JP6673632B2 - レーザ光を高速で走査可能なガルバノスキャナを含む光造形加工機 - Google Patents

レーザ光を高速で走査可能なガルバノスキャナを含む光造形加工機 Download PDF

Info

Publication number
JP6673632B2
JP6673632B2 JP2014182633A JP2014182633A JP6673632B2 JP 6673632 B2 JP6673632 B2 JP 6673632B2 JP 2014182633 A JP2014182633 A JP 2014182633A JP 2014182633 A JP2014182633 A JP 2014182633A JP 6673632 B2 JP6673632 B2 JP 6673632B2
Authority
JP
Japan
Prior art keywords
control device
laser
laser light
servo motor
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014182633A
Other languages
English (en)
Other versions
JP2016055308A (ja
Inventor
直人 園田
直人 園田
雪雄 豊沢
雪雄 豊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2014182633A priority Critical patent/JP6673632B2/ja
Priority to US14/840,226 priority patent/US9720225B2/en
Priority to DE102015114549.9A priority patent/DE102015114549A1/de
Priority to CN201510566144.8A priority patent/CN105398061B/zh
Publication of JP2016055308A publication Critical patent/JP2016055308A/ja
Application granted granted Critical
Publication of JP6673632B2 publication Critical patent/JP6673632B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images

