JP6689309B2 - Sputtering target member, sputtering target assembly, and method for manufacturing sputtering target member - Google Patents

Sputtering target member, sputtering target assembly, and method for manufacturing sputtering target member Download PDF

Info

Publication number
JP6689309B2
JP6689309B2 JP2018059049A JP2018059049A JP6689309B2 JP 6689309 B2 JP6689309 B2 JP 6689309B2 JP 2018059049 A JP2018059049 A JP 2018059049A JP 2018059049 A JP2018059049 A JP 2018059049A JP 6689309 B2 JP6689309 B2 JP 6689309B2
Authority
JP
Japan
Prior art keywords
sputtering target
target member
surface roughness
mass
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018059049A
Other languages
Japanese (ja)
Other versions
JP2019173046A (en
Inventor
崇 掛野
崇 掛野
俊洋 久家
俊洋 久家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2018059049A priority Critical patent/JP6689309B2/en
Priority to CN201811307593.0A priority patent/CN110359020B/en
Priority to KR1020180156840A priority patent/KR102268236B1/en
Priority to TW107144995A priority patent/TWI752288B/en
Publication of JP2019173046A publication Critical patent/JP2019173046A/en
Application granted granted Critical
Publication of JP6689309B2 publication Critical patent/JP6689309B2/en
Priority to KR1020200138138A priority patent/KR20200126353A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5893Mixing of deposited material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate

Description

本発明は、スパッタリングターゲット部材、スパッタリングターゲット組立体及びスパッタリングターゲット部材の製造方法に関する。   The present invention relates to a sputtering target member, a sputtering target assembly, and a method for manufacturing a sputtering target member.

通常、スパッタリングターゲット(以下、単に「ターゲット」ともいう。)は銅等の熱伝導性の良い材料で作製されたバッキングプレート(チューブ状のものも含む)に対してロウ材により接合されており、このバッキングプレートを水冷等の手段により冷却し、間接的にスパッタリングターゲットを冷却する構造となっている。また、バッキングプレートは多くの場合再利用されるので、このスパッタリングターゲットとバッキングプレートは、スパッタリングターゲットの交換ができるように、低融点のロウ材などで接合されている。   Usually, a sputtering target (hereinafter, also simply referred to as “target”) is bonded by a brazing material to a backing plate (including a tubular shape) made of a material having good thermal conductivity such as copper, This backing plate is cooled by means such as water cooling to indirectly cool the sputtering target. Further, since the backing plate is reused in many cases, the sputtering target and the backing plate are joined with a low melting point brazing material or the like so that the sputtering target can be replaced.

ロウ材の塗布に際しては、スパッタリングターゲットやバッキングプレート等の被加工物を加熱し、その上に溶融したロウ材(インジウム等)を乗せ、超音波ウェルダーの工具ホーンをその上から接触させて、溶融インジウムを打ち込むようにして塗り付ける。その後、インジウムを塗り付けられた状態で、スパッタリングターゲットとバッキングプレートとを貼り合わせ、その後、冷却することで、スパッタリングターゲットとバッキングプレートとのボンディングをさせていた。   When applying the brazing material, the work piece such as the sputtering target or backing plate is heated, the molten brazing material (indium, etc.) is placed on it, and the tool horn of the ultrasonic welder is contacted from above to melt it. Apply as indium. After that, the sputtering target and the backing plate were attached to each other in a state where the indium was applied, and then cooled to bond the sputtering target and the backing plate.

このような超音波ウェルダーを用いたロウ材塗布は、工具ホーンの接触及び工具ホーンから発せられる超音波振動により、被加工物に歪や微細なクラックを生じさせる。機械的・熱的な応力を受けた際の歪や微細なクラックを起点として、ターゲットの変形、亀裂、剥離などの問題を引き起こすことが懸念される。例えば、スパッタリング時の熱応力により、被加工物のロウ材塗布面からクラックが生じることがある。
以上から、超音波ウェルダーを用いたロウ材の塗布方法では、低融点ロウ材を均一かつ被加工物の強度を維持したまま塗布することは困難であった。
Brazing material application using such an ultrasonic welder causes distortion and fine cracks in the workpiece due to contact with the tool horn and ultrasonic vibration generated from the tool horn. There is concern that problems such as deformation, cracking, and peeling of the target may be caused by the origin of strain and minute cracks when receiving mechanical / thermal stress. For example, cracks may occur from the brazing material application surface of the workpiece due to thermal stress during sputtering.
From the above, it is difficult to apply the low melting point brazing material uniformly and maintaining the strength of the workpiece by the brazing material application method using the ultrasonic welder.

なお、特許文献1、2には、スパッタリングターゲットのような大面積の被加工物に低融点ロウ材を均一に塗布する方法が開示されている。しかし、これらは超音波を利用した塗布方法である。また、特許文献3には、円筒形支持基材の外周面に下地層を形成後、接合材を固化させて円筒形セラミックスターゲットを接合することが開示されている。   It should be noted that Patent Documents 1 and 2 disclose a method of uniformly applying a low melting point brazing material to a large-area workpiece such as a sputtering target. However, these are coating methods using ultrasonic waves. Further, Patent Document 3 discloses that after forming an underlayer on the outer peripheral surface of a cylindrical supporting base material, the bonding material is solidified to bond the cylindrical ceramic target.

特開2001−340959号公報JP 2001-340959A 特開2004−322109号公報JP, 2004-322109, A 特開2012−132065号公報JP, 2012-132065, A

本発明は、このような事情を鑑みてなされたものであって、ターゲット材の機械的強度の低下を抑制しつつ、バッキング部材との接合が可能であるスパッタリングターゲット部材、及びこのようなスパッタリングターゲット部材を備えるスパッタリングターゲット組立体、並びにスパッタリングターゲット部材の製造方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and a sputtering target member capable of being bonded to a backing member while suppressing a decrease in mechanical strength of the target material, and such a sputtering target. An object of the present invention is to provide a sputtering target assembly including a member and a method for manufacturing a sputtering target member.

