JPS635537A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS635537A
JPS635537A JP61150341A JP15034186A JPS635537A JP S635537 A JPS635537 A JP S635537A JP 61150341 A JP61150341 A JP 61150341A JP 15034186 A JP15034186 A JP 15034186A JP S635537 A JPS635537 A JP S635537A
Authority
JP
Japan
Prior art keywords
semiconductor element
heat sink
grooves
die
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61150341A
Other languages
Japanese (ja)
Inventor
Hirokazu Fujisawa
藤澤 弘和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61150341A priority Critical patent/JPS635537A/en
Publication of JPS635537A publication Critical patent/JPS635537A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • H01L2224/26152Auxiliary members for layer connectors, e.g. spacers being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/26175Flow barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83051Forming additional members, e.g. dam structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To significantly reduce the stress to generate in a semiconductor element after a die-bonding treatment is performed and to prevent the generation of the slip dislocation of a semiconductor device by providing grooves on a heat sink at the outer peripheral parts of the semiconductor element fusion-welded on the heat sink. CONSTITUTION:A heat sink 10 with grooves 11 formed on the surface on a side where a die-bonding treatment is performed on a semiconductor element 13 and also, at the outer peripheral parts of the semiconductor element 13 die-bonded through a solder 12 is provided. Here, the main stress of the central part of the semiconductor element 13 is large within an extent that the depth of the grooves 11 is small and the main stress becomes smaller according as the depth of the grooves 11 becomes larger and deeper, but the deep grooves 11 make smaller and weaker the mechanical strength as the thickness of the heat sink 10 is small. Accordingly, the interval between the grooves 11 and the width and depth of the grooves 11 are decided in such a way as to become the optimum in respective cases according to the kinds of a semiconductor device and a die-bonding treatment device. Thereby, the thermal stress to generate in the semiconductor element at the time of die-bonding treatment is reduced and the generation of the slip dislocation of the semiconductor element is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device.

し従来の技術〕 −mに、半導体装置は所定の大きさに形成されたヒート
−シンクの一表面上のソルダー上に半導体素子を位置決
めしダイボンディング処理によりソルダーを熔融したの
ち冷却して固着することにより作製されるものである。
[Prior art]-m, a semiconductor device is manufactured by positioning a semiconductor element on a solder on one surface of a heat sink formed to a predetermined size, melting the solder by a die bonding process, and then cooling and fixing it. It is made by

ヒートシンクは、シリコンあるいはダイヤモンド等の薄
板(ウェハー)であり、半導体素子の放熱機能を有する
。ヒート−シンクの半導体素子の固着面はダイボンディ
ングによる爆着を確実・容易にするため表面にTi。
The heat sink is a thin plate (wafer) made of silicon or diamond, and has a heat dissipation function for the semiconductor element. The surface of the heat sink to which the semiconductor element is fixed is coated with Ti to ensure and facilitate explosive bonding by die bonding.

Pt、およびSn、またはAuSn合金が金属層として
蒸着されている。
Pt and Sn or AuSn alloys are deposited as metal layers.

従来の一例について第4図(a)・(b)および第5図
(a)・ (b)を参照して説明する。第4図(a)・
 (b)のそれぞれはヒートシンク上に半導体素子を固
着した従来の半導体装置の一例を示す平面図およびE−
E縦断面図、また第5図(a)・(b)のそれぞれは半
導体素子を配設する以前の第4図のヒート−シンクを示
す正面図およびD−D断面図である。
A conventional example will be explained with reference to FIGS. 4(a) and 5(b) and FIGS. 5(a) and 5(b). Figure 4(a)・
(b) is a plan view showing an example of a conventional semiconductor device in which a semiconductor element is fixed on a heat sink, and E-
E longitudinal sectional view, and FIGS. 5(a) and 5(b) are a front view and a DD sectional view showing the heat sink of FIG. 4 before a semiconductor element is disposed thereon.

