JP6685804B2 - Temperature sensitive valve mechanism and method of using the same - Google Patents

Temperature sensitive valve mechanism and method of using the same Download PDF

Info

Publication number
JP6685804B2
JP6685804B2 JP2016074725A JP2016074725A JP6685804B2 JP 6685804 B2 JP6685804 B2 JP 6685804B2 JP 2016074725 A JP2016074725 A JP 2016074725A JP 2016074725 A JP2016074725 A JP 2016074725A JP 6685804 B2 JP6685804 B2 JP 6685804B2
Authority
JP
Japan
Prior art keywords
temperature
lubricating oil
valve mechanism
passage
thermowax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016074725A
Other languages
Japanese (ja)
Other versions
JP2017186927A (en
Inventor
淳一 宮島
淳一 宮島
悠也 加藤
悠也 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apic Yamada Corp
Original Assignee
Yamada Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Manufacturing Co Ltd filed Critical Yamada Manufacturing Co Ltd
Priority to JP2016074725A priority Critical patent/JP6685804B2/en
Publication of JP2017186927A publication Critical patent/JP2017186927A/en
Application granted granted Critical
Publication of JP6685804B2 publication Critical patent/JP6685804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubrication Of Internal Combustion Engines (AREA)
  • Temperature-Responsive Valves (AREA)

Description

本発明は、油路を有するエンジンに取り付けられ、油路を流れる潤滑油の温度に応じて潤滑油を油路の外へ逃がす感温式弁機構及びその使用方法に関する。   The present invention relates to a temperature-sensitive valve mechanism attached to an engine having an oil passage and allowing the lubricating oil to escape to the outside of the oil passage according to the temperature of the lubricating oil flowing through the oil passage and a method of using the temperature-sensitive valve mechanism.

エンジンに取り付けられ、油路を流れる潤滑油の温度に応じて潤滑油を油路の外へ逃がす感温弁が知られている(例えば、特許文献1(図2)参照)。   There is known a temperature-sensitive valve that is attached to an engine and that allows the lubricating oil to escape to the outside of the oil passage according to the temperature of the lubricating oil that flows in the oil passage (see, for example, Patent Document 1 (FIG. 2)).

特許文献1の図2に示されるように、供給通路(6)(括弧付き数字は、特許文献1に記載された符号を示す。以下同様)を区画する壁部(14)に、バイパス通路(11)が設けられている。このパイパス通路(11)は、感温弁(12)で開閉制御される。   As shown in FIG. 2 of Patent Document 1, a bypass passage (6) is provided in a wall portion (14) for partitioning a supply passage (6) (numerals in parentheses indicate reference numerals described in Patent Document 1. The same applies hereinafter). 11) is provided. The bypass passage (11) is controlled to open / close by a temperature sensitive valve (12).

感温弁(12)は、サーモワックス(21)を駆動源とし、弁体(17)がバイパス通路(11)の入口を開閉する弁機構である。
特許文献1には、サーモワックス(21)の熱的性質の説明が省かれているため、サーモワックスの熱的性質が説明されている文献として、例えば、特許文献2(図2)を参照する。ただし、特許文献2は、湯水混合栓に係り、潤滑油の感温弁ではない。
The temperature sensitive valve (12) is a valve mechanism that uses a thermowax (21) as a drive source and a valve body (17) opens and closes an inlet of the bypass passage (11).
Since the description of the thermal properties of the thermowax (21) is omitted in Patent Document 1, for example, refer to Patent Document 2 (FIG. 2) as a document describing the thermal properties of the thermowax. . However, Patent Document 2 relates to a hot and cold water mixing valve and is not a temperature sensing valve for lubricating oil.

特許文献2の図2に、曲線イと曲線ロとが示されている。
すなわち、曲線イは、変位点P1を境として、P1未満では固液混合相、P1以上で液相となる性質のワックスに係る。P1は52℃である。
同様に、曲線ロは、変位点P2を境として、P2未満では固液混合相、P2以上で液相となる性質のワックスに係る。P2は46℃である。
FIG. 2 of Patent Document 2 shows a curve a and a curve b.
That is, the curve a relates to a wax having a property of becoming a solid-liquid mixed phase below P1 and a liquid phase above P1 with the displacement point P1 as a boundary. P1 is 52 ° C.
Similarly, the curve B relates to a wax having a property of becoming a solid-liquid mixed phase below P2 and a liquid phase above P2 with the displacement point P2 as a boundary. P2 is 46 ° C.

特許文献2のワックスは、主として30℃〜50℃の範囲で使用される(特許文献2段落0021)。
曲線イのワックスは、変位点P1(52℃)が使用範囲(30℃〜50℃)より高温側の外にある。すなわち、曲線イのワックスは、固液混合相で使用される。固液混合相では液相に比較して温度変化に対する体積変化率が格段に大きい。固液混合相で使用すると、温度変化に対して大きな機械的に変位が得られるという利点がある。
The wax of Patent Document 2 is mainly used in the range of 30 ° C to 50 ° C (Patent Document 2, paragraph 0021).
The displacement point P1 (52 ° C.) of the wax of curve a is outside the high temperature side of the use range (30 ° C. to 50 ° C.). That is, the curvy wax is used in the solid-liquid mixed phase. In the solid-liquid mixed phase, the volume change rate with respect to the temperature change is significantly higher than that in the liquid phase. When used in a solid-liquid mixed phase, there is an advantage that a large mechanical displacement can be obtained with respect to a temperature change.

また、曲線ロのワックスは、変位点P2(46℃)が使用範囲(30℃〜50℃)内にある。すなわち、曲線ロのワックスは、30℃〜46℃の範囲で固液混合相、46℃〜50℃の範囲で液相となり、固液混合相と液相の両方を使用できるという利点がある。   In addition, the displacement point P2 (46 ° C.) of the wax of curve B is within the use range (30 ° C. to 50 ° C.). That is, the wax of curve B has a merit that it becomes a solid-liquid mixed phase in the range of 30 ° C to 46 ° C and becomes a liquid phase in the range of 46 ° C to 50 ° C, and both the solid-liquid mixed phase and the liquid phase can be used.