本発明者が鋭意検討した結果、ターゲット材の表面に特定の下地層と接合層を備えることで上記課題を解決できることを見出した。すなわち、本件発明は以下のように特定される。
(1)酸化物セラミックス焼結体からなるターゲット材と、前記ターゲット材の少なくとも一方の表面に、In−Ni合金からなる下地層と、インジウムを50質量%以上含有する接合層とを順に備えるスパッタリングターゲット部材。
(2)前記In−Ni合金からなる下地層の厚みが0.2〜10μmであることを特徴とする(1)に記載のスパッタリングターゲット部材。
(3)表面粗さRzが15μm以下であることを特徴とする(1)又は(2)に記載のスパッタリングターゲット部材。
(4)表面粗さRzが0.8以上7μm以下であることを特徴とする(1)〜(3)のいずれかに記載のスパッタリングターゲット部材。
(5)前記In−Ni合金からなる下地層は、Niを10〜80質量%含有することを特徴とする(1)〜(4)のいずれかに記載のスパッタリングターゲット部材。
(6)前記ターゲット材が、In、Zn、Al、Ga、Zr、Ti、Sn、Mg、Ta及びSiのうち1種以上を含有することを特徴とする(1)〜(5)のいずれかに記載のスパッタリングターゲット部材。
(7)Snの含有量がSnO2換算で1〜10質量%のITOであることを特徴とする(1)〜(6)のいずれかに記載のスパッタリングターゲット部材。
(8)Inの含有量がIn23換算で10〜60質量%、Gaの含有量がGa23換算で10〜60質量%、Znの含有量がZnO換算で10〜60質量%のIGZOであることを特徴とする(1)〜(6)のいずれかに記載のスパッタリングターゲット部材。
(9)Alの含有量がAl23換算で0.1〜5質量%のAZOであることを特徴とする(1)〜(6)のいずれかに記載のスパッタリングターゲット部材。
(10)Znの含有量がZnO換算で1〜15質量%のIZOであることを特徴とする(1)〜(6)のいずれかに記載のスパッタリングターゲット部材。
(11)(1)〜(10)のいずれかに記載のスパッタリングターゲット部材と、バッキング部材とが、前記下地層と前記接合層を介して接合されるスパッタリングターゲット組立体。
(12)(1)〜(10)のいずれかに記載のスパッタリングターゲット部材の製造方法であって、酸化物セラミックス焼結体からなるターゲット材の表面に、イオンプレーティング法によりニッケルとインジウムを順に堆積した後、ホットプレート上で200〜250℃で加熱することで前記ニッケルとインジウムを合金化させIn−Ni合金からなる下地層を形成し、さらにインジウムを50質量%以上含有するロウ材を塗布する工程を含むことを特徴とするスパッタリングターゲット部材の製造方法。
(13)前記ターゲット材の表面粗さRzが0.8μm以上15μm以下であることを特徴とする(12)に記載のスパッタリングターゲット部材の製造方法。
(14)前記スパッタリングターゲット部材の表面粗さRzが0.8μm以上15μm以下であることを特徴とする(12)又は(13)に記載のスパッタリングターゲット部材の製造方法。
As a result of diligent studies by the present inventors, it has been found that the above problem can be solved by providing a specific underlayer and a bonding layer on the surface of the target material. That is, the present invention is specified as follows.
(1) Sputtering in which a target material made of an oxide ceramics sintered body, a base layer made of an In—Ni alloy, and a bonding layer containing 50% by mass or more of indium are sequentially provided on at least one surface of the target material. Target member.
(2) The sputtering target member according to (1), wherein the underlayer made of the In—Ni alloy has a thickness of 0.2 to 10 μm.
(3) The sputtering target member according to (1) or (2), which has a surface roughness Rz of 15 μm or less.
(4) The sputtering target member according to any one of (1) to (3), which has a surface roughness Rz of 0.8 or more and 7 μm or less.
(5) The sputtering target member according to any one of (1) to (4), wherein the underlayer made of the In-Ni alloy contains 10 to 80% by mass of Ni.
(6) The target material contains at least one selected from In, Zn, Al, Ga, Zr, Ti, Sn, Mg, Ta and Si. (1) to (5) The sputtering target member according to.
(7) The sputtering target member according to any one of (1) to (6), wherein the content of Sn is 1 to 10% by mass of ITO in terms of SnO 2 .
(8) 10 to 60 wt% content of In in the In 2 O 3 in terms of 10 to 60 mass% content of Ga is in terms of Ga 2 O 3, 10 to 60 mass% content of Zn is in terms of ZnO The sputtering target member according to any one of (1) to (6), which is IGZO.
(9) The sputtering target member according to any one of (1) to (6), wherein the Al content is 0.1 to 5 mass% AZO in terms of Al 2 O 3 .
(10) The sputtering target member according to any one of (1) to (6), wherein the content of Zn is 1 to 15 mass% of IZO in terms of ZnO.
(11) A sputtering target assembly in which the sputtering target member according to any one of (1) to (10) and a backing member are bonded together via the underlayer and the bonding layer.
(12) The method for manufacturing a sputtering target member according to any one of (1) to (10), wherein nickel and indium are sequentially formed on the surface of the target material made of an oxide ceramics sintered body by an ion plating method. After the deposition, the nickel and indium are alloyed by heating at 200 to 250 ° C. on a hot plate to form a base layer made of an In—Ni alloy, and a brazing material containing 50% by mass or more of indium is applied. The manufacturing method of the sputtering target member characterized by including the process of performing.
(13) The method for producing a sputtering target member according to (12), wherein the surface roughness Rz of the target material is 0.8 μm or more and 15 μm or less.
(14) The method for producing a sputtering target member according to (12) or (13), wherein the surface roughness Rz of the sputtering target member is 0.8 μm or more and 15 μm or less.

本発明によれば、ターゲット材の機械的強度の低下を抑制しつつ、バッキング部材との接合が可能である。   According to the present invention, it is possible to bond a target material with a backing member while suppressing a decrease in mechanical strength.

ホットプレートの加熱温度とIn−Ni合金からなる下地層の形成との関係を示すマッピング図である。FIG. 3 is a mapping diagram showing the relationship between the heating temperature of a hot plate and the formation of an underlayer made of an In—Ni alloy. ホットプレートの加熱温度とIn−Ni合金からなる下地層の形成との関係を示す別の図である。It is another figure which shows the relationship between the heating temperature of a hot plate, and formation of the base layer which consists of In-Ni alloys. 本発明実施例と従来技術のスパッタリングターゲット部材の抗折強度を示す図である。It is a figure which shows the bending strength of the sputtering target member of an Example of this invention and a prior art. 本発明実施例と従来技術のスパッタリングターゲット部材の組織のFIB後の分析画像を示す図である。It is a figure which shows the analysis image after the FIB of the structure | tissue of the sputtering target member of an Example of this invention and a prior art.

<ターゲット材>
本発明の一実施形態において、ターゲット材は、酸化物セラミックス焼結体からなるものであればよく、その組成が特に限定されない。
ターゲット材を構成するセラミックスとしては、例えば、In、Zn、Al、Ga、Zr、Ti、Sn、Mg、TaおよびSiのうち少なくとも1種を含有する酸化物等を挙げることができる。具体的には、Snの含有量がSnO2換算で1〜10質量%のITO(In23−SnO2)、Inの含有量がIn23換算で10〜60質量%、Gaの含有量がGa23換算で10〜60質量%、Znの含有量がZnO換算で10〜60質量%のIGZO(In23−Ga23−ZnO)、Alの含有量がAl23換算で0.1〜5質量%のAZO(Al23−ZnO)およびZnの含有量がZnO換算で1〜15質量%のIZO(In23−ZnO)などを例示することができるが、これらに限定されない。
また、ターゲット材の形状は特に限定されず、円筒状でも良く、板状でも良い。なお、ターゲット材は、通常、焼結後に平面研削などの加工が行われる。
<Target material>
In one embodiment of the present invention, the target material may be made of an oxide ceramics sintered body, and its composition is not particularly limited.
Examples of the ceramics forming the target material include oxides containing at least one of In, Zn, Al, Ga, Zr, Ti, Sn, Mg, Ta and Si. Specifically, the content of Sn is 1 to 10 mass% of ITO (In 2 O 3 —SnO 2 ) in terms of SnO 2 , the content of In is 10 to 60 mass% in terms of In 2 O 3 , and Ga of IGZO (In 2 O 3 —Ga 2 O 3 —ZnO) having a content of 10 to 60 mass% in terms of Ga 2 O 3 and a Zn content of 10 to 60 mass% in terms of ZnO, and the content of Al being Al content of 0.1 to 5 wt% of AZO (Al 2 O 3 -ZnO), and Zn is exemplified such as 1 to 15% by weight of IZO (in 2 O 3 -ZnO) in terms of ZnO at 2 O 3 in terms of However, it is not limited to these.
The shape of the target material is not particularly limited, and may be a cylindrical shape or a plate shape. The target material is usually subjected to processing such as surface grinding after sintering.