第4図(a)・ (1つ)において半導体装置はヒート
シンク30にソルダー42をもって半導体素子43を固
着したものである。ヒートシンク30は平坦な薄板状で
あり上面の所定位置の所定量のソルダー42によって半
導体素子43が固着されている。第5図(a)・ (b
)に示すようにヒートシンク30の平坦な上面の所定位
置には所定量のソルダー31が配設される。半導体装置
は半導体素子(図示されず)をペレットとしてソルダー
31の上に配設し、ダイボンデング処理によりソルダー
31を加熱熔融させて半導体素子をヒートシンク30に
熔着させて作成する。
In the semiconductor device shown in FIG. 4(a) (one), a semiconductor element 43 is fixed to a heat sink 30 with a solder 42. The heat sink 30 has a flat thin plate shape, and a semiconductor element 43 is fixed thereto by a predetermined amount of solder 42 at a predetermined position on the upper surface. Figure 5 (a) and (b)
), a predetermined amount of solder 31 is disposed at a predetermined position on the flat upper surface of the heat sink 30. The semiconductor device is manufactured by disposing a semiconductor element (not shown) in the form of a pellet on a solder 31, heating and melting the solder 31 through a die bonding process, and welding the semiconductor element to the heat sink 30.

また、半導体装置は製造工程でヒートシンクの下面が鋼
材のような熱伝導率の高い材質のステムに固定されてボ
ンディング処理工程に入る。半導体装置が例えば半導体
レーザで光半導体素子をGaAs、ヒートシンクをシリ
コン、またステムを鋼材により製造される場合、それぞ
れの素材の熱膨張係数は6.86 X 10−6/”C
・2.6X10−’/℃・1.65 x 10−5/”
Cである。ダイボンデイン・グ処理を250〜260℃
で行ない、ソルダーによる応力緩和等を無視する場合、
半導体素子の中央でのヒートシンクとの密着部の応力は
5 X 108ダイン/ cra 2となる。
Further, during the manufacturing process of a semiconductor device, the lower surface of the heat sink is fixed to a stem made of a material with high thermal conductivity, such as steel, and then enters a bonding process. If a semiconductor device is, for example, a semiconductor laser, and the optical semiconductor element is made of GaAs, the heat sink is made of silicon, and the stem is made of steel, the coefficient of thermal expansion of each material is 6.86 x 10-6/"C.
・2.6X10-'/℃・1.65 x 10-5/"
It is C. Die bonding treatment at 250-260℃
If you ignore stress relaxation etc. due to solder,
The stress at the center of the semiconductor element in close contact with the heat sink is 5×108 dynes/cra2.

通常の半導体レーザは108ダイン/C112を超える
応力ではすべり転位が発生する可能性を有する。
Ordinary semiconductor lasers have the possibility of generating slip dislocations under stress exceeding 108 dynes/C112.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように従来の半導体装置は熱伝導率の高いステム
に固定したヒートシンクの平坦な上面に半導体素子を配
設し、加熱してソルダーを熔融させることにより熔着し
て製造しているので、ステム、ヒートシンクおよび半導
体素子それぞれの熱膨張係数の違いにより半導体素子に
大きな熱応力が発生し、半導体素子にすべり転位が発生
して信頼性が低下することがあるという問題点があった
As mentioned above, conventional semiconductor devices are manufactured by placing a semiconductor element on the flat top surface of a heat sink fixed to a stem with high thermal conductivity, and welding it by heating and melting the solder. There has been a problem in that a large thermal stress is generated in the semiconductor element due to the difference in the coefficient of thermal expansion of the stem, the heat sink, and the semiconductor element, which may cause slip dislocation in the semiconductor element and reduce reliability.

本発明の目的は上記問題点を解決した半導体装1を提供
することにある。
An object of the present invention is to provide a semiconductor device 1 that solves the above problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による半導体装1は半導体素子をダイボンディン
グ処理する側の面上で且つダイボンディングされた半導
体素子の外周部分に溝を形成したヒートシンクを有する
The semiconductor device 1 according to the present invention has a heat sink in which a groove is formed on the side on which the semiconductor element is die-bonded and in the outer peripheral portion of the die-bonded semiconductor element.

〔実施例〕〔Example〕

次に本発明の半導体装置について図面を参照して説明す
る。
Next, the semiconductor device of the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例を示す平面図・第1図
(b)・(c)はそれぞれ第1図(a)のA−A断面図
およびB−B断面図である。
FIG. 1(a) is a plan view showing one embodiment of the present invention. FIGS. 1(b) and (c) are sectional views taken along line AA and line BB in FIG. 1(a), respectively. .