曲線イ、曲線ロの何れにおいても、固液混合相を主として使用している。上述したように固液混合相は、温度変化に対して大きな機械的に変位が得られるという利点があるものの、細かな機械的変位が求められる制御には不向きである。
近年、省エネルギー対策が要求されるエンジンにおいて、温度変化に対して細かな機械的変位が得られる感温式弁機構が求められる。
In both the curves a and b, the solid-liquid mixed phase is mainly used. As described above, the solid-liquid mixed phase has an advantage that a large mechanical displacement can be obtained with respect to a temperature change, but is not suitable for control that requires a fine mechanical displacement.
2. Description of the Related Art In recent years, a temperature-sensitive valve mechanism that can obtain a fine mechanical displacement with respect to a temperature change is required for an engine that requires energy saving measures.

特開平8−93430号公報Japanese Unexamined Patent Publication No. 8-93430 特開平8−277964号公報JP-A-8-277964

本発明は、温度変化に対して細かな且つ誤差が少ない機械的変位が得られる感温式弁機構及びその使用方法を提供することを課題とする。   An object of the present invention is to provide a temperature-sensitive valve mechanism and a method of using the temperature-sensitive valve mechanism, which can obtain a mechanical displacement that is fine with respect to a temperature change and has a small error.

請求項1に係る発明は、循環する潤滑油の常用温度が約80℃であるエンジンに取り付けられ、油路を流れる前記潤滑油の温度に応じて前記潤滑油を前記油路の外へ逃がす感温式弁機構において、
この感温式弁機構は、駆動源がサーモワックスであり、
このサーモワックスは、バルブが固定されているサーモエレメントに封入され、
このサーモエレメントは、円筒形の弁箱が一体に形成されている筒状の連結部で囲われ、
この連結部は、前記潤滑油を通過させる流路貫通孔を有し、
前記サーモエレメントが、前記流路貫通孔を介して前記油路から見え、
前記サーモワックスは、低温で固相、前記低温より高い中温で固液混合相、前記中温より高い高温で液相となり、前記固液混合相と前記液相との境界温度が48℃〜56℃の範囲に設定され
前記バルブは、前記サーモワックスが固相である場合に、前記弁箱に形成され前記潤滑油を排出する排出ポートを全開としていることを特徴とする。本発明において、常用温度とは、エンジンにおいて始動時と停止時を除いた運転時(走行時など)における潤滑油の平均温度又は頻度が高い温度を指す。
The invention according to claim 1 is mounted on an engine in which the circulating lubricating oil has a normal temperature of about 80 ° C., and a feeling of letting the lubricating oil escape to the outside of the oil passage according to the temperature of the lubricating oil flowing through the oil passage. In the temperature valve mechanism,
In this temperature-sensitive valve mechanism, the drive source is thermowax,
This thermowax is enclosed in a thermoelement with a fixed valve ,
This thermoelement is surrounded by a cylindrical connecting portion in which a cylindrical valve box is integrally formed ,
This connecting portion has a flow passage through hole for passing the lubricating oil,
The thermoelement is visible from the oil passage through the passage through hole,
The thermowax becomes a solid phase at a low temperature, a solid-liquid mixed phase at an intermediate temperature higher than the low temperature, and a liquid phase at a high temperature higher than the intermediate temperature, and a boundary temperature between the solid-liquid mixed phase and the liquid phase is 48 ° C to 56 ° C. is set in a range of,
The valve is characterized in that when the thermowax is in a solid phase, a discharge port formed in the valve box for discharging the lubricating oil is fully opened . In the present invention, the normal temperature refers to an average temperature of the lubricating oil or a temperature at which the lubricating oil has a high frequency when the engine is in operation (running, etc.) excluding starting and stopping.

請求項2に係る発明は、油路を備えるエンジンに取り付けられ、前記油路を流れる潤滑油の温度に応じて前記潤滑油を前記油路の外へ逃がす感温式弁機構の使用方法であって、
前記感温式弁機構の駆動源は、低温で固相、前記低温より高い中温で固液混合相、前記中温より高い高温で液相となるサーモワックスであり、
このサーモワックスは、バルブが固定されているサーモエレメントに封入され、
このサーモエレメントは、円筒形の弁箱が一体に形成されている筒状の連結部で囲われ、
この連結部は、前記潤滑油を通過させる流路貫通孔を有し、
前記サーモエレメントが、前記流路貫通孔を介して前記油路から見え、
前記感温式弁機構は、主として前記液相の領域で使用され、且つ前記バルブは、前記サーモワックスが固相である場合に、前記弁箱に形成され前記潤滑油を排出する排出ポートを全開としていることを特徴とする。
The invention according to claim 2 is a method of using a temperature-sensitive valve mechanism, which is attached to an engine provided with an oil passage and releases the lubricating oil to the outside of the oil passage according to the temperature of the lubricating oil flowing in the oil passage. hand,
The drive source of the temperature-sensitive valve mechanism is a thermowax that becomes a solid phase at a low temperature, a solid-liquid mixed phase at an intermediate temperature higher than the low temperature, and a liquid phase at a high temperature higher than the intermediate temperature,
This thermowax is enclosed in a thermoelement with a fixed valve ,
This thermoelement is surrounded by a cylindrical connecting portion in which a cylindrical valve box is integrally formed ,
This connecting portion has a flow passage through hole for passing the lubricating oil,
The thermoelement is visible from the oil passage through the passage through hole,
The temperature sensitive valve mechanism is mainly used in the liquid phase region , and when the thermowax is in the solid phase, the valve fully opens a discharge port for discharging the lubricating oil, which is formed in the valve box. characterized in that it a.

