JPH02248787A - Temperature control valve - Google Patents
Temperature control valveInfo
- Publication number
- JPH02248787A JPH02248787A JP6902689A JP6902689A JPH02248787A JP H02248787 A JPH02248787 A JP H02248787A JP 6902689 A JP6902689 A JP 6902689A JP 6902689 A JP6902689 A JP 6902689A JP H02248787 A JPH02248787 A JP H02248787A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- valve body
- temperature
- passage
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 claims abstract description 47
- 230000002093 peripheral effect Effects 0.000 claims description 10
- 230000004308 accommodation Effects 0.000 claims 1
- 239000012188 paraffin wax Substances 0.000 abstract description 13
- 238000000926 separation method Methods 0.000 abstract description 9
- 230000006835 compression Effects 0.000 abstract description 3
- 238000007906 compression Methods 0.000 abstract description 3
- 238000005192 partition Methods 0.000 description 7
- 239000003305 oil spill Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Temperature-Responsive Valves (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野】
本発明は、例えば油冷式スクリュ圧縮機、油冷式スクロ
ール圧縮機等に用いて好適な温度調節弁に関する。
【従来の技術〕
従来、温度調節弁を備えた油冷式スクロール圧縮機とし
て、第5図に示すものが知られている。
同図において、1はスクロール圧縮機で、該スクロール
圧縮機1は圧縮機本体2と油分離タンク3とからなり、
該圧縮機本体2はモータ4によって回転駆動され、固定
スクロールに対して旋回スクロールが旋回運動する間に
吸込んだ気体を圧縮し、油冷用の油と共に油分離タンク
3内に吐出し、該油分離タンク3内で油分を分離し、清
浄な・気体を供給するようになっている。
5は第6図、第7図に示す構成を有する温度調節弁で、
該温度調節弁5はケーシング6の内部に感温筒収容室7
が形成され、該ケーシング6には感温筒収容室7の奥部
に弁座8が設けられると共に、その周壁には油流入口9
が開口し、弁座8には第1の油流出口10が開口し、さ
らに周壁には第2の油流出口11が開口している。12
は一端側かケーシング6に固着され、他端が感温筒収容
室7内に収容された感温筒で、該感温筒12内には感温
部材としてのパラフィン13が内蔵され、該パラフィン
13は可撓性の有底筒状体からなる可撓隔壁14によっ
て、気液密に画成されている。15は一端が可撓隔壁1
4内に挿嵌され、他端が感温筒12外に突出したシャフ
トで、該シャフト15の他端側端部には弁座8に離着座
する弁体16が取付けられている。かくして、従来技術
による温度調節弁5はケーシング6、感温筒収容室7、
弁座8、油流入口9、第1.第2の流出口10.11、
感温筒12、パラフィン13、可撓隔壁14、シャフト
15、弁体16等から構成されている。
さらに、前記温度調節弁5の油流入口9は油配管17を
介して油分離タンク3と接続され、第1の油流出口10
は油配管18を介して圧縮機本体2と接続され、第2の
油流出口11は油配管19を介して油配管18と接続さ
れ、該油配管19の途中にはそ一夕4のファン4Aによ
って冷却されるオイルクーラ20が設けられている。
従来技術はこのように構成されるが、モータ4によって
圧縮機本体2の旋回スクロールを旋回すると、吸込口か
ら吸込んだ気体が圧縮され、油分離タンク3内に吐出さ
れる。そして、油分離タンク3内の油が低温状態にある
ときには、温度調節弁5は第6図の状態にあり、感温筒
12内のパラフィン13が収縮して弁体16は弁座8か
ら離座している。この結果、油分離タンク3内の圧縮空
気によって加圧された油は、油配管17.温度調節弁5
の油流入口9.感温筒収容室7.第1の油流出口10.