第1図(a)・ (b) ・ (c)において、ヒート
シンク10は上面に溝11を有し、i1!11で仕切ら
れた面の一つに半導体素子13がソルダー1幅50μm
・深さ140μmの溝11が縦方向1mm・横方向0.
5 m mの間隔で形成される。またヒートシンク10
は図示されるように縦方向の満11がほぼ中央に、また
横方向の溝11はそれぞれ外縁から0.25 m mの
位置になるように1mmの間隔で20〜30μm残して
切取られて形成される。ヒートシンク10の表面はダイ
ボンディング処理のための金属層が蒸着され、更に金属
マスクによりヒートシンク10の溝11により形成され
る台面にソルダー12となる金属層により半導体素子1
3が熔着されている。ソルダー12は半導体素子13を
熔着すると共に半導体素子13の周辺の溝11に落ち込
み固形化して熔着する。
In FIGS. 1(a), (b), and (c), the heat sink 10 has a groove 11 on its upper surface, and a semiconductor element 13 is placed on one of the surfaces partitioned by i1!11 with a solder 1 having a width of 50 μm.
- Groove 11 with a depth of 140 μm is 1 mm in the vertical direction and 0.0 mm in the horizontal direction.
They are formed at intervals of 5 mm. Also heat sink 10
As shown in the figure, the vertical grooves 11 are cut out approximately at the center, and the horizontal grooves 11 are cut out at 1 mm intervals, leaving 20 to 30 μm, so that each groove is 0.25 mm from the outer edge. be done. A metal layer for die bonding processing is deposited on the surface of the heat sink 10, and a metal layer that becomes a solder 12 is formed on the base surface formed by the grooves 11 of the heat sink 10 using a metal mask to bond the semiconductor element 1.
3 is welded. The solder 12 welds the semiconductor element 13, falls into the groove 11 around the semiconductor element 13, solidifies, and welds the semiconductor element 13.

半導体素子13の中央部でヒートシンク10との接着部
分の応力と、?411の深さとの関係は第2図に一例を
示して説明する。第2図は半導体素子(GaAs)の厚
さ100μm−幅200am、並びにシリコンヒートシ
ンクの厚さ280μm・幅1mmの例における溝の深さ
〔μm〕に対する主応力〔ダイン/C11〕値を有限要
素法(ツィエンキーウ“′イッツ:基礎工学におけるマ
トリクス有限要素法等参照)によって求めた応力の変化
を示す図である。
The stress at the bonded part to the heat sink 10 at the center of the semiconductor element 13 and ? The relationship with the depth of 411 will be explained by showing an example in FIG. Figure 2 shows the principal stress [dyne/C11] value with respect to groove depth [μm] in an example of a semiconductor element (GaAs) with a thickness of 100 μm and a width of 200 am, and a silicon heat sink with a thickness of 280 μm and a width of 1 mm using the finite element method. FIG. 2 is a diagram showing changes in stress determined by (Zienkiewiw "'its: matrix finite element method in basic engineering, etc.)".

第2図で示されるように、溝の深さが小さい範囲では半
導体素子中央部の主応力は大きく、溝の深さが大きく深
くなるにしたがって主応力は小さくなり、特にこの例で
は深さが120μm以上で主応力が108ダイン/cm
2以下となる。しかし、深い溝はヒートシンクの厚さが
小さいので機械的強度を小さく弱くすると共に溝の底部
がくびれでネックとなり放熱特性も悪化させる。従って
、この実施例では厚さ280μmのヒートシンクに対し
て140ALmの深さの溝を設けた。溝の深さはヒート
シンクの材質および厚さ、並びに放熱性と機械強度との
何れを重視するかによって最適値が決められる。
As shown in Figure 2, the principal stress at the center of the semiconductor element is large in the range where the depth of the groove is small, and as the depth of the groove increases, the principal stress decreases. Principal stress is 108 dynes/cm at 120 μm or more
2 or less. However, deep grooves reduce the thickness of the heat sink, resulting in a small and weak mechanical strength, and the bottom of the groove becomes a neck, which deteriorates heat dissipation characteristics. Therefore, in this example, a groove having a depth of 140 ALm was provided for a heat sink having a thickness of 280 μm. The optimum depth of the groove is determined depending on the material and thickness of the heat sink, and whether heat dissipation or mechanical strength is more important.

