支持する導電部材と、前記導電部材と前記半導体チップとの間に設けられた接合材と、一端および他端が、それぞれ前記導電部材の周端に繋がるように前記導電部材の表面に形成され、前記半導体チップから離れて配置され、前記半導体チップと前記導電部材との間から漏れ出した前記接合材を、前記半導体チップから離れる方向に逃がすための逃がし溝とを含み、前記半導体チップと前記接合材との面積比(チップ面積/接合材面積)が、1.0以下である、半導体装置。   For example, a semiconductor chip, a conductive member supporting the semiconductor chip, a bonding material provided between the conductive member and the semiconductor chip, and one end and the other end are respectively connected to the peripheral end of the conductive member. An escape groove formed on the surface of the conductive member, disposed apart from the semiconductor chip, for releasing the bonding material leaking from between the semiconductor chip and the conductive member in a direction away from the semiconductor chip. And the area ratio of the semiconductor chip and the bonding material (chip area/bonding material area) is 1.0 or less.

この半導体装置は、表面に逃がし溝が形成された導電部材であって、当該逃がし溝の一端および他端が前記導電部材の周端に繋がることによって所定のチップ領域が区画された導電部材を準備する工程と、前記チップ領域に接合材を配置する工程と、前記接合材上に半導体チップを配置する工程と、前記半導体チップに荷重をかけつつ、前記接合材を溶融させることによって前記半導体チップを前記導電部材に接合する工程とを含み、前記逃がし溝は、前記半導体チップと前記導電部材との間から漏れ出した前記接合材を、前記半導体チップから離れる方向に逃がすための溝であり、前記半導体チップと前記接合材との面積比(チップ面積/接合材面積)が、1.0以下である、半導体装置の製造方法によって製造することができる。   This semiconductor device is a conductive member having a relief groove formed on its surface, and a conductive member in which a predetermined chip area is defined by connecting one end and the other end of the relief groove to the peripheral end of the conductive member is prepared. A step of disposing a bonding material in the chip area, a step of disposing a semiconductor chip on the bonding material, and applying a load to the semiconductor chip while melting the bonding material to form the semiconductor chip. Including a step of bonding to the conductive member, the escape groove is a groove for allowing the bonding material leaked from between the semiconductor chip and the conductive member to escape in a direction away from the semiconductor chip, It can be manufactured by a method of manufacturing a semiconductor device, in which an area ratio between the semiconductor chip and the bonding material (chip area/bonding material area) is 1.0 or less.

この方法によれば、チップ面積/接合材面積が1.0以下である構成においても、半導体チップにかかる荷重の大きさに関係なく、半田引けを防止することができる。半導体チップの面積に対して接合材の面積が比較的大きいので、半田漏れは発生する場合がある。しかしながら、たとえ半田が漏れ出しても、その半田を逃がし溝に導くことができる。これにより、半導体チップの表面への半田の乗り上げを防止でき、耐圧の低下を抑制することができる。   According to this method, even if the chip area/bonding material area is 1.0 or less, the solder shrinkage can be prevented regardless of the load applied to the semiconductor chip. Since the area of the bonding material is relatively large with respect to the area of the semiconductor chip, solder leakage may occur. However, even if the solder leaks out, the solder can be guided to the escape groove. As a result, it is possible to prevent the solder from riding on the surface of the semiconductor chip, and to prevent the breakdown voltage from decreasing.