Description

本発明は、被加工物においてレーザ光を高速で走査可能なガルバノスキャナを含む加工システムに関する。
一般に、ガルバノスキャナとは、互いに直交する2本の回転軸線を中心にそれぞれ回転可能な2つのミラーを備え、それらミラーをサーボモータ(ガルバノモーター)で回転駆動することによって被加工物におけるレーザ光の走査経路を変更する装置である。ガルバノスキャナは、被加工物にバーコード又は製造番号等を高速でマーキングする用途に広く用いられる。また、ガルバノスキャナは、近年普及しつつあるレーザ焼結式の3Dプリンタのような光造形加工機にも適用されている。このような光造形加工機は、薄く積層された金属粉末又は光硬化性樹脂等にレーザ光を照射して焼結、若しくは硬化することで所望の三次元形状の造形物を作成する。
図11及び図12は、一般的な光造形加工機におけるレーザ焼結加工の手順を時系列で示す概略図である。両図はテーブル上に積層された金属粉末Mを上方から見た平面図であり、ガルバノスキャナは先ず図11中の矢印A11で示される経路に沿ってレーザ光を走査させて金属粉末Mを焼結する。その後、新たな金属粉末Mの薄層が供給され、ガルバノスキャナが今度は図12中の矢印A12で示される経路に沿ってレーザ光を走査させて金属粉末Mを焼結する。このように、一般的なレーザ焼結加工では、新たな金属粉末Mの薄層が供給される都度、レーザ光の走査方向を変更して金属粉末Mを焼結し、そのような各層の焼結工程を繰り返し実行することで所望の三次元形状の造形物を作成する。
図11及び図12から分かるように、金属粉末Mの各層の焼結工程では、加工途中の造形物の上面が所定の幅(例えば5mm)を有する複数の帯状領域Rに分割され、それら帯状領域Rの各々に順番にレーザ光が照射される。そして、複数の帯状領域Rの各々において、レーザ光は帯状領域Rの横断方向に沿った高速の往復運動を繰り返し実行して金属粉末Mを焼結する(図11中の矢印A11及び図12中の矢印A12を参照)。
ここで、金属粉末の薄層をムラ無く均一に焼結するためには、レーザ光が往復移動する間にレーザ強度及びレーザ走査速度が一定にされるのが好ましい。また、レーザ光の往復運動の反転時にはレーザ光が瞬間的に停止するので、それによる焼結ムラ(焼けすぎ)を防止するために、レーザ光の反転時にレーザ出力をオフにするようなレーザ出力制御も実行され得る。図13は、上述したレーザ出力制御について説明するための概略図である。より具体的に、図13は、一般的なレーザ焼結加工におけるレーザ光の走査経路を概略的に示している。図中の符号Pで示されるレーザ光の走査経路において、破線で表されるレーザ光の停止期間中にはレーザ光の出力が一時的にオフにされる。
図14は、一般的なレーザ焼結加工におけるレーザ光の走査速度の時間変化を示すグラフである。より具体的に、図14のグラフは、レーザ光が図11又は図12中の帯状領域R内を一往復する間のレーザ光の走査速度の時間変化を示すグラフである。図14のように、レーザ光は、サーボモータの順方向の加速、定速移動、及び減速の各フェーズを経て一旦停止し、次いで、サーボモータの逆方向の加速、定速移動、及び減速の各フェーズを経て再び停止する。この間のガルバノスキャナに対する駆動指令(加減速指令)はステップ状であるものの、ガルバノスキャナの応答時間による遅れが常に発生するので、図14のように実際のレーザ光は或る時定数で加速ないし減速することになる。すなわち、従来のガルバノスキャナでは、サーボモータの加速能力に起因して、駆動指令に対する応答性が制限されるので、レーザ光の走査精度を維持しつつ走査速度を高速化するのが非常に困難であった。
また、一般にレーザ出力のオンオフ制御の時定数は、ガルバノスキャナの加減速制御の時定数よりも遥かに小さいので、やはりガルバノスキャナの加減速フェーズでは焼結ムラが発生し易くなる。これに関連して、特許文献1には、ガルバノスキャナの駆動指令に応じたレーザ出力波形を生成する制御方法が提案されている。より具体的に、特許文献1の制御方法では、ガルバノスキャナの加減速指令の時定数に応じて、レーザ光の照射タイミングを遅延させることによって焼結ムラを軽減しようとしている。ところが、ガルバノスキャナの現実の動作は駆動指令に対して幾分遅延するので、ガルバノスキャナの駆動指令に応じてレーザ出力波形を生成しても焼結ムラが完全に解消されることはない。
特開2008−170579号公報 特許第5221735号公報
ガルバノスキャナによるレーザ光の走査精度を維持しつつ走査速度を高速化できる加工システムが求められている。
本発明の第1の態様によれば、レーザ光の走査方向を変更しながら被加工物を造形する光造形加工機であって、レーザ光を生成するレーザ光源と、レーザ光を反射するミラー及びミラーを回転駆動するサーボモータを備え、レーザ光を被加工物に照射するガルバノスキャナと、サーボモータに取付けられていてサーボモータの現実の動作を検出するロータリーエンコーダと、サーボモータの動作を制御する動作制御装置と、レーザ光の強度を制御するレーザ制御装置と、走査方向に対応する正弦波状の駆動指令を動作制御装置に送信すると共に、レーザ光の強度指令をレーザ制御装置に送信する上位制御装置と、を備え、動作制御装置及びレーザ制御装置は、ロータリーエンコーダから取得した情報に基づいてフィードバック制御を実行し、動作制御装置は、上位制御装置から受信した正弦波状の駆動指令と、ロータリーエンコーダが検出したサーボモータの現実の動作との間の第1偏差を所定のサンプリング周期で計算する偏差計算部と、第1偏差と正弦波状の駆動指令における1周期前に計算した1周期前補正量とに基づいて第1偏差を補正するための補正量を生成する学習制御部と、補正量による補正後の第2偏差とサーボモータの現実の動作とに基づいてサーボモータの動作を制御するサーボ制御部と、を備え、レーザ制御装置は、上位制御装置から受信した強度指令と、ロータリーエンコーダが検出したサーボモータの回転速度とに応じてレーザ光の強度を制御する光造形加工機が提供される。