第3図(a)、(b)は第1図(a>において半導体素
子を爆着するまえのヒートシンクを示す正面図およびC
−C断面図である。ヒートシンク10には縦・横に溝1
1が形成され、溝11により形成される台形上面の一つ
にソルダー22の金属層があり、半導体素子(図示され
ない)はソルダー22の上に配置され、ダイボンディン
グ処理により爆着される。ヒートシンク10の表面は爆
着の便宜のため周知の技術により金属層が形成されてい
る。
FIGS. 3(a) and 3(b) are front views showing the heat sink before the semiconductor elements are bonded in FIG. 1(a) and C.
-C sectional view. The heat sink 10 has grooves 1 vertically and horizontally.
1 is formed, and a metal layer of a solder 22 is located on one of the upper surfaces of the trapezoid formed by the groove 11, and a semiconductor element (not shown) is placed on the solder 22 and is explosively bonded by a die bonding process. A metal layer is formed on the surface of the heat sink 10 by a well-known technique to facilitate explosive bonding.

上記実施例では半導体素子の材質をGaAs、ヒートシ
ンクとしてシリコン、且つステムとして銅を用いて説明
したが、他の材料においても応用できることは云うまで
もない。溝の間隔1幅、深さは一例を数値で示して説明
したが、半導体装置およびダイボンディング処理装置の
種類によりそれぞれの場合に最適化をはかって決定され
るもので形状も含め上記説明に限定されるものではない
In the above embodiment, GaAs is used as the material of the semiconductor element, silicon is used as the heat sink, and copper is used as the stem, but it goes without saying that other materials can be used. Although the width and depth of the grooves have been explained using numerical values as an example, they are determined by optimizing each case depending on the type of semiconductor device and die bonding processing equipment, and are limited to the above explanation including the shape. It is not something that will be done.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明の単導体装置は、爆着され
た半導体素子の外周部分のヒートシンク上に溝を有する
ことにより、半導体素子9ヒートシンク、およびステム
の材料の違いによる熱膨張係数差に起因し、ダイボンデ
ィング処理後に半導体素子に生ずる応力を大幅に軽減し
半導体装置のすべり転位の発生を防止できる効果がある
As explained above, the single-conductor device of the present invention has grooves on the heat sink at the outer periphery of the exploded-bonded semiconductor element, so that differences in thermal expansion coefficient due to differences in the materials of the semiconductor element 9 heat sink and stem can be avoided. This has the effect of significantly reducing the stress generated in the semiconductor element after the die bonding process and preventing the occurrence of slip dislocations in the semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)・(b)・(C)は本発明の半導体装置の
一実施例を示す平面図、A−A断面図、およびB−B断
面図、第2図は第1図(c)における溝の深さに対する
半導体素子中の応力変化図、第3図(a>・(b)のそ
れぞれは第1図(a)で半導体素子溶着前の正面図およ
びC−C断面図、第4図(a)・(b)のそれぞれは従
来の一例を示す半導体°素子溶着前の正面図およびE−
E断面図、第5図(a)・(b)のそれぞれは第4図(
a)において半導体素子溶着前の正面図およびD−D断
面図である。 10.30・・・・・・ヒートシンク、11・・・・・
・溝、12.22.42・・・・・・ソルダー、13.
43・・・・・・半導体素子。 (C) ¥31図 [り゛イA−・] 42図 ′Jf53図 t(Lン (E)) 万4図 αす (b) ¥i5図
FIGS. 1(a), (b), and (C) are a plan view, an AA sectional view, and a BB sectional view showing one embodiment of the semiconductor device of the present invention, and FIG. The stress change diagram in the semiconductor element with respect to the groove depth in c), Figure 3 (a> and (b)) are the front view and C-C sectional view of the semiconductor element before welding in Figure 1 (a), respectively. FIGS. 4(a) and 4(b) respectively show a front view and an E-
Each of E cross-sectional views and Figures 5(a) and (b) is similar to Figure 4(
FIG. 3A is a front view and a cross-sectional view taken along line DD before the semiconductor element is welded in FIG. 10.30...Heat sink, 11...
・Groove, 12.22.42...Solder, 13.
43... Semiconductor element. (C) ¥31 figure [Riii A-・] 42 figure 'Jf53 figure t (Ln (E)) ¥4 figure αsu (b) ¥i5 figure