また、逃がし溝は、一端および他端が、それぞれ導電部材の周端に繋がっている。つまり、逃がし溝の一端および他端は、それぞれ、導電部材の周端において開放されている。したがって、たとえば、導電部材をプレス加工して逃がし溝を形成する際に、押し出される余分な導電材料を、逃がし溝の開放端へ逃がすことができる。これにより、当該押し出された導電材料が逃がし溝周辺で隆起物として残ることを抑制できるので、プレス加工後、当該隆起物を除去するための加工作業が不要になる。その結果、逃がし溝を形成するために必要なコスト上昇を比較的低く抑えることができる。   In addition, one end and the other end of the escape groove are connected to the peripheral end of the conductive member, respectively. That is, one end and the other end of the escape groove are open at the peripheral end of the conductive member. Therefore, for example, when the conductive member is pressed to form the escape groove, excess conductive material extruded can escape to the open end of the escape groove. As a result, it is possible to prevent the extruded conductive material from remaining as a raised object in the vicinity of the escape groove, so that a working operation for removing the raised object is not necessary after press working. As a result, the cost increase required for forming the escape groove can be suppressed to a relatively low level.

なお、前記半導体装置の製造方法では、前記半導体チップと前記接合材との面積比(チップ面積/接合材面積)が、0.6〜0.8であるとよい。また、前記半導体装置では、接合材の一部が逃がし溝に入っていてもよいし、入っていなくてもよい。
前記半導体装置では、前記逃がし溝が、前記導電部材の表面に複数形成されており、前記半導体チップは、前記複数の逃がし溝で挟まれたチップ領域に配置されていてもよい。
In the method for manufacturing a semiconductor device, the area ratio (chip area/bonding material area) between the semiconductor chip and the bonding material may be 0.6 to 0.8. Further, in the semiconductor device, part of the bonding material may or may not enter the escape groove.
In the semiconductor device, a plurality of the escape grooves may be formed on the surface of the conductive member, and the semiconductor chip may be arranged in a chip region sandwiched by the escape grooves.

この構成では、半導体チップの左右どちらに接合材が漏れ出しても、その近傍には必ず逃がし溝が形成されているので、半導体チップの表面への半田の乗り上げを確実に防止することができる。
前記半導体装置では、前記複数の逃がし溝は、互いに平行なストライプ状に形成されていてもよい。
In this configuration, even if the bonding material leaks to the left or right of the semiconductor chip, the escape groove is always formed in the vicinity thereof, so that the solder can be reliably prevented from running on the surface of the semiconductor chip.
In the semiconductor device, the plurality of escape grooves may be formed in stripes parallel to each other.

前記半導体装置は、前記逃がし溝の側面に形成された段差構造をさらに含んでいてもよい。
この構成では、逃がし溝に一旦入った接合材が逆流することを抑制することができる。
そのため、半導体装置の耐圧信頼性を向上させることができる。
前記半導体装置では、前記段差構造は、前記逃がし溝が深さ方向に複数段に区分されることによって形成された構造であり、前記逃がし溝の前記一端から前記他端にわたって形成されていてもよい。
The semiconductor device may further include a step structure formed on a side surface of the escape groove.
With this configuration, it is possible to prevent the bonding material once entering the escape groove from flowing back.
Therefore, the breakdown voltage reliability of the semiconductor device can be improved.
In the semiconductor device, the step structure is a structure formed by dividing the escape groove into a plurality of steps in the depth direction, and may be formed from the one end to the other end of the escape groove. ..

前記半導体装置では、前記導電部材は、その周端を形成する端面を有しており、前記逃がし溝の前記一端および前記他端は、それぞれ、当該端面において開放されていてもよい。
前記半導体装置では、前記導電部材の前記表面が長方形状に形成されており、前記逃がし溝は、長方形状の前記導電部材の一対の短辺に沿って形成されていてもよい。
In the semiconductor device, the conductive member may have an end face forming a peripheral end thereof, and the one end and the other end of the escape groove may be open at the end face.
In the semiconductor device, the surface of the conductive member may be formed in a rectangular shape, and the escape groove may be formed along a pair of short sides of the rectangular conductive member.

