JP6698185B2 - Method for manufacturing fireproof wood structural material - Google Patents

Method for manufacturing fireproof wood structural material Download PDF

Info

Publication number
JP6698185B2
JP6698185B2 JP2019004786A JP2019004786A JP6698185B2 JP 6698185 B2 JP6698185 B2 JP 6698185B2 JP 2019004786 A JP2019004786 A JP 2019004786A JP 2019004786 A JP2019004786 A JP 2019004786A JP 6698185 B2 JP6698185 B2 JP 6698185B2
Authority
JP
Japan
Prior art keywords
wood
layer
supporting portion
structural material
burnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019004786A
Other languages
Japanese (ja)
Other versions
JP2019060233A (en
JP2019060233A5 (en
Inventor
貴宏 蛇石
貴宏 蛇石
真理子 関
真理子 関
弘之 石垣
弘之 石垣
瑛一 黒田
瑛一 黒田
宏 高嶋
宏 高嶋
田中 康夫
康夫 田中
郷 高木
郷 高木
佳伸 熊川
佳伸 熊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Forestry Co Ltd
Original Assignee
Sumitomo Forestry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Forestry Co Ltd filed Critical Sumitomo Forestry Co Ltd
Priority to JP2019004786A priority Critical patent/JP6698185B2/en
Publication of JP2019060233A publication Critical patent/JP2019060233A/en
Publication of JP2019060233A5 publication Critical patent/JP2019060233A5/ja
Application granted granted Critical
Publication of JP6698185B2 publication Critical patent/JP6698185B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Building Environments (AREA)

Description

本発明は、耐火木製構造材に関する。   The present invention relates to a fireproof wooden structural material.

木材は、火災時に外部から加熱されると表面が燃えて炭化層が形成される、この炭化層が木材の表面に均一に形成されると木材内部への熱の侵入が抑制され、木材内部の構造的な劣化が抑制される。この特性を利用し、柱や梁等に使用する木材を太くし、燃焼後の木材の内部に長期荷重を支持し得る健全な断面が確保されるように、木材の表面に、燃えて炭化層を形成すべき所定の厚みの燃えしろを設ける技術が知られている。このような燃えしろを設けた構造材等を主要構造部に用いて、木造建築物を準耐火建築物とすることも行われている。   When wood is heated from the outside in the event of a fire, the surface burns to form a carbonized layer.If this carbonized layer is uniformly formed on the surface of the wood, heat penetration into the wood is suppressed, and Structural deterioration is suppressed. By utilizing this characteristic, the wood used for pillars and beams, etc. is made thicker, and the burned carbonized layer is burned on the surface of the wood so that a healthy cross section capable of supporting long-term loads is secured inside the wood after combustion. There is known a technique of providing a burn-off portion having a predetermined thickness to form a crevice. It is also practiced to make a wooden building a quasi-fireproof building by using a structural material provided with such a burning margin for a main structural portion.

木材や木材と他の材料との複合材の表面に燃えしろを設けて、耐火材の部材を得る技術は種々提案されており、例えば、特許文献1には、長期荷重を支持するに足り木材等からなる荷重支持層の外側に、不燃材にしてかつ断熱層を有する断熱材を有した燃えどまり層を設け、さらにその外側に、所定の燃えしろ厚さを有する木材からなる燃えしろ層とを設けた構造材が提案されている。また、特許文献2には、荷重支持層の外側に、難燃薬剤を注入した木材による燃えどまり層を設け、その外側に難燃薬剤を含まない表層を備えた耐火集成材が提案されている。また、特許文献3には、長期荷重を支持するに足り木材等からなる荷重支持層の外側に、所定の燃えしろ厚さを有し荷重支持層より熱慣性を低くした木材からなる燃えしろ層を備えた構造材が提案されている。   Various techniques have been proposed for obtaining a refractory member by providing a burning margin on the surface of wood or a composite material of wood and another material. For example, in Patent Document 1, wood sufficient to support a long-term load is proposed. A burn-out layer having a heat insulating material that is a non-combustible material and has a heat insulating layer is provided on the outside of the load supporting layer made of A structural material provided with is proposed. Further, Patent Document 2 proposes a fire-resistant laminated material having a burn-out layer made of wood injected with a flame-retardant agent on the outside of the load supporting layer, and a surface layer containing no flame-retardant agent on the outside thereof. . Further, in Patent Document 3, a flare layer made of wood having a predetermined flammable thickness and a lower thermal inertia than the load support layer is provided outside a load support layer made of wood or the like sufficient to support a long-term load. The structural material provided with is proposed.

特許第4065416号公報Japanese Patent No. 4065416 特許第4958098号公報Japanese Patent No. 4958098 特許第4292119号公報Japanese Patent No. 4292119

特許文献1の構造材のように、木材と不燃材等の異種材料を組み合わせた構造材や、特許文献2の耐火集成材のように、難燃薬剤を用いたものは、製造工程が複雑となり製造コストが高くなる。特許文献3の構造材においては、荷重支持層より外側に、荷重支持層より熱慣性を低くした木材からなる燃えしろ層を設けており、荷重支持層より熱慣性を高くした木材からなる燃えしろ層については記載されていない。   The manufacturing process is complicated for the structural material in which different kinds of materials such as wood and non-combustible material are combined like the structural material in Patent Document 1 and the fire retardant laminated material in Patent Document 2 where the flame retardant agent is used. Manufacturing costs are high. In the structural material of Patent Document 3, a burnout layer made of wood having a lower thermal inertia than the load support layer is provided outside the load support layer, and a burnout layer made of wood having a higher thermal inertia than the load support layer is provided. The layers are not mentioned.

従って、本発明の目的は、燃えどまり層が高い燃えどまり機能を発現し、耐火性能に優れ、製造も容易な耐火木製構造材を提供することにある。   Therefore, an object of the present invention is to provide a fireproof wood structural material in which the burnt-out layer exhibits a high burn-out function, has excellent fire resistance and is easy to manufacture.

本発明は、長期荷重を支持する木製の荷重支持部と該荷重支持部を被覆する木製の燃えどまり層とを備え、前記燃えどまり層の構成木材は、晩材率が20%以上、晩材寸法が0.6mm以上である、耐火木製構造材を提供することにより、上記目的を達成したものである。   The present invention includes a wooden load supporting portion that supports a long-term load and a wooden burnt layer that covers the load supporting portion, and the wood constituting the burnable layer has a late lumber ratio of 20% or more and a late lumber. The above object is achieved by providing a refractory wood structural material having a dimension of 0.6 mm or more.

本発明の耐火木製構造材によれば、燃えどまり層の燃焼時に形状保持性に優れた炭化層が形成され、優れた耐火性能が得られるとともに、製造も容易である。   According to the fire-resistant wood structural material of the present invention, a carbonized layer having excellent shape retention is formed when the burnt-up layer is burned, excellent fire resistance performance is obtained, and production is easy.

図1(a)は、本発明の第1実施形態の耐火木製構造材を示す横断面図であり、図1(b)は、当該耐火木製構造材の構成部材の説明図である。FIG. 1(a) is a cross-sectional view showing a fireproof wooden structure material of a first embodiment of the present invention, and FIG. 1(b) is an explanatory view of constituent members of the fireproof wooden structure material. 図2(a)は、本発明の第2実施形態の耐火木製構造材を示す横断面図であり、図2(b)は、当該耐火木製構造材の構成部材の説明図である。FIG. 2A is a cross-sectional view showing a fire resistant wooden structural material according to a second embodiment of the present invention, and FIG. 2B is an explanatory view of constituent members of the fire resistant wooden structural material. 図3(a)は、晩材率及び晩材寸法の説明図であり、図3(b)は、耐火木製構造材の全体又は一部がラミナ積層体からなる場合の個々のラミナの年輪の形成状態の例を示す図である。Fig. 3(a) is an explanatory view of the late wood ratio and the night wood size, and Fig. 3(b) shows the annual rings of the individual lamina in the case where the whole or a part of the fire-resistant wood structural material is a lamina laminate. It is a figure which shows the example of a formation state. 図4は、広葉樹の年輪を示す図である。FIG. 4 is a diagram showing an annual ring of a hardwood. 図5(a)は、本発明の第3実施形態の耐火木製構造材を示す横断面図であり、図5(b)は、当該耐火木製構造材の構成部材の説明図である。Fig.5 (a) is a cross-sectional view showing a fireproof wooden structure material of a third embodiment of the present invention, and Fig.5(b) is an explanatory view of constituent members of the fireproof wooden structure material. 図6(a)は、本発明の第4実施形態の耐火木製構造材を示す横断面図であり、図6(b)は、当該耐火木製構造材の構成部材の説明図である。Fig.6 (a) is a cross-sectional view which shows the fire resistant wooden structure material of 4th Embodiment of this invention, and FIG.6(b) is explanatory drawing of the structural member of the said fire resistant wooden structure material. 図7(a)は、本発明の第5実施形態の耐火木製構造材を示す横断面図であり、図7(b)は、当該耐火木製構造材の構成部材の説明図である。FIG. 7(a) is a cross-sectional view showing a fire resistant wooden structure material of a fifth embodiment of the present invention, and FIG. 7(b) is an explanatory view of constituent members of the fire resistant wooden structure material. 図8(a)は、実施例3及び比較例2に用いたラミナ積層体の形状及び寸法を示す斜視図である。FIG. 8A is a perspective view showing the shape and dimensions of the lamina laminate used in Example 3 and Comparative Example 2. 図9は、燃焼試験1の結果を示す写真である。FIG. 9 is a photograph showing the result of the combustion test 1. 図10は、燃焼試験2の結果を示すグラフである。FIG. 10 is a graph showing the result of the combustion test 2.