<In−Ni合金からなる下地層>
ターゲット材の少なくとも一方の表面に、In−Ni合金からなる下地層が形成される。
前述のような超音波ウェルダーを用いたロウ材塗布の欠点を回避するため、イオンプレーティング法によりニッケルとインジウムを順に堆積し、さらにインジウムを50質量%以上含有するロウ材を塗布することが考えられる。ここでニッケルは強硬にセラミックス剤に接着し、インジウムはニッケル上にアイランド状に成長するので、その後のロウ材塗布が容易となり、スパッタリングターゲット部材とバッキング部材との接合が容易となる。イオンプレーティングの際に、Inを堆積しなければ、イオンプレーティング後にInロウ材を塗布しても、濡れ性が悪く接合しない。
<Underlayer made of In-Ni alloy>
An underlayer made of an In—Ni alloy is formed on at least one surface of the target material.
In order to avoid the drawbacks of the brazing material application using the ultrasonic welder as described above, it is considered to deposit nickel and indium in order by the ion plating method and then apply a brazing material containing 50 mass% or more of indium. To be Here, nickel adheres strongly to the ceramics agent, and indium grows in an island shape on nickel, so that subsequent brazing material application becomes easy and the sputtering target member and the backing member are easily joined. If In is not deposited during ion plating, wettability is poor and bonding is not performed even if an In brazing material is applied after ion plating.

ただし、アイランド状に成長したインジウムの上にロウ材を塗布しても、その間に空隙ができ、ロウ材塗布性が悪く接着不良となる可能性があるので、後述のように、ホットプレートなどによって上記ニッケルとインジウムを合金化しIn−Ni合金からなる下地層を形成する。これにより、下地層とロウ材との空隙を低減することができ、ロウ材との濡れ性が良く、ターゲットとバッキング部材との接着状態が改善する。そして、ターゲットとバッキング部材との接着状態が改善すれば、熱伝導が良くなるためクラック発生も抑制できる。   However, even if the brazing material is applied onto the indium grown in the shape of islands, voids are created between them, which may result in poor brazing material applicability and poor adhesion. The nickel and indium are alloyed to form a base layer made of an In-Ni alloy. Thereby, the gap between the underlayer and the brazing material can be reduced, the wettability with the brazing material is good, and the adhesion state between the target and the backing member is improved. Then, if the adhesion state between the target and the backing member is improved, the heat conduction is improved, so that the occurrence of cracks can be suppressed.

In−Ni合金からなる下地層の厚みは限定ではないが、厚みの均一性及び作業性の観点から、0.2〜10.0μmであることが好ましく、0.5〜5.0μmであることがより好ましく、1〜2μmがより好ましい。
厚さの測定方法は、例えばFIB(収束イオンビーム加工観察装置)により、インジウムのロウ材塗布後のターゲット・接合層の厚さ方向に垂直な面をイオンビームで30μm幅に加工し、SIM(Scanning Ion Microscope)像を観察する。このSIM像の観察により厚さを測長することができ、3視野から5点測定して、平均値を算出し、厚さとする。
The thickness of the underlayer made of an In—Ni alloy is not limited, but from the viewpoint of uniformity of thickness and workability, it is preferably 0.2 to 10.0 μm, and 0.5 to 5.0 μm. Is more preferable and 1 to 2 μm is more preferable.
The thickness is measured by, for example, a FIB (focused ion beam processing observation device), and a surface perpendicular to the thickness direction of the target / bonding layer after applying the brazing material of indium is processed with an ion beam to a width of 30 μm, and SIM ( Scanning Ion Microscope) image is observed. The thickness can be measured by observing the SIM image, and 5 points are measured from 3 fields of view, and an average value is calculated to obtain the thickness.

In−Ni合金からなる下地層の組成は限定されないが、例えば、合金化の観点から、Niを10〜80質量%含有することが好ましく、20〜50質量%含有することがより好ましい。   The composition of the underlayer made of an In-Ni alloy is not limited, but for example, from the viewpoint of alloying, Ni is preferably contained in an amount of 10 to 80% by mass, more preferably 20 to 50% by mass.

<接合層>
上記In−Ni合金からなる下地層の上に、さらにインジウムを50質量%以上含有する接合層が形成される。インジウムを50質量%以上含有すれば、バッキング部材との濡れ性を確保することができる。インジウムの含有量は、例えば80質量%以上が好ましく、90質量%以上がより好ましく、100質量%であることがより好ましい。
例えば、50質量%以上含有する接合層としては、In−52wt%Sn−48wt%、In単体などがある。
<Joining layer>
A bonding layer containing 50% by mass or more of indium is further formed on the base layer made of the In—Ni alloy. If the content of indium is 50% by mass or more, the wettability with the backing member can be secured. The content of indium is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
For example, as the bonding layer containing 50% by mass or more, there are In-52 wt% Sn-48 wt%, In alone, and the like.

接合層は、例えばInロウ材をコットンなどでこすることで塗布することができる。   The bonding layer can be applied, for example, by rubbing an In brazing material with cotton or the like.

<スパッタリングターゲット部材>
本実施形態におけるスパッタリングターゲット部材は、上記In−Ni合金からなる下地層と、前記インジウムを50質量%以上含有する接合層とを順に備える。
<Sputtering target member>
The sputtering target member in the present embodiment sequentially includes a base layer made of the above In—Ni alloy and a bonding layer containing 50% by mass or more of the indium.

一般的にセラミックスでは、表面の状態が機械的な強度に大きな影響を与える。表面の微小な凹凸が起点となって亀裂へと成長していくためであり、表面粗さと機械的強度には大きな相関がある。よって、本実施形態においても、平面研削などの加工直後と、イオンプレーティングやウェルディング処理し酸洗浄を行った後のターゲット表面の表面粗さを比較している。   Generally, in ceramics, the surface condition greatly affects the mechanical strength. This is because minute irregularities on the surface start as cracks and grow into cracks, and there is a large correlation between surface roughness and mechanical strength. Therefore, also in this embodiment, the surface roughness of the target surface immediately after processing such as surface grinding is compared with the surface roughness of the target surface after ion plating or welding treatment and acid cleaning.

段落0005の背景技術に示されたように、スパッタリングターゲットのターゲット表面に超音波ウェルディングによりロウ材を塗布した場合、ホーンの接触や超音波発振が原因で、微細な傷を生じさせてしまう。微細な傷が生じることにより、ターゲット材の表面の表面粗さが増大する。そのため、超音波ウェルディングによりロウ材を塗布した後にロウ材を酸により除去し、ターゲット材の表面の表面粗さを測定すると、平面研削などの加工直後に較べて、表面粗さが増大しているのが通常である。   As shown in the background art of Paragraph 0005, when a brazing material is applied to the target surface of a sputtering target by ultrasonic welding, fine scratches are caused due to contact of the horn and ultrasonic oscillation. The fine scratches increase the surface roughness of the surface of the target material. Therefore, when the brazing material is applied by ultrasonic welding and then the brazing material is removed with an acid, and the surface roughness of the target material is measured, the surface roughness increases as compared to immediately after processing such as surface grinding. It is normal to

本実施形態において、ターゲット材の表面に超音波ウェルダーを用いてロウ材を塗布する必要が無いため、表面の微小なクラックなど機械的なダメージを低減でき、表面粗さの増大を抑制できる。平面研削などの加工直後に較べて、イオンプレーティング等の処理の後に硝酸などの酸洗浄でIn及びNiを除去した後に表面粗さRzを再測定したとき、その前後での表面粗さRzの増加は、15%以下が好ましく、10%以下がより好ましく、5%以下がさらに好ましい。   In the present embodiment, since it is not necessary to apply the brazing material to the surface of the target material using the ultrasonic welder, mechanical damage such as minute cracks on the surface can be reduced, and an increase in surface roughness can be suppressed. Compared to immediately after processing such as surface grinding, when the surface roughness Rz is measured again after removing In and Ni by acid cleaning such as nitric acid after the treatment such as ion plating, the surface roughness Rz before and after that is measured. The increase is preferably 15% or less, more preferably 10% or less, still more preferably 5% or less.