この構成では、逃がし溝を一対の長辺に沿って形成する場合に比べて、逃がし溝を形成するための導電部材の加工寸法を短くすることができる。その結果、逃がし溝の形成に伴うコスト上昇を一層抑えることができる。
前記半導体装置は、前記半導体チップ上に配置され、間隔を空けて前記導電部材に対向する第2導電部材と、前記導電部材と前記第2導電部材との間の空間に入り込むように、前記半導体チップ、前記導電部材および前記第2導電部材を封止する樹脂パッケージとをさらに含んでいてもよい。
With this configuration, the processing dimension of the conductive member for forming the escape groove can be shortened as compared with the case where the escape groove is formed along the pair of long sides. As a result, the cost increase associated with the formation of the escape groove can be further suppressed.
The semiconductor device is disposed on the semiconductor chip, and the semiconductor device is inserted into a space between the second conductive member and a second conductive member that faces the conductive member with a space therebetween. It may further include a chip, a resin package that seals the conductive member, and the second conductive member.

この構成では、樹脂パッケージの一部を導電部材と第2導電部材とで挟むことによって、当該一部が保持される。これにより、半導体チップ、導電部材および第2導電部材に対する樹脂パッケージの密着性を向上させることができる。
前記半導体装置では、前記導電部材は、裏面が前記樹脂パッケージから露出していて、ヒートシンクの役割を果たしていてもよい前記。
In this configuration, a part of the resin package is held by sandwiching the part with the conductive member and the second conductive member. As a result, the adhesion of the resin package to the semiconductor chip, the conductive member and the second conductive member can be improved.
In the semiconductor device, the conductive member may have a back surface exposed from the resin package and may function as a heat sink.

前記半導体装置は、前記導電部材としてのハイサイドベース部材、およびその上に配置された前記半導体チップとしてのハイサイドスイッチング素子を含むハイサイドアセンブリと、前記ハイサイドアセンブリから離れて配置され、前記導電部材としてのローサイドベース部材、およびその上に配置された前記半導体チップとしてのローサイドスイッチング素子を含むローサイドアセンブリと、前記ハイサイドアセンブリおよび前記ローサイドアセンブリを封止する樹脂パッケージとを含む、パワー半導体モジュールであってもよい。   The semiconductor device includes a high side base member serving as the conductive member, a high side assembly including a high side switching element serving as the semiconductor chip, and a high side assembly disposed apart from the high side assembly. A low-side base member as a member, and a low-side assembly including a low-side switching element as the semiconductor chip disposed on the low-side assembly, and a resin package for sealing the high-side assembly and the low-side assembly, a power semiconductor module, It may be.

前記半導体装置では、前記ハイサイドベース部材および前記ローサイドベース部材は、それぞれ、裏面が前記樹脂パッケージから露出していて、ヒートシンクの役割を果たしていてもよい。
前記半導体装置は、前記樹脂パッケージから突出するように前記ハイサイドベース部材と一体的に形成されたハイサイド端子と、前記樹脂パッケージから突出するように前記ローサイドスイッチング素子上に配置され、間隔を空けて前記ローサイドベース部材に対向するローサイド端子とを含んでいてもよい。
In the semiconductor device, the back surfaces of the high-side base member and the low-side base member may be exposed from the resin package, and may serve as heat sinks.
The semiconductor device is arranged on the high-side terminal integrally formed with the high-side base member so as to protrude from the resin package, and on the low-side switching element so as to protrude from the resin package, with a space therebetween. And a low side terminal facing the low side base member.

前記半導体装置は、前記ハイサイドスイッチング素子上に配置され、前記ローサイドベース部材と電気的に接続された中継部材をさらに含んでいてもよい。
前記半導体装置の製造方法は、前記半導体チップよりも平面面積が小さい開口が形成された治具を、当該開口の周縁が前記半導体チップの周縁に接するように設置する工程と、前記開口から露出する前記半導体チップの上面に第2接合材を設置する工程と、前記第2接合材上に導電ブロックを配置する工程とをさらに含み、前記接合工程は、前記治具によって前記半導体チップの周縁に荷重をかける工程を含んでいてもよい。
The semiconductor device may further include a relay member disposed on the high-side switching element and electrically connected to the low-side base member.
In the method for manufacturing a semiconductor device, a step of installing a jig in which an opening having a plane area smaller than that of the semiconductor chip is formed so that a peripheral edge of the opening is in contact with a peripheral edge of the semiconductor chip; The method further includes a step of disposing a second bonding material on the upper surface of the semiconductor chip and a step of disposing a conductive block on the second bonding material, wherein the bonding step applies a load to the peripheral edge of the semiconductor chip by the jig. It may include a step of applying.