以下、本発明をその好ましい実施形態に基づいて詳細に説明する。
本発明の第1実施形態の耐火木製構造材1は、木造建築物の梁として使用される構造用の角材であり、使用時に鉛直方向の上側に配される上面a、鉛直方向の下側に配される下面b、及び2つ側面c,cを有している。
本発明の第2実施形態の耐火木製構造材1Aは、木造建築物の柱として使用される構造用の角材であり、使用時に鉛直方向に延びて配される4側面e1〜e4を備えている。
第1及び第2実施形態の耐火木製構造材1,1Aは、図1(a)及び図2(a)に示すように、それぞれの断面に、長期荷重を支持する木製の荷重支持部11と該荷重支持部11を被覆する木製の燃えどまり層12とを備えている。荷重支持部11は、荷重支持部11単独で、固定荷重、積載荷重、積雪荷重の長期に生ずる荷重(長期荷重)に対して構造耐力上安全であるようにその断面設計がなされる。斯かる断面設計は公知である。
Hereinafter, the present invention will be described in detail based on its preferred embodiments.
The fire-resistant wooden structure material 1 of the first embodiment of the present invention is a structural square bar used as a beam of a wooden building, and has an upper surface a arranged on the upper side in the vertical direction during use and a lower surface in the vertical direction. It has a bottom surface b arranged and two side surfaces c, c.
The fire resistant wood structural material 1A of the second embodiment of the present invention is a structural square bar used as a pillar of a wooden building, and has four side surfaces e1 to e4 which are arranged to extend in the vertical direction during use. .
As shown in FIGS. 1(a) and 2(a), the fire-resistant wooden structural members 1 and 1A of the first and second embodiments have a wooden load supporting portion 11 for supporting a long-term load in each cross section. And a wood burnout layer 12 covering the load support 11. The load support section 11 is designed to have a cross-sectional design such that the load support section 11 alone is safe in terms of structural strength against a long-term load (long-term load) such as a fixed load, a load, and a snow load. Such cross-sectional designs are known.

火災時の木材の炭化速度は一般に毎分0.6〜1.0mmと言われており、例えば1時間の準耐火性能に対しては45mmの木材被覆を設ける燃えしろ設計が行われている。しかし、耐火性能になると火災終了後、自然に火が消えることが性能上要求されるため、厚さを増しただけの木材被覆では断熱層になる炭化層の形状保持性が十分ではなく、所定の耐火性能を確保することができない。
これに対して、第1及び第2実施形態の耐火木製構造材1,1Aにおいては、燃えどまり層12の構成木材に、晩材率が20%以上であり且つ晩材寸法が0.6mm以上である樹種の木材を用いていることによって、燃えどまり層12の燃焼時に形状保持性に優れた炭化層が形成される。また、晩材率が20%以上であり且つ晩材寸法が0.6mm以上である樹種の木材は、一定の熱容量を有していることから、断熱を期待できる形状保持性に優れた炭化層下の熱容量を効率的にいかすことで、より高い耐火性能が得られる。
The carbonization rate of wood in a fire is generally said to be 0.6 to 1.0 mm per minute, and for example, a burning margin design with a wood coating of 45 mm is performed for quasi fire resistance of 1 hour. However, when it comes to fireproof performance, it is required for the fire to extinguish naturally after the fire ends.Therefore, with a wood coating that is just thickened, the shape retention of the carbonized layer that becomes the heat insulating layer is not sufficient, It is not possible to secure the fire resistance performance of.
On the other hand, in the fire-resistant wood structural materials 1 and 1A of the first and second embodiments, the constituent wood of the burnt-up layer 12 has a late wood ratio of 20% or more and a night wood size of 0.6 mm or more. By using the wood of the above tree species, a carbonized layer having an excellent shape-retaining property is formed when the burnt-up layer 12 burns. In addition, since the wood of the tree species having the late wood ratio of 20% or more and the late wood size of 0.6 mm or more has a certain heat capacity, a carbonized layer excellent in shape retention that can be expected to be heat-insulated. Higher fire resistance can be obtained by efficiently utilizing the lower heat capacity.

図3(a)は、針葉樹の横断面の一部を示す図である。晩材61とは、図3(a)に示すように、木材の木部(もくぶ)のうち、密度が高く色が濃色の部分で、年輪64の外縁を形成する部分であり、早材62とは、木材の木部のうち、晩材61に比して密度が低く色が淡色の部分であり、晩材に比べて細胞が大形で細胞壁も薄い。
晩材率(%)は、図3(a)に示すように、樹木の半径方向に延びる直線Lに沿って、晩材61の長さL1と早材62の長さL2と年輪の間隔L3とを測定したときに、下記式で表される。
晩材率(%)=(晩材の長さL1/年輪の間隔L3) ×100・・・(1)
晩材寸法とは、上記の晩材部分の長さL1自体である。
FIG. 3A is a diagram showing a part of a cross section of a coniferous tree. As shown in FIG. 3( a ), the late wood 61 is a part of the wood (mokubu) having a high density and a dark color, which forms the outer edge of the annual ring 64. The early wood 62 is a part of the wood of the wood that has a lower density and a lighter color than the late wood 61, and has larger cells and thinner cell walls than the late wood.
As shown in FIG. 3A, the late wood ratio (%) is a length L1 of the late wood 61, a length L2 of the early wood 62 and an interval L3 between annual rings along a straight line L extending in the radial direction of the tree. When and are measured, they are represented by the following formula.
Late wood ratio (%) = (night wood length L1/annular ring interval L3) x 100 (1)
The size of the late wood is the length L1 itself of the above-mentioned night wood part.

木材は、その横断面において、木裏側に近い部分と木表側に近い部分とで、晩材率(%)が異なる場合がある。そのような場合、木裏側に近い面65と木表側に近い面66との間の中央部付近に位置する年輪の間隔L3及びその年輪64に含まれる晩材61の長さL1から晩材率(%)を求める。「中央部付近に位置する年輪」とは、中央部に位置する年輪が明確であればその年輪、中央部に年輪間の境界が位置する等、中央部に位置する年輪が一義的に決まらない場合は、該中央部に最も近い年輪である。中央部からの距離が等しい2つの年輪がある場合は、2つの年輪から任意に選択した一方の年輪である。
晩材率や晩材寸法は、構造材の横断面の10箇所以上で年輪の間隔L3及び晩材61の長さL1を測定し、その長さL1及び算出した晩材率の平均を、晩材寸法及び晩材率とする。横断面は、構造材の長手方向の中央部の断面とすることが好ましい。図1(b)、図2(b)、図5(b)、図6(b)及び図7(b)に示すように、燃えどまり層12が、複数のラミナの積層体20、23〜25からなる場合、荷重支持部11の周囲に位置するラミナ2を10本以上選択し、選択したラミナのそれぞれについて、年輪の間隔L3及び晩材61の長さL1を測定して、長さL1及び晩材率を算出し、その10本以上のラミナについての長さ1及び晩材率の平均値を、その燃えどまり層の構成木材の晩材寸法及び晩材率とする。長さL1及び晩材率を算出するラミナは、荷重支持部11の周囲における特定の箇所のラミナに集中しないように選択する。また、図3(b)は、耐火木製構造材の全体又は一部がラミナ積層体からなる場合の個々のラミナの年輪の形成状態の例を示す図である。図3(b)中に示すラミナ2Aのように、樹芯67を含むラミナ2については、その樹芯67と、該樹芯67からの距離が最も遠い面66Aとの間の中央部に位置する年輪64Aの間隔L3及び晩材61の長さL1を、当該ラミナ2についての年輪の間隔L3及び晩材61の長さL1とする。
In the cross section of wood, the late wood rate (%) may differ between the part close to the tree back side and the part close to the tree front side. In such a case, the interval L3 between the annual rings located near the center between the surface 65 close to the back of the tree and the surface 66 close to the front of the tree, and the length L1 of the late wood 61 included in the annual ring 64 to the late wood ratio. Calculate (%). "Annual rings located near the central part" do not uniquely determine the annual rings located in the central part, such as the annual rings located in the central part and the boundaries between the annual rings located in the central part. In the case, the annual ring is the closest to the central part. When there are two annual rings with the same distance from the center, it is one of the annual rings arbitrarily selected from the two annual rings.
The late wood ratio and the night wood size are measured by measuring the annual ring interval L3 and the length L1 of the night wood 61 at 10 or more locations in the cross section of the structural material, and calculating the average of the length L1 and the calculated late wood ratio. The material size and the late wood ratio are used. The cross section is preferably the cross section of the central portion of the structural material in the longitudinal direction. As shown in FIG. 1( b ), FIG. 2( b ), FIG. 5( b ), FIG. 6( b ), and FIG. 7( b ), the burnt-out layer 12 is a laminated body of a plurality of lamina 20, 23-. In the case of 25, 10 or more lamina 2 located around the load supporting portion 11 are selected, and for each of the selected lamina, the annual ring interval L3 and the length L1 of the night material 61 are measured to obtain the length L1. And the late lumber ratio are calculated, and the length 1 and the average value of the late lumber ratio for the 10 or more lamina are used as the late lumber dimension and the late lumber percentage of the wood constituting the burnt layer. The lamina for calculating the length L1 and the late wood ratio is selected so as not to concentrate on the lamina at a specific location around the load supporting portion 11. Moreover, FIG.3(b) is a figure which shows the example of the formation state of the annual ring of each lamina when all or one part of a fireproof wooden structure material consists of a lamina laminated body. As with the lamina 2A shown in FIG. 3B, the lamina 2 including the tree core 67 is located at the center between the tree core 67 and the surface 66A farthest from the tree core 67. The interval L3 between the annual rings 64A and the length L1 of the evening lumber 61 are set to be the interval L3 between the annual rings and the length L1 of the evening lumber 61 for the lamina 2.