本発明の第2の態様によれば、第1の態様において、レーザ制御装置が、ロータリーエンコーダが検出したサーボモータの回転速度に所定の係数を掛けてレーザ光の強度を決定する、光造形加工機が提供される。
本発明の第の態様によれば、第又は第の態様において、動作制御装置とレーザ制御装置とが同一のプロセッサに組み込まれる、光造形加工機が提供される。
本発明の第1の態様によれば、ガルバノスキャナのサーボモータの動作が正弦波状の駆動指令に従って制御されるので、レーザ光を往復移動させるサーボモータの加減速が円滑化される。従って、第1の態様によれば、レーザ光の走査精度を維持しつつレーザ光の走査速度を高速化することができ、結果的に、レーザ焼結による造形加工の生産性を向上させることができる。
本発明の第2の態様によれば、サーボモータの制御偏差が学習制御によって縮小されるので、レーザ光が停止する際に発生する偏差による焼結ムラを軽減できるようになる。
本発明の第3の態様によれば、ガルバノスキャナの現実の動作に応じてレーザ光の強度が制御されるので、レーザ光が往復運動する間に発生する焼結ムラを軽減できるようになる。
本発明の第4の態様によれば、レーザ光源の制御機構が簡素化されるので、レーザ制御装置及び加工システムを製作するのが安価かつ容易になる。
本発明の第5の態様によれば、サーボモータ及びレーザ光源の制御が同一のプロセッサによって実行されるので、サーボモータのフィードバック情報をレーザ光の強度に反映させる際の応答時間を最小化することができる。
本発明の1つの実施形態の加工システムの構成を示すブロック図である。 図1の加工システムにおけるレーザ光源及びガルバノスキャナを概略的に示す斜視図である。 図1の加工システムにおける動作制御装置の構成を示すブロック図である。 図3の動作制御装置における学習制御部の構成を示すブロック図である。 図1中の上位制御装置が生成した速度指令の一例を示すグラフである。 本実施形態の加工システムにおけるレーザ光源及びガルバノスキャナの制御方法の手順を示すフローチャートである。 本実施形態の加工システムにおけるガルバノスキャナの制御偏差の数値シミュレーション結果を示す第1のグラフである。 従来の加工システムにおけるガルバノスキャナの制御偏差のシミュレーション結果を示す、図7に対応するグラフである。 本実施形態の加工システムにおけるガルバノスキャナの制御偏差のシミュレーション結果を示す第2のグラフである。 従来の加工システムにおけるガルバノスキャナの制御偏差のシミュレーション結果を示す、図9に対応するグラフである。 一般的な光造形加工機におけるレーザ焼結加工の手順を時系列で示す第1の概略図である。 一般的な光造形加工機におけるレーザ焼結加工の手順を時系列で示す第2の概略図である。 一般的なレーザ焼結加工におけるレーザ出力制御について説明するための概略図である。 一般的なレーザ焼結加工におけるレーザ光の走査速度の時間変化を示すグラフである。
以下、本発明の実施形態を、図面を参照して詳細に説明する。各図面において、同様の構成要素には同様の符号が付与されている。なお、以下の記載は、特許請求の範囲に記載される発明の技術的範囲や用語の意義等を限定するものではない。
図1〜図10を参照して、本発明の1つの実施形態の加工システムについて説明する。本実施形態の加工システムは、金属粉末又は光硬化性樹脂の積層体にレーザ光を照射する焼結工程を繰り返し実行し、それにより所望の三次元形状の造形物を作成するレーザ焼結式の光造形加工機である。図1は、本実施形態の例示的な加工システム1の構成を示すブロック図である。図1のように、本例の加工システム1は、レーザ光を生成するレーザ光源2と、レーザ光源2が生成したレーザ光を被加工物に照射するガルバノスキャナ3と、ガルバノスキャナ3の動作を制御する動作制御装置4と、レーザ光源2の動作を制御するレーザ制御装置5と、動作制御装置4及びレーザ制御装置5のそれぞれに制御信号を送信する上位制御装置6と、を含んでいる。これら構成要素について以下に順に説明する。
図2は、図1の加工システム1におけるレーザ光源2及びガルバノスキャナ3を概略的に示す斜視図である。図2のように、レーザ光源2及びガルバノスキャナ3は、被加工物が置かれるテーブルTの上方に配置されている。ここでいう被加工物Wとは、レーザ光の照射を受けて焼結する金属粉末又は光硬化性樹脂の積層体である。このような積層体には、図示しない機械装置によって新たな薄層が繰り返し供給される。ただし、積層体の新たな薄層は使用者によって手動で供給されてもよい。