油配管18を介して圧縮機本体2に供給され、潤滑、冷
却、シール等を行なう。なお、第6図に示す状態におい
ては、油流入口9と第2の油流出口11との間も連通し
ているが、オイルクーラ20の内部抵抗が太き(、該オ
イルクーラ20側に流れる油量は少量である。
一方、圧縮熱によって油温か上昇すると、感温筒12内
のパラフィン13が熱膨張し、可撓隔壁14を介してシ
ャフト15が伸長せしめられ、弁体16は弁座8に着座
し、第7図の状態となる。
この結果、油流入口9に流入した高温な油は感温収容室
7から第2の油流出口11.油配管19゜オイルクーラ
20.油配管18を介して圧縮機本体2に供給され、こ
の間オイルクーラ20によって冷却が行なわれる。
【発明が解決しようとする課題〕
然るに、前述の温度調節弁5は、油温か高(なったとき
には、弁体16を弁座8に着座せしめて第1の油流出口
10を閉塞する構成となっているため、弁座8の形状、
仕上げ等の程度により、高温時にも第1の油流出口10
から油が流れてしまうという問題点がある。
また、低温時に第1の油流出口10から流出する油量を
制御するために、ケーシング6の内部に、または油流出
口10の近傍に位置して油配管18に油量制御用オリフ
ィスを別途設けな(てはならず、構成が複雑となるとい
う問題点がある。
さらに、弁体16が弁座8に離着座するため、長期間の
使用によってこれらが摩耗し、シール性が低下するとい
う問題点がある。
本発明はこのような従来技術の問題点に鑑みなされたも
ので、弁体内部に液通路を形成し、当該液通路を介して
液流入口と第1.第2の液流出口との間の流路切換えを
行なうようにした温度調節弁体な提供することを目的と
する。
〔課題を解決するための手段〕
上記目的を達成するために、本発明に係る温度調節弁が
採用する構成は、内部に感温筒収容室と弁体収容室とが
形成されたケーシングと、該ケーシングの弁体収容室奥
部に開口する液流入口と、前記弁体収容室の周壁に開口
する第1の液流出口と、該第1の液流出口とは軸方向位
置を異にして前記弁体収容室の周壁に開口する第2の液
流出口と、前記ケーシングの感温筒収容室内に配設され
、内部に液温に応じて膨張、収縮する感温部材を内蔵し
た感温筒と、一端が該感温筒内に挿嵌され、他端が該感
温筒外に突出し、前記感温部材により伸縮するシャフト
と、該シャフトの他端側に固着されると共に前記ケーシ
ングの弁体収容室内に隙間をもって挿嵌された弁体と、
該弁体に穿設され、前記シャフトが縮小したときには前
記液流入口を第1の液流出口と連通させ、前記シャフト
が伸長したときには前記液流入口を第2の液流出口を第
2の液流出口と連通させる液通路とからなる。
〔作用〕
このように構成することにより、液温に応じて感温筒内
の感温部材が膨張、収縮するから、これに応じてシャフ
トが伸縮し、該シャフトに設けられた弁体が弁体収容室
内を変位する。この結果、シャフトが縮小したときには
液流入口からの液体は液通路を介して第1の液流出口か
ら流出し、シャフトが伸長したときには液通路を介して
第2の液流出口から流出する。
〔実施例〕
以下、本発明の実施例を第1図ないし第4図を参照しつ
つ、詳細に説明する。なお、従来技術と同一構成要素に
は同一符合を付し、その説明を省略する。
第1図ないし第3図は本発明の第1の実施例を示す。
図中、21は本実施例による温度調節弁、22は該温度
調節弁のケーシングで、該ケーシング22の内部には感
温筒収容室23と、該感温筒収容室23よりも小径な弁
体収容室24とが同軸に形成されており、しかも前記弁
体収容室24は後述の弁体が変位してもその底部に当接
しないような長さで1、断面円形状に形成され、その左
、右両側には案内溝24A、24Bが軸方向に形成され
ている。また、前記ケーシング22には弁体収容室24
の奥部に開口する液流入口25が穿設されると共に、そ
の周壁の上側には感温筒収容室23側に位置して圧縮機
本体2に油配管18を介して連通ずる第1の油流出02
6が開口し、周壁の下側には奥部側に位置して油配管1
9を介してオイルクーラ20に連通ずる第2の油流出口
27が開口している。
28は一端側かケーシング22に固着され、他端側が感
温筒収容室23内に収容された本実施例の感温筒で、該
感温筒28内には従来技術のものと同様に感温部材とし
てのパラフィン29が内蔵され、該パラフィン29は可
撓性の有底筒状体からなる可撓隔壁30により気液密に
画成されており、該可撓隔壁30にはシャフト31の一
端が挿嵌され、該シャフト31の他端は感温筒28外に
突出している。
32は前記シャフト31の他端側に設けられると共に、
弁体収容室24内にその内壁との間に若干の隙間をもっ
て挿嵌された弁体で、該弁体32は断面が円形に形状さ
れると共に、その外周に案、内溝24A、24Bに係合
する案内突起32A。
32Bが突設され、回転止めがなされている。ここで、
前記弁体32には弁体収容室24の奥部側に向けて開口
するように有底状の軸方向油通路33が穿設されると共
に、該油通路33と連通する半径方向の第1.第2のオ
リフィス油通路34.35が軸方向に所定の間隔をもっ
て穿設され、第1のオリフィス油通路34は弁体32の
変位に伴って第1の油流出026と間欠的に連通し、第
2のオリフィス油通路35も弁体32の変位に伴って第