図4(a)及び図4(b)は、広葉樹のうちの環孔材であるクリとハリギリの顕微鏡写真である。環孔材は、年輪64の初めに他の部分と比べて直径が著しく大きい導管ができて、それらが年輪に沿って並んでいる材であり、その大きい導管が並んでいる部分62が、早材62であり、早材62間に位置する部分が晩材61である。広葉樹(環孔材)についての晩材率(%)も、上記の式(1)に従い算出される。   FIG. 4(a) and FIG. 4(b) are photomicrographs of chestnuts and squirrels, which are ring pore materials of hardwood. The annular hole material is a material in which a conduit having a diameter significantly larger than that of the other parts is formed at the beginning of the annual ring 64, and they are arranged along the annual ring. The lumber 62, and the portion located between the early lumbers 62 is the late lumber 61. The latewood rate (%) for hardwood (ring hole) is also calculated according to the above formula (1).

燃えどまり層の燃焼時に形状保持性に優れた炭化層が形成されるようにする観点から、燃えどまり層12の構成木材の晩材率は20%以上が好ましく、更に好ましくは30%以上である。晩材率の上限は特にないが、例えば90%以下であり、80%以下が好ましい。また晩材寸法L1は、0.6mm以上が好ましく、0.7mm以上が更に好ましい。   From the viewpoint of forming a carbonized layer having an excellent shape-retaining property at the time of burning the burnt-up layer, the late wood rate of the constituent wood of the burnt-up layer 12 is preferably 20% or more, more preferably 30% or more. . There is no particular upper limit for the late wood content, but it is, for example, 90% or less, preferably 80% or less. The late material dimension L1 is preferably 0.6 mm or more, and more preferably 0.7 mm or more.

晩材率が20%以上且つ晩材寸法が0.6mm以上である木材の例としては、針葉樹であれば、カラマツ、ベイマツ、グイマツ、ツガ等が挙げられ、広葉樹であれば、ケヤキ、くり、ミズナラ、タモ等が挙げられるが、これらに限られるものではない。
図1及び図2に示すように、第1及び第2実施形態の耐火木製構造材1,1Aは、晩材率が20%以上且つ晩材寸法が0.6mm以上の木材を構成木材とする複数の板状のラミナ2を各ラミナ間に配した接着剤を介して積層接着して2本のラミナ積層体20を得、そのラミナ積層体20どうしを接着剤を介して接合して得られたものである。従って、第1及び第2実施形態の耐火木製構造材1,1Aにおける荷重支持部11とその周囲の燃えどまり層12とは、同一樹種の木材からなり、燃えどまり層12と同様に荷重支持部11も、晩材率が20%以上且つ晩材寸法が0.6mm以上の木材からなる。また、第1実施形態の耐火木製構造材1を構成するラミナ2は、同一樹種の木材から構成されたものである。第2実施形態の耐火木製構造材1Aを構成するラミナ2も、同一樹種の木材から構成されたものである。ラミナ2は、耐火木製構造材1,1Aの長手方向(軸方向に同じ)と同方向に長い形状を有している。個々のラミナ2は、耐火木製構造材1,1Aの長手方向の全長に亘って連続する一枚の挽き板等であっても良いが、ラミナの全部又は一部は、複数の挽き板等をフィンガージョイント等の接合方法で長手方向に継いだものであっても良い。
Examples of wood having a late wood ratio of 20% or more and a night wood size of 0.6 mm or more include larch, bay pine, guinea pine, hemlock, and the like in the case of conifers, and zelkova, chestnuts in the case of broad-leaved trees, Examples include, but are not limited to, Mizunara and Tamo.
As shown in FIGS. 1 and 2, the fire resistant wood structural materials 1 and 1A according to the first and second embodiments are made of wood having a late wood ratio of 20% or more and a night wood size of 0.6 mm or more. A plurality of plate-like lamina 2 is laminated and adhered via an adhesive agent arranged between the lamina to obtain two lamina laminates 20, and the lamina laminates 20 are joined together with an adhesive agent. It is a thing. Therefore, the load supporting portions 11 and the surrounding burnout layers 12 in the fireproof wooden structural materials 1 and 1A of the first and second embodiments are made of wood of the same tree species, and like the burnout layers 12, the load supporting portions 12 are formed. 11 is also made of wood having a late wood ratio of 20% or more and a night wood size of 0.6 mm or more. In addition, the lamina 2 that constitutes the fire-resistant wooden structure material 1 of the first embodiment is made of wood of the same tree species. The lamina 2 that constitutes the fire-resistant wooden structural material 1A of the second embodiment is also made of wood of the same tree species. The lamina 2 has a shape that is long in the same direction as the longitudinal direction (same as the axial direction) of the fireproof wooden structural members 1, 1A. The individual lamina 2 may be a single sawing plate or the like that is continuous over the entire length in the longitudinal direction of the refractory wood structural members 1 and 1A, but all or part of the lamina may be a plurality of sawing plates or the like. It may be joined in the longitudinal direction by a joining method such as a finger joint.

接着剤としては、水性高分子−イソシアネート系接着剤、レゾルシノール樹脂接着剤、レゾルシノール・フェノール樹脂接着剤、メラミン樹脂接着剤、メラミンユリア樹脂接着剤、変性酢酸ビニル樹脂系エマルジョン形接着剤、エチレン酢酸ビニル樹脂系エマルジョン形接着剤、ウレタン樹脂系接着剤、エポキシ樹脂系接着剤等が挙げられる。これらのなかでも、レゾルシノール樹脂接着剤又はレゾルシノール・フェノール樹脂接着剤が好ましい。   As the adhesive, an aqueous polymer-isocyanate adhesive, a resorcinol resin adhesive, a resorcinol/phenol resin adhesive, a melamine resin adhesive, a melamine urea resin adhesive, a modified vinyl acetate resin emulsion adhesive, ethylene vinyl acetate Examples thereof include resin emulsion adhesives, urethane resin adhesives, and epoxy resin adhesives. Among these, a resorcinol resin adhesive or a resorcinol/phenol resin adhesive is preferable.

第1実施形態の耐火木製構造材1は、梁用の構造材であり、木造建築物等の梁として使用されたときに鉛直方向に沿う高さ方向Yと、幅方向Xとを有しており、図1(a)に示すように、荷重支持部11の幅方向Xの両側を被覆する側部燃えどまり層12cと、荷重支持部11の下側を被覆する下部燃えどまり層12bとを有している。燃えどまり層12は、側部燃えどまり層12cの厚みLc及び下部燃えどまり層12bの厚みLbのいずれについても、少なくとも1時間の耐火性を有している。荷重支持部11の周囲に設定する燃えどまり層の厚みLc,Lbは、50mm以上が好ましく、70mm以上が更に好ましい。また、下部燃えどまり層12bの厚みLbが、側部燃えどまり層12cの厚みLcよりも厚いことが、熱の伝わりやすい角の部分を材積を抑えながら被覆できる点から好ましい。
なお、第1実施形態の耐火木製構造材1は、梁用の構造材であり、使用時に上面aには、耐火性能を有する床が載ることにより、荷重支持部11が被覆されるため、荷重支持部11の上側を被覆する上部燃えどまり層は設けていない。
The fire-resistant wooden structural material 1 of the first embodiment is a structural material for a beam, and has a height direction Y along the vertical direction and a width direction X when used as a beam for a wooden building or the like. As shown in FIG. 1(a), a side burnout layer 12c that covers both sides of the load support portion 11 in the width direction X and a bottom burnout layer 12b that covers the lower side of the load support portion 11 are provided. Have The burnt-out layer 12 has a fire resistance of at least 1 hour for both the thickness Lc of the side burnt-out layer 12c and the thickness Lb of the lower burnt-out layer 12b. The thickness Lc, Lb of the burnout layer set around the load support portion 11 is preferably 50 mm or more, more preferably 70 mm or more. Further, it is preferable that the thickness Lb of the lower burnt-up layer 12b is thicker than the thickness Lc of the side burnt-out layer 12c from the viewpoint that the corner portion where heat is easily transmitted can be covered while suppressing the volume.
The fire-resistant wooden structural material 1 of the first embodiment is a structural material for beams, and the load supporting portion 11 is covered by the floor having the fire resistant performance placed on the upper surface a when in use, so that the load supporting portion 11 is covered. The upper burnt-out layer that covers the upper side of the support portion 11 is not provided.