図2のように、レーザ光源2は、レーザ媒質、光共振器、及び励起源等を備える種々のレーザ発振器であり、ガルバノスキャナ3に向かってレーザ光を発射するように構成されている。また、ガルバノスキャナ3は、レーザ光源2が発射したレーザ光を順次反射させる複数のミラーと、複数のミラーのそれぞれを所定の回転軸線の周りで回転駆動する複数のサーボモータと、を備えている。より具体的に、本例のガルバノスキャナ3は、互いに直交する2本の回転軸線Ra,Rbを中心にそれぞれ回転可能な2つのミラー31,31と、それらミラー31,31をそれぞれ回転駆動する2つのサーボモータ32,32と、を備えている。ただし、ガルバノスキャナ3における複数のミラー及び複数のサーボモータの個数及び配置等は、図中の例のみに限定されない。
図2のように、レーザ光源2が発射したレーザ光は、2つのミラー31,31で順次反射してからテーブルT上の被加工物Wに到達する。そして、ガルバノスキャナ3の2つのサーボモータ32,32が2つのミラー31,31をそれぞれ回転駆動すると、それらミラー31,31に入射するレーザ光の入射角が連続的に変化させられる。その結果、被加工物Wに到達するレーザ光が、被加工物Wの上面を所定の走査経路に沿って走査するようになる。この際、被加工物Wに到達したレーザ光は、図11及び図12に示される例と同様に、全長5mm程度の行程に沿った往復運動を繰り返す。つまり、被加工物Wの上面におけるレーザ光の走査経路は、図13に示されるレーザ光の走査経路Pと同様である。このようにして積層体の各層に対する焼結工程が実行される。
図13から分かるように、ガルバノスキャナ3によるレーザ光の走査経路Pは、上述した帯状領域R(図11及び図12参照)の横断方向と平行なX方向の成分と、帯状領域Rの長手方向と平行なY方向の成分と、から構成されている。上述した通り、レーザ光の走査経路のX方向の全長Lは例えば5mmである。そして、被加工物Wの1つの薄層に対する焼結工程では、ガルバノスキャナ3の一方のサーボモータ32の回転運動が、X方向に沿ったレーザ光の直線運動(すなわち、往復運動)を引き起こし、他方のサーボモータ32の回転運動が、Y方向に沿ったレーザ光の直線運動を引き起こす。ただし、図11及び図12から分かるように、被加工物Wに新たな薄層が供給される都度、帯状領域Rの向きが90°回転されるので、新たな薄層に対する焼結工程では、当該一方のサーボモータ32の回転運動が、Y方向に沿ったレーザ光の直線運動を引き起こし、当該他方のサーボモータ32の回転運動が、X方向に沿ったレーザ光の直線運動(すなわち、往復運動)を引き起こす。なお、被加工物Wにおける走査経路P上のレーザ光の位置及び速度、すなわち、ミラー31,31を回転駆動するサーボモータ32,32の回転位置及び回転速度は、上記の動作制御装置4によって制御される。また、レーザ光源2が発射するレーザ光の強度及びオンオフの切り替え等は、上記のレーザ制御装置5によって制御される。
再び図1を参照すると、本例の動作制御装置4は、上位制御装置6から受信した駆動指令に従ってガルバノスキャナ3の1つのサーボモータ32の動作を制御する機能を有する。なお、図1には1つの動作制御装置4のみが示されているものの、本実施形態の加工システム1はサーボモータ32と同じ個数の動作制御装置4を有している。また、本例のレーザ制御装置5は、上位制御装置6から受信した制御信号に従ってレーザ光源2のレーザ光の強度を制御する機能を有する。特に、本例の加工システム1は、各サーボモータ32の現実の動作を検出する検出器7をさらに含んでおり、動作制御装置4及びレーザ制御装置5は、検出器7から取得した情報に基づくフィードバック制御を実行する。この点についてはさらに後述する。上記の検出器7は、例えば、各サーボモータ32に装着されたロータリーエンコーダである。
図3は、図1の加工システム1における動作制御装置4の構成を示すブロック図である。図3のように、本例の動作制御装置4は、偏差計算部41、学習制御部42、加算器43、及びサーボ制御部44を含んでいる。ここで、偏差計算部41は、上位制御装置6から取得した駆動指令と、検出器7から取得したフィードバック情報と、の間の偏差を所定のサンプリング周期で計算する。また、学習制御部42は、偏差計算部41が計算した偏差を極小にするような補正量を生成する。学習制御部42の具体的な構成については後述する。また、加算器43は、偏差計算部41が計算した偏差と、学習制御部42が生成した補正量と、を加算する。加算器43による加算結果は、所定のゲイン(ポジションゲイン)で増幅されてからサーボ制御部44に入力される。そして、上記の補正量による補正後の偏差に基づいてサーボモータ32の動作を制御する。特に、本例のサーボ制御部44は、一般的なPID(Proportional−Integral−Derivative)制御方式に従ってサーボモータ32の回転速度及び電流値等を制御する。
図4は、図3の動作制御装置4における学習制御部42の構成を示すブロック図である。図4のように、本例の学習制御部42は、加算器421、帯域制限フィルタ422、遅延メモリ423、及び位相補償器424を含んでいる。ここで、加算器421は、上記の偏差計算部41から入力された偏差と、遅延メモリ423に保持されている一周期前の補正量と、を加算する。また、帯域制限フィルタ422は、一般的なローパスフィルタであり、加算器421による加算結果の高周波領域を遮断する。また、遅延メモリ423は、帯域制限フィルタ422からの出力値を1周期分の期間にわたって保持する。また、位相補償器424は、帯域制限フィルタ422からの出力値に対する位相補償を実行する。そして、位相補償器424からの出力値が、新たに偏差計算部41で計算された偏差を補正するための補正量として、上記の加算器43に入力される。