Claims (1)

【特許請求の範囲】[Claims] 半導体素子をダイボンディング処理する面上で且つダイ
ボンディング処理する半導体素子の外周部分に溝を形成
したヒートシンクを有することを特徴とする半導体装置
1. A semiconductor device comprising a heat sink having a groove formed on a surface on which a semiconductor element is subjected to a die bonding process and in an outer periphery of a semiconductor element to be subjected to a die bonding process.
JP61150341A 1986-06-25 1986-06-25 Semiconductor device Pending JPS635537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150341A JPS635537A (en) 1986-06-25 1986-06-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150341A JPS635537A (en) 1986-06-25 1986-06-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS635537A true JPS635537A (en) 1988-01-11

Family

ID=15494877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150341A Pending JPS635537A (en) 1986-06-25 1986-06-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS635537A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310055A (en) * 1988-06-03 1989-12-14 Inax Corp Tile sticking device to panel
JPH02274955A (en) * 1989-04-17 1990-11-09 Inax Corp Device of applying tile to panel
JPH02274956A (en) * 1989-04-17 1990-11-09 Inax Corp Device of applying tile to panel
US7235876B2 (en) * 2005-09-12 2007-06-26 Denso Corporation Semiconductor device having metallic plate with groove
JP2019062245A (en) * 2019-01-29 2019-04-18 ローム株式会社 Semiconductor device
US10777542B2 (en) 2014-03-04 2020-09-15 Rohm Co., Ltd. Power semiconductor module for an inverter circuit and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310055A (en) * 1988-06-03 1989-12-14 Inax Corp Tile sticking device to panel
JPH02274955A (en) * 1989-04-17 1990-11-09 Inax Corp Device of applying tile to panel
JPH02274956A (en) * 1989-04-17 1990-11-09 Inax Corp Device of applying tile to panel
US7235876B2 (en) * 2005-09-12 2007-06-26 Denso Corporation Semiconductor device having metallic plate with groove
US10777542B2 (en) 2014-03-04 2020-09-15 Rohm Co., Ltd. Power semiconductor module for an inverter circuit and method of manufacturing the same
JP2019062245A (en) * 2019-01-29 2019-04-18 ローム株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP4761708B2 (en) Electronic assembly including a die having an integrated circuit and a diamond layer and method of manufacturing the same
US4078711A (en) Metallurgical method for die attaching silicon on sapphire devices to obtain heat resistant bond
EP0119691A2 (en) Bonding semiconductive bodies
JPS635537A (en) Semiconductor device
JP2014146645A (en) Semiconductor device
KR100764393B1 (en) Method of fabricating a high power array type semiconductor laser device
US3786556A (en) Mounting semiconductor bodies
US3061766A (en) Semiconductor device
JPH04315486A (en) Photoelectric device and manufacture thereof
US3581386A (en) Methods of manufacturing semiconductor devices
JPS58143553A (en) Manufacture of semiconductor device
JPS5946415B2 (en) Manufacturing method of semiconductor device
JP2500639B2 (en) Method for forming end face coating film of semiconductor laser
US3363308A (en) Diode contact arrangement
JPH0529506A (en) Semiconductor device
US20230040019A1 (en) Semiconductor device and method of manufacturing the same
JPS63138794A (en) Die bonding for semiconductor laser element
JPS63300519A (en) Semiconductor device
JPH0582568A (en) Bonding method of semiconductor chip
JPS59110185A (en) Formation of protection film for semiconductor laser device end surface
JPH05226764A (en) Semiconductor laser
JPS60214536A (en) Manufacture of semiconductor device
JPS59983A (en) Manufacture of semiconductor laser device
JPH0377676B2 (en)
JPH05343578A (en) Semiconductor device and manufacture thereof