2の油流出口27と間欠的に連通ずるようになっている
。そして、第1.第2の油流出口26.27間の軸方向
寸法なa、第1.第2のオリフィス油通路34.35間
の軸方向寸法なり、第1の油流出口26の直径なC1第
2の油流出口27の直径なdとすると、
となるような関係に設定されている。
本実施例はこのように構成されるが、次にその作用につ
いて述べる。
油分離タンク3内の油が低温状態にあるときには、感温
筒28内のパラフィン29は収縮しており、弁体32は
第1図の状態にあり、第1のオリフィス油通路34は第
1の油流出026と連通し、第2のオリフィス油通路3
5と第2の油流出口27との間は遮断されている。この
結果、油流入口25から流入した油は弁体収容室24、
弁体32の軸方向油通路33、第1のオリフィス油通路
34、第1の油流出026を介して圧縮機本体2側に直
接供給される。この際、弁体32と弁体収容室24との
間の隙間から第2の油流出口27に流出する油も存在す
るが、極めて微量である。
一方、圧縮熱によって油温か上昇すると、感温筒収容室
23内の油温も上昇し、感温筒28内のパラフィン29
が熱膨張し、可撓隔壁30を介してシャフト31が伸長
し、弁体32は弁体収容室24内に入り込み、第2図の
状態となり、第2のオリフィス油通路35が第2の油流
出口27と連通し、第1のオリフィス油通路34と第1
の油流出026との間は遮断される。この結果、油流入
口25に流入した油は、弁体収容室24.弁体32の軸
方向油通路33.第2のオリフィス油通路35.第2の
油流出口27を介してオイルクーラ20に向けて流出す
る。
然るに、本実施例によれば、弁体収容室24内に弁体3
2を配設し、油温に応じて該弁体32を変位させ、低温
時には第1のオリフィス油通路34と第1の油流出口2
6とを連通させ、高温時には第2のオリフィス油通路3
5を第2の油流出口27と連通させるから、油温に応じ
た流路系の切換が明確となり、温度制御が確実にできる
。
また、弁体収容室24内には微小な隙間をもって弁体3
2を配設しているから、当該隙間からの洩れ量を可及的
に小さくすることができ、油温を速やかに上昇させるこ
とができる。しかも、前記弁体32が軸方向変位すると
きの抵抗をな(すばかりでな(、該弁体32の摩耗等を
なくし、信頼性を向上させることができる。
さらに、弁体32にはオリフィス油通路34゜35を穿
設しているから、オリフィス径を選択することによって
油量制御を行なうことができ、別途オリフィスを設ける
ものに比較して構成が簡単となる。しかも、弁体32の
交換のみで、多機種にわたる対応が可能となる。
次に、第4図は本発明の第2の実施例を示す。
なお、第1の実施例と同一構成要素にはダッシュ(′)
を付すものとする。
然るに本実施例の特徴は、弁体収容室24′を角形に形
成すると共に、弁体32′を該弁体収容室24′に隙間
をもって挿嵌するように角形に形成したことになる。な
お、本実施例の弁体32′にも、第1の実施例と同様に
、軸方向油通路33′、第1.第2のオリフィス油通路
34′35′が設けられている。
このように構成した場合にも、弁体32′の回転止めを
効果的に行なうことができる。
なお、実施例では感温筒28内にパラフィン29を充填
し、可撓隔壁30で画成する構成としたが、該可撓隔壁
30は必要に応じて設ければよく、−万感温部材として
はパラフィン29に限るものでない。また、弁体32に
は油通路として第1、第2のオリフィス油通路34.3
5を設けるものして述べたが、別途オリフィスを設け、
流量制御を行なうようにしてもよい。さらに、本発明は
スクロール圧縮機に限らず、油、水の温度制御を必要と
する産業機械、自動車等に広(適用しつる。
〔発明の効果〕
本発明に係る温度調節弁は以上詳細に述べた如くであっ
て、弁体内に液通路を設け、該弁体の変位に応じて液流
入口を第1.第2の液流出口に連通させる構成としたか
ら、液温に応じて、流路系の切換が明確となる。また、
弁体と弁体収容室との間は非接触状態を保持しつるから
、該弁体の摩耗等をなくし寿命を延ばすと共に、信頼性
を向上させる。また、弁体内の液通路をオリフィス通路
とすることにより、流量制御が容易となる。さらに、弁
体の交換のみで、多機種にわたる対応が可能となり、部
品の標準化が可能となる。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature control valve suitable for use in, for example, oil-cooled screw compressors, oil-cooled scroll compressors, and the like. [Prior Art] Conventionally, as an oil-cooled scroll compressor equipped with a temperature control valve, the one shown in FIG. 5 is known. In the figure, 1 is a scroll compressor, and the scroll compressor 1 consists of a compressor main body 2 and an oil separation tank 3.
The compressor main body 2 is rotationally driven by a motor 4, compresses the gas sucked in while the orbiting scroll rotates relative to the fixed scroll, and discharges the gas into the oil separation tank 3 together with the oil for cooling the oil. Oil is separated in the separation tank 3 and clean gas is supplied. 5 is a temperature control valve having the configuration shown in FIGS. 6 and 7;
The temperature control valve 5 has a temperature sensing cylinder housing chamber 7 inside the casing 6.
The casing 6 is provided with a valve seat 8 in the inner part of the temperature-sensing cylinder housing chamber 7, and an oil inlet 9 is provided on the peripheral wall of the casing 6.
is opened, a first oil outlet 10 is opened in the valve seat 8, and a second oil outlet 11 is further opened in the peripheral wall. 12
is a temperature sensing cylinder whose one end is fixed to the casing 6 and the other end is housed in the temperature sensing cylinder housing chamber 7. Paraffin 13 as a temperature sensing member is built in the temperature sensing cylinder 12, and the paraffin 13 is air-liquid-tightly defined by a flexible partition wall 14 made of a flexible bottomed cylindrical body. 15 is a flexible bulkhead 1 at one end;
The shaft 15 is inserted into the temperature sensing tube 4 and has its other end protruding outside the temperature sensing tube 12 .A valve body 16 is attached to the other end of the shaft 15 so as to be seated on and off the valve seat 8 . Thus, the temperature control valve 5 according to the prior art includes the casing 6, the temperature-sensitive cylinder housing chamber 7,
Valve seat 8, oil inlet 9, 1st. second outlet 10.11,
It is composed of a temperature-sensitive tube 12, paraffin 13, a flexible partition wall 14, a shaft 15, a valve body 16, and the like. Further, the oil inlet 9 of the temperature control valve 5 is connected to the oil separation tank 3 via an oil pipe 17, and a first oil outlet 10
is connected to the compressor body 2 via an oil pipe 18, the second oil outlet 11 is connected to the oil pipe 18 via an oil pipe 19, and a fan 4 is installed in the middle of the oil pipe 19. An oil cooler 20 cooled by 4A is provided. The conventional technology is configured as described above, but when the orbiting scroll of the compressor main body 2 is rotated by the motor 4, the gas sucked in from the suction port is compressed and discharged into the oil separation tank 3. When the oil in the oil separation tank 3 is at a low temperature, the temperature control valve 5 is in the state shown in FIG. sitting. As a result, the oil pressurized by the compressed air in the oil separation tank 3 is transferred to the oil pipe 17. Temperature control valve 5
Oil inlet 9. Temperature-sensing tube housing chamber7. First oil outlet 10.
The oil is supplied to the compressor main body 2 via an oil pipe 18, and performs lubrication, cooling, sealing, etc. In the state shown in FIG. 6, although there is also communication between the oil inlet 9 and the second oil outlet 11, the internal resistance of the oil cooler 20 is large (the oil cooler 20 side The amount of oil that flows is small. On the other hand, when the oil temperature rises due to the heat of compression, the paraffin 13 in the temperature sensing tube 12 expands thermally, causing the shaft 15 to extend via the flexible partition wall 14, and the valve body 16 to open the valve. The user is seated on the seat 8, resulting in the state shown in Fig. 7. As a result, the high-temperature oil that has flowed into the oil inlet 9 flows from the temperature-sensitive storage chamber 7 to the second oil outlet 11.oil pipe 19.oil cooler 20. The oil is supplied to the compressor main body 2 via the oil pipe 18, and is cooled by the oil cooler 20 during this time. , the valve body 16 is seated on the valve seat 8 to close the first oil outlet 10, so the shape of the valve seat 8,
Depending on the degree of finishing, etc., the first oil outlet 10 may be closed even at high temperatures.
There is a problem with oil flowing out. In addition, in order to control the amount of oil flowing out from the first oil outlet 10 at low temperatures, an oil amount control orifice is separately provided in the oil pipe 18 located inside the casing 6 or near the oil outlet 10. There is a problem in that the configuration becomes complicated.Furthermore, since the valve body 16 is seated on and off the valve seat 8, these parts will wear out and the sealing performance will deteriorate after long-term use. The present invention has been made in view of the problems of the prior art, and includes forming a liquid passage inside the valve body, and connecting the liquid inlet and the first and second liquids through the liquid passage. It is an object of the present invention to provide a temperature control valve element that switches a flow path between the valve body and the outlet. The structure adopted by the valve includes a casing in which a temperature-sensing cylinder housing chamber and a valve body housing chamber are formed, a liquid inlet opening in the back of the valve body housing chamber of the casing, and a liquid inlet opening in the valve body housing chamber. a first liquid outlet opening in the peripheral wall; a second liquid outlet opening in the peripheral wall of the valve body housing chamber; a second liquid outlet opening in the peripheral wall of the valve body housing chamber; A temperature sensing cylinder is disposed in a heating cylinder housing chamber and has a built-in temperature sensing member that expands and contracts depending on the temperature of the liquid; one end is inserted into the temperature sensing cylinder, and the other end is inserted into the temperature sensing cylinder. a shaft that protrudes outward and is expanded and contracted by the temperature-sensitive member; a valve body that is fixed to the other end of the shaft and inserted into the valve body housing chamber of the casing with a gap;
A hole is formed in the valve body to communicate the liquid inlet with a first liquid outlet when the shaft is contracted, and to communicate the liquid inlet with the second liquid outlet when the shaft is extended. It consists of a liquid passage communicating with a liquid outlet. [Operation] With this configuration, the temperature sensing member inside the temperature sensing cylinder expands and contracts depending on the liquid temperature, so the shaft expands and contracts accordingly, and the valve body provided on the shaft opens and closes the valve. Displace within the body containment chamber. As a result, when the shaft is contracted, the liquid from the liquid inlet flows out of the first liquid outlet via the liquid passage, and when the shaft is extended, the liquid flows out of the second liquid outlet via the liquid passage. [Example] Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1 to 4. Note that the same components as those in the prior art are given the same reference numerals, and their explanations will be omitted. 1 to 3 show a first embodiment of the invention. In the figure, 21 is a temperature control valve according to the present embodiment, 22 is a casing of the temperature control valve, and inside the casing 22 there is a temperature sensing cylinder storage chamber 23 and a valve having a smaller diameter than the temperature sensing cylinder storage chamber 23. The valve body housing chamber 24 is formed coaxially with the valve body housing chamber 24, and the valve body housing chamber 24 is formed to have a length 1 and a circular cross section so that the valve body will not come into contact with the bottom of the valve body even if the valve body is displaced, which will be described later. Guide grooves 24A and 24B are formed in the axial direction on both the left and right sides thereof. The casing 22 also includes a valve body housing chamber 24.
A liquid inlet 25 that opens at the back of the compressor body 2 is provided on the upper side of the peripheral wall of the liquid inlet 25 , and a first liquid inlet 25 that is located on the temperature sensing cylinder storage chamber 23 side and communicates with the compressor main body 2 via an oil pipe 18 is provided on the upper side of the peripheral wall thereof. oil spill 02
6 is open, and oil pipe 1 is located on the inner side of the lower side of the peripheral wall.
A second oil outlet 27 is open and communicates with the oil cooler 20 via the oil cooler 20 . Reference numeral 28 designates a thermosensor tube of this embodiment, which has one end fixed to the casing 22 and the other end accommodated in the thermosensor housing chamber 23. Inside the thermosensor tube 28, there is a thermosensor as in the prior art. A paraffin 29 as a heating member is built in, and the paraffin 29 is air-liquid-tightly defined by a flexible partition wall 30 made of a flexible bottomed cylindrical body. One end of the shaft 31 is inserted into the shaft 31, and the other end of the shaft 31 projects outside the temperature sensing cylinder 28. 32 is provided on the other end side of the shaft 31, and
The valve body 32 is a valve body inserted into the valve body housing chamber 24 with a slight gap between it and the inner wall thereof. Engaging guide protrusion 32A. 32B is provided in a protruding manner to prevent rotation. here,
A bottomed axial oil passage 33 is bored in the valve element 32 so as to open toward the inner side of the valve element storage chamber 24, and a first radial oil passage 33 is provided in communication with the oil passage 33. .. Second orifice oil passages 34 and 35 are bored at predetermined intervals in the axial direction, and the first orifice oil passage 34 is intermittently communicated with the first oil outflow 026 as the valve body 32 is displaced. The second orifice oil passage 35 also communicates with the second oil outlet 27 intermittently as the valve body 32 is displaced. And the first. The axial dimension a between the second oil outlet 26 and 27, the first. If the axial dimension between the second orifice oil passages 34 and 35 is the diameter of the first oil outlet 26, C1 is the diameter of the second oil outlet 27, then the relationship is set as follows. There is. The present embodiment is configured as described above, and its operation will be described next. When the oil in the oil separation tank 3 is in a low temperature state, the paraffin 29 in the temperature sensing cylinder 28 is contracted, the valve body 32 is in the state shown in FIG. The second orifice oil passage 3 communicates with the oil spill 026 of
5 and the second oil outlet 27 are cut off. As a result, the oil flowing from the oil inlet 25 enters the valve body housing chamber 24,
The oil is directly supplied to the compressor main body 2 via the axial oil passage 33 of the valve body 32, the first orifice oil passage 34, and the first oil outflow 026. At this time, some oil flows out from the gap between the valve body 32 and the valve body housing chamber 24 to the second oil outlet 27, but the amount is extremely small. On the other hand, when the oil temperature rises due to the heat of compression, the oil temperature inside the temperature-sensing cylinder storage chamber 23 also rises, and the paraffin 29 inside the temperature-sensing cylinder 28 increases.
thermally expands, the shaft 31 extends through the flexible partition wall 30, and the valve body 32 enters the valve body housing chamber 24, resulting in the state shown in FIG. The outlet port 27 communicates with the first orifice oil passage 34 and the first
and oil spill 026. As a result, the oil flowing into the oil inlet 25 is transferred to the valve body housing chamber 24. Axial oil passage 33 of valve body 32. Second orifice oil passage 35. The oil flows out toward the oil cooler 20 via the second oil outlet 27 . However, according to this embodiment, the valve body 3 is placed inside the valve body housing chamber 24.
2 is disposed, and the valve body 32 is displaced according to the oil temperature, and when the temperature is low, the first orifice oil passage 34 and the first oil outlet 2 are disposed.
6, and when the temperature is high, the second orifice oil passage 3
5 is communicated with the second oil outlet 27, the flow path system can be clearly switched according to the oil temperature, and temperature control can be ensured. In addition, the valve body accommodating chamber 24 has a minute gap between the valve bodies 3 and 3.
2, the amount of leakage from the gap can be made as small as possible, and the oil temperature can be quickly raised. Moreover, it is possible to not only provide resistance when the valve body 32 is displaced in the axial direction, but also to eliminate wear of the valve body 32 and improve reliability. Since the oil passages 34 and 35 are bored, the amount of oil can be controlled by selecting the orifice diameter, and the configuration is simpler compared to those with separate orifices. It is possible to support a wide variety of models by simply replacing the parts. Next, Fig. 4 shows a second embodiment of the present invention. Note that components that are the same as those in the first embodiment are marked with a dash (').
shall be attached. However, the feature of this embodiment is that the valve body accommodating chamber 24' is formed in a rectangular shape, and the valve body 32' is formed in a rectangular shape so as to fit into the valve body accommodating chamber 24' with a gap. Note that the valve body 32' of this embodiment also has an axial oil passage 33', a first . A second orifice oil passage 34'35' is provided. Even with this configuration, the rotation of the valve body 32' can be effectively stopped. In the embodiment, the temperature-sensitive tube 28 is filled with paraffin 29 and is defined by a flexible partition wall 30, but the flexible partition wall 30 may be provided as necessary. The material is not limited to paraffin 29. The valve body 32 also has first and second orifice oil passages 34.3 as oil passages.
5, but a separate orifice is provided,
Flow rate control may also be performed. Furthermore, the present invention is applicable not only to scroll compressors but also to industrial machinery, automobiles, etc. that require temperature control of oil and water. As described above, since the liquid passage is provided in the valve body and the liquid inlet is communicated with the first and second liquid outlets according to the displacement of the valve body, The switching of the flow path system becomes clear.Also,
Since a non-contact state is maintained between the valve body and the valve body housing chamber, wear and the like of the valve body are eliminated, extending the life of the valve body and improving reliability. Furthermore, by using the liquid passage within the valve body as an orifice passage, flow rate control becomes easy. Furthermore, by simply replacing the valve body, it becomes possible to support a wide variety of models, making it possible to standardize parts.
第1図ないし第3図は本発明の第1の実施例を示し、第
1図は低温時の状態を示す温度調節弁の要部縦断面図、
第2図は高温時の状態を示す温度調節弁の要部縦断面図
、第3図は第2図中の■−■矢示方向から見た横断面図
、第4図は第2の実施例を示す第3図と同様位置の横断
面図、第5図ないし第7図は従来技術に係り、第5図は
従来技術の温度調節弁が適用されるスクロール圧縮機の
全体構成図、第6図は低温時の状態を示す温度調節弁の
要部縦断面図、第7図は高温時の状態を示す温度調節弁
の要部縦断面図である。
21・・・温度調節弁、22・・・ケーシング、23・
・・感温筒収容室、24.24’・・・弁体収容室、2
5・・・油流入口、26・・・第1の油流出口、27・
・・第2の油流出口、28・・・感温筒、29・・・パ
ラフィン(感温部材)、30・・・可撓隔壁、31・・
・シャフト、32.32’・・・弁体、33.33’・
・・軸方向油通路、34.34’・・・第1のオリフィ
ス油通路、35.35’・・・第2のオリフィス油通路
。1 to 3 show a first embodiment of the present invention, and FIG. 1 is a longitudinal sectional view of the main part of the temperature control valve showing the state at low temperature,
Figure 2 is a vertical sectional view of the main part of the temperature control valve showing the state at high temperatures, Figure 3 is a cross sectional view taken from the direction of the ■-■ arrow in Figure 2, and Figure 4 is the second implementation. 5 to 7 are related to the prior art, and FIG. 5 is an overall configuration diagram of a scroll compressor to which the temperature control valve of the prior art is applied. FIG. 6 is a longitudinal cross-sectional view of the main part of the temperature control valve showing the state at low temperature, and FIG. 7 is a longitudinal cross-sectional view of the main part of the temperature control valve showing the state at high temperature. 21...Temperature control valve, 22...Casing, 23.
... Temperature-sensing tube storage chamber, 24.24'... Valve body storage chamber, 2
5... Oil inlet, 26... First oil outlet, 27.
... Second oil outlet, 28 ... Temperature sensing cylinder, 29 ... Paraffin (temperature sensing member), 30 ... Flexible bulkhead, 31 ...
・Shaft, 32.32'...Valve body, 33.33'・
...Axial oil passage, 34.34'...First orifice oil passage, 35.35'...Second orifice oil passage.
Claims (1)
ングと、該ケーシングの弁体収容室奥部に開口する液流
入口と、前記弁体収容室の周壁に開口する第1の液流出
口と、該第1の液流出口とは軸方向位置を異にして前記
弁体収容室の周壁に開口する第2の液流出口と、前記ケ
ーシングの感温筒収容室内に配設され、内部に液温に応
じて膨張、収縮する感温部材を内蔵した感温筒と、一端
が該感温筒内に挿嵌され、他端が該感温筒外に突出し、
前記感温部材により伸縮するシャフトと、該シャフトの
他端側に固着されると共に前記ケーシングの弁体収容室
内に隙間をもって挿嵌された弁体と、該弁体に穿設され
、前記シャフトが縮小したときには前記液流入口を第1
の液流出口と連通させ、前記シャフトが伸長したときに
は前記液流入口を第2の液流出口を第2の液流出口と連
通させる液通路とから構成してなる温度調節弁。a casing in which a temperature-sensing cylinder housing chamber and a valve body housing chamber are formed; a liquid inlet opening in the inner part of the valve body housing chamber of the casing; and a first liquid inlet opening in a peripheral wall of the valve body housing chamber. a liquid outlet; a second liquid outlet opening in the peripheral wall of the valve body housing chamber at different axial positions from the first liquid outlet; and a second liquid outlet opening in the temperature-sensitive tube housing chamber of the casing; a thermosensing tube that has a built-in temperature-sensing member that expands and contracts depending on the temperature of the liquid;
a shaft that expands and contracts by the temperature-sensitive member; a valve body that is fixed to the other end of the shaft and inserted into the valve body accommodation chamber of the casing with a gap; and a valve body that is bored in the valve body and that the shaft When contracted, the liquid inlet is
and a liquid passage that communicates with a second liquid outlet when the shaft is extended, and communicates the liquid inlet with a second liquid outlet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6902689A JPH02248787A (en) | 1989-03-20 | 1989-03-20 | Temperature control valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6902689A JPH02248787A (en) | 1989-03-20 | 1989-03-20 | Temperature control valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02248787A true JPH02248787A (en) | 1990-10-04 |
Family
ID=13390661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6902689A Pending JPH02248787A (en) | 1989-03-20 | 1989-03-20 | Temperature control valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02248787A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10359293A1 (en) * | 2003-12-17 | 2005-07-21 | J. Eberspächer GmbH & Co. KG | Valve arrangement, in particular for adjusting the Heizmittel- / coolant flow in a motor vehicle |
US8110011B2 (en) * | 2004-05-28 | 2012-02-07 | Maxwell Technologies, Inc. | Method of processing high voltage capacitors |
JP2013525661A (en) * | 2010-04-16 | 2013-06-20 | クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Control valve for oil-injected screw compressor |
-
1989
- 1989-03-20 JP JP6902689A patent/JPH02248787A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10359293A1 (en) * | 2003-12-17 | 2005-07-21 | J. Eberspächer GmbH & Co. KG | Valve arrangement, in particular for adjusting the Heizmittel- / coolant flow in a motor vehicle |
DE10359293B4 (en) * | 2003-12-17 | 2006-02-09 | J. Eberspächer GmbH & Co. KG | Valve arrangement, in particular for adjusting the Heizmittel- / coolant flow in a motor vehicle |
EP1544009A3 (en) * | 2003-12-17 | 2006-06-14 | J. Eberspächer GmbH & Co. KG | Valve arrangement, particularly for adjusting the flow of heating or cooling liqiud in a motor vehicle |
US8110011B2 (en) * | 2004-05-28 | 2012-02-07 | Maxwell Technologies, Inc. | Method of processing high voltage capacitors |
JP2013525661A (en) * | 2010-04-16 | 2013-06-20 | クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Control valve for oil-injected screw compressor |
US9347448B2 (en) | 2010-04-16 | 2016-05-24 | Knorr-Bremse Systeme Fur Schienenfahrzeuge Gmbh | Control valve for an oil-injected screw-type compressor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960012738B1 (en) | Control device for a refrigeration circuit | |
US4505651A (en) | Scroll type compressor with displacement adjusting mechanism | |
JP3073018B2 (en) | Scroll machine with overheat prevention | |
KR101834585B1 (en) | Oil filter module and thermostat unit | |
JPH04234592A (en) | Device for introducing liquid into refrigerating unit | |
WO2004090404A1 (en) | Thermostat | |
US5738276A (en) | Valve | |
JP2001317355A (en) | Thermostat device | |
US6575707B2 (en) | Air compressor having thermal valve | |
US5042447A (en) | Thermostatically controlled fuel heater and cooler | |
JPS6137999Y2 (en) | ||
JPH02248787A (en) | Temperature control valve | |
JPH0926235A (en) | Expansion valve | |
KR20010087213A (en) | Expansion valve | |
CN116940748A (en) | Constant temperature device | |
US3272426A (en) | Refrigerant compressor control | |
GB2193307A (en) | Engine cooling systems | |
CN112780761A (en) | Valve apparatus for vehicle | |
JP2017082660A (en) | Rotary compressor | |
JPH0573955B2 (en) | ||
JPS6035825Y2 (en) | temperature sensitive valve | |
US5144815A (en) | Thermal valve for compressor | |
JPS6318062B2 (en) | ||
JPS62278388A (en) | Temperature sensing valve | |
JP3850940B2 (en) | Engine thermo-housing structure |