以上の観点から、In−Ni合金からなる下地層と、インジウムを50質量%以上含有する接合層とを順に備える、ターゲット材の表面粗さRzに関しては、ターゲット材の表面粗さRzが粗すぎると、ウェルディングでもイオンプレーティングでも強度に差異が生じないほど、材料の強度が低下する点からRzは15μm以下が好ましい。また、ターゲット材の表面粗さRzが低すぎると、イオンプレーティング時のNi層の接着が悪化する可能性が考えられるため、Rzは0.8μm以上が好ましい。ここにいうターゲット材の表面粗さRzとは、平面研削などの加工直後、下地層及び接合層を設ける前のターゲット材の表面粗さRzをいう。このような表面粗さRzを有するターゲット材は、本発明のスパッタリングターゲット部材の製造に好適に用いることができる。
また、ターゲット材の表面粗さRzの測定方法としては、表面粗さ計(例えば、ミツトヨ社製 サーフテスト SJ−301)で表面粗さRzを測定する。この際には、平面研削後の研削筋に平行に測定する。
From the above viewpoint, regarding the surface roughness Rz of the target material, which is provided with an underlayer made of an In-Ni alloy and a bonding layer containing 50% by mass or more of indium in order, the surface roughness Rz of the target material is too rough. Therefore, Rz is preferably 15 μm or less from the viewpoint that the strength of the material decreases so that the strength does not differ between welding and ion plating. If the surface roughness Rz of the target material is too low, the adhesion of the Ni layer during ion plating may be deteriorated. Therefore, Rz is preferably 0.8 μm or more. The surface roughness Rz of the target material referred to here means the surface roughness Rz of the target material immediately after processing such as surface grinding and before providing the underlayer and the bonding layer. The target material having such a surface roughness Rz can be suitably used for manufacturing the sputtering target member of the present invention.
Further, as a method for measuring the surface roughness Rz of the target material, the surface roughness Rz is measured with a surface roughness meter (for example, Surftest SJ-301 manufactured by Mitutoyo Corporation). At this time, the measurement is performed parallel to the grinding streaks after the surface grinding.

ターゲット材について下地層及び接合層を設けた後のスパッタリングターゲット部材の表面粗さRzは、平面研削などの加工直後の表面粗さRzに依存している。Inロウ材を塗布した後の表面粗さRzが、平面研削などの加工直後の表面粗さRzと変化がない(増大しない)ことにより、材料の機械的強度を保てる。下地層及び接合層を設けた後の表面粗さRzの上限は、15.0μm以下が好ましく、7.0μm以下がより好ましい。下地層及び接合層を設けた後の表面粗さRzを15.0μm以下とすることにより、イオンプレーティングであろうと、ウェルディングであろうと、機械的強度の過度な低下を防止できる。また、下地層及び接合層を設けた後の表面粗さRzを7.0μm以下とすることがより好ましい理由としては、さらに機械的強度を保つのに効果的だからである(15μmと7μmでは、#80仕上げと#400仕上げ以上の差があり、強度は大幅に変わる)。また、下地層及び接合層を設けた後の表面粗さRzは、0.8μm以上がより好ましい。処理後の表面粗さを0.8μm以上とすることにより、表面仕上げに必要な加工時間が過度に長くならない。
なお、本発明において、単に「スパッタリングターゲット部材の表面粗さRz」をいう場合、上記下地層及び接合層を設けた後のスパッタリングターゲット部材の表面粗さRzを指すものである。
また、スパッタリングターゲット部材の表面粗さRzの測定方法としては、下地層と接合層を例えば濃硝酸などの酸で洗浄した後、表面粗さ計(例えば、ミツトヨ社製 サーフテスト SJ−301)で表面粗さRzを測定する。この際には、平面研削の研削筋に平行に測定する。なお、スパッタリングターゲット部材がバッキング部材とが接合されてスパッタリングターゲット組立体を形成している場合、スパッタリングターゲット部材の表面粗さRzは、バッキング部材を除去し、さらに酸洗浄で下地層と接合層を除去した後に測定する。
The surface roughness Rz of the sputtering target member after providing the base layer and the bonding layer on the target material depends on the surface roughness Rz immediately after processing such as surface grinding. The mechanical strength of the material can be maintained because the surface roughness Rz after applying the In brazing material does not change (does not increase) with the surface roughness Rz immediately after processing such as surface grinding. The upper limit of the surface roughness Rz after providing the underlayer and the bonding layer is preferably 15.0 μm or less, and more preferably 7.0 μm or less. By setting the surface roughness Rz after providing the underlayer and the bonding layer to 15.0 μm or less, it is possible to prevent an excessive decrease in mechanical strength regardless of whether it is ion plating or welding. Further, the reason why it is more preferable to set the surface roughness Rz after providing the underlayer and the bonding layer to 7.0 μm or less is that it is effective to further maintain the mechanical strength (15 μm and 7 μm, (There is a difference between # 80 finish and # 400 finish, and the strength changes drastically). Further, the surface roughness Rz after providing the base layer and the bonding layer is more preferably 0.8 μm or more. By setting the surface roughness after the treatment to 0.8 μm or more, the processing time required for the surface finish does not become excessively long.
In the present invention, when simply referring to “surface roughness Rz of sputtering target member”, it means surface roughness Rz of the sputtering target member after the above-mentioned base layer and bonding layer are provided.
As a method for measuring the surface roughness Rz of the sputtering target member, after washing the underlayer and the bonding layer with an acid such as concentrated nitric acid, a surface roughness meter (for example, Surftest SJ-301 manufactured by Mitutoyo Corporation) is used. The surface roughness Rz is measured. At this time, the measurement is performed in parallel with the grinding line of the surface grinding. When the sputtering target member and the backing member are bonded to each other to form a sputtering target assembly, the surface roughness Rz of the sputtering target member is determined by removing the backing member and further cleaning the base layer and the bonding layer by acid cleaning. Measure after removing.

そして、InとNiが合金化していることは、X線回折測定及びFE−EPMAによって確認できる。方法としては2種類あり、イオンプレーティング後のスパッタリングターゲット部材を法線方向から測定する方法、又はスパッタリングターゲット部材の厚み方向断面においてターゲット・蒸着層・ロウ材界面付近を測定する方法である。後者はイオンプレーティングし加熱した後であれば、どのような状態でも測定は可能である。実際に、合金化していることは、X線回折測定で、金属In及び金属Niのいずれかの回折ピークが消滅していることで確認でき、FE−EPMAの元素マッピングでNi及びInが固溶していることからも確認できる。   The fact that In and Ni are alloyed can be confirmed by X-ray diffraction measurement and FE-EPMA. There are two types of methods: a method of measuring the sputtering target member after ion plating from the normal direction, or a method of measuring the vicinity of the target / deposited layer / brazing material interface in the cross section in the thickness direction of the sputtering target member. The latter can be measured in any state as long as it is after ion plating and heating. In fact, alloying can be confirmed by the disappearance of either the diffraction peak of metal In or metal Ni by X-ray diffraction measurement, and Ni and In are solid-solved by elemental mapping of FE-EPMA. You can also confirm from what you are doing.

また、ターゲットの機械的強度の評価方法として、本発明の接合作業の事前にターゲット単体での抗折強度を評価(強度A)し、接合後、接合層を除去した後のターゲットの抗折強度を評価(強度B)する。この(強度A−強度B)/強度A×100%を強度低下率として評価する。なお、抗折強度は3点曲げ試験によって評価し、10点の平均値を評価した(強度測定は同一Lotのサンプルを使用する。切断位置は異なるが、概ね強度は同じと仮定できる)。また、接合層の除去は、酸洗浄により行われるものとする。   Further, as a method for evaluating the mechanical strength of the target, the bending strength of the target alone is evaluated (strength A) prior to the bonding work of the present invention, and the bending strength of the target after the bonding layer is removed after bonding. Is evaluated (strength B). This (strength A-strength B) / strength A × 100% is evaluated as the strength reduction rate. The bending strength was evaluated by a 3-point bending test, and an average value of 10 points was evaluated (strength measurement uses the same Lot sample. Although cutting positions are different, it can be assumed that the strengths are generally the same). Further, the removal of the bonding layer is performed by acid cleaning.

<スパッタリングターゲット組立体>
上記スパッタリングターゲット部材とバッキング部材とを、上記下地層と上記接合層を介して接合してスパッタリングターゲット組立体を形成することができる。スパッタリングターゲット部材とバッキング部材との接合方法に関しては後述する。
バッキング部材の組成は特に限定されないが、例えば、銅、チタン又はこれらの合金からなるものを使用することができる。
<Sputtering target assembly>
The sputtering target member and the backing member may be bonded to each other via the base layer and the bonding layer to form a sputtering target assembly. A method for joining the sputtering target member and the backing member will be described later.
The composition of the backing member is not particularly limited, but, for example, one made of copper, titanium or an alloy thereof can be used.

<スパッタリングターゲット部材の製造方法>
本実施形態において、ターゲット材の表面を前述のような超音波ウェルダーを用いて直接ロウ材を塗布せず、まずはイオンプレーティング法によりニッケルとインジウムを順に堆積した後、ホットプレートなどで200〜250℃で加熱することでニッケルとインジウムを合金化させIn−Ni合金からなる下地層を形成する。
<Method for manufacturing sputtering target member>
In the present embodiment, the surface of the target material is not directly coated with the brazing material using the ultrasonic welder as described above. First, nickel and indium are sequentially deposited by the ion plating method, and then a hot plate or the like is used for 200 to 250. By heating at ° C, nickel and indium are alloyed to form a base layer made of an In-Ni alloy.

ここで、イオンプレーティング法により、先にニッケルと堆積してから、インジウムを堆積することが肝要である。この順番を逆にすると、ターゲットにインジウムが強硬に接着しないという問題が生じる。ニッケルとインジウムの蒸着条件は特に限定しないが、例えばNi:2.0kÅ、In:4.5kÅを目標として設定できる(水晶振動式膜厚計で堆積された膜厚を測定することができる)。   Here, it is important to deposit nickel first and then indium by the ion plating method. If this order is reversed, indium does not adhere strongly to the target. The vapor deposition conditions of nickel and indium are not particularly limited, but Ni: 2.0 kÅ and In: 4.5 kÅ can be set as targets (the film thickness deposited by a crystal vibrating film thickness meter can be measured).

また、加熱温度を200〜250℃とすることが肝要である。加熱温度が200℃未満の場合はターゲットサイズによってInロウ材が溶融しにくく、250℃を超える場合はボンディング時のハンドリングが悪くなる。この観点から、加熱温度は200〜250℃が好ましく、210〜240℃がより好ましい。   In addition, it is important to set the heating temperature to 200 to 250 ° C. If the heating temperature is less than 200 ° C., the In brazing material is difficult to melt depending on the target size, and if it exceeds 250 ° C., the handling during bonding becomes poor. From this viewpoint, the heating temperature is preferably 200 to 250 ° C, more preferably 210 to 240 ° C.

In−Ni合金からなる下地層を形成した後、さらにインジウムを50質量%以上含有するロウ材を塗布して接合層を形成する。さらに上記下地層と上記接合層を介してバッキング部材と接合してスパッタリングターゲット組立体を得ることができる。接合条件は限定されないが、例えばロウ材厚みが0.5mmとなるようなボンディングとすることができる。   After forming a base layer made of an In—Ni alloy, a brazing material containing 50 mass% or more of indium is further applied to form a bonding layer. Further, the sputtering target assembly can be obtained by joining the backing member through the underlayer and the joining layer. Although the bonding conditions are not limited, for example, the bonding may be such that the brazing material thickness is 0.5 mm.

以下、実施例に基づいて説明する。なお、本実施例はあくまで理解を容易にするための一例であり、この例によって何ら制限されるものではない。すなわち、本発明は特許請求の範囲によってのみ制限されるものであり、本発明で説明する実施例以外の種々の変形を包含するものである。   Hereinafter, description will be made based on examples. It should be noted that the present embodiment is merely an example for facilitating understanding and is not limited to this example. That is, the present invention is limited only by the claims, and includes various modifications other than the embodiments described in the present invention.

(実施例)
表1に示す組成の板状焼結体スパッタリングターゲット材を用意した。このターゲット材の表面に、Ni:2.0kÅ、In:4.5kÅ狙いの条件で、ニッケルとインジウムを順次に堆積した。次に、ターゲット材をホットプレート上で、表1に示す温度で加熱してニッケルとインジウムを合金化させIn−Ni合金からなる下地層を形成した。さらに、インジウム100質量%のロウ材を200℃でコットンを用いて塗布した。
(Example)
A plate-shaped sintered body sputtering target material having the composition shown in Table 1 was prepared. Nickel and indium were sequentially deposited on the surface of this target material under the conditions of aiming at Ni: 2.0 kÅ and In: 4.5 kÅ. Next, the target material was heated at a temperature shown in Table 1 on a hot plate to alloy nickel with indium to form a base layer made of an In-Ni alloy. Further, a brazing material containing 100% by mass of indium was applied at 200 ° C. using cotton.

(比較例)
表1に示す組成の板状焼結体スパッタリングターゲット材を用意した。このターゲット材の表面に、表1に示す下地層を堆積した。次に、ターゲット材をホットプレート上で表1に示す温度で加熱してニッケルとインジウムを合金化させIn−Ni合金からなる下地層を形成した。さらに、インジウム100質量%のロウ材を200℃でコットンを用いて塗布した。
(Comparative example)
A plate-shaped sintered body sputtering target material having the composition shown in Table 1 was prepared. The underlayer shown in Table 1 was deposited on the surface of this target material. Next, the target material was heated at a temperature shown in Table 1 on a hot plate to alloy nickel with indium to form an underlayer made of an In-Ni alloy. Further, a brazing material containing 100% by mass of indium was applied at 200 ° C. using cotton.

実施例1と同素材のスパッタリングターゲット部材の表面に、Ni:2.0kÅ、In:4.5kÅ狙いの条件で、ニッケルとインジウムを順次に堆積し、150℃、200℃、250℃、300℃の温度で加熱してニッケルとインジウムを合金化させIn−Ni合金からなる下地層を形成した。さらに、インジウム100質量%のロウ材を200℃でコットンを用いて塗布した。
それぞれのスパッタリングターゲット部材について、FE−EPMAによる元素マッピング及び、30〜60°で5°/minの条件でX線回折法(XRD)分析を行い、結果をそれぞれ図1及び2に示す。
図1及び2から、150℃加熱ではNi膜の上にInがアイランド状に堆積した状態であり、200℃加熱では形状は保っているが、InとNiが反応し始めている様子が見て取れる。250℃加熱では、Inのアイランド形状は完全に崩れており、全体が合金化している。合金化の模式図は図1の下部に示される。
Nickel and indium are sequentially deposited on the surface of a sputtering target member made of the same material as in Example 1 under the conditions of Ni: 2.0 kÅ and In: 4.5 kÅ, and 150 ° C, 200 ° C, 250 ° C, 300 ° C. Was heated at a temperature of 1 to alloy nickel and indium to form a base layer made of an In-Ni alloy. Further, a brazing material containing 100% by mass of indium was applied at 200 ° C. using cotton.
Each sputtering target member was subjected to elemental mapping by FE-EPMA and X-ray diffraction (XRD) analysis under the conditions of 30 to 60 ° and 5 ° / min, and the results are shown in FIGS. 1 and 2, respectively.
From FIGS. 1 and 2, it can be seen that In is a state where In is deposited on the Ni film in an island shape at 150 ° C. heating, and the shape is maintained at 200 ° C., but In and Ni start to react. Upon heating at 250 ° C., the island shape of In is completely collapsed and the whole is alloyed. A schematic diagram of alloying is shown at the bottom of FIG.

また、各実施例及び比較例のターゲット材について、表面粗さ計(ミツトヨ社製 サーフテスト SJ−301)で表面粗さRzを測定し、スパッタリングターゲット部材について、下地層と接合層とを濃硝酸によって溶解させ、表面粗さ計(ミツトヨ社製 サーフテスト SJ−301)で表面粗さRzを測定し、表面粗さRzの増加率を計算し、結果を表1に示す。表面粗さの増加率がマイナスであることは、表面粗さRzが減少したことを意味する。
表1から、イオンプレーティングで処理を行ったサンプルの方が、表面粗さRzの増大が抑制されていることが分かる。表面粗さの増加が抑制されていることは、つまり、表面の凹凸が小さく、クラック発生を抑制できていることになる。
Moreover, about the target material of each Example and a comparative example, the surface roughness Rz was measured by the surface roughness meter (Surftest SJ-301 manufactured by Mitutoyo Corporation), and for the sputtering target member, the underlayer and the bonding layer were concentrated nitric acid. The surface roughness Rz was measured with a surface roughness meter (Surftest SJ-301 manufactured by Mitutoyo Co., Ltd.), the rate of increase in the surface roughness Rz was calculated, and the results are shown in Table 1. The negative increase rate of the surface roughness means that the surface roughness Rz has decreased.
From Table 1, it can be seen that the sample treated by ion plating is suppressed in the increase of the surface roughness Rz. The suppression of the increase in surface roughness means that the unevenness of the surface is small and the occurrence of cracks can be suppressed.

また、各実施例及び比較例のスパッタリングターゲット部材について、3点曲げ試験で抗折強度を測定し、結果を表1及び図3に示す。
セラミックス材料の抗折強度は、一般にワイブル統計に従うことが知られている。図3から、イオンプレーティングで処理を行ったサンプルの方が、ウェルディング処理を行ったサンプルよりも平均強度が高いことが分かる。また、ワイブル統計で解析した際に、ある強度で破壊される確率(累積破壊確率)も、ウェルディング処理を行ったサンプルの方が、高いことがわかる。このことから、実際の製品における、ボンディング面からのクラック発生の抑制になっていることがわかる。ウェルディング処理により、強度が低下する理由としては、表面に微細な傷が生じており、その傷を起点として割れが発生するからであり、表1から分かるように表面粗さに表れる。
The bending strength of each of the sputtering target members of Examples and Comparative Examples was measured by a three-point bending test, and the results are shown in Table 1 and FIG.
It is known that the bending strength of ceramic materials generally follows Weibull statistics. It can be seen from FIG. 3 that the sample treated by ion plating has a higher average intensity than the sample treated by welding. Further, when analyzed by Weibull statistics, the probability of destruction at a certain strength (cumulative destruction probability) is higher in the sample subjected to the welding process. From this, it can be seen that the crack generation from the bonding surface in the actual product is suppressed. The reason why the strength is lowered by the welding treatment is that fine scratches are generated on the surface and cracks are generated from the scratches, and as shown in Table 1, the surface roughness appears.

インジウムのロウ材とターゲット材の接合状態は、クロスカット試験にて行った。方法としては、1mm角で5×5の碁盤目状に、カッターナイフで切れ目をいれてテープを付着後に剥がし、インジウムのロウ材の剥がれ具合を確認した。評価方法として、25マスを4ヶ所剥離させて、100マス中何マス剥がれたかを比較した。剥がれが生じたマスの割合を表1の「剥がれ率」として示した。   The bonding state of the indium brazing material and the target material was measured by a cross cut test. As a method, 1 mm square and 5 × 5 grids were cut with a cutter knife, the tape was attached and then the tape was peeled off, and the degree of peeling of the indium brazing material was confirmed. As an evaluation method, 25 squares were peeled off at four places, and the number of squares peeled out of 100 squares was compared. The ratio of the mass in which peeling occurred is shown as "Peeling rate" in Table 1.

※1下地層及び/又は接合層を設ける前のターゲット材の表面粗さRzを測定したものである。
※2下地層及び/又は接合層を設けた後のスパッタリングターゲット部材の表面粗さRzを測定したものである。
* 1 Measures the surface roughness Rz of the target material before providing the underlayer and / or the bonding layer.
* 2 Measured for the surface roughness Rz of the sputtering target member after providing the underlayer and / or the bonding layer.

実施例1〜3に関しては、ターゲットを変更しても、本発明が規定する条件ならば強度が保てて、剥がれ率も問題ないことがわかる。実施例4に関しても、ロウ材を変更しても、問題ないことがわかる。実施例5及び6ではイオンプレーティング層を厚くした場合であり、強度や剥がれ率に問題はないが、イオンプレーティング層を上限以上に積層するには作業時間の面で実施例1〜4により少し劣る。実施例7及び8ではイオンプレーティング層を薄くした場合であり、実施例では強度や剥がれ率に問題はないが、大きなサイズのサンプルに適用する際にはイオンプレーティング時のムラなどで、ターゲット表面が露出する可能性も考えられるため最適とはいえない。実施例9に関しても、強度、剥がれ率共に問題はないが、実施例1と比較すると、ボンディング温度が低いことにより、合金化速度が遅く、作業に時間がかかるため実施例1のほうがより優れることが分かる。実施例10に関しても、強度、剥がれ率共に問題はないが、ボンディング温度が高いと、ボンディング時のハンドリングが悪くなるため、250℃以下の加熱の方が好ましい。実施例11に関しては、ターゲット材の表面のRzを低くして鏡面にすることにより、実施例1〜10に較べると剥がれ率が上昇しているが、表面粗さ・強度の観点からは問題がない。鏡面にするためには、平面研削にかなりの時間を要するため、特に必要なければ、実際の製造条件としては採用しなくてよい。
比較例1に関しては、ターゲット材の表面にInのみをイオンプレーティングした場合であるが、Inはターゲット材の表面と強硬に接着していないため、剥がれ率が高い。比較例2に関しては、ターゲット材の表面にNiのみをイオンプレーティングした場合であるが、Niの上にInを塗布しても、濡れ性が悪く接合しない。比較例3に関しては、ボンディング時の温度を下げた場合は、イオンプレーティング面にInロウ材を塗布する際に、一部でInが固化してしまい、接合できない可能性がある。比較例4〜6に関しては、ウェルディング処理により、強度が低下している。比較例7に関しては、処理前のターゲットの表面が粗すぎる場合を取り上げているが、その場合には、元々の強度が低いため、ウェルディング処理を行っても強度の低下はない(イオンプレーティングの効果は見込めない)。ただし、強度自体は低いので、スパッタリング用のターゲットとして好ましくない。
Regarding Examples 1 to 3, it can be seen that even if the target is changed, the strength can be maintained and the peeling rate does not matter under the conditions specified by the present invention. As for Example 4, it can be seen that there is no problem even if the brazing material is changed. In Examples 5 and 6, the thickness of the ion plating layer is increased, and there is no problem in strength and peeling rate. However, in order to stack the ion plating layer above the upper limit, the working time is the same as in Examples 1 to 4. A little inferior. In Examples 7 and 8, the thickness of the ion plating layer was thin, and there is no problem in strength and peeling rate in Examples, but when applied to a large size sample, unevenness during ion plating causes It is not optimal because the surface may be exposed. Regarding Example 9 as well, there is no problem in strength and peeling rate, but as compared with Example 1, since the bonding temperature is low, the alloying speed is slow and the work takes time, so Example 1 is superior. I understand. Also in Example 10, there is no problem in strength and peeling rate, but if the bonding temperature is high, handling at the time of bonding becomes poor, so heating at 250 ° C. or lower is preferable. In Example 11, the peeling rate is increased as compared with Examples 1 to 10 by lowering Rz on the surface of the target material to make it a mirror surface, but there is a problem from the viewpoint of surface roughness / strength. Absent. Since it takes a considerable time for surface grinding to make it a mirror surface, it is not necessary to adopt it as an actual manufacturing condition unless it is particularly necessary.
In Comparative Example 1, only In was ion-plated on the surface of the target material, but since In is not strongly bonded to the surface of the target material, the peeling rate is high. In Comparative Example 2, only Ni was ion-plated on the surface of the target material, but even if In was applied on Ni, the wettability was poor and the bonding was not achieved. Regarding Comparative Example 3, when the temperature at the time of bonding is lowered, In may be partially solidified when the In brazing material is applied to the ion plating surface, and there is a possibility that bonding cannot be performed. Regarding Comparative Examples 4 to 6, the strength is lowered by the welding treatment. In Comparative Example 7, the case where the surface of the target before the treatment is too rough is taken up, but in that case, since the original strength is low, the strength does not decrease even if the welding treatment is performed (ion plating). Cannot be expected). However, since the strength itself is low, it is not preferable as a target for sputtering.

また、各実施例及び比較例のスパッタリングターゲット部材について、5μm幅で、集束イオンビーム(FIB)で厚み方向の断面を観測し、結果を図4に示す。
図4から、超音波ウェルディング品の方が、イオンプレーティング品よりもスパッタリングターゲット部材最表面が粗く、ウェルディングにより細かいクラックが生じていることが認められる。図4からわかるように、イオンプレーティング品ではターゲット表面に平面研削による加工ダメージ層が残っているが、最表面はなめらかである。ウェルディング品では、上述の加工ダメージ層は超音波発振等が原因で、除去されており、表面変質層よりもはるかに深く亀裂が入っている。これらの亀裂は曲げ試験の際に、クラックの起点になり、強度低下を招く。
Further, with respect to the sputtering target members of Examples and Comparative Examples, a cross section in the thickness direction was observed with a focused ion beam (FIB) with a width of 5 μm, and the result is shown in FIG.
From FIG. 4, it is recognized that the ultrasonic welding product has a rougher outermost surface of the sputtering target member than the ion plating product, and fine cracks are generated due to welding. As can be seen from FIG. 4, in the ion-plated product, a processing damage layer due to surface grinding remains on the target surface, but the outermost surface is smooth. In the welded product, the processing damage layer has been removed due to ultrasonic oscillation and the like, and has a crack far deeper than the surface-altered layer. These cracks become the starting points of cracks in the bending test, resulting in a decrease in strength.

Claims (12)