請求項1に係る発明では、固液混合相と液相との境界温度が48℃〜56℃のサーモワックスを感温式弁機構の駆動源とした。潤滑油の常用温度が約80℃であるため、感温式弁機構は液相領域で作動する。液相領域では、固液混合相に比較して温度変化に対する体積変化率が格段に小さい。すなわち、感温式弁機構では、温度変化に対して穏やかに機械的変位が生じる。結果、温度変化に対して細かな且つ誤差が少ない機械的変位が得られる感温式弁機構が提供される。
加えて、サーモエレメントが流路貫通孔を介して油路から見える。潤滑油が流路貫通孔を貫通して流れるため、油路を流れる潤滑油は常にサーモエレメントに接触する。
In the invention according to claim 1, the thermowax having a boundary temperature between the solid-liquid mixed phase and the liquid phase of 48 ° C to 56 ° C is used as the drive source of the temperature sensitive valve mechanism. Since the normal temperature of the lubricating oil is about 80 ° C., the temperature sensitive valve mechanism operates in the liquid phase region. In the liquid phase region, the volume change rate with respect to temperature change is significantly smaller than that in the solid-liquid mixed phase. That is, in the temperature-sensitive valve mechanism, mechanical displacement gently occurs with respect to temperature change. As a result, a temperature-sensitive valve mechanism is provided which can obtain a mechanical displacement that is fine and has little error with respect to temperature changes.
In addition, the thermoelement is visible from the oil passage through the passage through hole. Since the lubricating oil flows through the flow passage through hole, the lubricating oil flowing through the oil passage always contacts the thermoelement.

請求項2に係る発明は、感温式弁機構を主としてサーモワックスの液相の領域で使用するという感温式弁機構の使用方法である。上述したように、液相領域では、固液混合相に比較して温度変化に対する体積変化率が格段に小さい。すなわち、感温式弁機構では、温度変化に対して穏やかに機械的変位が生じる。結果、温度変化に対して細かな且つ誤差が少ない機械的変位が得られる感温式弁機構の使用方法が提供される。
加えて、サーモエレメントが流路貫通孔を介して油路から見える。潤滑油が流路貫通孔を貫通して流れるため、油路を流れる潤滑油は常にサーモエレメントに接触する。
The invention according to claim 2 is a method of using the temperature-sensitive valve mechanism, wherein the temperature-sensitive valve mechanism is mainly used in the liquid phase region of the thermowax. As described above, in the liquid phase region, the volume change rate with respect to the temperature change is significantly smaller than that in the solid-liquid mixed phase. That is, in the temperature-sensitive valve mechanism, mechanical displacement gently occurs with respect to temperature change. As a result, there is provided a method of using the temperature-sensitive valve mechanism, which can obtain a mechanical displacement that is fine and has a small error with respect to a temperature change.
In addition, the thermoelement is visible from the oil passage through the passage through hole. Since the lubricating oil flows through the flow passage through hole, the lubricating oil flowing through the oil passage always contacts the thermoelement.

本発明に係る感温式弁機構と、オイルポンプの相関を示す図である。It is a figure which shows the correlation of the temperature-sensitive valve mechanism which concerns on this invention, and an oil pump. 本発明に係る感温式弁機構の分解図である。It is an exploded view of a temperature-sensitive valve mechanism according to the present invention. 本発明に係る感温式弁機構を備えたオイルポンプの図である。It is a figure of an oil pump provided with a temperature sensitive valve mechanism concerning the present invention. サーモエレメントの作用を説明する図である。It is a figure explaining operation of a thermoelement. 変更例に係る感温式弁機構の分解図である。It is an exploded view of a temperature-sensitive valve mechanism according to a modification. 感温式弁機構の組み立て手順を説明する図である。It is a figure explaining the assembly procedure of a temperature-sensitive valve mechanism. エンジンの潤滑油温度の変化を調べたグラフである。It is a graph which investigated the change of the lubricating oil temperature of an engine. 本発明で採用したサーモワックスの熱的性質を示すグラフである。It is a graph which shows the thermal property of the thermo wax adopted by this invention.

本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of the reference numerals.

図1で、エンジン10に直接又は間接的に付属するオイルポンプ11に、本発明の感温式弁機構20を着脱自在に取り付ける例を説明する。
図1に示すように、エンジン10に付属するオイルポンプ11は、インナーギヤ12と、アウターギヤ13と、これらのギヤ12、13を収納するポンプハウジング14とからなる。エンジンの動力の一部でインナーギヤ12が回されると、アウターギヤ13が連れ回る。この回転中に、ギヤ12、13間のギャップGの体積が変化し、この変化により矢印(1)のように潤滑油が吸入され、加圧され、矢印(2)のように吐出される。
An example in which the temperature-sensitive valve mechanism 20 of the present invention is detachably attached to an oil pump 11 directly or indirectly attached to the engine 10 will be described with reference to FIG.
As shown in FIG. 1, an oil pump 11 attached to the engine 10 includes an inner gear 12, an outer gear 13, and a pump housing 14 that houses these gears 12, 13. When the inner gear 12 is rotated by a part of the power of the engine, the outer gear 13 is rotated together. During this rotation, the volume of the gap G between the gears 12 and 13 changes, and due to this change, the lubricating oil is sucked in, pressurized as shown by arrow (1), and discharged as shown by arrow (2).

ポンプハウジング14に、油路としての主油路15が設けられ、この主油路15に略平行にリターン油路16が設けられている。主路15が高油圧時は図示しない一般的なリリーフバルブにより潤滑油はリターン油路16に戻される。加えて、主油路15を横断し、先端がリターン油路16近傍に達する弁挿入孔17がポンプハウジング14に設けられている。弁挿入孔17は、孔口に雌ねじ18が設けられ、先端近傍にポンプハウジング14の外に通じる通孔19が設けられている。
よって、弁挿入孔17へ何時でも感温式弁機構20を挿入することができる。
The pump housing 14 is provided with a main oil passage 15 as an oil passage, and a return oil passage 16 is provided substantially parallel to the main oil passage 15. When the main oil passage 15 is high pressure lubricating oil by a common relief valve (not shown) is returned to the return oil path 16. In addition, a valve insertion hole 17 is provided in the pump housing 14 so as to traverse the main oil passage 15 and reach its tip near the return oil passage 16. The valve insertion hole 17 is provided with a female screw 18 at the hole opening, and a through hole 19 communicating with the outside of the pump housing 14 near the tip.
Therefore, the temperature-sensitive valve mechanism 20 can be inserted into the valve insertion hole 17 at any time.