このように、本例の学習制御部42は、遅延メモリ423に保持されている1周期前の偏差を用いて、新たに計算された偏差を補正するための補正量を生成している。再び図3を参照すると、加算器43は、偏差計算部41が計算した偏差と、学習制御部42が生成した補正量と、を加算することによって当該偏差を補正している。そして、サーボ制御部44は、上記の補正量による補正後の偏差に基づいてサーボモータ32の動作を制御している。このような制御方法は一般に学習制御(或いは、繰り返し制御)と称される。学習制御を繰り返し実行することによって、偏差計算部41が計算する偏差をゼロに向かって収束させることができる。なお、本実施形態の加工システム1の動作制御装置4における学習制御部42は必須の構成要素ではなく、これは省略されてもよい。学習制御部42が省略される場合、動作制御装置4のサーボ制御部44は、偏差計算部41が計算した偏差に基づく通常のフィードバック制御を実行する。
再び図1を参照すると、上位制御装置6は、ガルバノスキャナ3に対する駆動指令、及びレーザ光源2に対する強度指令を含む、種々の制御信号を生成して動作制御装置4及びレーザ制御装置5に送信する機能を有する。特に、本例の上位制御装置6は、レーザ光を図13中のX方向に沿って往復移動させるための駆動指令として、サーボモータ32に対する正弦波状の速度指令を生成する。図5は、上位制御装置6が生成した速度指令の一例を示すグラフである。図5のように、本例による速度指令の時間変化は正弦曲線によって表されており、図中の座標系の原点Oは、図13の走査経路Pの始点Bに対応している。また、本例では、サーボモータ32が順方向に回転する間は(すなわち、回転速度が正の値である間は)レーザ光が図13中のX方向に沿って移動し、サーボモータ32が逆方向に回転する間は(すなわち、回転速度が負の値である間は)レーザ光がX方向の逆向きに移動する。上位制御装置6が生成した正弦波状の駆動指令は動作制御装置4に送信される。そして、動作制御装置4は、上位制御装置6から取得した正弦波状の駆動指令に従ってサーボモータ32の動作を制御する。
このように、本例の加工システム1によれば、各サーボモータ32の動作が正弦波状の駆動指令(図5を参照)に従って制御されるので、被加工物Wの上面でレーザ光を往復移動させるサーボモータ32の加減速が円滑化される。そのため、図5及び図14から分かるように、本例の加工システム1によれば、レーザ光を往復移動させるサーボモータ32の最高速度が比較的大きくなるので、レーザ焼結工程の所要時間が短縮され得る。なお、本例の加工システム1では、動作制御装置4の学習制御部42が、サーボモータ32の駆動指令とフィードバック情報との間の制御偏差をゼロに向かって収束させる学習制御を実行し得るので、サーボモータ32が高速化されても、サーボモータ32の動作を駆動指令に高精度に追従させることができる。その結果、レーザ焼結による高速かつ高精度の造形加工が実現される。
再び図1を参照すると、レーザ制御装置5は、検出器7が検出したサーボモータ32の現実の動作に応じてレーザ光の強度を制御するように構成されている。より具体的に、本例のレーザ制御装置5は、検出器7から取得したサーボモータ32の回転速度に所定の出力係数を掛けることによってレーザ光の強度を決定している。その結果、例えば、レーザ光の走査速度が増加するとレーザ光の強度が大きくされ、レーザ光の走査速度が減少するとレーザ光の強度が小さくされる。そして、レーザ光の走査速度がゼロになると(すなわち、レーザ光が停止すると)レーザ光の強度がゼロにされる。このようにレーザ光の現実の走査速度に応じてレーザ光の強度を制御することで、上述した正弦波状の駆動指令が採用される場合であっても、レーザ光の往復移動中に発生する焼結ムラを軽減することができる。なお、本例の加工システム1における動作制御装置4及びレーザ制御装置5は同一のプロセッサに組み込まれるのが好ましい。これにより、サーボモータ32とレーザ光源2の制御が同一のプロセッサで実行されるので、サーボモータ32のフィードバック情報をレーザ光の強度に反映させる際の応答時間を最小化することができる。
次に、本実施形態の加工システム1におけるレーザ光源2及びガルバノスキャナ3の制御方法についてフローチャートを参照して説明する。図6は、レーザ光源2及びガルバノスキャナ3の例示的な制御方法の手順を示すフローチャートである。図6のように、先ず、ステップS601では、上位制御装置6が、ガルバノスキャナ3のサーボモータ32に対する正弦波状の駆動指令を生成する(図5を参照)。ステップS601で生成された駆動指令は、動作制御装置4の偏差計算部41に送信される。次いで、ステップS602では、検出器7がサーボモータ32の現実の動作を検出して動作制御装置4の偏差計算部41に送信する。