第2実施形態の耐火木製構造材1Aは、柱用の構造材であり、木造建築物等の柱として使用されたときに鉛直方向に沿う長手方向(軸方向に同じ)を有しており、図2(a)に示すように、使用時に水平方向に沿う横断面の中央部に荷重支持部11を有し、その横断面における荷重支持部11の周囲に全周囲に亘って燃えどまり層12を有している。耐火木製構造材1Aの燃えどまり層12は、耐火木製構造材1Aの4側面e1〜e4のいずれにおいても、少なくとも1時間の耐火性を有している。荷重支持部11の周囲に設定する燃えどまり層の厚みLe1〜Le4は、50mm以上が好ましく、70mm以上が更に好ましい。   The fire-resistant wooden structural material 1A of the second embodiment is a structural material for a pillar, and has a longitudinal direction along the vertical direction (same as the axial direction) when used as a pillar of a wooden building or the like, As shown in FIG. 2( a ), in use, a load supporting portion 11 is provided at the center of the horizontal cross section along the horizontal direction, and the burned layer 12 is provided around the entire load supporting portion 11 in the horizontal cross section. have. The burnt-out layer 12 of the fireproof wooden structure material 1A has a fire resistance of at least 1 hour on any of the four side surfaces e1 to e4 of the fireproof wooden structure material 1A. The burn-out layer thicknesses Le1 to Le4 set around the load support portion 11 are preferably 50 mm or more, and more preferably 70 mm or more.

図5に本発明の第3実施形態の耐火木製構造材1Bを示し、図6に本発明の第4実施形態の耐火木製構造材1Cを示した。
第3実施形態の耐火木製構造材1Bは、第1実施形態の耐火木製構造材1と同様に、木造建築物等の梁として使用される構造用の角材である。第4実施形態の耐火木製構造材1Cは、第2実施形態の耐火木製構造材1Aと同様に、木造建築物等の柱として使用される構造用の角材である。第3実施形態の耐火木製構造材1Bについては、第1実施形態と異なる点について説明し同様の点については説明を省略する。第4実施形態の耐火木製構造材1Cについては、第2実施形態と異なる点について説明し同様の点については説明を省略する。
第3及び第4実施形態の耐火木製構造材1B,1Cは、木製の荷重支持部11と、荷重支持部11を被覆する木製の燃えどまり層12とが、異なる樹種の木材から形成されているが、同一の樹種の木材から形成されていても良い。
FIG. 5 shows a fire resistant wooden structure material 1B according to a third embodiment of the present invention, and FIG. 6 shows a fire resistant wooden structure material 1C according to a fourth embodiment of the present invention.
The fire resistant wooden structure material 1B of the third embodiment is a structural square member used as a beam of a wooden building or the like, similarly to the fire resistant wooden structure material 1 of the first embodiment. The fire resistant wooden structure material 1C of the fourth embodiment is a structural square member used as a pillar of a wooden building or the like, like the fire resistant wooden structure material 1A of the second embodiment. Regarding the fire-resistant wood structural material 1B of the third embodiment, the points different from the first embodiment will be described, and the description of the same points will be omitted. Regarding the refractory wood structural material 1C of the fourth embodiment, the differences from the second embodiment will be described, and the description of the same points will be omitted.
In the fire-resistant wooden structural materials 1B and 1C of the third and fourth embodiments, the wooden load supporting portion 11 and the wooden burn-out layer 12 that covers the load supporting portion 11 are formed of different wood species. However, they may be formed from wood of the same tree species.

第3及び第4実施形態の耐火木製構造材1B,1Cにおける荷重支持部11は、図5及び図6に示すように、任意の木材を構成木材とする複数の板状のラミナ21を各ラミナ間に配した接着剤を介して積層接着して2つのラミナ積層体22を得、そのラミナ積層体22どうしを接着剤を介して接合して得られたものである。
第3実施形態の耐火木製構造材1Bにおいては、晩材率が20%以上且つ晩材寸法が0.6mm以上の木材を構成木材とする複数の板状のラミナ2を接着剤を介して積層接着して得たラミナ積層体24,25が、荷重支持部11に接着剤を介して接合されている。またラミナ積層体24とラミナ積層体25との間も接着剤を介して接合されている。それによって、荷重支持部11の幅方向Xの両側を被覆する側部燃えどまり層12c及び該荷重支持部11の下側を被覆する下部燃えどまり層12bが形成されている。
第4実施形態の耐火木製構造材1Cにおいては、晩材率が20%以上且つ晩材寸法が0.6mm以上の木材を構成木材とする複数の板状のラミナ2を接着剤を介して積層接着して得たラミナ積層体24,25が、荷重支持部11に接着剤を介して接合されている。また、ラミナ積層体24とラミナ積層体25との間も接着剤を介して接合されている。それによって、荷重支持部11をその全周に亘って囲む燃えどまり層12が形成されている。
As shown in FIGS. 5 and 6, the load supporting portion 11 of the fireproof wooden structural materials 1B and 1C according to the third and fourth embodiments includes a plurality of plate-like lamina 21 each of which is made of arbitrary wood. It is obtained by laminating and adhering two lamina laminates 22 with an adhesive placed between them, and joining the lamina laminates 22 with each other with an adhesive.
In the fire resistant wood structural material 1B of the third embodiment, a plurality of plate-like lamina 2 made of wood having a late wood ratio of 20% or more and a night wood size of 0.6 mm or more are laminated with an adhesive. The lamina laminates 24 and 25 obtained by adhesion are joined to the load supporting portion 11 with an adhesive. Further, the lamina laminate 24 and the lamina laminate 25 are also joined together with an adhesive. Thereby, the side burnout layers 12c that cover both sides of the load support portion 11 in the width direction X and the lower burnout layer 12b that covers the lower side of the load support portions 11 are formed.
In the fire-resistant wood structural material 1C of the fourth embodiment, a plurality of plate-like lamina 2 made of wood having a late wood ratio of 20% or more and a night wood size of 0.6 mm or more are laminated with an adhesive. The lamina laminates 24 and 25 obtained by adhesion are joined to the load supporting portion 11 with an adhesive. Further, the lamina laminate 24 and the lamina laminate 25 are also joined together with an adhesive. As a result, the burnout layer 12 that surrounds the load support portion 11 over the entire circumference thereof is formed.

第3及び第4実施形態の耐火木製構造材1B,1Cにおいても、燃えどまり層12の構成木材に、晩材率が20%以上であり且つ晩材寸法が0.6mm以上である樹種の木材を用いていることによって、燃えどまり層12の燃焼時に形状保持性に優れた炭化層が形成される。また、晩材率が20%以上であり且つ晩材寸法が0.6mm以上である樹種の木材は、一定の熱容量を有していることから、断熱を期待できる形状保持性に優れた炭化層下の熱容量を効率的にいかすことで、より高い耐火性能が得られる。
また、第3及び第4実施形態の耐火木製構造材1B,1Cにおいては、荷重支持部11の木材に、燃えどまり層12の構成木材とは異なる木材を用いることができるため、例えば、荷重支持部11の構成木材に安価な木材や入手の容易な木材を用いて、耐火木製構造材の製造コストを抑制や製造効率の向上を図ることができる。
Also in the fire resistant wood structural materials 1B and 1C of the third and fourth embodiments, the wood of the burnt layer 12 has a late wood ratio of 20% or more and a night wood size of 0.6 mm or more. By using, the carbonized layer having excellent shape retention is formed when the burnt layer 12 is burned. In addition, since the wood of the tree species having the late wood ratio of 20% or more and the late wood size of 0.6 mm or more has a certain heat capacity, a carbonized layer excellent in shape retention that can be expected to be heat-insulated. Higher fire resistance can be obtained by efficiently utilizing the lower heat capacity.
In addition, in the fire resistant wood structural materials 1B and 1C of the third and fourth embodiments, since the wood of the load supporting portion 11 can be different from the wood constituting the burnt-up layer 12, for example, load supporting By using inexpensive wood or easily available wood as the constituent wood of the part 11, it is possible to suppress the manufacturing cost of the refractory wood structural material and improve the manufacturing efficiency.

