JP6669292B2 - Light emitting device and method of manufacturing the same - Google Patents

Light emitting device and method of manufacturing the same Download PDF

Info

Publication number
JP6669292B2
JP6669292B2 JP2019035086A JP2019035086A JP6669292B2 JP 6669292 B2 JP6669292 B2 JP 6669292B2 JP 2019035086 A JP2019035086 A JP 2019035086A JP 2019035086 A JP2019035086 A JP 2019035086A JP 6669292 B2 JP6669292 B2 JP 6669292B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
wavelength conversion
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019035086A
Other languages
Japanese (ja)
Other versions
JP2019083344A (en
Inventor
利恵 前田
利恵 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2019035086A priority Critical patent/JP6669292B2/en
Publication of JP2019083344A publication Critical patent/JP2019083344A/en
Application granted granted Critical
Publication of JP6669292B2 publication Critical patent/JP6669292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)

Description

本発明は、発光素子を備えた発光装置及びその製造方法に関する。   The present invention relates to a light emitting device having a light emitting element and a method for manufacturing the same.

発光素子と蛍光体とを用いた発光装置が知られている。例えば、半導体発光素子の側部を覆う透明樹脂と、その透明樹脂を覆う白色反射部材と、これらを覆う蛍光体部材を有する発光装置が知られている(例えば、特許文献1、2)。   A light emitting device using a light emitting element and a phosphor is known. For example, a light emitting device having a transparent resin covering a side portion of a semiconductor light emitting element, a white reflecting member covering the transparent resin, and a phosphor member covering the transparent resin is known (for example, Patent Documents 1 and 2).

特開2012−227470公報JP 2012-227470 A 特開2013−012545公報JP 2013-012545 A

このような発光装置において、発光色むらが発生にしにくい発光装置が求められている。   In such a light-emitting device, a light-emitting device in which emission color unevenness is unlikely to occur is required.

本発明の実施形態は、以下の構成を含む。
波長変換部材の第1の面と、厚みが前記波長変換部材の厚みの半分程度である拡散部材の第1の面と、を接着する、接着工程と、前記拡散部材の第1の面と対向する面である前記拡散部材の第2の面に、発光素子を配置する、第1発光素子配置工程と、前記発光素子の側面及び前記拡散部材の第2の面の一部を透光性部材で覆う、第1透光性部材形成工程と、前記透光性部材の外面及び前記拡散部材の第2の面の一部を被覆部材で覆う、第1被覆部材形成工程と、前記波長変換部材と、前記拡散部材と、前記被覆部材と、を切断する、第1切断工程と、を備える発光装置の製造方法。
また、本発明の実施形態は、以下の構成も含む。
シートの第1の面に発光素子を配置する、第2発光素子配置工程と、前記発光素子の側面及び前記シートの第1の面の一部を透光性部材で覆う、第2透光性部材形成工程と、前記透光性部材の外面及び前記シートの第1の面の一部を被覆部材で覆う、第2被覆部材形成工程と、前記発光素子から前記シートを剥離する、剥離工程と、前記発光素子及び前記透光性部材の上に、拡散部材と波長変換部材とをこの順に形成する工程であって、前記拡散部材の厚みが前記波長変換部材の厚みの半分程度である拡散部材形成工程と、前記被覆部材を切断する、第2切断工程と、を備える発光装置の製造方法。
また上記の構成で製造された発光装置は、以下の構成を含む。
第1の面と、第1の面と対向する第2の面と、第1の面と前記第2の面との間に複数の側面とを有し、第2の面側に一対の電極を有する発光素子と、少なくとも1つの側面の一部を覆う透光性部材と、一対の電極を露出させるよう、透光性部材の外面を覆う被覆部材と、発光素子の第1の面と透光性部材を覆う拡散部材と、拡散部材を覆う波長変換部材と、を有する発光装置。
Embodiments of the present invention include the following configurations.
A bonding step of bonding the first surface of the wavelength conversion member and the first surface of the diffusion member having a thickness of about half the thickness of the wavelength conversion member, and opposing the first surface of the diffusion member. A first light emitting element arranging step of arranging a light emitting element on a second surface of the diffusing member, which is a surface to be diffused; A first light-transmissive member forming step, a first cover member forming step of covering an outer surface of the light-transmissive member and a part of the second surface of the diffusion member with a cover member, and the wavelength conversion member. And a first cutting step of cutting the diffusion member and the covering member.
The embodiment of the present invention also includes the following configuration.
A second light-emitting element disposing step of disposing light-emitting elements on a first surface of a sheet; and a second light-transmitting member covering a side surface of the light-emitting element and a part of the first surface of the sheet with a light-transmitting member. A member forming step, a second covering member forming step of covering the outer surface of the translucent member and a part of the first surface of the sheet with a covering member, and a peeling step of peeling the sheet from the light emitting element. Forming a diffusion member and a wavelength conversion member in this order on the light emitting element and the translucent member, wherein the thickness of the diffusion member is about half the thickness of the wavelength conversion member. A method for manufacturing a light emitting device, comprising: a forming step; and a second cutting step of cutting the covering member.
Further, the light emitting device manufactured with the above configuration includes the following configuration.
A first surface, a second surface facing the first surface, a plurality of side surfaces between the first surface and the second surface, and a pair of electrodes on the second surface side A light-transmitting member that covers at least a part of at least one side surface, a coating member that covers an outer surface of the light-transmitting member so as to expose a pair of electrodes, and a light-transmitting member that covers the first surface of the light-emitting element. A light emitting device comprising: a diffusion member that covers an optical member; and a wavelength conversion member that covers the diffusion member.

以上に示す解決手段により、発光色むらが低減される発光装置及びその製造方法を提供することができる。   According to the above-described solution, a light-emitting device with reduced emission color unevenness and a method for manufacturing the same can be provided.

図1(a)は、実施の形態1に係る発光装置の概略平面図である。図1(b)は、図1(a)のA−A線に沿った概略断面図である。FIG. 1A is a schematic plan view of the light emitting device according to the first embodiment. FIG. 1B is a schematic cross-sectional view taken along the line AA of FIG. 図2(a)〜図2(e)は、実施の形態1に係る発光装置の製造方法を説明するための概略断面図である。2A to 2E are schematic cross-sectional views illustrating a method for manufacturing the light emitting device according to the first embodiment. 図3(a)は、実施の形態2に係る発光装置の概略平面図である。図3(b)は、図3(a)のB−B線に沿った概略断面図である。FIG. 3A is a schematic plan view of the light emitting device according to the second embodiment. FIG. 3B is a schematic cross-sectional view taken along the line BB of FIG. 図4(a)〜図4(f)は、実施の形態2に係る発光装置の製造方法を説明するための概略断面図である。4A to 4F are schematic cross-sectional views illustrating a method for manufacturing the light emitting device according to the second embodiment. 図5は、発光装置の概略平面図である。FIG. 5 is a schematic plan view of the light emitting device.

以下、図面に基づいて本発明の実施の形態を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、「右」、「左」および、それらの用語を含む別の用語)を用いる。それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が限定されるものではない。また、複数の図面に表れる同一符号の部分は同一の部分又は部材を示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, a term indicating a specific direction or position (for example, “up”, “down”, “right”, “left”, and another term including those terms) is used as necessary. . The use of these terms is for facilitating the understanding of the invention with reference to the drawings, and the technical scope of the present invention is not limited by the meaning of the terms. In addition, portions denoted by the same reference numerals in a plurality of drawings indicate the same portions or members.

<実施の形態1>
図1(a)(b)に示す本実施の形態に係る発光装置10は、発光素子20と、発光素子20の側面23側に設けられた透光性部材30と、透光性部材30の外面33を覆う被覆部材40とを含む。発光装置10は、発光面として機能する第1の面(上面)11側に、拡散部材50と、拡散部材の第1の面(上面)51側に、波長変換部材60を備えることができる。
<First Embodiment>
The light-emitting device 10 according to the present embodiment shown in FIGS. 1A and 1B includes a light-emitting element 20, a light-transmitting member 30 provided on the side surface 23 of the light-emitting element 20, and a light-transmitting member 30. And a covering member 40 that covers the outer surface 33. The light emitting device 10 can include a diffusion member 50 on the first surface (upper surface) 11 side functioning as a light emitting surface, and a wavelength conversion member 60 on the first surface (upper surface) 51 side of the diffusion member.