次いで、ステップS603では、動作制御装置4の偏差計算部41が、上位制御装置6から取得した駆動指令と、検出器7から取得したサーボモータの現実の動作と、の間の制御偏差を計算する。ステップS603で計算された偏差は、学習制御部42及び加算器43に送信される。次いで、ステップS604では、動作制御装置4の学習制御部42が、偏差計算部41から取得した制御偏差を極小にする補正量を生成する。このような補正量を生成する方法は上述した通りである。また、サーボモータの制御偏差を補正するための適切な補正量を生成する方法は特許文献2にも開示されている。次いで、ステップS605では、動作制御装置4のサーボ制御部44が、ステップS604で生成された補正量による補正後の制御偏差に基づくサーボモータ32のフィードバック制御を実行する。次いで、ステップS606では、レーザ制御装置5が、検出器7が検出したサーボモータの現実の動作に応じてレーザ光の強度を制御する。より具体的に、レーザ制御装置5は、現実の回転速度に所定の出力係数を掛けてレーザ光の強度を決定する。
次に、本実施形態の加工システム1における制御偏差の数値シミュレーション結果について説明する。図7は、上述した正弦波状の速度指令(図5を参照)に基づく位置偏差の数値シミュレーション結果を、当該速度指令に対応する位置指令と一緒に示すグラフである。他方、図8は、従来のステップ状の速度指令(図14を参照)に基づく制御偏差の数値シミュレーション結果を、当該速度指令に対応する位置指令と一緒に示すグラフである。図7及び図8の数値シミュレーションでは、レーザ光が全長5mmの行程を15msecで往復移動するという条件の下で位置偏差が計算されている。そのため、図7及び図8の横軸(時間軸)の全長は15msecの期間に相当する。上記の条件は、後述する図9及び図10の数値シミュレーションでも同様に採用されている。なお、図7及び図8の数値シミュレーションでは、学習制御部42によるサーボモータ32の学習制御は実行されていない。
図7及び図8の各々を参照すると、位置指令のグラフ71,81上の各点の数値が左側の縦軸(1mm/div)で表され、位置偏差のグラフ72,82上の各点の数値が、右側の縦軸(1mm/div)で表されている。なお、左側の縦軸で表される位置指令の数値(mm)は、レーザ光の往復移動の起点BからのX方向の変位に相当する(図13を参照)。図7及び図8から分かるように、従来のステップ状の速度指令が採用される場合には、位置偏差の最大値dmaxが500μmであるのに対して(図8を参照)、上述した正弦波状の速度指令が採用される場合には、位置偏差の最大値dmaxが200μmに減少している(図7を参照)。このように正弦波状の駆動指令に従ってサーボモータ32の動作を制御することによって、サーボモータ32の制御偏差を大幅に縮小できることが分かる。
続いて、図9及び図10は、図7及び図8にそれぞれ対応する制御偏差の数値シミュレーション結果を示すグラフである。図9及び図10の数値シミュレーションでは、学習制御部42によるサーボモータ32の学習制御が実行されている。その他の条件は、上述した図7及び図8の数値シミュレーションと同様である。図9及び図10の各々を参照すると、図7及び図8と同様に、位置指令のグラフ91,101上の各点の数値が左側の縦軸(1mm/div)で表され、位置偏差のグラフ92,102上の各点の数値が右側の縦軸で表されている。ただし、図10中の右側の縦軸の1目盛の大きさが図7及び図8と同様に1mmであるのに対して、図9中の右側の縦軸の1目盛の大きさが1μmであることに注意が必要である。
図9及び図10から分かるように、従来のステップ状の速度指令が採用される場合には、位置偏差の最大値dmaxが230μmであるのに対して(図10を参照)、上述した正弦波状の速度指令が採用される場合には、位置偏差の最大値dmaxが0.2μmに減少している(図9を参照)。このように正弦波状の駆動指令を採用することに加えて、学習制御部42が生成した補正量で制御偏差を補正してからフィードバック制御を実行することで、サーボモータ32の位置偏差をさらに大幅に縮小できることが分かる。
以上のように、本実施形態の加工システム1によれば、ガルバノスキャナ3のサーボモータ32の動作が正弦波状の駆動指令(図5を参照)に従って制御されるので、レーザ光を往復移動させるサーボモータ32の加減速が円滑化される。従って、本実施形態の加工システム1によれば、レーザ光の走査精度を維持しつつレーザ光の走査速度を高速化することができ、結果的に、レーザ焼結による造形加工の生産性を向上させることができる。なお、図3及び図4のブロック図、並びに図6のフローチャート等には、ガルバノスキャナ3の一方のサーボモータ32の制御方法のみが示されているものの、他方のサーボモータ32もこれと同様に制御される。
本発明は、上記の実施形態のみに限定されるものではなく、特許請求の範囲に記載された範囲内で種々改変されうる。例えば、上記の実施形態の加工システム1は、レーザ焼結工程の繰り返しによって三次元的な造形物を形成する光造形加工機であるものの、本発明の加工システム1は、ガルバノスキャナ3の動作によってレーザ光を繰り返し往復移動させる加工機であれば如何なるものであってもよい。また、上記の実施形態に記載された加工システム1の各装置の構造及び機能等は一例にすぎず、本発明の効果を達成するために多様な構造及び機能等が採用され得る。
1 加工システム
2 レーザ光源
3 ガルバノスキャナ
31 ミラー
32 サーボモータ
4 動作制御装置
41 偏差計算部
42 学習制御部
421 加算器
422 帯域制限フィルタ
423 遅延メモリ
424 位相補償器
43 加算器
44 サーボ制御部
5 レーザ制御装置
6 上位制御装置
7 検出器
B 起点
L 全長
M 金属粉末
Ra 回転軸線
Rb 回転軸線
P 走査経路
S 帯状領域
T テーブル
W 被加工物

Claims (3)

  1. レーザ光の走査方向を変更しながら被加工物を造形する光造形加工機であって、
    レーザ光を生成するレーザ光源と、
    前記レーザ光を反射するミラー及び前記ミラーを回転駆動するサーボモータを備え、前記レーザ光を被加工物に照射するガルバノスキャナと
    記サーボモータに取付けられていて前記サーボモータの現実の動作を検出するロータリーエンコーダと、
    前記サーボモータの動作を制御する動作制御装置と、
    前記レーザ光の強度を制御するレーザ制御装置と、
    前記走査方向に対応する正弦波状の駆動指令を前記動作制御装置に送信すると共に、前記レーザ光の強度指令を前記レーザ制御装置に送信する上位制御装置と、
    を備え、
    前記動作制御装置及び前記レーザ制御装置は、前記ロータリーエンコーダから取得した情報に基づいてフィードバック制御を実行し、
    前記動作制御装置は、
    前記上位制御装置から受信した前記正弦波状の駆動指令と、前記ロータリーエンコーダが検出した前記サーボモータの現実の動作との間の第1偏差を所定のサンプリング周期で計算する偏差計算部と、
    前記第1偏差と前記正弦波状の駆動指令における1周期前に計算した1周期前補正量とに基づいて前記第1偏差を補正するための補正量を生成する学習制御部と、
    前記補正量による補正後の第2偏差と前記サーボモータの現実の動作とに基づいて前記サーボモータの動作を制御するサーボ制御部と、
    を備え、
    前記レーザ制御装置は、前記上位制御装置から受信した前記強度指令と、前記ロータリーエンコーダが検出した前記サーボモータの回転速度とに応じて前記レーザ光の強度を制御する光造形加工機
  2. 前記レーザ制御装置は、前記ロータリーエンコーダが検出した前記サーボモータの回転速度に所定の係数を掛けて前記レーザ光の強度を決定する、請求項に記載の光造形加工機
  3. 前記動作制御装置と前記レーザ制御装置とが同一のプロセッサに組み込まれる、請求項1又は2に記載の光造形加工機
JP2014182633A 2014-09-08 2014-09-08 レーザ光を高速で走査可能なガルバノスキャナを含む光造形加工機 Active JP6673632B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014182633A JP6673632B2 (ja) 2014-09-08 2014-09-08 レーザ光を高速で走査可能なガルバノスキャナを含む光造形加工機
US14/840,226 US9720225B2 (en) 2014-09-08 2015-08-31 Processing system with galvano scanner capable of high speed laser scanning
DE102015114549.9A DE102015114549A1 (de) 2014-09-08 2015-09-01 Verarbeitungssystem mit Galvoscanner zur Hochgeschwindigkeitslaserscannen
CN201510566144.8A CN105398061B (zh) 2014-09-08 2015-09-08 加工系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014182633A JP6673632B2 (ja) 2014-09-08 2014-09-08 レーザ光を高速で走査可能なガルバノスキャナを含む光造形加工機

Publications (2)

Publication Number Publication Date
JP2016055308A JP2016055308A (ja) 2016-04-21
JP6673632B2 true JP6673632B2 (ja) 2020-03-25

Family

ID=55358623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014182633A Active JP6673632B2 (ja) 2014-09-08 2014-09-08 レーザ光を高速で走査可能なガルバノスキャナを含む光造形加工機

Country Status (4)

Country Link
US (1) US9720225B2 (ja)
JP (1) JP6673632B2 (ja)
CN (1) CN105398061B (ja)
DE (1) DE102015114549A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484204B2 (ja) * 2016-09-09 2019-03-13 ファナック株式会社 ガルバノスキャナ
JP6487413B2 (ja) 2016-12-22 2019-03-20 ファナック株式会社 レーザ加工用ヘッドおよびそれを備えたレーザ加工システム
EP3587079A1 (en) * 2018-06-29 2020-01-01 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing three-dimensional objects
DE112021004488T5 (de) * 2020-10-13 2023-06-15 Fanuc Corporation Servosteuerungsvorrichtung
WO2023067682A1 (ja) * 2021-10-19 2023-04-27 ファナック株式会社 サーボモータ制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118854A (en) * 1978-03-08 1979-09-14 Komatsu Mfg Co Ltd Laser beam controlling method for heat treatment
JP2562367B2 (ja) * 1989-06-29 1996-12-11 株式会社小松製作所 レーザ発振装置
JPH07657A (ja) * 1993-06-21 1995-01-06 Tokai Ind Sewing Mach Co Ltd ミシンの同期制御方式
JPH10146487A (ja) * 1996-11-19 1998-06-02 Brother Ind Ltd 主軸釜分離駆動型ミシン
JP2001062580A (ja) * 1999-08-30 2001-03-13 Keyence Corp レーザマーカ
US8085388B2 (en) * 2005-02-01 2011-12-27 Laser Projection Technologies, Inc. Laser radar projection with object feature detection and ranging
JP4973982B2 (ja) 2007-01-10 2012-07-11 株式会社安川電機 ガルバノスキャナシステムおよび制御方法
US8076605B2 (en) * 2007-06-25 2011-12-13 Electro Scientific Industries, Inc. Systems and methods for adapting parameters to increase throughput during laser-based wafer processing
JP5095569B2 (ja) * 2008-09-17 2012-12-12 株式会社リコー 光走査装置及び画像形成装置
JP5382502B2 (ja) * 2009-01-23 2014-01-08 富士電機株式会社 薄膜太陽電池のレーザ加工装置および加工方法
JP2011123465A (ja) * 2009-11-13 2011-06-23 Seiko Epson Corp 光走査型プロジェクター
JP2012148317A (ja) * 2011-01-19 2012-08-09 Keyence Corp レーザー加工装置
JP2013005312A (ja) * 2011-06-20 2013-01-07 Nec Casio Mobile Communications Ltd 情報端末
US9699422B2 (en) * 2011-10-04 2017-07-04 Prysm, Inc. Composite and other phosphor materials for emitting visible light and applications in generation of visible light including light-emitting screens
JP5221735B2 (ja) 2011-10-27 2013-06-26 ファナック株式会社 不感帯処理部を備えた電動機の制御装置
CN104204900A (zh) * 2012-03-23 2014-12-10 松下电器产业株式会社 扫描反射镜以及扫描型图像显示装置
JP6107153B2 (ja) * 2012-03-28 2017-04-05 日本精機株式会社 車両用表示装置
WO2013177650A1 (en) * 2012-04-26 2013-12-05 Neptec Design Group Ltd. High speed 360 degree scanning lidar head
JP5942576B2 (ja) * 2012-05-11 2016-06-29 セイコーエプソン株式会社 光学デバイス、光スキャナーおよび画像表示装置
JP5715113B2 (ja) * 2012-12-14 2015-05-07 株式会社片岡製作所 レーザ加工機
US10520721B2 (en) * 2013-03-15 2019-12-31 The Brain Window, Inc. Optical beam scanning system having a synthetic center of beam rotation
JP6171970B2 (ja) * 2014-02-10 2017-08-02 ソニー株式会社 レーザ走査型顕微鏡装置および制御方法

Also Published As

Publication number Publication date
US20160070097A1 (en) 2016-03-10
DE102015114549A1 (de) 2016-03-10
CN105398061B (zh) 2019-07-05
CN105398061A (zh) 2016-03-16
US9720225B2 (en) 2017-08-01
JP2016055308A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6673632B2 (ja) レーザ光を高速で走査可能なガルバノスキャナを含む光造形加工機
JP6224707B2 (ja) 積層を利用して三次元立体物を製造する装置及び製造方法
US10175684B2 (en) Laser processing robot system and control method of laser processing robot system
JP6300928B2 (ja) 三次元物体を製造するための装置
EP3672783B1 (en) System and methods for fabricating a component using a consolidating device
JP5204386B2 (ja) 冗長なアクチュエータを有する作業機械の管理方法および作業機械
EP3435182B1 (en) Systems and methods for advanced additive manufacturing
KR102032888B1 (ko) 후처리 일체형 3d 프린터 장치
KR20150115596A (ko) 3차원 조형 장치 및 3차원 형상 조형물의 제조 방법
JP2016522761A (ja) 選択的レーザー溶融システム
JP6795565B2 (ja) レーザ加工システム
JP2016078392A (ja) 積層造形装置
KR101798533B1 (ko) 3차원 프린터에 의한 조형 장치 및 방법
JP6918603B2 (ja) 三次元レーザ加工機および三次元レーザ加工機の制御方法
CN108025362B (zh) 用于控制激光束偏转的控制设备和方法
EP3600836B1 (en) Energy dosing for additive manufacturing
KR101722916B1 (ko) 레이저 스캐너 기반 5축 표면 연속 가공 장치 및 그 제어 방법
JP6861295B2 (ja) 最適化機械制御信号を提供するために画像情報を処理する三次元プリンタ
KR102042659B1 (ko) 다중 레이저의 중첩을 이용한 레이저 고출력 변환장치
JP2010173123A (ja) 積層造形装置及び積層造形方法
JP6235623B2 (ja) 出力指令を切換えるタイミングを調整可能なレーザ加工システム
JP6049242B2 (ja) 制御装置、照射装置及び駆動装置
KR102237232B1 (ko) 3차원 형상 재료 적층을 위한 공급장치 및 그 제어방법
KR101679737B1 (ko) 광경화기를 구비하는 3차원 프린팅 헤드 조립체
KR102321236B1 (ko) Drawing 방식의 In-fill 패턴 기술을 구비한 3D프린터 모니터링 시스템

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190311

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200305

R150 Certificate of patent or registration of utility model

Ref document number: 6673632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150