第3実施形態の耐火木製構造材1Bにおいても、燃えどまり層12は、側部燃えどまり層12cの厚みLc及び下部燃えどまり層12bの厚みLbのいずれについても、50mm以上であり、少なくとも1時間の耐火性を有している。荷重支持部11を被覆する燃えどまり層の厚みLc,Lbは、50mm以上が好ましく、70mm以上が更に好ましい。また、下部燃えどまり層12bの厚みLbが、側部燃えどまり層12cの厚みLcよりも厚いことが好ましい。
第4実施形態の耐火木製構造材1Cは、第2実施形態の耐火木製構造材1Aと同様に、使用時に水平方向に沿う横断面の中央部に荷重支持部11を有し、その横断面における荷重支持部11の周囲にその全周に亘る燃えどまり層12が形成されている。第4実施形態の耐火木製構造材1Cの燃えどまり層12は、4側面e1〜e4のいずれにおいても、少なくとも1時間以上の耐火性を有している。荷重支持部11の周囲に設定する燃えどまり層12の厚みLe1〜Le4も、50mm以上が好ましく、70mm以上が更に好ましい。
Also in the fire resistant wooden structure material 1B of the third embodiment, the burnt-out layer 12 is 50 mm or more for both the thickness Lc of the side burnt-out layer 12c and the thickness Lb of the lower burnt-out layer 12b, and is at least 1 hour. It has fire resistance. The thickness Lc, Lb of the burnout layer covering the load support portion 11 is preferably 50 mm or more, more preferably 70 mm or more. Further, the thickness Lb of the lower burnt-up layer 12b is preferably thicker than the thickness Lc of the side burnt-out layer 12c.
The fire resistant wooden structure material 1C of the fourth embodiment has a load support portion 11 at the center of the horizontal cross section along the horizontal direction during use, as in the fire resistant wooden structure material 1A of the second embodiment. A burnout layer 12 is formed around the load supporting portion 11 along the entire circumference thereof. The burnt-out layer 12 of the fire resistant wooden structure material 1C of the fourth embodiment has a fire resistance of at least 1 hour or more on any of the four side surfaces e1 to e4. The thickness Le1 to Le4 of the burnout layer 12 set around the load supporting portion 11 is also preferably 50 mm or more, and more preferably 70 mm or more.

また、第3及び第4実施形態の耐火木製構造材1B,1Cは、第1又は第2実施形態とは異なり、燃えどまり層12と荷重支持部11との境界に、燃えどまり層12の構成部材と荷重支持部11の構成部材との接合部が存在している。燃えどまり層12と荷重支持部11との境界部に、接合部等の構成部材どうしの物理的な境界が存在することで、火災時の木材乾燥に伴い燃えどまり層12に発生する収縮割れが、荷重支持部11まで連続して生じることを抑制することができ、より高い耐火性能が得られる。   Moreover, unlike the first or second embodiment, the fire-resistant wood structural materials 1B and 1C of the third and fourth embodiments have a structure of the burn-off layer 12 at the boundary between the burn-up layer 12 and the load support portion 11. There is a joint between the member and the component of the load support 11. At the boundary between the burnout layer 12 and the load support portion 11, there is a physical boundary between constituent members such as a joint, so that shrinkage cracks that occur in the burnout layer 12 due to drying of wood during a fire may occur. Further, it is possible to suppress continuous occurrence up to the load supporting portion 11, and to obtain higher fire resistance performance.

また燃えどまり層12の構成部材が単一樹種から形成されていると、既存の設備で製造した荷重支持部11に、燃えどまり層12を設けるだけで、耐火木製構造材1B,1Cが得られるため、耐火木製構造材1B,1Cの製造コストを大幅に低減可能である。なお、側部燃えどまり層12c及び下部燃えどまり層12bのぞれぞれとして、一つの製材品を用いても良く、また長手方向のみならず幅方向にも小角材等を接合した集成材を用いることもできる。   Moreover, if the constituent members of the burning layer 12 are formed of a single tree species, the fire supporting wooden structural materials 1B and 1C can be obtained by merely providing the burning layer 12 on the load supporting portion 11 manufactured by the existing facility. Therefore, the manufacturing cost of the fireproof wooden structural materials 1B and 1C can be significantly reduced. It should be noted that a single lumber product may be used as each of the side burning layer 12c and the lower burning layer 12b, and a laminated lumber joined with small timbers not only in the longitudinal direction but also in the width direction may be used. It can also be used.

また本発明における耐火木製構造材は、燃えどまり層12が、荷重支持部11よりも熱容量が大きいことが好ましい。例えば、第3及び第4実施形態の耐火木製構造材1B,1Cや後述する第5実施形態の耐火木製構造材1Dにおいては、燃えどまり層12の構成木材に、荷重支持部11の構成木材よりも熱容量が高いものを用いることが好ましい。
燃えどまり層12を、荷重支持部11よりも熱容量の大きい木材から構成することで、荷重支持部11への熱の流入を一層効果的に抑制できる。
Further, in the fireproof wooden structural material according to the present invention, it is preferable that the burnt-out layer 12 has a larger heat capacity than the load supporting portion 11. For example, in the fireproof wooden structure materials 1B and 1C of the third and fourth embodiments and the fireproof wooden structure material 1D of the fifth embodiment described later, the wood of the burnt-out layer 12 is more It is preferable to use a material having a high heat capacity.
By configuring the burn-out layer 12 of wood having a larger heat capacity than the load supporting portion 11, the inflow of heat into the load supporting portion 11 can be suppressed more effectively.

荷重支持部11及び燃えどまり層12の熱容量は、以下のようにして測定することができる。熱容量は、物体の質量に比熱を乗じて算出することができる。すなわち、荷重支持部11及び燃えどまり層12に用いるラミナの質量を測定し、荷重支持部11及び燃えどまり層12を構成するラミナの合計質量に一般的な木材比熱を乗じて算出するか、荷重支持部11及び燃えどまり層12を構成する集成材の質量を測定し、一般的な木材比熱を乗じて算出することで得ることができる。   The heat capacities of the load supporting portion 11 and the burnt-out layer 12 can be measured as follows. The heat capacity can be calculated by multiplying the mass of the object by the specific heat. That is, the mass of the lamina used for the load supporting portion 11 and the burnt-up layer 12 is measured and calculated by multiplying the total mass of the lamina forming the load supporting portion 11 and the burnt-up layer 12 by a general wood specific heat, or It can be obtained by measuring the mass of the laminated wood constituting the support portion 11 and the burnt-up layer 12, and multiplying by the general wood specific heat to calculate.

燃えどまり層の構成木材と荷重支持部の構成木材とが物理的に連続する木材である場合、例えば第1及び第2実施形態の耐火木製構造材1,1Aのように、一本のラミナの横断面の一部が燃えどまり層、他の一部が荷重支持部を構成しているような場合、燃えどまり層と荷重支持部とで、構成木材の晩材率及び晩材率は同じである。
他方、例えば第3及び第4実施形態の耐火木製構造材1B,1Cのように、荷重支持部11の全体又は主要部を構成する木材が、燃えどまり層12の構成木材とは連続しない木材である場合、燃えどまり層12と荷重支持部11とで、構成木材の晩材率及び晩材率の一方又は双方を異ならせることができる。その場合、燃えどまり層12の構成木材は、晩材率が荷重支持部11の構成木材より高いか、又は晩材寸法(L1の平均値)が荷重支持部11の構成木材より長いことが好ましく、晩材率が荷重支持部11の構成木材より高く且つ晩材寸法が荷重支持部11の構成木材より長いことが更に好ましい。
荷重支持部11の晩材率及び晩材寸法は、構造材の荷重支持部11の横断面の10箇所以上で年輪の間隔L3及び晩材61の長さL1を測定し、その長さL1及び算出した晩材率の平均を晩材寸法及び晩材率とする。横断面は、構造材の長手方向の中央部の断面とすることが好ましい。荷重支持部11がラミナ積層体からなる場合は10本以上のラミナについて、晩材率及び晩材寸法を測定し、その平均値を荷重支持部11の晩材率及び晩材寸法とする。ラミナの本数が10本に満たない場合は、10本にできるだけ近い本数のラミナについて晩材率及び晩材寸法を測定し、その平均値とする。
When the wood constituting the burnt-up layer and the wood constituting the load supporting portion are physically continuous wood, for example, as in the fire resistant wood structural materials 1 and 1A of the first and second embodiments, one lamina When a part of the cross section constitutes a burned-up layer and the other part constitutes a load-bearing part, the burned-up layer and the load-bearing part have the same late wood material rate and late wood material rate. is there.
On the other hand, like the fire-resistant wood structural materials 1B and 1C of the third and fourth embodiments, the wood that constitutes the whole or the main part of the load supporting portion 11 is a wood that is not continuous with the wood constituting the burnt-up layer 12. In some cases, the burnt-up layer 12 and the load supporting portion 11 can be made different from each other in the late wood rate and/or the late wood rate of the constituent wood. In that case, the constituent wood of the burnt-up layer 12 preferably has a higher rate of late wood than the constituent wood of the load-bearing portion 11, or the latter's dimension (average value of L1) is longer than the constituent wood of the load-bearing portion 11. It is more preferable that the late wood ratio is higher than that of the load supporting portion 11 and the length of the late wood is longer than that of the load supporting portion 11.
The late material ratio and the late material dimension of the load supporting portion 11 are measured by measuring the annual ring interval L3 and the length L1 of the evening material 61 at 10 or more locations on the cross section of the load supporting portion 11 of the structural material, and measuring the length L1 and The average of the calculated late wood ratio is used as the late wood size and the late wood ratio. The cross section is preferably the cross section of the central portion of the structural material in the longitudinal direction. When the load supporting portion 11 is made of a lamina laminate, the late material ratio and the late material dimension are measured for 10 or more lamina, and the average value thereof is used as the late material rate and the late material dimension of the load supporting portion 11. When the number of lamina is less than 10, the late wood ratio and the night wood size are measured for the number of lamina as close as possible to 10, and the average value is obtained.