図1(b)は、図1のA−A線(発光素子20の対向する一対の側面23と直交する線)に沿った概略断面図である。図1(b)に示すように、発光素子20は、透光性基板27と、透光性基板27の下面側に形成された半導体積層体28とを含むことができる。発光素子20は、透光性基板27側の第1の面(上面)21と、第1の面21と対向する半導体積層体28側の第2の面(下面)22と、第1の面21と第2の面22との間に複数の側面23とを有している。発光素子20で発光した光は、半導体積層体28から透光性基板27を通って、又は半導体積層体28から発光素子20の側面23および透光性部材30と拡散部材50と波長変換部材60を通って、発光装置10の第1の面11側に取り出される。   FIG. 1B is a schematic cross-sectional view taken along line AA of FIG. 1 (a line orthogonal to a pair of opposed side surfaces 23 of the light emitting element 20). As shown in FIG. 1B, the light emitting element 20 can include a light transmitting substrate 27 and a semiconductor stacked body 28 formed on the lower surface side of the light transmitting substrate 27. The light-emitting element 20 includes a first surface (upper surface) 21 on the light-transmitting substrate 27 side, a second surface (lower surface) 22 on the semiconductor stacked body 28 side facing the first surface 21, and a first surface. A plurality of side surfaces 23 are provided between the first surface 21 and the second surface 22. The light emitted by the light emitting element 20 passes through the light transmitting substrate 27 from the semiconductor stack 28 or from the semiconductor stack 28 to the side surface 23 of the light emitting element 20 and the light transmitting member 30, the diffusion member 50, and the wavelength conversion member 60. Through the light-emitting device 10 to the first surface 11 side.

発光素子20の第2の面22(図1(b)では、半導体積層体28側)には、発光素子20に通電するための一対の電極251、252が設けられている。なお、本明細書において、発光素子20の「第2の面22」は、電極251、252を含まない状態における発光素子20の面を指している。本実施の形態では、第2の面22は、半導体積層体28の下面と一致する。   On the second surface 22 of the light emitting element 20 (on the side of the semiconductor laminate 28 in FIG. 1B), a pair of electrodes 251 and 252 for supplying electricity to the light emitting element 20 are provided. Note that, in this specification, the “second surface 22” of the light-emitting element 20 refers to the surface of the light-emitting element 20 that does not include the electrodes 251 and 252. In the present embodiment, the second surface 22 coincides with the lower surface of the semiconductor stack 28.

一対の電極を構成する2つの電極251、252の各々は、任意の形状にすることができる。例えば、電極251、252は、発光装置10の第2の面12側から見たときに一方向に伸びた長方形とすることができる。なお、電極251、252は、同じ形状でなくてもよい。また、2つの電極251、252は、互いに離間していれば、任意に配置することができる。   Each of the two electrodes 251 and 252 forming a pair of electrodes can have an arbitrary shape. For example, the electrodes 251 and 252 can be rectangular shapes that extend in one direction when viewed from the second surface 12 side of the light emitting device 10. Note that the electrodes 251 and 252 need not have the same shape. The two electrodes 251 and 252 can be arbitrarily arranged as long as they are separated from each other.

透光性部材30は、発光素子20の側面23を、少なくとも発光層を覆うように設けられており、その側面23から出射される光を発光装置10の第1の面11方向に導光する。つまり、発光素子20の側面23に到達した光がその側面23で反射されて発光素子20内で減衰する前に、その光を透光性部材30を通して発光素子20の外側に取り出すことができる。透光性部材30を設けることにより、光の損失を抑制して、発光装置10の光取出し効率を向上できる。   The translucent member 30 is provided so as to cover at least the light emitting layer on the side surface 23 of the light emitting element 20, and guides light emitted from the side surface 23 toward the first surface 11 of the light emitting device 10. . That is, before the light reaching the side surface 23 of the light emitting element 20 is reflected by the side surface 23 and attenuated in the light emitting element 20, the light can be extracted to the outside of the light emitting element 20 through the light transmitting member 30. By providing the translucent member 30, light loss can be suppressed, and the light extraction efficiency of the light emitting device 10 can be improved.

特に、発光素子20の側面23が、第2の面22に対して傾斜している場合、例えば、発光素子20の側面23と第2の面22との成す角度が鋭角である場合に、透光性部材30の効果が顕著になる。例えば、発光素子20の製造工程において、劈開によって発光素子20を個片化している場合には、発光素子20の側面23が第2の面22に対して垂直にならない場合がある。一般的には、図1のA−A線に沿った断面(図1(b))において、発光素子20は平行四辺形になる。つまり、第1の面21と第2の面22が平行で、対向する2つの側面23が平行であり、各側面23は、第1の面21および第2の面22に対して傾斜した発光素子20になる。一方の側面23については第2の面22とのなす角度が鈍角になるので、当該一方の側面23で反射された光は、発光素子20の第1の面21に向かってそのまま発光装置10の外部に取り出され得る。しかし、他方の側面23については、第2の面22とのなす角度が鋭角になるので、当該他方の側面23で反射された光は、第2の面22に向かって、発光素子20内で減衰し得る。   In particular, when the side surface 23 of the light emitting element 20 is inclined with respect to the second surface 22, for example, when the angle between the side surface 23 of the light emitting element 20 and the second surface 22 is an acute angle, The effect of the optical member 30 becomes significant. For example, in the manufacturing process of the light emitting element 20, when the light emitting element 20 is divided into individual pieces by cleavage, the side surface 23 of the light emitting element 20 may not be perpendicular to the second surface 22 in some cases. Generally, in a cross section taken along the line AA in FIG. 1 (FIG. 1B), the light emitting element 20 has a parallelogram shape. In other words, the first surface 21 and the second surface 22 are parallel, the two opposing side surfaces 23 are parallel, and each side surface 23 has a light emission inclined with respect to the first surface 21 and the second surface 22. It becomes the element 20. Since the angle between the one side surface 23 and the second surface 22 becomes obtuse, the light reflected on the one side surface 23 is directed toward the first surface 21 of the light emitting element 20 by the light of the light emitting device 10. Can be taken out. However, the angle formed between the other side surface 23 and the second surface 22 is acute, so that the light reflected on the other side surface 23 is directed toward the second surface 22 in the light emitting element 20. Can decay.

この他方の側面23を透光性部材30で覆うことにより、他方の側面23に到達した光を、透光性部材30を通して発光装置10の外側に取り出すことができる。また、発光素子の個片化を劈開する場合のほか、例えば、サファイア基板上にn型半導体層、発光層(活性層)、p型半導体層を積層させた後、p型半導体層の一部及び発光層の一部をエッチングして、n型半導体層の一部又はサファイア基板の一部が露出する場合がある。このような場合、エッチングの条件等によっては、p型半導体層、活性層、n型半導体層、サファイア基板の側面が傾斜する場合がある。このような場合も、透光性部材30で傾斜した側面を覆うことで、透光性部材30を通して発光装置の外側に光を取り出すことができる。   By covering the other side surface 23 with the translucent member 30, the light reaching the other side surface 23 can be extracted to the outside of the light emitting device 10 through the translucent member 30. In addition to cleaving the light-emitting element into individual pieces, for example, after an n-type semiconductor layer, a light-emitting layer (active layer), and a p-type semiconductor layer are stacked on a sapphire substrate, a part of the p-type semiconductor layer is formed. In some cases, part of the light emitting layer is etched to expose part of the n-type semiconductor layer or part of the sapphire substrate. In such a case, the side surfaces of the p-type semiconductor layer, the active layer, the n-type semiconductor layer, and the sapphire substrate may be inclined depending on the etching conditions and the like. Even in such a case, by covering the inclined side surface with the light transmitting member 30, light can be extracted to the outside of the light emitting device through the light transmitting member 30.

発光素子20の第1の面と拡散部材50とは、接着剤35によって接着されていてもよい。接着剤35は、透光性であることが好ましく、その材料としては、透光性部材30と同じ材料、又は異なる材料が挙げられる。また、発光素子と拡散部材の間だけではなく、透光性部材と拡散部材との間にも接着部材を設けてもよい。その場合、たとえば、後述のように、シート状の拡散部材の上に接着部材を配置し、その上に発光素子20を置いた際、発光素子20の側面よりも外側へはみ出すようにして接着部材を設けることができる。
この時、接着剤が発光素子の側面にも接するように設けることができる。このような接着部材を設けた後に、透光性部材30を設けることで、発光素子の側面において、接着部材が接する領域と、透光性部材とが接する領域と、が存在することになる。換言すると、発光素子の側面に、接着部材と透光性部材とが重ねて形成されていることになる。
The first surface of the light emitting element 20 and the diffusion member 50 may be bonded by an adhesive 35. The adhesive 35 is preferably translucent, and examples of the material include the same material as the translucent member 30 or a different material. Further, an adhesive member may be provided not only between the light emitting element and the diffusion member but also between the translucent member and the diffusion member. In this case, for example, as described later, an adhesive member is disposed on a sheet-like diffusion member, and when the light emitting element 20 is placed thereon, the adhesive member is protruded outside the side surface of the light emitting element 20. Can be provided.
At this time, the adhesive may be provided so as to be in contact with the side surface of the light emitting element. By providing the translucent member 30 after providing such an adhesive member, a region where the adhesive member is in contact and a region where the translucent member is in contact exist on the side surface of the light emitting element. In other words, the adhesive member and the translucent member are formed on the side surface of the light emitting element so as to overlap.

拡散部材50の形状はその上面が平面、凸形、凹形、あるいは、複数の凹凸を備えた形状とすることができる。また、上面視形状は、四角形、円形、楕円形等とすることができる。凸形とする場合は、その高さ、すなわち、発光素子の第1の面21から波長変換部材の第2の面62までの高さを80μm以内とすることができる。ただし、波長変換部材に使用する蛍光体の組成や量等によって、波長変換部材の厚みは異なる場合があり、例えば、拡散部材50の厚みは波長変換部材60の厚みの半分程度の厚みとすることができる。   The shape of the diffusion member 50 can be a flat surface, a convex shape, a concave shape, or a shape having a plurality of irregularities. Further, the shape in a top view can be a square, a circle, an ellipse, or the like. In the case of the convex shape, the height, that is, the height from the first surface 21 of the light emitting element to the second surface 62 of the wavelength conversion member can be within 80 μm. However, the thickness of the wavelength conversion member may vary depending on the composition and amount of the phosphor used for the wavelength conversion member, and for example, the thickness of the diffusion member 50 may be about half the thickness of the wavelength conversion member 60. Can be.

発光素子20の一対の電極251、252は、被覆部材40から露出して、発光装置10の第2の面(下面)12に露出している。これにより、発光素子20が実装される基板等に設けられた外部電極と、発光素子20の電極251、252とを接続することができる。なお、発光素子20は、第2の面22の電極251、252が設けられている部分以外の部分が、発光素子20を外部環境から保護するために、被覆部材40で覆われるのが好ましい。   The pair of electrodes 251 and 252 of the light emitting element 20 are exposed from the covering member 40 and are exposed on the second surface (lower surface) 12 of the light emitting device 10. Thus, the external electrodes provided on the substrate or the like on which the light emitting element 20 is mounted can be connected to the electrodes 251 and 252 of the light emitting element 20. In addition, it is preferable that the light emitting element 20 be covered with the covering member 40 in order to protect the light emitting element 20 from the external environment, except for the part where the electrodes 251 and 252 are provided on the second surface 22.

被覆部材40で発光素子20の第2の面22を覆うときには、発光素子20の第2の面22に形成された電極251、252が発光装置10の表面(第2の面12)に露出するようにする。例えば、電極251、252の側面は、被覆部材40で覆ってもよいが、電極251、252の表面251s、252sは、被覆部材40で覆わないように、被覆部材40の厚さを調節する。なお、電極の表面251s、252sは、被覆部材40より突出していてもよいし、略面一(図1(b)参照)であってもよい。   When the covering member 40 covers the second surface 22 of the light emitting element 20, the electrodes 251 and 252 formed on the second surface 22 of the light emitting element 20 are exposed on the surface of the light emitting device 10 (the second surface 12). To do. For example, the side surfaces of the electrodes 251 and 252 may be covered with the covering member 40, but the thickness of the covering member 40 is adjusted so that the surfaces 251 s and 252 s of the electrodes 251 and 252 are not covered with the covering member 40. In addition, the surfaces 251 s and 252 s of the electrodes may project from the covering member 40 or may be substantially flush (see FIG. 1B).

上述の通り、発光装置10は、発光素子20の第1の面21側に拡散部材50を含むことができる。拡散部材拡散部材50を備えることにより波長変換部材60から射出される発光色むらを抑えることができる。   As described above, the light emitting device 10 can include the diffusion member 50 on the first surface 21 side of the light emitting element 20. Diffusion member By providing the diffusion member 50, it is possible to suppress emission color unevenness emitted from the wavelength conversion member 60.

再び図1(b)を参照すると、上述の通り、発光装置10は、第1の面11側に波長変換部材60を含むことができる。波長変換部材60とは、その内部を透過する光の一部を別の波長に変換するための部材である。波長変換部材60は、その内部を透過する光によって励起される蛍光体を含有している。発光装置10が波長変換部材60を備えることにより、発光素子20の発光色とは異なる発光色を有する発光装置10を得ることができる。例えば、青色光を発する発光素子20と、青色光を吸収して黄色の蛍光を発する波長変換部材60とを組み合わせることにより、白色光を発する発光装置10を得ることができる。   Referring to FIG. 1B again, as described above, the light emitting device 10 can include the wavelength conversion member 60 on the first surface 11 side. The wavelength conversion member 60 is a member for converting a part of light transmitted through the inside into another wavelength. The wavelength conversion member 60 contains a phosphor that is excited by light passing through the inside thereof. Since the light emitting device 10 includes the wavelength conversion member 60, the light emitting device 10 having a light emission color different from the light emission color of the light emitting element 20 can be obtained. For example, by combining the light emitting element 20 that emits blue light and the wavelength conversion member 60 that absorbs blue light and emits yellow fluorescence, the light emitting device 10 that emits white light can be obtained.

拡散部材50は、発光素子20の第1の面21と、透光性部材30の第1の面31とを覆うように設けられるのが望ましい。発光素子20で発生した光は、発光素子20の第1の面21から直接取り出されるか、又は発光素子20の側面23から出射して透光性部材30を通って透光性部材30の第1の面31から間接的に取り出される。よって、発光素子20の第1の面21と、透光性部材30の第1の面31を覆うように拡散部材50を配置することにより、発光素子20で発生した光の実質的に全てを、拡散部材50に通過させることができる。拡散部材50を通過することにより発光装置10の発光の色むらを抑制することができる。   The diffusion member 50 is desirably provided so as to cover the first surface 21 of the light emitting element 20 and the first surface 31 of the translucent member 30. Light generated by the light emitting element 20 is directly extracted from the first surface 21 of the light emitting element 20 or emitted from the side surface 23 of the light emitting element 20, passes through the light transmitting member 30, and passes through the light transmitting member 30. 1 is indirectly taken out of the surface 31. Therefore, by disposing the diffusion member 50 so as to cover the first surface 21 of the light emitting element 20 and the first surface 31 of the translucent member 30, substantially all of the light generated by the light emitting element 20 can be removed. , Through the diffusion member 50. By passing through the diffusion member 50, it is possible to suppress color unevenness of light emission of the light emitting device 10.

一般的に発光素子20の点灯時に第1の面21から射出される光が波長変換部材60を通過して外へ取り出されるが、発光素子20の第1の面21からの青色波長が強いため波長変換部材から射出される光に青色光が多く含有されることが発光色むらの原因と考えられる。拡散部材50を発光素子の第1の面と波長変換部材との間に設けることにより発光素子20の第1の面21から射出される青色波長を減少させ波長変換部材60を通過して抑制された光が取り出されることになる。   Generally, light emitted from the first surface 21 when the light emitting element 20 is turned on passes through the wavelength conversion member 60 and is extracted to the outside. However, since the blue wavelength from the first surface 21 of the light emitting element 20 is strong, It is considered that the light emitted from the wavelength conversion member contains a large amount of blue light, which is a cause of uneven emission color. By providing the diffusing member 50 between the first surface of the light emitting element and the wavelength conversion member, the blue wavelength emitted from the first surface 21 of the light emitting element 20 is reduced and is suppressed by passing through the wavelength conversion member 60. Light will be extracted.

波長変換部材60は、拡散部材50の第1の面51と、透光性部材30の第1の面31とを覆うように設けられるのが望ましい。さらに、拡散部材50及び波長変換部材60は、被覆部材の上面の全面を覆うことができる。換言すると、拡散部材50の側面と、波長変換部材60の側面とが、被覆部材40の側面と面一である。   The wavelength conversion member 60 is desirably provided so as to cover the first surface 51 of the diffusion member 50 and the first surface 31 of the translucent member 30. Further, the diffusion member 50 and the wavelength conversion member 60 can cover the entire upper surface of the covering member. In other words, the side surface of the diffusion member 50 and the side surface of the wavelength conversion member 60 are flush with the side surface of the covering member 40.

<製造方法>
図2を参照しながら、本実施の形態に係る発光装置10の製造方法について説明する。本実施の形態に係る発光装置の製造方法では複数の発光装置10を同時に製造することができる。
<Production method>
A method for manufacturing the light emitting device 10 according to the present embodiment will be described with reference to FIG. In the method for manufacturing a light emitting device according to the present embodiment, a plurality of light emitting devices 10 can be manufactured at the same time.

シート状の波長変換部材600(第2の面62)を、ホットメルト又は接着剤によりシート状の拡散部材500に接着する。波長変換部材の厚さは、例えば40〜80μmとすることができ、80μmが好ましい。また使用する蛍光体の種類により波長変換部材の厚みが異なるため、拡散部材の厚みの2倍程度になることが最も好ましい。   The sheet-shaped wavelength conversion member 600 (second surface 62) is bonded to the sheet-shaped diffusion member 500 by hot melt or an adhesive. The thickness of the wavelength conversion member can be, for example, 40 to 80 μm, and preferably 80 μm. In addition, since the thickness of the wavelength conversion member varies depending on the type of the phosphor used, it is most preferable that the thickness be about twice the thickness of the diffusion member.

拡散部材500と波長変換部材600が接着された積層体を、拡散部材500側を上にし、拡散部材500の第1の面52上に接着剤35を介して発光素子20の第1の面21を接着する(図2(a))。発光素子20から出射される青色光を抑えることができるように、拡散部材の厚さは、例えば10〜50μmとすることができ、30〜40μmが好ましい。ただし、波長変換部材に使用する蛍光体の粒径により波長変換部材の厚みは異なるため、拡散部材は、波長変換部材600の半分の厚みになることが好ましい。   The laminated body in which the diffusion member 500 and the wavelength conversion member 600 are bonded to each other is placed on the first surface 52 of the light emitting element 20 via the adhesive 35 on the first surface 52 of the diffusion member 500 with the diffusion member 500 side facing up. (FIG. 2A). The thickness of the diffusion member can be set to, for example, 10 to 50 μm, and preferably 30 to 40 μm so that blue light emitted from the light emitting element 20 can be suppressed. However, since the thickness of the wavelength conversion member varies depending on the particle size of the phosphor used for the wavelength conversion member, it is preferable that the thickness of the diffusion member is half that of the wavelength conversion member 600.

拡散部材500の上に、接着剤35を用いて発光素子20を配置する(図2(a))際に、発光素子20の第1の面21を、接着剤35に向かい合わせて配置する。発光素子20は、接着剤35により拡散部材500に固定することができる。接着剤を使用する代わりに、後で形成される透光性部材30によって拡散部材500に固定してもよい。   When the light emitting element 20 is arranged on the diffusion member 500 using the adhesive 35 (FIG. 2A), the first surface 21 of the light emitting element 20 is arranged to face the adhesive 35. The light emitting element 20 can be fixed to the diffusion member 500 with the adhesive 35. Instead of using an adhesive, it may be fixed to the diffusion member 500 by a translucent member 30 to be formed later.

発光素子20の側面23と、拡散部材500の第1の面52のうち発光素子20の近傍領域とを覆うように、透光性部材30を形成する(図2(b))。透光性部材30が透光性樹脂材料から形成される場合には、透光性部材30の原材料となる液状樹脂材料30Lを、ディスペンサ等を用いて、発光素子20の第1の辺(図2(b)の符号212、214と拡散部材50との境界に沿って塗布する。液状樹脂材料30Lは、拡散部材50の上に広がるとともに、表面張力によって発光素子20の側面23を這い上がる。その後に、液状樹脂材料30Lを加熱等によって硬化させて、透光性部材30を得る。ある発光素子20の周囲に形成された透光性部材30と、その発光素子20と隣接して配置された発光素子20の周囲に形成された透光性部材30とが接触しないように、透光性部材30を形成する。   The translucent member 30 is formed so as to cover the side surface 23 of the light emitting element 20 and the region near the light emitting element 20 on the first surface 52 of the diffusion member 500 (FIG. 2B). When the translucent member 30 is formed of a translucent resin material, a liquid resin material 30L, which is a raw material of the translucent member 30, is supplied to the first side of the light emitting element 20 using a dispenser or the like. 2 (b) is applied along the boundary between the reference numerals 212 and 214 and the diffusion member 50. The liquid resin material 30L spreads on the diffusion member 50 and crawls on the side surface 23 of the light emitting element 20 due to surface tension. Thereafter, the liquid resin material 30L is cured by heating or the like to obtain the translucent member 30. The translucent member 30 formed around a certain light emitting element 20 and the light transmissive member 30 are arranged adjacent to the light emitting element 20. The translucent member 30 is formed so that the translucent member 30 formed around the light emitting element 20 does not contact.

液状樹脂材料30Lから透光性部材30を形成すると、表面張力により、透光性部材30の外面33を、Z方向に向かって外向き(つまり、発光素子20の側面23から離れるよう方向)に傾斜させることができる(図2(b))。   When the translucent member 30 is formed from the liquid resin material 30L, the outer surface 33 of the translucent member 30 is directed outward in the Z direction (that is, in a direction away from the side surface 23 of the light emitting element 20) due to surface tension. It can be inclined (FIG. 2 (b)).

透光性部材30の外面33と、拡散部材500の第1の面52のうち透光性部材30で覆われていない部分(つまり、第1の面52の露出している部分)とを、被覆部材400で覆う(図2(c))。さらに、発光素子20の第2の面22のうち、電極251、252で覆われていない部分(つまり、第2の面22の露出している部分)も、被覆部材40で覆ってもよい。このとき、電極251、252の一部(例えば、電極251、252の表面251s、252s)が被覆部材40から露出するように、被覆部材400の厚さ(−Z方向の寸法)を調節するのが好ましい。つまり、拡散部材50の第1の面52を基準としたときに、被覆部材40の第2の面42の高さが、電極251、252の表面251s、252sの高さ以下としてもよい。   The outer surface 33 of the translucent member 30 and a portion of the first surface 52 of the diffusion member 500 that is not covered by the translucent member 30 (that is, a portion where the first surface 52 is exposed) It is covered with a covering member 400 (FIG. 2C). Furthermore, a portion of the second surface 22 of the light emitting element 20 that is not covered with the electrodes 251 and 252 (that is, a portion where the second surface 22 is exposed) may be covered with the covering member 40. At this time, the thickness (dimension in the −Z direction) of the covering member 400 is adjusted so that a part of the electrodes 251 and 252 (for example, the surfaces 251 s and 252 s of the electrodes 251 and 252) is exposed from the covering member 40. Is preferred. That is, the height of the second surface 42 of the covering member 40 may be equal to or less than the height of the surfaces 251 s and 252 s of the electrodes 251 and 252 with reference to the first surface 52 of the diffusion member 50.

隣接する発光素子20の中間を通る破線X1、(図2(d))に沿って、被覆部材400とシート状の拡散部材500とシート状の波長変換部材600とをダイサー等で切断する。これにより、個々の発光装置10に個片化される(図2(e))。このように、発光素子20を1つ含む発光装置10を、同時に複数製造することができる。   Along the broken line X1, which passes through the middle of the adjacent light emitting elements 20, (FIG. 2D), the covering member 400, the sheet-like diffusion member 500, and the sheet-like wavelength conversion member 600 are cut by a dicer or the like. As a result, the individual light emitting devices 10 are singulated (FIG. 2E). Thus, a plurality of light emitting devices 10 each including one light emitting element 20 can be manufactured at the same time.

<実施の形態2>
実施の形態2に係る発光装置15を図3(a)(b)に示す。また、その製造方法を図4(a)〜(f)に示す。実施の形態2では、発光素子20と、発光素子20の側面23側に設けられた透光性部材30と、透光性部材30の外面33を覆う被覆部材40とを含む。発光装置15は、発光面として機能する第1の面(上面)側に、拡散部材50と、拡散部材の第1の面(上面)側に、波長変換部材60を備えることができる。そして、発光素子20と透光性部材30の上面とを覆う拡散部材50が、被覆部材40の上面の全面に設けられていない点において実施の形態1と異なる。拡散部材50の端部34及び波長変換部材60の端部は、被覆部材40の側面から離間している。換言すると、被覆部材40の側面よりも内側に拡散部材50の側面と波長変換部材60の側面が位置する。これにより、外部接触により、拡散部材50及び波長変換部材60が、被覆部材40と剥離することを低減することができる。
<Embodiment 2>
3A and 3B show a light emitting device 15 according to the second embodiment. 4 (a) to 4 (f) show the manufacturing method. In the second embodiment, the light-emitting element 20 includes the light-emitting element 20, the light-transmitting member 30 provided on the side surface 23 of the light-emitting element 20, and the covering member 40 that covers the outer surface 33 of the light-transmitting member 30. The light emitting device 15 can include a diffusion member 50 on the first surface (upper surface) side functioning as a light emitting surface, and a wavelength conversion member 60 on the first surface (upper surface) side of the diffusion member. The third embodiment is different from the first embodiment in that the diffusion member 50 that covers the light emitting element 20 and the upper surface of the translucent member 30 is not provided on the entire upper surface of the covering member 40. The end 34 of the diffusion member 50 and the end of the wavelength conversion member 60 are separated from the side surface of the covering member 40. In other words, the side surface of the diffusion member 50 and the side surface of the wavelength conversion member 60 are located inside the side surface of the covering member 40. Thereby, the peeling of the diffusion member 50 and the wavelength conversion member 60 from the coating member 40 due to external contact can be reduced.

<製造方法>
図4を参照しながら、実施の形態2に係る発光装置15の製造方法について説明する。実施の形態2の製造方法では、蛍光体及び拡散材を含むシートを用いるのではなく、蛍光体及び拡散剤を含まないシート(例えば、耐熱シート)を用いて製造を行う。このシートは、最終的には除去されて、発光装置には残っていない部材である。すなわち、実施の形態1では、発光装置を構成する波長変換部材と拡散部材とを、それぞれシート状とし、工程内で複数の発光素子をまとめて支持する支持部材の一部として用いているのに対し、実施の形態2では、発光装置を構成しないシートを支持部材として各工程を行う点が特徴である。実施の形態2では、蛍光体を含む波長変換部材と、拡散部材とは、工程の後半で形成される。ここで工程の後半とは、具体的には透光性部材を形成した後の工程である。
<Production method>
A method for manufacturing the light emitting device 15 according to the second embodiment will be described with reference to FIG. In the manufacturing method according to the second embodiment, manufacturing is performed using a sheet (for example, a heat-resistant sheet) that does not include a phosphor and a diffusing agent, instead of using a sheet that includes a phosphor and a diffusing agent. This sheet is a member that is finally removed and does not remain in the light emitting device. That is, in the first embodiment, the wavelength conversion member and the diffusion member constituting the light emitting device are each formed in a sheet shape and used as a part of a support member that supports a plurality of light emitting elements collectively in a process. On the other hand, the second embodiment is characterized in that each step is performed using a sheet that does not constitute a light emitting device as a supporting member. In the second embodiment, the wavelength conversion member including the phosphor and the diffusion member are formed in the latter half of the process. Here, the latter half of the process is, specifically, a process after the formation of the translucent member.

シート70の上面71に、接着剤35を介して発光素子20を配置する(図4(a))。このシート70は、最終的には剥離して、発光装置内には残存しない部材である。シート70の上面71に固定された発光素子20の側面を覆うように透光性部材30を形成し(図4(b))、次いで、被覆部材400を形成する(図4(c))。尚各工程の詳細については、実施の形態1の製造方法と同様の手順で行う。   The light emitting elements 20 are arranged on the upper surface 71 of the sheet 70 via the adhesive 35 (FIG. 4A). The sheet 70 is a member that is finally peeled and does not remain in the light emitting device. The translucent member 30 is formed so as to cover the side surface of the light emitting element 20 fixed to the upper surface 71 of the sheet 70 (FIG. 4B), and then the covering member 400 is formed (FIG. 4C). The details of each step are performed in the same procedure as in the manufacturing method of the first embodiment.

図4(c)に示すように被覆部材400を形成した後、発光素子の電極面を別の耐熱シートに貼り付ける(反転させる)。そして、発光素子の上面から耐熱シート70を剥がす。これにより、図4(d)に示すように、発光素子20の第1の面21に形成された接着剤が露出される。同時に透光性部材の上面及び被覆部材400の上面400aも露出される。次いで、図4(e)に示すように、別途用意された拡散部材50と波長変換部材60とを、この順に、発光素子及び透光性部材の上に形成する。   After forming the covering member 400 as shown in FIG. 4C, the electrode surface of the light emitting element is attached to another heat-resistant sheet (reversed). Then, the heat-resistant sheet 70 is peeled off from the upper surface of the light emitting element. Thereby, as shown in FIG. 4D, the adhesive formed on the first surface 21 of the light emitting element 20 is exposed. At the same time, the upper surface of the translucent member and the upper surface 400a of the covering member 400 are also exposed. Next, as shown in FIG. 4E, a separately prepared diffusion member 50 and a wavelength conversion member 60 are formed on the light emitting element and the light transmitting member in this order.

拡散部材50及び波長変換部材60の形成方法としては、個片化された拡散部材50及び波長変換部材60を、接着剤によって接着する方法があげられる。拡散部材50のシートと波長変換部材60のシートを、あらかじめ貼り合わせた後に個片化してもよく、あるいは、それぞれシートを個片化した後に貼ってもよい。また、拡散部材のシートの上に、ポッティング、スプレー法、静電塗布法、印刷法などの既知の技術により、波長変換部材を設けて、それを個片化してもよい。あるいは、波長変換部材のシートの上に、ポッティング、スプレー法、静電塗装法、印刷法などにより、拡散部材を設けて、それを個片化してもよい。   As a method of forming the diffusion member 50 and the wavelength conversion member 60, a method of bonding the individualized diffusion member 50 and the wavelength conversion member 60 with an adhesive can be used. The sheet of the diffusion member 50 and the sheet of the wavelength conversion member 60 may be separated and then bonded to each other in advance, or may be bonded to each of the sheets after separating the sheets. Further, a wavelength conversion member may be provided on the sheet of the diffusion member by a known technique such as a potting, spraying method, an electrostatic coating method, or a printing method, and may be singulated. Alternatively, a diffusion member may be provided on the sheet of the wavelength conversion member by potting, spraying, electrostatic coating, printing, or the like, and may be singulated.

また、図4(d)のように、被覆部材400中に、発光素子及び透光性部材の上面を露出した状態で埋設された状態の成形物上に、拡散部材50及び波長変換部材60を、ポッティング、スプレー法、静電塗装法、印刷法などにより形成してもよい。この場合、後に切断する位置となる被覆部材の上面をマスクなどで覆うことが好ましい。   Further, as shown in FIG. 4D, the diffusion member 50 and the wavelength conversion member 60 are placed on the molded article embedded in the covering member 400 in a state where the upper surfaces of the light emitting element and the light transmitting member are exposed. , Potting, spraying, electrostatic coating, printing and the like. In this case, it is preferable to cover the upper surface of the covering member, which will be the cutting position later, with a mask or the like.

尚、波長変換部材及び拡散部材を、工程の後半で形成する場合に、個片化されたシートではなく、複数の発光素子を連続して覆うシートを用いることで、図1に示すような、発光装置の上面の全面に波長変換部材が設けられた発光装置とすることができる。同様に、波長変換部材のシート及び拡散部材のシートを、あらかじめ個片化するのではなく、個片化する前の状態で、工程の後半で張り付けることで、図1に示すような、発光装置の上面の全面に波長変換部材が設けられた発光装置とすることができる。   In addition, when the wavelength conversion member and the diffusion member are formed in the latter half of the process, by using a sheet that continuously covers a plurality of light emitting elements instead of an individualized sheet, as illustrated in FIG. A light emitting device in which a wavelength conversion member is provided on the entire upper surface of the light emitting device can be provided. Similarly, the sheet of the wavelength conversion member and the sheet of the diffusion member are not separated into pieces in advance, but are attached in the latter half of the process in a state before being separated into pieces, so that light emission as shown in FIG. A light emitting device in which a wavelength conversion member is provided on the entire upper surface of the device can be provided.

最後に、隣接する発光素子20の中間を通る、破線X2(図4(e))に沿って、被覆部材400をダイサー等で切断する。これにより、個々の発光装置15に個片化される(図4(e))。このように、発光素子20を1つ含む発光装置15を、同時に複数個製造することができる。   Finally, the covering member 400 is cut by a dicer or the like along the broken line X2 (FIG. 4E) passing through the middle of the adjacent light emitting elements 20. As a result, individual light emitting devices 15 are separated (FIG. 4E). Thus, a plurality of light emitting devices 15 each including one light emitting element 20 can be manufactured at the same time.

以下に、実施の形態1、2の発光装置の各構成部材に適した材料等について説明する。   Hereinafter, materials and the like suitable for each component of the light emitting devices of Embodiments 1 and 2 will be described.

(発光素子20)
発光素子20としては、例えば発光ダイオード等の半導体発光素子を用いることができる。半導体発光素子は、透光性基板27と、その上に形成された半導体積層体28とを含むことができる。
(Light emitting element 20)
As the light emitting element 20, for example, a semiconductor light emitting element such as a light emitting diode can be used. The semiconductor light emitting device can include a light transmitting substrate 27 and a semiconductor laminate 28 formed thereon.

発光素子20として、上面視形状が四角形を用いることができる。また、上面視の形状は四角形以外の多角形形状、例えば、図5に示す六角形を用いた発光装置17とすることもできる。六角形の発光素子とすることで、透光性部材30の幅(上面側からみたときの発光素子の側面と透光性部材の端部との距離)を小さくすることができる。これにより、照射される発光部面積が小さくなり、高い輝度を保つことができるため、色むらを低減することができる。また、六角形の発光素子とすることで、発光装置から均一な照度分布が得やすく、発光部の小さい点光源状の発光装置とすることができる。   As the light emitting element 20, a square shape in a top view can be used. Further, the light emitting device 17 using a polygonal shape other than a quadrangle, for example, a hexagonal shape shown in FIG. By using a hexagonal light-emitting element, the width of the light-transmitting member 30 (the distance between the side surface of the light-emitting element and the end of the light-transmitting member when viewed from the top surface side) can be reduced. Accordingly, the area of the light emitting portion to be irradiated is reduced, and high luminance can be maintained, so that color unevenness can be reduced. Further, by using a hexagonal light emitting element, a uniform illuminance distribution can be easily obtained from the light emitting device, and a point light source light emitting device having a small light emitting portion can be obtained.

(透光性基板27)
発光素子20の透光性基板27には、例えば、サファイア(Al2O3)、スピネル(MgA12O4)のような透光性の絶縁性材料や、半導体積層体28からの発光を透過する半導体材料(例えば、窒化物系半導体材料)を用いることができる。
(Translucent substrate 27)
The light-transmitting substrate 27 of the light-emitting element 20 includes, for example, a light-transmitting insulating material such as sapphire (Al 2 O 3) and spinel (MgA 12 O 4), or a semiconductor material that transmits light emitted from the semiconductor laminate 28 (for example, Nitride-based semiconductor material).

半導体積層体28は、複数の半導体層を含む。半導体積層体28の一例としては、第1導電型半導体層(例えばn型半導体層)、発光層(活性層)および第2導電型半導体層(例えばp型半導体層)の3つの半導体層を含むことができる(図3参照)。半導体層には、例えば、III−V族化合物半導体、II−VI族化合物半導体等の半導体材料から形成することができる。具体的には、InXAlYGa1−X−YN(0≦X、0≦Y、X+Y≦1)等の窒化物系の半導体材料(例えばInN、AlN、GaN、InGaN、AlGaN、InGaAlN等)を用いることができる。   The semiconductor laminate 28 includes a plurality of semiconductor layers. An example of the semiconductor laminate 28 includes three semiconductor layers of a first conductivity type semiconductor layer (for example, an n-type semiconductor layer), a light emitting layer (active layer), and a second conductivity type semiconductor layer (for example, a p-type semiconductor layer). (See FIG. 3). The semiconductor layer can be formed from a semiconductor material such as a III-V compound semiconductor and a II-VI compound semiconductor, for example. Specifically, a nitride-based semiconductor material (for example, InN, AlN, GaN, InGaN, AlGaN, InGaAlN, or the like) such as InXAlYGa1-X-YN (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) is used. it can.

発光素子20の電極251、252としては、電気良導体を用いることができ、例えばCu等の金属が好適である。   As the electrodes 251 and 252 of the light emitting element 20, an electric conductor can be used, and for example, a metal such as Cu is preferable.

(透光性部材30)
透光性部材30は、透光性樹脂、ガラス等の透光性材料から形成することができる。透光性樹脂としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性の透光性樹脂であるのが好ましい。透光性部材30は発光素子20の側面23と接触しているので、点灯時に発光素子20で発生する熱の影響を受けやすい。熱硬化性樹脂は、耐熱性に優れているので、透光性部材30に適している。なお、透光性部材30は、光の透過率が高いことが好ましい。そのため、通常は、透光性部材30に、光を反射、吸収又は散乱する添加物は添加されないことが好ましい。しかし、望ましい特性を付与するために、透光性部材30に添加物を添加するのが好ましい場合もある。
例えば、透光性部材30の屈折率を調整するため、または硬化前の透光性部材(液状樹脂材料300)の粘度を調整するために、各種フィラーを添加してもよい。
(Translucent member 30)
The translucent member 30 can be formed from a translucent material such as translucent resin and glass. The light-transmitting resin is preferably a thermosetting light-transmitting resin such as a silicone resin, a silicone-modified resin, an epoxy resin, and a phenol resin. Since the translucent member 30 is in contact with the side surface 23 of the light emitting element 20, it is easily affected by the heat generated in the light emitting element 20 during lighting. The thermosetting resin has excellent heat resistance and is therefore suitable for the light transmitting member 30. It is preferable that the translucent member 30 has a high light transmittance. Therefore, it is usually preferable that an additive that reflects, absorbs, or scatters light is not added to the translucent member 30. However, in some cases, it is preferable to add an additive to the translucent member 30 in order to impart desirable characteristics.
For example, various fillers may be added to adjust the refractive index of the light transmitting member 30 or to adjust the viscosity of the light transmitting member (liquid resin material 300) before curing.

(被覆部材40、403)
被覆部材40、403は、透光性部材30および発光素子20に対する熱膨張率の関係が、所定の関係となるような材料から形成される。すなわち、被覆部材40、403は、被覆部材40、403と発光素子20との熱膨張率差ΔT40が、透光性部材30と発光素子20との熱膨張率差ΔT30よりも小さくなるように、材料が選択される。例えば、発光素子20が、サファイアの透光性基板27と、GaN系半導体から成る半導体積層体28とを含む場合、発光素子20の熱膨張率はおよそ5〜7×10−6/Kとなる。一方、透光性部材30を、シリコーン樹脂から形成した場合、透光性部材30の熱膨張率は、2〜3×10−5/Kとなる。よって、被覆部材40、403は、シリコーン樹脂よりも熱膨張率の小さい材料から形成することにより、ΔT40<ΔT30とすることができる。
(Coating members 40 and 403)
The covering members 40 and 403 are formed of a material such that the relationship of the coefficient of thermal expansion with respect to the translucent member 30 and the light emitting element 20 has a predetermined relationship. That is, the covering members 40 and 403 are configured such that the thermal expansion coefficient difference ΔT40 between the covering members 40 and 403 and the light emitting element 20 is smaller than the thermal expansion coefficient difference ΔT30 between the translucent member 30 and the light emitting element 20. Material is selected. For example, when the light emitting element 20 includes the translucent substrate 27 of sapphire and the semiconductor laminate 28 made of a GaN-based semiconductor, the coefficient of thermal expansion of the light emitting element 20 is about 5 to 7 × 10 −6 / K. . On the other hand, when the translucent member 30 is formed from a silicone resin, the coefficient of thermal expansion of the translucent member 30 is 2-3 × 10 −5 / K. Therefore, ΔT40 <ΔT30 can be satisfied by forming the covering members 40 and 403 from a material having a smaller coefficient of thermal expansion than the silicone resin.

被覆部材40に樹脂材料を使用する場合、一般的に、熱膨張率は10−5/Kオーダーとなり、一般的な発光素子20の熱膨張率に比べて一桁大きい。しかしながら、樹脂材料にフィラー等を添加することにより、樹脂材料の熱膨張率を低減することができる。例えば、シリコーン樹脂に、シリカ等のフィラーを添加することにより、フィラーを添加する前のシリコーン樹脂に比べて、熱膨張率を低くすることができる。   When a resin material is used for the covering member 40, the coefficient of thermal expansion is generally on the order of 10 −5 / K, which is one order of magnitude larger than the coefficient of thermal expansion of the general light emitting element 20. However, by adding a filler or the like to the resin material, the coefficient of thermal expansion of the resin material can be reduced. For example, by adding a filler such as silica to the silicone resin, the coefficient of thermal expansion can be lower than that of the silicone resin before the filler is added.

被覆部材40に使用できる樹脂材料としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性の透光性樹脂であるのが好ましい。   The resin material that can be used for the covering member 40 is particularly preferably a thermosetting translucent resin such as a silicone resin, a silicone-modified resin, an epoxy resin, and a phenol resin.

被覆部材40は、光反射性樹脂から形成することができる。光反射性樹脂とは、発光素子20からの光に対する反射率が70%以上の樹脂材料を意味する。被覆部材40に達した光が反射されて、発光装置10の第1の面11(発光面)に向かうことにより、発光装置10の光取出し効率を高めることができる。   The covering member 40 can be formed from a light reflective resin. The light reflective resin refers to a resin material having a reflectance of 70% or more with respect to light from the light emitting element 20. The light that reaches the covering member 40 is reflected and travels toward the first surface 11 (light-emitting surface) of the light-emitting device 10, so that the light extraction efficiency of the light-emitting device 10 can be increased.

光反射性樹脂としては、例えば透光性樹脂に、光反射性物質を分散させたものが使用できる。光反射性物質としては、例えば、酸化チタン、酸化ケイ素、二酸化ジルコニウム、チタン酸カリウム、アルミナ、窒化アルミニウム、窒化ホウ素、ムライトなどが好適である。光反射性物質は、粒状、繊維状、薄板片状などが利用できるが、特に、繊維状のものは被覆部材40、403の熱膨張率を低下させる効果も期待できるので好ましい。   As the light-reflective resin, for example, a resin in which a light-reflective substance is dispersed in a translucent resin can be used. As the light reflective substance, for example, titanium oxide, silicon oxide, zirconium dioxide, potassium titanate, alumina, aluminum nitride, boron nitride, mullite, and the like are preferable. The light-reflective substance may be in the form of granules, fibers, thin plates, or the like. In particular, fibrous materials are preferable because the effect of lowering the coefficient of thermal expansion of the covering members 40 and 403 can be expected.

(拡散部材50)
拡散部材50は、透光性樹脂、ガラス等の透光性材料から形成することができる。透光性樹脂としては、特に、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性の透光性樹脂であるのが好ましい。拡散部材50は発光素子20の第1の面21と接触しているので、点灯時に発光素子20で発生する熱の影響を受けやすい。熱硬化性樹脂は、耐熱性に優れているので、拡散部材50に適している。なお、拡散部材50は、光の透過率が高いことが好ましい。そのため、通常は、拡散部材50に、光を反射、吸収又は散乱する添加物は添加されないことが好ましい。しかし、望ましい特性を付与するために、拡散部材50に添加物を添加するのが好ましい場合もある。例えば、拡散部材50の屈折率を調整するために、各種フィラーを添加してもよい。
(Diffusion member 50)
The diffusion member 50 can be formed from a light-transmitting material such as a light-transmitting resin or glass. The light-transmitting resin is preferably a thermosetting light-transmitting resin such as a silicone resin, a silicone-modified resin, an epoxy resin, and a phenol resin. Since the diffusion member 50 is in contact with the first surface 21 of the light emitting element 20, it is easily affected by the heat generated in the light emitting element 20 during lighting. The thermosetting resin is suitable for the diffusion member 50 because of its excellent heat resistance. The diffusion member 50 preferably has a high light transmittance. Therefore, usually, it is preferable that an additive that reflects, absorbs, or scatters light is not added to the diffusion member 50. However, it may be preferable to add an additive to the diffusion member 50 in order to impart desirable properties. For example, various fillers may be added to adjust the refractive index of the diffusion member 50.

(波長変換部材60)
波長変換部材60は、蛍光体と透光性材料とを含んでいる。透光性材料としては、透光性樹脂、ガラス等が使用できる。特に、透光性樹脂が好ましく、シリコーン樹脂、シリコーン変性樹脂、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂、ポリカーボネート樹脂、アクリル樹脂、メチルペンテン樹脂、ポリノルボルネン樹脂などの熱可塑性樹脂を用いることができる。特に、耐光性、耐熱性に優れるシリコーン樹脂が好適である。
(Wavelength conversion member 60)
The wavelength conversion member 60 includes a phosphor and a translucent material. As the light-transmitting material, a light-transmitting resin, glass, or the like can be used. In particular, a translucent resin is preferable, and a thermosetting resin such as a silicone resin, a silicone-modified resin, an epoxy resin, and a phenol resin, and a thermoplastic resin such as a polycarbonate resin, an acrylic resin, a methylpentene resin, and a polynorbornene resin can be used. it can. Particularly, a silicone resin having excellent light resistance and heat resistance is preferable.

蛍光体は、発光素子20からの発光で励起可能なものが使用される。例えば、青色発光素子又は紫外線発光素子で励起可能な蛍光体としては、セリウムで賦活されたイットリウム・アルミニウム・ガーネット系蛍光体(Ce:YAG);セリウムで賦活されたルテチウム・アルミニウム・ガーネット系蛍光体(Ce:LAG);ユウロピウムおよび/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム系蛍光体(CaO−Al2O3−SiO2);ユウロピウムで賦活されたシリケート系蛍光体((Sr,Ba)2SiO4);βサイアロン蛍光体、CASN系蛍光体、SCASN系蛍光体等の窒化物系蛍光体;KSF系蛍光体(K2SiF6:Mn);硫化物系蛍光体、量子ドット蛍光体などが挙げられる。これらの蛍光体と、青色発光素子又は紫外線発光素子と組み合わせることにより、様々な色の発光装置(例えば白色系の発光装置)を製造することができる。
波長変換部材60には、粘度を調整する等の目的で、各種のフィラー等を含有させてもよい。
A phosphor that can be excited by light emission from the light emitting element 20 is used. For example, as a phosphor that can be excited by a blue light emitting element or an ultraviolet light emitting element, cerium-activated yttrium-aluminum-garnet-based phosphor (Ce: YAG); cerium-activated lutetium-aluminum-garnet-based phosphor (Ce: LAG); nitrogen-containing calcium aluminosilicate phosphor activated by europium and / or chromium (CaO-Al2O3-SiO2); silicate phosphor activated by europium ((Sr, Ba) 2SiO4); β Nitride-based phosphors such as sialon phosphor, CASN-based phosphor, and SCASN-based phosphor; KSF-based phosphor (K2SiF6: Mn); sulfide-based phosphor, quantum dot phosphor, and the like. By combining these phosphors with a blue light emitting element or an ultraviolet light emitting element, light emitting devices of various colors (for example, white light emitting devices) can be manufactured.
The wavelength conversion member 60 may contain various fillers for the purpose of adjusting the viscosity and the like.

(シート70)
シート(耐熱シート)70は、高温領域でも使用可能で絶縁性に優れた材質のものが好ましい。素材としてはポリイミドなどが好ましい。
(Seat 70)
The sheet (heat-resistant sheet) 70 is preferably made of a material that can be used even in a high-temperature region and has excellent insulating properties. The material is preferably polyimide or the like.

以上、本発明に係るいくつかの実施形態について例示したが、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない限り任意のものとすることができることは言うまでもない。   As mentioned above, although several embodiments according to the present invention have been illustrated, it is needless to say that the present invention is not limited to the above-described embodiments, and can be arbitrary without departing from the gist of the present invention. .

10、15、17 発光装置
11 発光装置の第1の面(上面)
12 発光装置の第2の面(下面)
20 発光素子
21 発光素子の第1の面(上面)
22 発光素子の第2の面(下面)
23 発光素子の側面
251、252 電極
30 透光性部材
33 透光性部材の外面
34 拡散部材の端部
35 接着剤
40、400 被覆部材
50 拡散部材
500 シート状の拡散部材
600 シート状の波長変換部材
70 シート(耐熱シート)
10, 15, 17 Light-emitting device 11 First surface (upper surface) of light-emitting device
12. Second surface (lower surface) of light emitting device
Reference Signs List 20 light emitting element 21 first surface (upper surface) of light emitting element
22 Second surface (lower surface) of light emitting element
Reference Signs List 23 side surface of light emitting element 251, 252 electrode 30 translucent member 33 outer surface of translucent member 34 end of diffusion member 35 adhesive 40, 400 covering member 50 diffusion member 500 sheet diffusion member 600 sheet wavelength conversion 70 sheets (heat-resistant sheet)

Claims (9)

波長変換部材の第1の面と、厚みが前記波長変換部材の厚みの半分程度である拡散部材の第1の面と、を接着する、接着工程と、
前記拡散部材の第1の面と対向する面である前記拡散部材の第2の面に、発光素子を配置する、第1発光素子配置工程と、
前記発光素子の側面及び前記拡散部材の第2の面の一部を透光性部材で覆う、第1透光性部材形成工程と、
前記透光性部材の外面及び前記拡散部材の第2の面の一部を被覆部材で覆う、第1被覆部材形成工程と、
前記波長変換部材と、前記拡散部材と、前記被覆部材と、を切断する、第1切断工程と、
を備える発光装置の製造方法。
A bonding step of bonding the first surface of the wavelength conversion member and the first surface of the diffusion member having a thickness that is about half the thickness of the wavelength conversion member,
A first light emitting element disposing step of disposing a light emitting element on a second surface of the diffusing member, which is a surface facing the first surface of the diffusing member;
A first light transmitting member forming step of covering a side surface of the light emitting element and a part of the second surface of the diffusion member with a light transmitting member;
A first covering member forming step of covering an outer surface of the translucent member and a part of the second surface of the diffusing member with a covering member;
A first cutting step of cutting the wavelength conversion member, the diffusion member, and the coating member,
A method for manufacturing a light emitting device comprising:
前記接着工程において使用する、前記拡散部材の厚みは、30〜40μmである請求項1に記載の発光装置の製造方法。   The method according to claim 1, wherein a thickness of the diffusion member used in the bonding step is 30 to 40 μm. 前記第1発光素子配置工程において、前記拡散部材と前記発光素子との間に接着剤を有する請求項1又は請求項2に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein an adhesive is provided between the diffusion member and the light emitting element in the first light emitting element disposing step. 前記接着工程において使用する、前記拡散部材及び前記波長変換部材はシート状である請求項1乃至3のいずれか一項に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 1, wherein the diffusion member and the wavelength conversion member used in the bonding step are sheet-shaped. シートの第1の面に発光素子を配置する、第2発光素子配置工程と、
前記発光素子の側面及び前記シートの第1の面の一部を透光性部材で覆う、第2透光性部材形成工程と、
前記透光性部材の外面及び前記シートの第1の面の一部を被覆部材で覆う、第2被覆部材形成工程と、
前記発光素子から前記シートを剥離する、剥離工程と、
前記発光素子及び前記透光性部材の上に、拡散部材と波長変換部材とをこの順に形成する工程であって、前記拡散部材の厚みが前記波長変換部材の厚みの半分程度である拡散部材形成工程と、
前記被覆部材を切断する、第2切断工程と、
を備える発光装置の製造方法。
A second light emitting element disposing step of disposing the light emitting elements on the first surface of the sheet;
A second translucent member forming step of covering a side surface of the light emitting element and a part of the first surface of the sheet with a translucent member;
A second covering member forming step of covering an outer surface of the translucent member and a part of the first surface of the sheet with a covering member;
Peeling the sheet from the light emitting element, a peeling step,
Forming a diffusion member and a wavelength conversion member in this order on the light emitting element and the translucent member, wherein the thickness of the diffusion member is about half the thickness of the wavelength conversion member. Process and
Cutting the coating member, a second cutting step,
A method for manufacturing a light emitting device comprising:
前記拡散部材形成工程において、前記拡散部材は、前記被覆部材の少なくとも一部を覆う請求項5に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 5, wherein in the diffusion member forming step, the diffusion member covers at least a part of the covering member. 前記拡散部材形成工程において使用する、前記拡散部材の厚みは、30〜40μmである請求項5又は請求項6に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 5, wherein a thickness of the diffusion member used in the diffusion member forming step is 30 to 40 μm. 前記拡散部材形成工程において、前記拡散部材と前記発光素子との間に接着剤を有する請求項5乃至7のいずれか一項に記載の発光装置の製造方法。   The method for manufacturing a light emitting device according to claim 5, further comprising an adhesive between the diffusion member and the light emitting element in the diffusion member forming step. 上面となる第1の面と、前記第1の面と対向する第2の面と、前記第1の面と前記第2の面との間に複数の側面と、を有する発光素子と、
前記発光素子の側面の一部を覆う透光性部材と、
前記透光性部材の外面を覆う被覆部材と、
前記発光素子の第1の面と前記透光性部材の上面とを覆い、厚みが30〜40μmである拡散部材と、
前記拡散部材の上面を覆う波長変換部材と、を有する発光装置。
A light-emitting element having a first surface serving as an upper surface, a second surface facing the first surface, and a plurality of side surfaces between the first surface and the second surface;
A translucent member that covers a part of the side surface of the light emitting element,
A covering member that covers an outer surface of the translucent member,
A diffusion member that covers the first surface of the light emitting element and the upper surface of the translucent member and has a thickness of 30 to 40 μm;
A wavelength conversion member that covers an upper surface of the diffusion member.
JP2019035086A 2019-02-28 2019-02-28 Light emitting device and method of manufacturing the same Active JP6669292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019035086A JP6669292B2 (en) 2019-02-28 2019-02-28 Light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019035086A JP6669292B2 (en) 2019-02-28 2019-02-28 Light emitting device and method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015142883A Division JP6493053B2 (en) 2015-07-17 2015-07-17 Light emitting device

Publications (2)

Publication Number Publication Date
JP2019083344A JP2019083344A (en) 2019-05-30
JP6669292B2 true JP6669292B2 (en) 2020-03-18

Family

ID=66670616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019035086A Active JP6669292B2 (en) 2019-02-28 2019-02-28 Light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6669292B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326705B2 (en) * 2009-03-17 2013-10-30 日亜化学工業株式会社 Light emitting device
JP5680472B2 (en) * 2011-04-22 2015-03-04 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
JP5777952B2 (en) * 2011-06-28 2015-09-09 シチズン電子株式会社 Light emitting device and manufacturing method thereof
JP5843859B2 (en) * 2011-07-01 2016-01-13 シチズンホールディングス株式会社 Manufacturing method of semiconductor light emitting device
JP6008940B2 (en) * 2012-03-13 2016-10-19 シチズンホールディングス株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2014072351A (en) * 2012-09-28 2014-04-21 Nitto Denko Corp Phosphor layer adhesive kit, optical semiconductor element - phosphor layer adhesive body, and optical semiconductor device
JPWO2014122888A1 (en) * 2013-02-06 2017-01-26 株式会社小糸製作所 Light emitting module
JP2016066632A (en) * 2013-02-07 2016-04-28 パナソニック株式会社 Light emission device
JP2015106641A (en) * 2013-11-29 2015-06-08 日亜化学工業株式会社 Light emitting device
KR102075993B1 (en) * 2013-12-23 2020-02-11 삼성전자주식회사 Method of Fabricating White LED Devices

Also Published As

Publication number Publication date
JP2019083344A (en) 2019-05-30

Similar Documents

Publication Publication Date Title
JP6724933B2 (en) Method for manufacturing light emitting device
CN111540821B (en) Light emitting device and method of manufacturing the same
JP6179555B2 (en) Light emitting device
JP6493053B2 (en) Light emitting device
JP5482378B2 (en) Light emitting device
US20170092825A1 (en) Method of manufacturing light emitting device
JP6205897B2 (en) Light emitting device and manufacturing method thereof
JP6673410B2 (en) LED module
JP2016225501A (en) Light-emitting device and manufacturing method of the same
JP6020657B2 (en) Light emitting device
JP2010272847A5 (en)
JP2015099940A (en) Light-emitting device
JP7111939B2 (en) Light emitting device and manufacturing method thereof
JP6623577B2 (en) Light emitting device manufacturing method
JP6627316B2 (en) Light emitting device manufacturing method
JP2018107170A (en) Method for manufacturing light-emitting device
JP6669292B2 (en) Light emitting device and method of manufacturing the same
JP5931006B2 (en) Light emitting device
JP6959536B2 (en) Light emitting device
JP6696521B2 (en) Light emitting device and manufacturing method thereof
KR101623558B1 (en) Light emitting device package and its manufacturing method
JP7299492B2 (en) Light-emitting device and light-emitting module
JP6274240B2 (en) Light emitting device
KR101713683B1 (en) Light emitting device package
JP6809203B2 (en) Manufacturing method of light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R150 Certificate of patent or registration of utility model

Ref document number: 6669292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250