In、Zn、Ga、Snのうち少なくとも1種を含有する酸化物セラミックス焼結体からなるターゲット材と、
前記ターゲット材の少なくとも一方の表面に、In−Ni合金からなる下地層と、インジウムを50質量%以上含有する接合層とを順に備える
スパッタリングターゲット部材。
A target material comprising an oxide ceramics sintered body containing at least one of In, Zn, Ga and Sn ;
A sputtering target member, which comprises, on at least one surface of the target material, an underlayer made of an In-Ni alloy and a bonding layer containing 50% by mass or more of indium in this order.
前記In−Ni合金からなる下地層の厚みが0.2〜10.0μmであることを特徴とする請求項1に記載のスパッタリングターゲット部材。   The sputtering target member according to claim 1, wherein the underlayer made of the In-Ni alloy has a thickness of 0.2 to 10.0 µm. 表面粗さRzが15μm以下であることを特徴とする請求項1又は2に記載のスパッタリングターゲット部材。   Surface roughness Rz is 15 micrometers or less, The sputtering target member of Claim 1 or 2 characterized by the above-mentioned. 表面粗さRzが0.8μm以上7μm以下であることを特徴とする請求項1〜3のいずれか一項に記載のスパッタリングターゲット部材。   The sputtering target member according to claim 1, wherein the surface roughness Rz is 0.8 μm or more and 7 μm or less. 前記In−Ni合金からなる下地層は、Niを10〜80質量%含有することを特徴とする請求項1〜4のいずれか一項に記載のスパッタリングターゲット部材。   The sputtering target member according to any one of claims 1 to 4, wherein the underlayer made of the In-Ni alloy contains 10 to 80% by mass of Ni. Snの含有量がSnO2換算で1〜10質量%のITOであることを特徴とする請求項1〜のいずれか一項に記載のスパッタリングターゲット部材。 The sputtering target member according to any one of claims 1 to 5, the content of Sn is equal to or 1 to 10 wt% of ITO in terms of SnO 2. Inの含有量がIn23換算で10〜60質量%、Gaの含有量がGa23換算で10〜60質量%、Znの含有量がZnO換算で10〜60質量%のIGZOであることを特徴とする請求項1〜のいずれか一項に記載のスパッタリングターゲット部材。 IGZO having an In content of 10 to 60% by mass in terms of In 2 O 3 , a Ga content of 10 to 60% by mass in terms of Ga 2 O 3 , and a Zn content of 10 to 60% by mass in terms of ZnO. the sputtering target member according to any one of claims 1 to 5, characterized in that. Znの含有量がZnO換算で1〜15質量%のIZOであることを特徴とする請求項1〜のいずれか一項に記載のスパッタリングターゲット部材。 The sputtering target member according to any one of claims 1 to 5, the content of Zn is characterized in that it is a IZO 1-15 wt% in terms of ZnO. 請求項1〜のいずれか一項に記載のスパッタリングターゲット部材と、バッキング部材とが、前記下地層と前記接合層を介して接合されるスパッタリングターゲット組立体。 A sputtering target assembly in which the sputtering target member according to any one of claims 1 to 9 and a backing member are bonded to each other via the base layer and the bonding layer. 請求項1〜のいずれか一項に記載のスパッタリングターゲット部材の製造方法であって、
In、Zn、Ga、Snのうち少なくとも1種を含有する酸化物セラミックス焼結体からなるターゲット材の表面に、イオンプレーティング法によりニッケルとインジウムを順に堆積した後、ホットプレート上で200〜250℃で加熱することで前記ニッケルとインジウムを合金化させIn−Ni合金からなる下地層を形成し、さらにインジウムを50質量%以上含有するロウ材を塗布する工程を含むことを特徴とするスパッタリングターゲット部材の製造方法。
It is a manufacturing method of the sputtering target member as described in any one of Claims 1-8 , Comprising:
After depositing nickel and indium in order by an ion plating method on the surface of a target material made of an oxide ceramics sintered body containing at least one of In, Zn, Ga, and Sn , 200 to 250 on a hot plate. A sputtering target characterized by including a step of alloying nickel and indium by heating at ℃ to form an underlayer made of an In-Ni alloy, and further applying a brazing material containing 50% by mass or more of indium. A method of manufacturing a member.
前記ターゲット材の表面粗さRzが0.8μm以上15μm以下であることを特徴とする請求項10に記載のスパッタリングターゲット部材の製造方法。 The method for manufacturing a sputtering target member according to claim 10 , wherein the surface roughness Rz of the target material is 0.8 μm or more and 15 μm or less. 前記スパッタリングターゲット部材の表面粗さRzが0.8μm以上15μm以下であることを特徴とする請求項10又は11に記載のスパッタリングターゲット部材の製造方法。 The surface roughness Rz of the said sputtering target member is 0.8 micrometer or more and 15 micrometers or less, The manufacturing method of the sputtering target member of Claim 10 or 11 characterized by the above-mentioned.
JP2018059049A 2018-03-26 2018-03-26 Sputtering target member, sputtering target assembly, and method for manufacturing sputtering target member Active JP6689309B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018059049A JP6689309B2 (en) 2018-03-26 2018-03-26 Sputtering target member, sputtering target assembly, and method for manufacturing sputtering target member
CN201811307593.0A CN110359020B (en) 2018-03-26 2018-11-05 Sputtering target member, sputtering target assembly, and method for producing sputtering target member
KR1020180156840A KR102268236B1 (en) 2018-03-26 2018-12-07 Sputtering target member, sputtering target assembly and manufacturing method of sputtering target member
TW107144995A TWI752288B (en) 2018-03-26 2018-12-13 Sputtering target component, sputtering target assembly, and manufacturing method of sputtering target component
KR1020200138138A KR20200126353A (en) 2018-03-26 2020-10-23 Sputtering target member, sputtering target assembly and manufacturing method of sputtering target member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059049A JP6689309B2 (en) 2018-03-26 2018-03-26 Sputtering target member, sputtering target assembly, and method for manufacturing sputtering target member

Publications (2)

Publication Number Publication Date
JP2019173046A JP2019173046A (en) 2019-10-10
JP6689309B2 true JP6689309B2 (en) 2020-04-28

Family

ID=68169472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059049A Active JP6689309B2 (en) 2018-03-26 2018-03-26 Sputtering target member, sputtering target assembly, and method for manufacturing sputtering target member

Country Status (4)

Country Link
JP (1) JP6689309B2 (en)
KR (2) KR102268236B1 (en)
CN (1) CN110359020B (en)
TW (1) TWI752288B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304369A (en) * 1991-04-01 1992-10-27 Hitachi Metals Ltd Chromium-silicon oxide target material
TW381123B (en) * 1997-02-28 2000-02-01 Tosoh Corp A process for surface-treating a sputtering target
JPH10280137A (en) * 1997-04-04 1998-10-20 Tosoh Corp Production of sputtering target
JP3319740B2 (en) 2000-06-02 2002-09-03 株式会社日鉱マテリアルズ Brazing material coating device
JP2004322109A (en) 2003-04-22 2004-11-18 Canon Inc Brazing filler metal coating method
JP5672536B2 (en) 2010-12-21 2015-02-18 東ソー株式会社 Cylindrical sputtering target and manufacturing method thereof
JP2015036431A (en) * 2013-08-12 2015-02-23 住友金属鉱山株式会社 Cylindrical sputtering target and manufacturing method of the same
CN104690487A (en) * 2013-12-09 2015-06-10 有研亿金新材料股份有限公司 Method for adhesively connecting target and backboard
JP5944024B1 (en) * 2015-02-27 2016-07-05 Jx金属株式会社 Rotary sputtering target and manufacturing method thereof

Also Published As

Publication number Publication date
KR20190112627A (en) 2019-10-07
KR102268236B1 (en) 2021-06-22
TW201940720A (en) 2019-10-16
CN110359020B (en) 2022-01-11
CN110359020A (en) 2019-10-22
TWI752288B (en) 2022-01-11
KR20200126353A (en) 2020-11-06
JP2019173046A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP2009256782A (en) Aluminum alloy plate, and method for producing the same
JP6066018B2 (en) Sputtering target material and manufacturing method thereof
JP6734033B2 (en) Oxygen-free copper plate, method for manufacturing oxygen-free copper plate, and ceramic wiring board
JPH10158829A (en) Production of assembly of sputtering target
JP6422157B2 (en) Diamond etching method, diamond crystal defect detection method, and diamond crystal growth method
JP6689309B2 (en) Sputtering target member, sputtering target assembly, and method for manufacturing sputtering target member
JP2018168417A (en) Method for manufacturing cylindrical sputtering target and cylindrical sputtering target
WO2024077654A1 (en) Wc-ni wear-resistant coating on 316l stainless steel surface and preparation method therefor
CN110835756A (en) Preparation method for MCrAlY single crystal coating epitaxially grown on single crystal high-temperature alloy substrate
JP2013532227A (en) Coated object and method for coating an object
JPWO2007052743A1 (en) Sputtering target and manufacturing method thereof
Yano et al. Structural observations of the interface of explosion-bonded Mo/Cu system
TWI364337B (en)
TWI760689B (en) Sputtering target, method for bonding target to back plate, and method for producing sputtering target
JPWO2020012821A1 (en) Composite member
TWM449059U (en) Monocrystal diamond tool
JP2014091149A (en) ELECTRONIC COMPONENT HAVING JUNCTION FOR SOLDER ALLOY WITH Bi AS MAIN COMPONENT
JP6312063B2 (en) How to apply brazing material
JP5681563B2 (en) Adhesion evaluation method
CN115846788A (en) Low-temperature brazing method for NiTi shape memory alloy and 316L stainless steel
JPH07498B2 (en) Diamond joining method for cutting tools
CN113714586A (en) Method for welding platinum target and back plate
JPH10269978A (en) Thin film specimen reinforce material for transmission electron microscope
JPH0775869A (en) Vacuum brazing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200407

R150 Certificate of patent or registration of utility model

Ref document number: 6689309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250