第3及び第4実施形態の耐火木製構造材1B,1Cにおいても、燃えどまり層12の構成木材に、晩材率が20%以上であり且つ晩材寸法が0.6mm以上である樹種の木材を用いていることによって、燃えどまり層12の燃焼時に形状保持性に優れた炭化層が形成される。また、晩材率が20%以上であり且つ晩材寸法が0.6mm以上である樹種の木材は、一定の熱容量を有していることから、断熱を期待できる形状保持性に優れた炭化層下の熱容量を効率的にいかすことで、より高い耐火性能が得られる。
また、第3及び第4実施形態の耐火木製構造材1B,1Cにおいては、荷重支持部11の木材に、燃えどまり層12の構成木材とは異なる木材を用いることができるため、例えば、荷重支持部11の構成木材に安価な木材や入手の容易な木材を用いて、耐火木製構造材の製造コストを抑制や製造効率の向上を図ることができる。
Also in the fire resistant wood structural materials 1B and 1C of the third and fourth embodiments, the wood of the burnt layer 12 has a late wood ratio of 20% or more and a night wood size of 0.6 mm or more. By using, the carbonized layer excellent in shape retention is formed when the burned-up layer 12 is burned. In addition, since the wood of the tree species having the late wood ratio of 20% or more and the late wood size of 0.6 mm or more has a certain heat capacity, a carbonized layer excellent in shape retention that can be expected to be heat-insulated. Higher fire resistance can be obtained by efficiently utilizing the lower heat capacity.
In addition, in the fire resistant wood structural materials 1B and 1C of the third and fourth embodiments, since the wood of the load supporting portion 11 can be different from the wood constituting the burnt-up layer 12, for example, load supporting By using inexpensive wood or easily available wood as the constituent wood of the part 11, it is possible to suppress the manufacturing cost of the refractory wood structural material and improve the manufacturing efficiency.

前述した第1〜第4の耐火木製構造材1,1A〜1Cは、いずれも、難燃薬剤を含まない。難燃薬剤非処理木材を用いることで、施工中、竣工後の薬剤析出による耐火性能低下のリスクを無くすことができる。
また、前述した第1〜第4の耐火木製構造材1,1A〜1Cは、いずれも、金属製の補強材や、非木材からなる不燃材を含んでいない。薬剤処理木材や不燃材料等の異種材料を組み合わせた断面構成を有すると、製造工程が複雑化し、リードタイムも長くなり、製造コストが大幅に増大するが、前述した第1〜第4の耐火木製構造材1,1A〜1Cのように、金属製の補強材や非木材からなる不燃材を含まないことで、製造工程の大幅な複雑化を防止しつつ効率よく製造可能であり、製造コストの抑制も可能である。
None of the above-described first to fourth refractory wood structural materials 1, 1A to 1C contains a flame retardant agent. By using non-flame retardant chemical treated wood, it is possible to eliminate the risk of fire resistance deterioration due to chemical deposition during construction and after completion.
In addition, none of the above-described first to fourth refractory wood structural materials 1 and 1A to 1C contains a metal reinforcing material or a non-combustible material made of non-wood. If the cross-sectional structure is made by combining different materials such as chemically treated wood and non-combustible material, the manufacturing process becomes complicated, the lead time becomes long, and the manufacturing cost greatly increases. By not including the metal reinforcing material and the non-combustible material made of non-wood such as the structural materials 1 and 1A to 1C, it is possible to efficiently manufacture the manufacturing process while preventing the manufacturing process from being significantly complicated. Suppression is also possible.

図7に本発明の第5実施形態の耐火木製構造材1Dを示す。
第5実施形態の耐火木製構造材1Dも、第1実施形態の耐火木製構造材1と同様に、木造建築物等の梁として使用される構造用の角材であるが、第1実施形態の耐火木製構造材1よりも大断面の角材である。第5実施形態の耐火木製構造材1Dについては、第1実施形態と異なる点について説明し同様の点については同様の符号を付して説明を省略する。
第5実施形態の耐火木製構造材1Dは、晩材率が20%以上且つ晩材寸法が0.6mm以上の木材を構成木材とする複数の板状のラミナ2を各ラミナ間に配した接着剤を介して積層接着して4本のラミナ積層体20を得、その4本のラミナ積層体20を接着剤を介して接合して得られたものである。第5実施形態の耐火木製構造材1Dにおける荷重支持部11とその周囲の燃えどまり層12は、同一樹種の木材からなり、燃えどまり層12と同様に荷重支持部11も、晩材率が20%以上且つ晩材寸法が0.6mm以上の木材からなる。また、第5実施形態の耐火木製構造材1Dを構成するラミナ2は、同一樹種の木材から構成されたものである。
第5実施形態の耐火木製構造材1Dによれば、第1実施形態の耐火木製構造材1と同様の効果が奏される。
FIG. 7 shows a fire resistant wooden structure material 1D according to the fifth embodiment of the present invention.
The fire-resistant wooden structure material 1D of the fifth embodiment is also a structural square member used as a beam of a wooden building or the like, like the fire-resistant wooden structure material 1 of the first embodiment. It is a square bar having a larger cross section than the wooden structural member 1. Regarding the fire resistant wooden structure material 1D of the fifth embodiment, the points different from the first embodiment will be described, and the same points will be denoted by the same reference numerals and description thereof will be omitted.
The fire-resistant wood structural material 1D of the fifth embodiment is an adhesive in which a plurality of plate-like lamina 2 made of wood having a late wood ratio of 20% or more and a night wood size of 0.6 mm or more are arranged between the lamina. It is obtained by laminating and adhering four lamina laminates 20 with an agent, and joining the four lamina laminates 20 with an adhesive. In the fire resistant wooden structural material 1D of the fifth embodiment, the load supporting portion 11 and the surrounding burned-out layer 12 are made of wood of the same tree species, and like the burned-out layer 12, the load supporting portion 11 also has a late wood ratio of 20. % Or more and the lumber size is 0.6 mm or more. In addition, the lamina 2 that constitutes the fire resistant wooden structure material 1D of the fifth embodiment is made of wood of the same tree species.
According to the fireproof wooden structure material 1D of the fifth embodiment, the same effect as that of the fireproof wooden structure material 1 of the first embodiment is obtained.

以上、本発明のいくつかの実施形態について説明したが、本発明は、斯かる実施形態に制限されず適宜変更可能である。
例えば、第3及び第4実施形態の耐火木製構造材1B,1Cの荷重支持部11は、2本のラミナ積層体22からなるものに代えて幅広の1本のラミナ積層体から形成しても良く、また1本の無垢材から形成しても良い。また、本発明の耐火木製構造材における、荷重支持部や燃えどまり層の構成材として、棒状の木材が、耐火木製構造材の幅方向X、高さ方向Y及び長手方向に集積した集成材を用いても良い。
また、本発明の耐火木製構造材は、その横断面において、燃えどまり層が、荷重支持部の周囲を全周に亘って被覆しているものであっても良く、そのようなものは、木造建築物の梁の他、柱として好適に用いられる。また、本発明の耐火木製構造材は、その横断面形状が、長方形に代えて正方形状のものであっても良い。
Although some embodiments of the present invention have been described above, the present invention is not limited to such embodiments and can be modified as appropriate.
For example, the load supporting portions 11 of the fireproof wood structural members 1B and 1C according to the third and fourth embodiments may be formed of one wide lamina laminate instead of the two lamina laminate 22. Good, or may be formed from one solid material. In the fire-resistant wooden structural material of the present invention, a bar-shaped wood is used as a constituent material of the load-bearing portion and the burnt-out layer, which is a laminated material in which the fire-resistant wooden structural material is accumulated in the width direction X, the height direction Y and the longitudinal direction. You may use.
Further, the fire-resistant wooden structural material of the present invention may have a cross-section in which the burnt-out layer covers the periphery of the load supporting portion over the entire circumference. It is preferably used as a pillar as well as a beam for buildings. Further, the fire-resistant wooden structure material of the present invention may have a square cross-sectional shape instead of a rectangular shape.