この方法では、半導体チップに均等に荷重をかけることができるので、接合材が特定の方向に偏って漏れ出すことを防止することができる。これにより、接合材が漏れ出したときの漏れ出し量を半導体チップの周縁に沿って分散できるので、半導体チップの表面への半田の乗り上げをより良好に防止することができる。
前記半導体装置の製造方法では、前記治具は、その裏面の一部を前記半導体チップに対する接地面に対して選択的に高めることによって形成され、前記半導体チップを取り囲むガイド部を有していてもよい。
In this method, the load can be evenly applied to the semiconductor chip, so that it is possible to prevent the bonding material from leaking unevenly in a specific direction. With this, the amount of leakage when the bonding material leaks can be dispersed along the peripheral edge of the semiconductor chip, so that it is possible to better prevent the solder from running onto the surface of the semiconductor chip.
In the method of manufacturing a semiconductor device, the jig may be formed by selectively raising a part of a back surface of the jig with respect to a ground plane for the semiconductor chip, and may have a guide portion surrounding the semiconductor chip. Good.

この方法では、接合材の漏れ出し量が多くても、その接合材を、治具のガイド部によって、確実に逃がし溝に導くことができる。   According to this method, even if a large amount of the bonding material leaks, the bonding material can be reliably guided to the escape groove by the guide portion of the jig.

1 パワー半導体モジュール
2 ハイサイドアセンブリ
3 ローサイドアセンブリ
4 中継端子
5 樹脂パッケージ
6 ハイサイド放熱ブロック
7 ハイサイドIGBT
8 ハイサイドFRD
9 ハイサイドコンタクトブロック
12 (ハイサイド放熱ブロック)表面
13 逃がし溝
14 (ハイサイド放熱ブロックの長辺)端面
15 段差構造
16 第1の溝
17 第2の溝
18 チップ領域
23 半田材
24 (ハイサイド放熱ブロックの短辺)端面
25 P端子
26 漏れ出し部分
27 半田材
29 ローサイド放熱ブロック
30 ローサイドIGBT
31 ローサイドFRD
32 ローサイドコンタクトブロック
35 (ローサイド放熱ブロック)表面
36 逃がし溝
37 (ローサイド放熱ブロックの長辺)端面
38 段差構造
39 漏れ出し部分
41 チップ領域
45 半田材
46 出力端子
47 (ローサイド放熱ブロックの短辺)端面
50 N端子
51 半田材
52 空間
53 コンタクト領域
57 空間
59 中継ブロック
63 (ハイサイド放熱ブロック)裏面
64 (ローサイド放熱ブロック)裏面
65 板状半田
66 治具
67 (治具)開口
68 (治具の開口)周縁
69 ガイド部
70 板状半田
1 Power semiconductor module 2 High side assembly 3 Low side assembly 4 Relay terminal 5 Resin package 6 High side heat dissipation block 7 High side IGBT
8 high side FRD
9 High-side contact block 12 (High-side heat dissipation block) surface 13 Escape groove 14 (Long side of high-side heat dissipation block) End face 15 Step structure 16 First groove 17 Second groove 18 Chip area 23 Solder material 24 (High side) Short side of heat dissipation block) End face 25 P terminal 26 Leakage portion 27 Solder material 29 Low side heat dissipation block 30 Low side IGBT
31 Low Side FRD
32 low side contact block 35 (low side heat dissipation block) surface 36 escape groove 37 (long side of low side heat dissipation block) end face 38 step structure 39 leakage part 41 chip area 45 solder material 46 output terminal 47 (short side of low side heat dissipation block) end face 50 N terminal 51 Solder material 52 Space 53 Contact area 57 Space 59 Relay block 63 (High side heat dissipation block) Back surface 64 (Low side heat dissipation block) Back surface 65 Plate-shaped solder 66 Jig 67 (Jig) opening 68 (Jig opening) ) Edge 69 Guide 70 Plate solder

Claims (19)

表面にパッドを有する半導体チップと、
前記半導体チップを支持する導電部材と、
前記導電部材と前記半導体チップとの間に設けられた接合材と、
前記パッド上に一端が配置されたコンタクトブロックと、
前記導電部材の表面に形成され、前記半導体チップの直下の領域から離れて配置された凹部と、
前記半導体チップ、前記導電部材および前記コンタクトブロックを封止する樹脂パッケージとを含み、
前記接合材は、前記半導体チップの外側に漏れ出した漏れ出し部分を有しており、かつ前記半導体チップの直下の領域から前記凹部まで、前記導電部材上の領域に延びており、
前記凹部の深さは、前記コンタクトブロックの厚さの1/100〜1/10である、半導体装置。
A semiconductor chip having a pad on the surface;
A conductive member supporting the semiconductor chip,
A bonding material provided between the conductive member and the semiconductor chip,
A contact block having one end disposed on the pad,
A concave portion formed on the surface of the conductive member, the concave portion being arranged apart from the region directly below the semiconductor chip,
A resin package for sealing the semiconductor chip, the conductive member and the contact block,
The bonding material has a leaking portion that has leaked to the outside of the semiconductor chip, and from the region immediately below the semiconductor chip to the recess, extending to the region on the conductive member,
The semiconductor device, wherein the depth of the recess is 1/100 to 1/10 of the thickness of the contact block.
前記半導体チップと前記接合材との面積比(チップ面積/接合材面積)が、1.0以下である、請求項1に記載の半導体装置。 The semiconductor device according to claim 1, wherein an area ratio (chip area/bonding material area) between the semiconductor chip and the bonding material is 1.0 or less. 前記半導体チップと前記接合材との面積比(チップ面積/接合材面積)が、0.6〜0.8である、請求項に記載の半導体装置。 The semiconductor device according to claim 2 , wherein an area ratio between the semiconductor chip and the bonding material (chip area/bonding material area) is 0.6 to 0.8. 前記コンタクトブロックは、銅からなる、請求項1〜3のいずれか一項に記載の半導体装置。 The semiconductor device according to claim 1, wherein the contact block is made of copper. 前記凹部は、その一端および他端の少なくとも一方が前記導電部材の周端まで繋がっている、請求項1〜4のいずれか一項に記載の半導体装置。 It said recess has one end and at least one of the other end is connected to the peripheral edge of the conductive member, a semiconductor device according to any one of claims 1-4. 前記半導体チップは、パワー半導体チップを含む、請求項1〜5のいずれか一項に記載の半導体装置。 The semiconductor chip includes a power semiconductor chip, the semiconductor device according to any one of claims 1 to 5. 前記凹部が、前記導電部材の表面に複数形成されており、
前記半導体チップは、前記複数の凹部で挟まれたチップ領域に配置されている、請求項1〜6のいずれか一項に記載の半導体装置。
A plurality of the recesses are formed on the surface of the conductive member,
The semiconductor chip, the plurality of which are arranged in the chip region between the recess, the semiconductor device according to any one of claims 1 to 6.
前記凹部の側面に形成された段差構造をさらに含む、請求項1〜7のいずれか一項に記載の半導体装置。 Further comprising the formed step structure on the side surface of the recess, the semiconductor device according to any one of claims 1 to 7. 前記段差構造は、前記凹部が深さ方向に複数段に区分されることによって形成された構造であり、前記凹部の側面全体にわたって形成されている、請求項に記載の半導体装置。 The semiconductor device according to claim 8 , wherein the step structure is a structure formed by dividing the recess into a plurality of steps in the depth direction, and is formed over the entire side surface of the recess. 前記半導体チップ上に配置され、間隔を空けて前記導電部材に対向する第2導電部材をさらに含み、
前記樹脂パッケージは、前記導電部材と前記第2導電部材との間の空間に入り込むように、前記半導体チップ、前記導電部材、前記コンタクトブロックおよび前記第2導電部材を封止している、請求項1〜9のいずれか一項に記載の半導体装置。
Further comprising a second conductive member disposed on the semiconductor chip and facing the conductive member at a distance.
The resin package seals the semiconductor chip, the conductive member, the contact block, and the second conductive member so as to enter the space between the conductive member and the second conductive member. The semiconductor device according to any one of 1 to 9 .
前記導電部材は、裏面が前記樹脂パッケージから露出していて、ヒートシンクの役割を果たしている、請求項1〜10のいずれか一項に記載の半導体装置。 The conductive member, the rear surface is not exposed from the resin package, and plays a role of a heat sink, the semiconductor device according to any one of claims 1 to 10. 前記半導体装置は、
第2半導体チップと、
前記第2半導体チップを支持し、前記導電部材から離れて配置された第3導電部材と、
前記コンタクトブロックの他端に配置され、前記第3導電部材と電気的に接続された中継部材とをさらに含む、請求項1〜11のいずれか一項に記載の半導体装置。
The semiconductor device is
A second semiconductor chip,
A third conductive member that supports the second semiconductor chip and is arranged apart from the conductive member;
Wherein disposed on the other end of the contact block, the third further comprising a conductive member and electrically connected to the relay board, a semiconductor device according to any one of claims 1 to 11.
前記半導体装置は、
前記導電部材としてのハイサイドベース部材、およびその上に配置された前記半導体チップとしてのハイサイドスイッチング素子を含むハイサイドアセンブリと、
前記ハイサイドアセンブリから離れて配置され、前記導電部材としてのローサイドベース部材、およびその上に配置された前記半導体チップとしてのローサイドスイッチング素子を含むローサイドアセンブリと、
前記ハイサイドアセンブリおよび前記ローサイドアセンブリを封止する樹脂パッケージとを含む、パワー半導体モジュールである、請求項1〜9のいずれか一項に記載の半導体装置。
The semiconductor device is
A high side base member as the conductive member, and a high side assembly including a high side switching element as the semiconductor chip arranged thereon,
A low-side assembly that is arranged apart from the high-side assembly and that includes a low-side base member as the conductive member, and a low-side switching element as the semiconductor chip arranged on the low-side base member;
The semiconductor device according to any one of claims 1 to 9 , which is a power semiconductor module including a resin package that seals the high side assembly and the low side assembly.
前記ハイサイドベース部材および前記ローサイドベース部材は、それぞれ、裏面が前記樹脂パッケージから露出していて、ヒートシンクの役割を果たしている、請求項13に記載の半導体装置。 14. The semiconductor device according to claim 13 , wherein the high-side base member and the low-side base member each have a back surface exposed from the resin package and serve as a heat sink. 前記樹脂パッケージから突出するように前記ハイサイドベース部材と一体的に形成されたハイサイド端子と、
前記樹脂パッケージから突出するように前記ローサイドスイッチング素子上に配置され、間隔を空けて前記ローサイドベース部材に対向するローサイド端子とを含む、請求項13または14に記載の半導体装置。
A high-side terminal integrally formed with the high-side base member so as to project from the resin package;
The semiconductor device according to claim 13 , further comprising: a low-side terminal that is disposed on the low-side switching element so as to project from the resin package and that faces the low-side base member with a space therebetween.
前記ハイサイドスイッチング素子上に配置され、前記ローサイドベース部材と電気的に接続された中継部材をさらに含む、請求項13〜15のいずれか一項に記載の半導体装置。 16. The semiconductor device according to claim 13 , further comprising a relay member arranged on the high side switching element and electrically connected to the low side base member. 前記段差構造は、第1の凹部と、前記第1の凹部の底部がさらに窪むことによって形成され、前記第1の凹部よりも幅狭な第2の凹部とを含む、請求項に記載の半導体装置。 The step structure includes a first recess, the bottom of the first recess is formed by further recessed, and a the narrow second concave portion than the first recess, according to claim 8 Semiconductor device. 前記第1の凹部と前記第2の凹部との幅の差は、前記第2の凹部の幅よりも小さい、請求項17に記載の半導体装置。 The semiconductor device according to claim 17 , wherein a difference in width between the first recess and the second recess is smaller than a width of the second recess. 前記漏れ出し部分は、前記凹部の外側に形成された前記導電部材の表面に対向する面を有している、請求項1〜18のいずれか一項に記載の半導体装置。 The leakage out portion, before SL has a surface opposite to the surface of the conductive member formed on the outside of the concave portion, the semiconductor device according to any one of claims 1 to 18.
JP2019013436A 2019-01-29 2019-01-29 Semiconductor device Active JP6698186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019013436A JP6698186B2 (en) 2019-01-29 2019-01-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019013436A JP6698186B2 (en) 2019-01-29 2019-01-29 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017199867A Division JP2018029201A (en) 2017-10-13 2017-10-13 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2019062245A JP2019062245A (en) 2019-04-18
JP6698186B2 true JP6698186B2 (en) 2020-05-27

Family

ID=66176760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019013436A Active JP6698186B2 (en) 2019-01-29 2019-01-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP6698186B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS635537A (en) * 1986-06-25 1988-01-11 Nec Corp Semiconductor device
JPH01309336A (en) * 1988-06-08 1989-12-13 Nec Corp Semiconductor container
JP2857648B2 (en) * 1991-02-28 1999-02-17 サンケン電気株式会社 Electronic component manufacturing method
JP3062691B1 (en) * 1999-02-26 2000-07-12 株式会社三井ハイテック Semiconductor device
JP3748849B2 (en) * 2002-12-06 2006-02-22 三菱電機株式会社 Resin-sealed semiconductor device
JP2008311366A (en) * 2007-06-13 2008-12-25 Denso Corp Resin-sealed semiconductor device
JP2010109253A (en) * 2008-10-31 2010-05-13 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2019062245A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
US9240371B2 (en) Semiconductor module, semiconductor device having semiconductor module, and method of manufacturing semiconductor module
US9831160B2 (en) Semiconductor device
US20100007026A1 (en) Semiconductor device and method of manufacturing the same
JP6610590B2 (en) Semiconductor device and manufacturing method thereof
US20080191325A1 (en) Semiconductor device and packaging structure therefor
JP2007073743A (en) Semiconductor device
JP4935765B2 (en) Manufacturing method of semiconductor device
US10943859B2 (en) Semiconductor device
US9502327B2 (en) Semiconductor device and method for manufacturing the same
JP2012015349A (en) Semiconductor device
CN104821302A (en) Semiconductor device
JP6350364B2 (en) Connection structure
JP6129107B2 (en) Power semiconductor device and method for manufacturing power semiconductor device
US10777542B2 (en) Power semiconductor module for an inverter circuit and method of manufacturing the same
JP6698186B2 (en) Semiconductor device
JP2018029201A (en) Semiconductor device
JP2017092056A (en) Power semiconductor device
CN110459525B (en) Power system with inverter and manufacturing method thereof
JP4062157B2 (en) Semiconductor module mounting structure
JP2015138843A (en) Semiconductor device and manufacturing method of the same
JP7473376B2 (en) Semiconductor Device
US10685904B2 (en) Packaging device and manufacturing method thereof
CN113056813A (en) Semiconductor device with a plurality of semiconductor chips
JP2016066663A (en) Semiconductor device
JP5308979B2 (en) Semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6698186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250