感温式弁機構20の構成を図2に基づいて説明する。
図2に示すように、感温式弁機構20は、固定部21としての鍔付きプラグ22と、この鍔付きプラグ22に一方(この例ではピストン23)が支持されるサーモエレメント24と、このサーモエレメント24の他方に固定されるバルブ25と、このバルブ25を囲う弁箱26と、鍔付きプラグ22から延ばされ弁箱26を支える連結部27とからなる。
The structure of the temperature sensitive valve mechanism 20 will be described with reference to FIG.
As shown in FIG. 2, the temperature-sensitive valve mechanism 20 includes a flanged plug 22 as a fixed portion 21, a thermoelement 24 in which one (piston 23 in this example) is supported by the flanged plug 22, and A valve 25 fixed to the other side of the thermoelement 24, a valve box 26 surrounding the valve 25, and a connecting portion 27 extending from the flanged plug 22 and supporting the valve box 26.

鍔付きプラグ22は、上部に鍔31を備えると共に六角穴32を備え、中間部に雄ねじ33を備える。加えて、鍔付きプラグ22の下部には、中心にピストン23の一端を収納する中央凹部34が設けられ、連結部27の上部を差し込む環状溝35が設けられ、この環状溝35を囲う第1かしめ用筒部36が設けられている。六角レンチを六角穴32に挿入し、回すことで、鍔付きプラグ22は回される。なお、六角穴32を省いて、鍔31を多角形にしてもよい。   The flanged plug 22 is provided with a flange 31 on the upper portion, a hexagonal hole 32, and a male screw 33 on the middle portion. In addition, a central recess 34 for accommodating one end of the piston 23 is provided at the center of the lower portion of the flanged plug 22, and an annular groove 35 for inserting the upper portion of the connecting portion 27 is provided. A caulking cylinder portion 36 is provided. The flanged plug 22 is turned by inserting a hexagon wrench into the hexagon hole 32 and turning it. The hexagonal hole 32 may be omitted and the collar 31 may be polygonal.

サーモエレメント24は、内部構造は後述の図4で説明するが、戻しばね37を備えている。加えて、サーモエレメント24の下部にはバルブ25から延びる小径延長部38を囲う第2筒部39が設けられている。   The thermo-element 24 has a return spring 37, whose internal structure will be described later with reference to FIG. In addition, a second tubular portion 39 that surrounds the small diameter extension portion 38 extending from the valve 25 is provided below the thermoelement 24.

バルブ25は、バルブ筒部41と、このバルブ筒部41の上端を閉じる蓋部42と、この蓋部42から上に延びバルブ筒部41より小径の小径延長部38とからなる。蓋部42には上下に貫通する複数の通孔43、43が設けられている。小径延長部38は空気が逃げて第2筒部39に嵌め込み易くするため中空である。   The valve 25 includes a valve tubular portion 41, a lid portion 42 that closes the upper end of the valve tubular portion 41, and a small diameter extension portion 38 that extends upward from the lid portion 42 and has a smaller diameter than the valve tubular portion 41. The lid portion 42 is provided with a plurality of through holes 43, 43 penetrating vertically. The small-diameter extension portion 38 is hollow so that air can escape and be easily fitted into the second tubular portion 39.

この例では、弁箱26と連結部27とは一体にした。部品点数が少ないため、組み立て工数が減少する。しかし、後述するように弁箱26と連結部27は別部品であってもよい。   In this example, the valve box 26 and the connecting portion 27 are integrated. Since the number of parts is small, the number of assembly steps is reduced. However, as will be described later, the valve box 26 and the connecting portion 27 may be separate parts.

連結部27は、潤滑油を通過させるための一対の流路貫通孔44、44を有する円筒体である。下部に戻しばね37を受けるばね受け部45が設けられている。
弁箱26は、バルブ25を軸方向移動可能に収納する円筒体であり、高さ方向中間位置に環状溝部46及び排出ポート47を有し、下部にシール材48を収納する溝49を有する。
The connecting portion 27 is a cylindrical body having a pair of flow path through holes 44, 44 for allowing the lubricating oil to pass therethrough. A spring receiving portion 45 that receives the return spring 37 is provided in the lower portion.
The valve box 26 is a cylindrical body that accommodates the valve 25 so as to be movable in the axial direction, has an annular groove portion 46 and a discharge port 47 at an intermediate position in the height direction, and has a groove 49 that accommodates a sealing material 48 at a lower portion.

なお、流路貫通孔44の孔幅は、サーモエレメント24の外径より大きくすることが望ましい。流路抵抗が小さくなるからである。更に流路貫通孔44は主路15に対向した位相に配置すれば流路抵抗を小さくできる。流路貫通孔44は一対の他、3個以上であってもよい。
弁箱26と連結部27は、鋳造、鍛造、総切削(削り出し)、又はこれらの複合工程によって製造されるが、排出ポート47は開口面積の精密さが要求されるので、切削加工が望ましい。
The hole width of the passage through hole 44 is preferably larger than the outer diameter of the thermoelement 24. This is because the flow path resistance becomes small. Further passage through-hole 44 can reduce the flow resistance by arranging the opposing phase to the main oil passage 15. The number of passage through-holes 44 may be three or more in addition to a pair.
The valve box 26 and the connecting portion 27 are manufactured by casting, forging, total cutting (cutting out), or a combined process thereof, but the discharge port 47 is required to have a precise opening area, and therefore cutting is desirable. .

図3に示すように、雌ねじ18に雄ねじ33をねじ込むことで、ポンプハウジング14に感温式弁機構20を取り付ける。すると、サーモエレメント24が流路貫通孔44を介して主路15から見える。潤滑油が流路貫通孔44、44を貫通して流れるため、主油路15を流れる潤滑油は常にサーモエレメント24に接触する。
As shown in FIG. 3, the temperature-sensitive valve mechanism 20 is attached to the pump housing 14 by screwing the male screw 33 into the female screw 18. Then, the thermo element 24 can be seen from the main oil passage 15 through the passage through hole 44. Since the lubricating oil flows through the flow passage through-holes 44, 44, the lubricating oil flowing through the main oil passage 15 always contacts the thermoelement 24.

図4(a)に示すように、サーモエレメント24は、ピストン23と、このピストン23を囲う弾性膜51と、この弾性膜51を囲うケース52と、このケース52と弾性膜51との間に封入されるサーモワックス53とからなる。潤滑油の温度が低い場合、サーモワックス53は収縮しており、バルブ25は、弁箱26側の排出ポート47に掛かっていない(重なっていない)。結果、潤滑油は矢印(3)の如く流れる。すなわち、潤滑油は通孔43、43、排出ポート47、ポンプハウジング14の通孔19の順に流れ、後述する油溜まり67へ排出される。   As shown in FIG. 4A, the thermoelement 24 includes a piston 23, an elastic film 51 surrounding the piston 23, a case 52 surrounding the elastic film 51, and a space between the case 52 and the elastic film 51. It consists of a thermo wax 53 to be enclosed. When the temperature of the lubricating oil is low, the thermowax 53 is contracted, and the valve 25 is not hooked (not overlapped) with the discharge port 47 on the valve box 26 side. As a result, the lubricating oil flows as shown by the arrow (3). That is, the lubricating oil flows in the order of the through holes 43, 43, the discharge port 47, and the through hole 19 of the pump housing 14, and is discharged to the oil sump 67 described later.

潤滑油の温度が上昇すると、サーモワックス53が膨張し、体積が増加する。
すると、図4(b)に示すように、ピストン23の突出長さが増加する。ピストン23が鍔付きプラグ22で止められているため、ケース52及びバルブ25が排出ポート47側へ移動する。結果、例えば、排出ポート47の開口面積の約半分がバルブ25で閉じられる。
潤滑油の温度が更に上昇すると、サーモワックス53が更に膨張し、体積が更に増加する。結果、排出ポート47がバルブ25で完全に閉じられる。
潤滑油の温度が下がると、サーモワックス53が収縮し、戻しばね37の戻し作用により、図4(b)から図4(a)の位置へ戻る。
When the temperature of the lubricating oil rises, the thermowax 53 expands and its volume increases.
Then, as shown in FIG. 4B, the protruding length of the piston 23 increases. Since the piston 23 is stopped by the flanged plug 22, the case 52 and the valve 25 move to the discharge port 47 side. As a result, for example, about half the opening area of the exhaust port 47 is closed by the valve 25.
When the temperature of the lubricating oil further rises, the thermowax 53 further expands and the volume further increases. As a result, the exhaust port 47 is completely closed by the valve 25.
When the temperature of the lubricating oil decreases, the thermowax 53 contracts, and the return action of the return spring 37 causes the thermowax 53 to return from the position shown in FIG. 4B to the position shown in FIG.

次に、変更例を説明する。
図5に示すように、連結部27と弁箱26とは別部品にすることができる。その他は、図2と同じであるため、符号を流用して詳細な説明は省略する。
例えば、弁箱26の上部に雌ねじ54を設け、連結部27に雄ねじ55を設ける。雌ねじ54に雄ねじ55をねじ込むことにより、ねじ部56により締結が完成する。なお、弁箱26に雄ねじ55を設け、連結部27に雌ねじ54を設けることは差し支えない。
互いに回転させることで、弁箱26の排出ポート47の軸方向位置を正確に調節することができる。
Next, a modified example will be described.
As shown in FIG. 5, the connecting portion 27 and the valve box 26 can be separate parts. Others are the same as those in FIG. 2, and therefore the reference numerals are used and the detailed description is omitted.
For example, a female screw 54 is provided on the upper portion of the valve box 26, and a male screw 55 is provided on the connecting portion 27. By screwing the male screw 55 into the female screw 54, the fastening is completed by the screw portion 56. The valve box 26 may be provided with the male screw 55 and the connecting portion 27 may be provided with the female screw 54.
By rotating them relative to each other, the axial position of the discharge port 47 of the valve box 26 can be adjusted accurately.

次に、本発明に係る感温式弁機構20の組み立て手順を説明する。
図6(a)に示すように、鍔付きプラグ22に、サーモエレメント24を所定の手順で取り付ける。そして、サーモエレメント24側の第2筒部39に、バルブ25側の小径延長部38を嵌める。鍔31の下面と、バルブ25の下端(先端)との距離H1が所定の距離になるように嵌め込み長さを調節して固定する。好ましくは、固定方法としては圧入とすれば嵌め込み長さの調節が容易となる。
Next, a procedure for assembling the temperature sensitive valve mechanism 20 according to the present invention will be described.
As shown in FIG. 6A, the thermoelement 24 is attached to the flanged plug 22 in a predetermined procedure. Then, the small-diameter extension portion 38 on the valve 25 side is fitted into the second tubular portion 39 on the thermoelement 24 side. The fitting length is adjusted and fixed so that the distance H1 between the lower surface of the collar 31 and the lower end (tip) of the valve 25 becomes a predetermined distance. Preferably, if a press-fitting method is used as the fixing method, the fitting length can be easily adjusted.

次に、図6(b)に示すように、鍔付きプラグ22側の第1かしめ用筒部36に、連結部27を嵌める。好ましくは、排出ポート47に位置決め治具57を嵌める。   Next, as shown in FIG. 6B, the connecting portion 27 is fitted to the first caulking tubular portion 36 on the side of the flanged plug 22. Preferably, the positioning jig 57 is fitted in the discharge port 47.

そして、第1かしめ用筒部36が、かしめられていない状態で、感温式弁機構20を例えば80℃の油中に入れる。水中に入れても良いが、油中に入れるのは錆防止のためである。
すると、図6(c)に示すように、バルブ25が位置決め治具57に接近する。所定時間が経過した後(サーモワックス53等が80℃に到達した後)に、バルブ25と位置決め治具57が当たるように、連結部27の軸方向位置を調節する。潤滑油の常用温度(頻度が高い温度)で位置調節するため油圧特性バラツキを低減できる。
Then, the temperature sensitive valve mechanism 20 is put into oil at, for example, 80 ° C. in a state where the first caulking cylinder portion 36 is not crimped. It may be placed in water, but it is placed in oil to prevent rust.
Then, as shown in FIG. 6C, the valve 25 approaches the positioning jig 57. After a predetermined time has elapsed (after the thermowax 53 and the like have reached 80 ° C.), the axial position of the connecting portion 27 is adjusted so that the valve 25 and the positioning jig 57 come into contact with each other. Since the position is adjusted at the normal temperature of the lubricating oil (temperature with high frequency), variations in hydraulic characteristics can be reduced.

調整後は、鍔31の下面と排出ポート47の孔中心との距離H2が所定の長さになった。この状態で、かしめ力F、Fを付与し、第1かしめ用筒部36を縮径する。この時、かしめ力Fによる変形が全周に亘るかしめとするならば、かしめによる倒れ、心ズレを抑制できるため、バルブ25の滑らかな摺動及び精度の高い油圧制御を行うことができる。この縮径により、第1かしめ用筒部36が連結部27の上部にかしめ連結された。これで、第1かしめ用筒部36と連結部27の上部とからなる第1かしめ部59が形成された。   After the adjustment, the distance H2 between the lower surface of the collar 31 and the hole center of the discharge port 47 became a predetermined length. In this state, caulking forces F and F are applied to reduce the diameter of the first caulking tubular portion 36. At this time, if the deformation due to the caulking force F is caulking over the entire circumference, it is possible to suppress the collapse due to the caulking and the misalignment, and therefore it is possible to perform smooth sliding of the valve 25 and highly accurate hydraulic control. Due to this reduced diameter, the first caulking cylinder portion 36 is caulked and coupled to the upper portion of the coupling portion 27. As a result, the first caulking portion 59 including the first caulking cylinder portion 36 and the upper portion of the connecting portion 27 was formed.

固定部21、バルブ25及び弁箱26を含む感温式弁機構20だけで、弁開度などの弁特性を確認することができる。小型で軽量な感温式弁機構20のみを液槽や恒温槽へ搬入するだけでよい。結果、低コストで熱的性質を確認することができる感温式弁機構20が提供される。   The valve characteristics such as the valve opening degree can be confirmed only by the temperature-sensitive valve mechanism 20 including the fixed portion 21, the valve 25, and the valve box 26. Only the small and lightweight temperature sensitive valve mechanism 20 needs to be carried into the liquid tank or the constant temperature tank. As a result, the temperature-sensitive valve mechanism 20 capable of confirming thermal properties at low cost is provided.

図4(a)、(b)において、主油路15に、エンジンの軸受などを潤滑する潤滑油が流れる。
乗用車における油温(主路15における潤滑油の温度)を計測した結果を図7に示す。
実線は大気温度が25℃での油温、破線は大気温度が0℃での油温を示す。
In FIGS. 4A and 4B, the lubricating oil that lubricates the bearings of the engine flows in the main oil passage 15.
The result of measuring the oil temperature (temperature of the lubricating oil in the main oil passage 15) in the passenger vehicle shown in FIG.
The solid line shows the oil temperature when the atmospheric temperature is 25 ° C, and the broken line shows the oil temperature when the atmospheric temperature is 0 ° C.

一般的な乗用車では、エンジン始動時に25℃であった潤滑油は約15分後には80℃に達し、以降は約80℃で一定になる。点P1でエンジンが停止した場合、潤滑油は0.2℃/分の割合で徐々に冷却された。
また、エンジン始動時に0℃であった潤滑油は20分後には80℃に達し、以降は約80℃で一定になる。点P1でエンジンが停止した場合、潤滑油は0.5℃/分の割合で徐々に冷却された。
よって、起動時と停止時を除くと、潤滑油の常用温度は約80℃であった。
In a general passenger car, the lubricating oil, which was 25 ° C. at the time of engine start, reaches 80 ° C. after about 15 minutes, and thereafter becomes constant at about 80 ° C. When the engine stopped at point P1, the lubricating oil was gradually cooled at a rate of 0.2 ° C / min.
Further, the lubricating oil which was 0 ° C. at the engine start reaches 80 ° C. after 20 minutes, and thereafter becomes constant at about 80 ° C. When the engine stopped at the point P1, the lubricating oil was gradually cooled at a rate of 0.5 ° C./minute.
Therefore, the operating temperature of the lubricating oil was about 80 ° C except when starting and stopping.

次に、サーモワックス53について説明する。
図4で説明したサーモワックス53の熱的性質を、図8に基づいて説明する。
図8に示すように、サーモワックス53は、低温で固相、低温より高い中温で固液混合相、中温より高い高温で液相になる。
Next, the thermo wax 53 will be described.
The thermal properties of the thermowax 53 described with reference to FIG. 4 will be described with reference to FIG.
As shown in FIG. 8, the thermowax 53 becomes a solid phase at a low temperature, a solid-liquid mixed phase at a medium temperature higher than the low temperature, and a liquid phase at a high temperature higher than the medium temperature.

そして、本発明では、点P3未満では固相、点P3と点P4の間で固液混合相、点P4以上で液相になるように設定した。点P3は45℃、点P4は48℃〜56℃の範囲、好ましくは点P4は50℃〜54℃の範囲、より好ましくは52℃である。この設定は特性の異なる複数のサーモワックスをブレンドすることで得られる。点P4は、固液混合相と液相の境界温度に相当する。   In the present invention, the solid phase is set below the point P3, the solid-liquid mixed phase is set between the points P3 and P4, and the liquid phase is set at the point P4 and above. The point P3 is 45 ° C, the point P4 is 48 ° C to 56 ° C, preferably the point P4 is 50 ° C to 54 ° C, more preferably 52 ° C. This setting is obtained by blending multiple thermowaxes with different properties. The point P4 corresponds to the boundary temperature between the solid-liquid mixed phase and the liquid phase.

潤滑油の常用温度が約80℃であった。仮に、潤滑油の温度が60℃〜100℃の範囲で変動したとしても、この範囲は点P4と点P5の間、すなわち液相の領域にある。温度変化に対してピストン移動量が小さい。そのため、温度変化に対して細かな且つ高い精度のピストン移動が得られる。   The normal temperature of the lubricating oil was about 80 ° C. Even if the temperature of the lubricating oil fluctuates in the range of 60 ° C. to 100 ° C., this range is between the points P4 and P5, that is, in the liquid phase region. The amount of piston movement is small with respect to temperature changes. Therefore, fine and highly accurate piston movement can be obtained with respect to temperature changes.

潤滑油の変更範囲が60℃〜100℃である場合、いわゆるアイドリング・ストップでエンジンを停止すると、頻度は少ないが潤滑油の温度が60℃以下になることがある。点P4が56℃であれば、余裕(マージ)が4℃あり、点P4が52℃であれば、余裕(マージ)が8℃あるため、固液混合相で使われる心配はない。
また、点P4を48℃未満に設定すると点P3が下がる。すると、室温で固液混合相となるおそれがあり、取り扱いが不便となる。
よって、点P4は48℃〜56℃の範囲に収めることが推奨される。
When the change range of the lubricating oil is 60 ° C. to 100 ° C., the temperature of the lubricating oil may become 60 ° C. or less when the engine is stopped by a so-called idling stop although the frequency is low. If the point P4 is 56 ° C., the margin (merging) is 4 ° C., and if the point P4 is 52 ° C., the margin (merging) is 8 ° C., so there is no fear of being used in the solid-liquid mixed phase.
Further, if the point P4 is set to less than 48 ° C., the point P3 is lowered. Then, it may become a solid-liquid mixed phase at room temperature, which makes handling inconvenient.
Therefore, it is recommended that the point P4 fall within the range of 48 ° C to 56 ° C.

図7で再度説明すると、始動時は固相であったものが、約5分後には固液混合相になり、そこから数分で液相に移行する。走行中などの運転中はほぼ液相となる。エンジン運転の大部分を占める領域において液相であるため、エンジン運転中に感温式弁機構20は、高精度の制御がなされ、結果、目標とする省エネルギー対策が容易に得られる。   Explaining again in FIG. 7, what was a solid phase at the time of start-up becomes a solid-liquid mixed phase after about 5 minutes, and then shifts to a liquid phase within a few minutes. It is almost in the liquid phase during operation such as traveling. Since the liquid phase is in a region that occupies most of the engine operation, the temperature-sensitive valve mechanism 20 is controlled with high accuracy during engine operation, and as a result, the target energy saving measure can be easily obtained.

本発明は、エンジンに付設する感温式弁機構に好適である。   The present invention is suitable for a temperature-sensitive valve mechanism attached to an engine.

10…エンジン、11…オイルポンプ、15…油路(主油路)、20…感温式弁機構、24…サーモエレメント、P4…境界温度。   10 ... Engine, 11 ... Oil pump, 15 ... Oil passage (main oil passage), 20 ... Temperature sensitive valve mechanism, 24 ... Thermo element, P4 ... Boundary temperature.

Claims (2)

循環する潤滑油の常用温度が約80℃であるエンジンに取り付けられ、油路を流れる前記潤滑油の温度に応じて前記潤滑油を前記油路の外へ逃がす感温式弁機構において、
この感温式弁機構は、駆動源がサーモワックスであり、
このサーモワックスは、バルブが固定されているサーモエレメントに封入され、
このサーモエレメントは、円筒形の弁箱が一体に形成されている筒状の連結部で囲われ、
この連結部は、前記潤滑油を通過させる流路貫通孔を有し、
前記サーモエレメントが、前記流路貫通孔を介して前記油路から見え、
前記サーモワックスは、低温で固相、前記低温より高い中温で固液混合相、前記中温より高い高温で液相となり、前記固液混合相と前記液相との境界温度が48℃〜56℃の範囲に設定され
前記バルブは、前記サーモワックスが固相である場合に、前記弁箱に形成され前記潤滑油を排出する排出ポートを全開としていることを特徴とする感温式弁機構。
A temperature-sensitive valve mechanism that is attached to an engine in which the normal temperature of the circulating lubricating oil is about 80 ° C. and that allows the lubricating oil to escape to the outside of the oil passage in accordance with the temperature of the lubricating oil flowing in the oil passage,
In this temperature-sensitive valve mechanism, the drive source is thermowax,
This thermowax is enclosed in a thermoelement with a fixed valve ,
This thermoelement is surrounded by a cylindrical connecting portion in which a cylindrical valve box is integrally formed ,
This connecting portion has a flow passage through hole for passing the lubricating oil,
The thermoelement is visible from the oil passage through the passage through hole,
The thermowax becomes a solid phase at a low temperature, a solid-liquid mixed phase at an intermediate temperature higher than the low temperature, and a liquid phase at a high temperature higher than the intermediate temperature, and a boundary temperature between the solid-liquid mixed phase and the liquid phase is 48 ° C to 56 ° C. is set in a range of,
The temperature-sensitive valve mechanism , wherein the valve has a discharge port that is formed in the valve box and discharges the lubricating oil when the thermowax is in a solid phase .
油路を備えるエンジンに取り付けられ、前記油路を流れる潤滑油の温度に応じて前記潤滑油を前記油路の外へ逃がす感温式弁機構の使用方法であって、
前記感温式弁機構の駆動源は、低温で固相、前記低温より高い中温で固液混合相、前記中温より高い高温で液相となるサーモワックスであり、
このサーモワックスは、バルブが固定されているサーモエレメントに封入され、
このサーモエレメントは、円筒形の弁箱が一体に形成されている筒状の連結部で囲われ、
この連結部は、前記潤滑油を通過させる流路貫通孔を有し、
前記サーモエレメントが、前記流路貫通孔を介して前記油路から見え、
前記感温式弁機構は、主として前記液相の領域で使用され、且つ前記バルブは、前記サーモワックスが固相である場合に、前記弁箱に形成され前記潤滑油を排出する排出ポートを全開としていることを特徴とする感温式弁機構の使用方法。
A method of using a temperature-sensitive valve mechanism, which is attached to an engine having an oil passage and releases the lubricating oil to the outside of the oil passage according to the temperature of the lubricating oil flowing in the oil passage,
The drive source of the temperature-sensitive valve mechanism is a thermowax that becomes a solid phase at a low temperature, a solid-liquid mixed phase at an intermediate temperature higher than the low temperature, and a liquid phase at a high temperature higher than the intermediate temperature,
This thermowax is enclosed in a thermoelement with a fixed valve ,
This thermoelement is surrounded by a cylindrical connecting portion in which a cylindrical valve box is integrally formed ,
This connecting portion has a flow passage through hole for passing the lubricating oil,
The thermoelement is visible from the oil passage through the passage through hole,
The temperature sensitive valve mechanism is mainly used in the liquid phase region , and when the thermowax is in the solid phase, the valve fully opens a discharge port for discharging the lubricating oil, which is formed in the valve box. The method of using the temperature-sensitive valve mechanism, which is characterized in that
JP2016074725A 2016-04-01 2016-04-01 Temperature sensitive valve mechanism and method of using the same Active JP6685804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074725A JP6685804B2 (en) 2016-04-01 2016-04-01 Temperature sensitive valve mechanism and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074725A JP6685804B2 (en) 2016-04-01 2016-04-01 Temperature sensitive valve mechanism and method of using the same

Publications (2)

Publication Number Publication Date
JP2017186927A JP2017186927A (en) 2017-10-12
JP6685804B2 true JP6685804B2 (en) 2020-04-22

Family

ID=60046283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074725A Active JP6685804B2 (en) 2016-04-01 2016-04-01 Temperature sensitive valve mechanism and method of using the same

Country Status (1)

Country Link
JP (1) JP6685804B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187014A (en) * 2016-04-01 2017-10-12 株式会社山田製作所 Temperature sensitive type valve mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077927A1 (en) * 2017-10-18 2019-04-25 株式会社山田製作所 Oil pump and engine cooling circuit
JP2019168074A (en) * 2018-03-26 2019-10-03 株式会社山田製作所 Thermo valve and method for manufacturing the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031562U (en) * 1983-08-09 1985-03-04 スズキ株式会社 Thermostat mounting structure
JPS6228985U (en) * 1985-08-06 1987-02-21
JPH0234879U (en) * 1988-08-31 1990-03-06
JP2565251Y2 (en) * 1991-03-25 1998-03-18 本田技研工業株式会社 Oil supply device for two-stroke engine
JP3447782B2 (en) * 1993-01-19 2003-09-16 トヨタ自動車株式会社 Internal combustion engine lubrication system
JP2592423Y2 (en) * 1993-03-31 1999-03-24 キーパー株式会社 Wax / pellet type thermostat element
JP2600188Y2 (en) * 1993-05-20 1999-10-04 日本サーモスタット株式会社 Auxiliary air regulating valve for engine
JPH0893430A (en) * 1994-09-27 1996-04-09 Nissan Motor Co Ltd Lubrication system of internal combustion engine
JPH08277964A (en) * 1995-04-05 1996-10-22 Aisan Ind Co Ltd Hot water mixing faucet
JP2000136723A (en) * 1998-10-30 2000-05-16 Giichi Kuze Electronically controlled cooling system of global warming preventive automobile engine
US6592047B1 (en) * 2002-02-26 2003-07-15 General Motors Corporation Delayed action oil filter bypass valve
JP4240020B2 (en) * 2005-08-22 2009-03-18 トヨタ自動車株式会社 Internal combustion engine warm-up device
US9188054B2 (en) * 2009-12-04 2015-11-17 Toyota Jidosha Kabushiki Kaisha Control device for a vehicle that includes a thermowax switching valve
JP5782802B2 (en) * 2011-04-19 2015-09-24 いすゞ自動車株式会社 Refrigerant circulation device and thermo valve
US9689287B2 (en) * 2014-03-27 2017-06-27 Fpt Industrial S.P.A. Bypass valve for a lubricating circuit of an internal combustion engine equipped with a cooler of a respective lubricating fluid
JP2015209796A (en) * 2014-04-25 2015-11-24 ダイハツ工業株式会社 Lubrication device of internal combustion engine
JP6767246B2 (en) * 2016-04-01 2020-10-14 株式会社山田製作所 Temperature sensitive valve mechanism
CN208587205U (en) * 2018-06-16 2019-03-08 曲阜天博汽车零部件制造有限公司 Valve of the fuel automobile engine lubricating system containing temperature control and decompression function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017187014A (en) * 2016-04-01 2017-10-12 株式会社山田製作所 Temperature sensitive type valve mechanism

Also Published As

Publication number Publication date
JP2017186927A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
KR101834585B1 (en) Oil filter module and thermostat unit
US8893979B2 (en) Thermostat device
US9518484B2 (en) Variable displacement pump
JP6685804B2 (en) Temperature sensitive valve mechanism and method of using the same
US9133952B2 (en) Thermostatic bypass valve with a unique valve seat
JP6501795B2 (en) Fluid control valve
WO2016002580A1 (en) Relief device for oil circuit of engine
US20150377234A1 (en) Relief device for oil circuit of engine
US20180149050A1 (en) Thermo valve and oil pump
US10094254B2 (en) Temperature sensitive valve mechanism
US10920897B2 (en) Thermo valve and method of manufacturing same
JP3842310B2 (en) Pressure relief valve and method for adjusting the opening pressure in the pressure relief valve
JP6767246B2 (en) Temperature sensitive valve mechanism
US20180156346A1 (en) Control Valve with External Relief Bias Member
US20150377097A1 (en) Relief device for oil circuit of engine
CN107524852B (en) Method for manufacturing temperature-sensitive valve mechanism
JP6591795B2 (en) Relief device for engine oil circuit
JP2017223330A (en) Temperature sensitive type valve mechanism
JP6706976B2 (en) Method of manufacturing temperature sensitive valve mechanism
US12007796B2 (en) Thermostatic valve
JP7000183B2 (en) Thermo valve for mixing hot and cold water
US20220390969A1 (en) Thermostatic valve
JP4223137B2 (en) Thermostat device
JP7078270B2 (en) Thermo actuator
JPH02248787A (en) Temperature control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200401

R150 Certificate of patent or registration of utility model

Ref document number: 6685804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250