(実施例1)
カラマツ〔晩材率24.4%(平均値)、晩材寸法0.79mm(平均値)〕から得られたラミナ2を積層接着して2本のラミナ積層体20を形成し、そのラミナ積層体20を2本接合して図1に示す概略構成を有する耐火木製構造材を得た。ラミナ間の接着及びラミナ積層体どうしの接着には、レゾルシノール樹脂接着剤を用いた。
製造した耐火木製構造材の断面構成は、高さT(図1参照)が210mm、幅W(図1参照)が120mmの荷重支持部11を設定し、その幅方向の両側に、厚さLcが55mmの側部燃えどまり層12c,12c、下側に厚さLbが85mmの下部燃えどまり層12bを設けた構成とした。
(Example 1)
Lamina 2 obtained from larch [night wood ratio 24.4% (average value), night wood size 0.79 mm (average value)] is laminated and adhered to form two lamina laminates 20. The lamina laminate Two bodies 20 were joined to obtain a fireproof wooden structural material having a schematic configuration shown in FIG. A resorcinol resin adhesive was used for the adhesion between the lamina and the adhesion between the lamina laminates.
The cross-sectional structure of the manufactured fire-resistant wooden structural material is such that the height T (see FIG. 1) is 210 mm and the width W (see FIG. 1) is 120 mm, and the load supporting portions 11 are set, and the thickness Lc is provided on both sides in the width direction. Is 55 mm, and the lower burnt layer 12b having a thickness Lb of 85 mm is provided on the lower side.

(実施例2)
ベイマツ〔晩材率24.7%(平均値)、晩材寸法0.81mm(平均値)〕から得られたラミナ2を用いる以外は、実施例1と同様にして、耐火木製構造材を得た。
(比較例1)
レッドウッド〔晩材率29.8%(平均値)、晩材寸法0.43mm(平均値)〕から得られたラミナ2を用いる以外は、実施例1と同様にして、耐火木製構造材を得た。
(Example 2)
A fire-resistant wood structural material was obtained in the same manner as in Example 1 except that Lamina 2 obtained from bay pine [late wood ratio 24.7% (average value), night wood size 0.81 mm (average value)] was used. It was
(Comparative Example 1)
A fire-resistant wood structural material was prepared in the same manner as in Example 1 except that the lamina 2 obtained from red wood (late wood ratio 29.8% (average value), night wood size 0.43 mm (average value)) was used. Obtained.

(実施例3)
カラマツ〔晩材率24.4%(平均値)、晩材寸法0.79mm(平均値)〕から得られたラミナ2を積層接着して図8に示す形態及び寸法のラミナ積層体からなる実施例3の耐火木製構造材を製造した。ラミナ間の接着には、レゾルシノール樹脂接着剤を用いた。実施例3の耐火木製構造材は、荷重支持部の全体又は一部に相当する支持部相当部11Hの片面に、厚み55mmの側部燃えどまり層12cを設けた構成の性能評価用の試験体である。
(比較例2)
スギ〔晩材率14.0%(平均値)、晩材寸法0.32mm(平均値)〕から得られたラミナ2を用いる以外は、実施例3と同様にして、図8に示す形態及び寸法のラミナ積層体からなる比較例2の耐火木製構造材を製造した。比較例2の耐火木製構造材は、荷重支持部の全体又は一部に相当する支持部相当部11Hの片面に、厚み55mmの側部燃えどまり層12cを設けた構成の性能評価用の試験体である。
(Example 3)
Lamina 2 obtained from larch [late wood ratio 24.4% (average value), night wood size 0.79 mm (average value)] is laminated and adhered to form a lamina laminate having the form and size shown in FIG. The refractory wood structure of Example 3 was produced. A resorcinol resin adhesive was used for adhesion between the lamina. The fire-resistant wooden structural material of Example 3 is a test body for performance evaluation having a configuration in which a side burning layer 12c having a thickness of 55 mm is provided on one surface of a supporting portion corresponding portion 11H corresponding to the whole or a part of the load supporting portion. Is.
(Comparative example 2)
In the same manner as in Example 3 except that the lamina 2 obtained from Japanese cedar (late wood ratio 14.0% (average value), night wood size 0.32 mm (average value)) was used, the form shown in FIG. A fire resistant wood structural material of Comparative Example 2 consisting of a sized lamina laminate was produced. The fire-resistant wooden structural material of Comparative Example 2 is a test body for performance evaluation having a configuration in which a side burning layer 12c having a thickness of 55 mm is provided on one surface of a supporting portion corresponding portion 11H corresponding to the whole or a part of the load supporting portion. Is.

(評価)
(燃焼試験1)
実施例1,2及び比較例1で得られた耐火木製構造材を、その上面を不燃材の床板で断熱した状態に支持して燃焼炉に収容した。そして、下面側から通常の火災を想定したISO834標準加熱により1時間加熱を行い、加熱終了後3時間以上の炉内放冷を行った。
(Evaluation)
(Combustion test 1)
The refractory wood structural materials obtained in Examples 1 and 2 and Comparative Example 1 were housed in a combustion furnace with the upper surface thereof supported while being insulated by a floor plate made of an incombustible material. Then, from the lower surface side, heating was carried out for 1 hour by ISO 834 standard heating assuming a normal fire, and after the heating was finished, cooling in the furnace was carried out for 3 hours or more.

図5に燃焼試験1の結果を示す。
実施例1,2の耐火木製構造材においては、図9(a)及び図9(b)に示すように、燃焼後の表面に、炭化した燃えどまり層が略均一な状態に存在しているのに対して、レッドウッドを用いた比較例1においては、図9(c)に示すように、燃焼後の表面に、炭化した燃えどまり層が脱落した部分が多数認められた。
FIG. 5 shows the result of the combustion test 1.
In the fire resistant wooden structural materials of Examples 1 and 2, as shown in FIGS. 9(a) and 9(b), the carbonized burned-out layer exists in a substantially uniform state on the surface after combustion. On the other hand, in Comparative Example 1 using red wood, as shown in FIG. 9(c), a large number of portions where the carbonized burned-out layer had fallen off were observed on the surface after burning.

(燃焼試験2)
実施例3及び比較例2で得られた耐火木製構造材を、側部燃えどまり層12c側からの1面加熱となるように燃焼炉に収容した。そして、側部燃えどまり層12cに通常の火災を想定したISO834標準加熱により1時間加熱を行い、加熱終了後3時間以上の炉内放冷を行った。その際、加熱面表面からの深さが、45mm、60mm、75mmとなる各位置における温度変化を計測し、各深さにおける温度の経時的変化を記録した。結果を図10に示す。
実施例3の耐火木製構造材においては、図10に示すように、深さ45mmの位置において、加熱中から放冷中にかけて木材が炭化する目安温度である260℃を下回っているのに対して、スギを用いた比較例2においては、深さ60mmの位置で260℃を超えており、深さ75mmにおいても、260℃付近まで上昇することが確認された。
(Combustion test 2)
The refractory wood structural materials obtained in Example 3 and Comparative Example 2 were housed in a combustion furnace so that the one side heating from the side burning layer 12c side was performed. Then, the side burnt-up layer 12c was heated for 1 hour by ISO 834 standard heating assuming a normal fire, and allowed to cool in the furnace for 3 hours or more after the end of heating. At that time, the temperature change at each position where the depth from the surface of the heating surface was 45 mm, 60 mm, and 75 mm was measured, and the change with time of the temperature at each depth was recorded. The results are shown in Fig. 10.
In the fire-resistant wood structural material of Example 3, as shown in FIG. 10, the temperature was lower than 260° C., which is the standard temperature at which wood is carbonized during heating and cooling at a position of a depth of 45 mm. In Comparative Example 2 using Japanese cedar, it was confirmed that the temperature exceeded 260°C at the position of 60 mm in depth and that the temperature rose to around 260°C even at the depth of 75 mm.

図9及び図10に示す評価試験1及び2の結果から、晩材率が20%以上且つ晩材寸法が0.6mm以上の樹種(カラマツ又はベイマツ)を燃えどまり層に用いた本発明品(実施例1,2)によれば、燃焼後の表面に、炭化した燃えどまり層が略均一な状態に存在しており、その燃えどまり層が、内部の燃焼を阻止する優れた燃えどまり機能を発現することが判る。   From the results of the evaluation tests 1 and 2 shown in FIG. 9 and FIG. 10, the present invention product in which a tree species (larch or bay pine) having a late wood ratio of 20% or more and a night wood size of 0.6 mm or more was used for the burnout layer ( According to Examples 1 and 2, the carbonized burn-out layer is present in a substantially uniform state on the surface after combustion, and the burn-out layer has an excellent burn-out function of preventing internal combustion. It is understood that it is expressed.

1,1A〜1D 耐火木製構造材
11 荷重支持部
12 燃えどまり層
L1 晩材寸法
2 ラミナ
6 木部
61 晩材
62 早材
64 年輪
1,1A-1D Fire-resistant wooden structural material 11 Load-bearing part 12 Burning layer L1 Late wood dimension 2 Lamina 6 Wood part 61 Late wood 62 Early wood 64 Year rings

Claims (5)

長期荷重を支持する木製の荷重支持部と該荷重支持部を被覆する木製の燃えどまり層とを備えた耐火木製構造材の製造方法であって、
前記燃えどまり層の構成木材(ただし、樹種がベイマツである。)として、晩材率が20%以上、晩材寸法が0.6mm以上の木材を選択する工程を具備し、
前記耐火木製構造材は、柱用の構造材であり、
前記燃えどまり層と前記荷重支持部との境界に、前記燃えどまり層の構成部材と前記荷重支持部の構成部材との接合部が存在しており、
前記燃えどまり層は、ラミナ積層体からなり、
前記燃えどまり層を構成する前記ラミナ積層体は、前記耐火木製構造材の長手方向に延びる4側面のそれぞれについて該各側面の表面からの厚み50mm以上である耐火木製構造材の製造方法
What is claimed is: 1. A method of manufacturing a fire-resistant wooden structural material comprising a wooden load supporting portion that supports a long-term load and a wood burning layer that covers the load supporting portion,
The burning Domari layer configuration timber (provided that species is Ru Oh in Douglas fir.) As, 20% or more late wood ratio, comprising the steps of late wood dimensions selects 0.6mm or wood,
The refractory wood structural material is a structural material for columns,
At the boundary between the burning layer and the load supporting portion, there is a joint between the burning layer constituting member and the load supporting portion,
The burning layer is made of a lamina laminate,
The method for manufacturing a fireproof wooden structural material , wherein the lamina laminate forming the burnt-up layer has a thickness of 50 mm or more from the surface of each of the four side surfaces extending in the longitudinal direction of the fireproof wooden structural material.
長期荷重を支持する木製の荷重支持部と該荷重支持部を被覆する木製の燃えどまり層とを備えた耐火木製構造材の製造方法であって、
前記燃えどまり層の構成木材(ただし、樹種がベイマツである。)として、晩材率が20%以上、晩材寸法が0.6mm以上である木材を選択する工程を具備し、
前記耐火木製構造材は、梁用の構造材であり、
前記燃えどまり層と前記荷重支持部との境界に、前記燃えどまり層の構成部材と前記荷重支持部の構成部材との接合部が存在しており、
前記燃えどまり層として、ラミナ積層体からなる側部燃えどまり層及びラミナ積層体からなる下部燃えどまり層を有し、
前記側部燃えどまり層を構成する前記ラミナ積層体は、前記耐火木製構造材の長手方向に延びる4側面のうちの使用時に鉛直方向に沿う2側面のそれぞれについて該各側面の表面からの厚みが50mm以上であり、
前記下部燃えどまり層を構成する前記ラミナ積層体は、前記4側面のうちの使用時に鉛直方向の下側に配される側面について該側面の表面からの厚みが50mm以上である、耐火木製構造材の製造方法。
What is claimed is: 1. A method of manufacturing a fire-resistant wooden structural material comprising a wooden load supporting portion supporting a long-term load and a wooden burnt layer covering the load supporting portion,
As the constituent wood of the burned-up layer (however, the tree species is bay pine), a step of selecting wood having a late wood ratio of 20% or more and a late wood size of 0.6 mm or more,
The refractory wood structural material is a structural material for beams,
At the boundary between the burning layer and the load supporting portion, there is a joint between the burning layer constituting member and the load supporting portion,
As the burnt-up layer, a side burnt-up layer made of a lamina laminate and a lower burnt-up layer made of a lamina laminate,
The lamina laminate that constitutes the side burnout layer has a thickness from the surface of each side surface of each of the two side surfaces along the vertical direction when used among the four side surfaces extending in the longitudinal direction of the refractory wood structural material. 50 mm or more,
The lamina laminate forming the lower burnt-up layer has a thickness of 50 mm or more from the surface of the side surface of the four side surfaces, which is disposed on the lower side in the vertical direction during use, and is 50 mm or more. Manufacturing method.
製造する耐火木製構造材は、前記下部燃えどまり層の厚み方向に沿う厚みが、前記側部燃えどまり層を形成するラミナ積層体の前記側部燃えどまり層の厚み方向に沿う厚みより厚い、請求項2に記載の耐火木製構造材の製造方法。 The fire-resistant wood structural material to be produced has a thickness along the thickness direction of the lower burnt-up layer that is thicker than the thickness along the thickness direction of the side burn-off layer of the lamina laminate that forms the side burn-off layer, Item 3. A method for manufacturing a fireproof wooden structure material according to Item 2 . 前記燃えどまり層の構成木材は、晩材率が、前記荷重支持部の構成木材より高く、晩材寸法が、前記荷重支持部の構成木材より長い、請求項1〜3の何れか1項に記載の耐火木製構造材の製造方法。 The late wood ratio of the constituent wood of the burnt-up layer is higher than the constituent wood of the load supporting portion, and the late wood dimension is longer than the constituent wood of the load supporting portion, according to any one of claims 1 to 3. A method for manufacturing the fireproof wooden structure described . 前記燃えどまり層は、前記荷重支持部よりも熱容量が大きい、請求項1〜の何れか1項に記載の耐火木製構造材の製造方法The burns Domari layer, the greater heat capacity than the load-bearing part, the production method of the refractory wood structural member according to any one of claims 1-4.
JP2019004786A 2019-01-15 2019-01-15 Method for manufacturing fireproof wood structural material Expired - Fee Related JP6698185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019004786A JP6698185B2 (en) 2019-01-15 2019-01-15 Method for manufacturing fireproof wood structural material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019004786A JP6698185B2 (en) 2019-01-15 2019-01-15 Method for manufacturing fireproof wood structural material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016060925A Division JP6647104B2 (en) 2016-03-24 2016-03-24 Fire-resistant wooden structure

Publications (3)

Publication Number Publication Date
JP2019060233A JP2019060233A (en) 2019-04-18
JP2019060233A5 JP2019060233A5 (en) 2019-05-30
JP6698185B2 true JP6698185B2 (en) 2020-05-27

Family

ID=66178083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019004786A Expired - Fee Related JP6698185B2 (en) 2019-01-15 2019-01-15 Method for manufacturing fireproof wood structural material

Country Status (1)

Country Link
JP (1) JP6698185B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625996A (en) * 1995-08-28 1997-05-06 Bechtel; Friend K. Fire resistant wood box beam
JP4292119B2 (en) * 2003-07-17 2009-07-08 株式会社大林組 Structural materials and buildings
JP5903237B2 (en) * 2011-10-11 2016-04-13 株式会社竹中工務店 Synthetic floor structure and fireproof structure and method for constructing synthetic floor structure
JP5492932B2 (en) * 2012-04-24 2014-05-14 株式会社竹中工務店 Structural materials and buildings
JP6315915B2 (en) * 2013-07-24 2018-04-25 株式会社竹中工務店 Wood structure member and method for manufacturing wood structure member
CN104775566A (en) * 2015-03-26 2015-07-15 广东省建筑设计研究院 Built-in core column composite wood structure column for building structures

Also Published As

Publication number Publication date
JP2019060233A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP4292119B2 (en) Structural materials and buildings
JP2015129431A (en) Fire-resistant laminated lumber
JP6647104B2 (en) Fire-resistant wooden structure
JP2016204958A (en) Fireproof cross-laminated timber
JP4065416B2 (en) Structural materials and buildings
JP6716486B2 (en) Fireproof wood structural materials and fireproof wood members
JP4857034B2 (en) Composite wood structure material and method for producing composite wood structure material
JP2005036456A (en) Structure material and building
JP6698185B2 (en) Method for manufacturing fireproof wood structural material
JP2017218820A (en) Fire resistant wood structural material
JP7004949B2 (en) Fireproof structure
JP6348692B2 (en) Refractory wood member and method for producing refractory wood member
JP2010242488A (en) Composite member for wood structure, and manufacturing method therefor
JP6338103B2 (en) Fireproof laminated timber
JP5492932B2 (en) Structural materials and buildings
JP6670535B2 (en) Refractory structures
JP2017053098A (en) Junction structure of wood structural members
JP6913575B2 (en) Fireproof wooden structural material
JP7071249B2 (en) Joint structure of structural materials
JP6716493B2 (en) Joint structure of fire-resistant beams made of laminated wood
JP6590187B2 (en) Joint structure of wood and steel
JP2022112906A (en) Fire resistant structure material and red-heat suppression method
JP6308980B2 (en) Refractory columns and beams
JP6864996B2 (en) Structural members
JP7025855B2 (en) Fireproof main structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6698185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees