JP6667125B2 - チクソトロピック性に優れた硬化性組成物 - Google Patents

チクソトロピック性に優れた硬化性組成物 Download PDF

Info

Publication number
JP6667125B2
JP6667125B2 JP2015103027A JP2015103027A JP6667125B2 JP 6667125 B2 JP6667125 B2 JP 6667125B2 JP 2015103027 A JP2015103027 A JP 2015103027A JP 2015103027 A JP2015103027 A JP 2015103027A JP 6667125 B2 JP6667125 B2 JP 6667125B2
Authority
JP
Japan
Prior art keywords
group
polymer
meth
acrylate
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015103027A
Other languages
English (en)
Other versions
JP2016027088A (ja
Inventor
担 渡辺
担 渡辺
良介 浅井
良介 浅井
齋藤 敦
敦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cemedine Co Ltd
Original Assignee
Cemedine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cemedine Co Ltd filed Critical Cemedine Co Ltd
Priority to JP2015103027A priority Critical patent/JP6667125B2/ja
Publication of JP2016027088A publication Critical patent/JP2016027088A/ja
Application granted granted Critical
Publication of JP6667125B2 publication Critical patent/JP6667125B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、珪素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得る珪素基(以下「架橋性珪素基」ともいう。)を有する重合体を含有する硬化性組成物であってチクソトロピック性(チクソ性)に優れた硬化性組成物に関する。
架橋性珪素基を有する重合体は、室温においても湿分等の作用によりシロキサン結合の形成によって架橋し、ゴム状等の硬化物が得られるという性質を有することが知られている。架橋性珪素基を有する重合体の中で、主鎖骨格がポリオキシアルキレン系重合体やアクリル酸エステル系重合体である有機重合体は、既に工業的に生産され、シーリング材、接着剤などの用途に広く使用されている。
架橋性珪素基を有する重合体を含有する硬化性組成物は、通常、ジブチル錫ビス(アセチルアセトナート)に代表される、炭素−錫結合を有する有機錫化合物などの硬化触媒を用いて硬化させる。使用の際に、短時間で硬化する必要がある場合には、硬化触媒を増量するなどの方法が一般的である。しかしながら、近年、有機錫系化合物はその毒性が指摘されており、環境に対する安全の観点からその使用には注意が必要である。有機錫化合物以外の硬化触媒として、特許文献1や特許文献2にカルボン酸錫塩やその他のカルボン酸金属塩が、特許文献3にはカルボン酸とアミン化合物を併用した触媒系が開示されている。しかしながら、これらの触媒は有機錫系触媒に比べ硬化性が劣る場合が多い。
特許文献4や特許文献5には、Si−F結合を有するケイ素基(以下、フルオロシリル基ともいう)を有する化合物や重合体を用いることで、有機錫系触媒を用いることなく、非常に高い硬化性が得られることが開示されている。
架橋性珪素基を有する重合体の組成物には充填剤やチクソ性付与剤(タレ防止剤)として膠質炭酸カルシウムやフュームドシリカなどの微細な粒径を有する添加剤が使用されることが多い。しかしながら、特許文献6にも開示されているように、フルオロシリル基を有する化合物や重合体を用いた硬化性組成物に炭酸カルシウムを添加すると硬化が進行しにくくなることが知られている。このため特許文献6の段落0106や実施例には、炭酸カルシウムを使用せずにフュームドシリカ等のシリカを使用するのが好ましいことが開示されている。しかし、フルオロシリル基を有する化合物や重合体を用いた硬化性組成物にフュームドシリカ等のシリカを添加すると硬化は進行するが、シリカが添加された組成物は粘度が高く、また、この組成物を保存すると組成物の粘度が上昇し取扱性が低下することが判明した。
特開昭55−9669号公報 特開2003−206410号公報 特開平5−117519号公報 国際公開2007−123167号公報 国際公開2008−032539号公報 特開2009−215331号公報
本発明が解決しようとする課題は架橋性珪素基を有する有機重合体の硬化触媒としてフルオロシリル基を有する化合物を使用し、チクソ性付与剤等としてシリカを使用した硬化性組成物であって、少量のシリカであってもチクソ性を付与できる硬化性組成物を提供することである。
上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、シリカにカーボンブラックを併用すると、少量のシリカであっても優れたチクソ性を有する硬化性組成物が得られることを見出した。
すなわち本発明の硬化性組成物は、(A)珪素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得る珪素基を有し且つ主鎖がポリシロキサンでない有機重合体(但し、Si−F結合を有するものを除く)100質量部、(B)Si−F結合を有する珪素基を有する化合物0.1〜20質量部、(C)フュームドシリカ0.1〜30質量部、及び(D)カーボンブラック0.01〜10質量部を含有することを特徴とする。
前記重合体(A)の主鎖骨格が、ポリオキシアルキレン系重合体及び(メタ)アクリル系重合体からなる群から選択された少なくとも1種の化合物であることが好適である。
前記(D)カーボンブラックの比表面積が600〜2000m/gであることが好ましい。また、前記(D)カーボンブラックのpHが7.1以上であることが好ましい。
本発明の接着剤は、本発明の硬化性組成物を用いてなる接着剤である。
本発明のシーリング材は、本発明の硬化性組成物を用いてシーリング材である。
本発明の製品は、本発明の硬化性組成物を用いて製造されてなる製品である。
本発明によれば、架橋性珪素基を有する有機重合体の硬化触媒としてフルオロシリル基を有する化合物を使用し、チクソ性付与剤としてシリカを使用した硬化性組成物であって、少量のシリカであってもチクソ性を付与できる硬化性組成物を提供することができる。
また、本発明によれば、低粘度且つチクソトロピック性、硬化性、貯蔵安定性及び接着性に優れた硬化性組成物を得ることができる。
以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。
本発明の硬化性組成物は、(A)架橋性珪素基を有しかつ主鎖がポリシロキサンでない有機重合体(但し、Si−F結合を有するものを除く)、(B)Si−F結合を有するケイ素基を有する化合物、(C)フュームドシリカ、及び(D)カーボンブラックを含有することを特徴とする。
前記(A)有機重合体としては、架橋性珪素基を有し、且つSi−F結合を有さない有機重合体であれば特に制限はない。この有機重合体は主鎖が有機重合体でポリシロキサンを含むものではない。ポリシロキサンの場合、電気接点障害を引き起こす低分子環状シロキサンを含有しているという問題があるが、有機重合体の場合はこのような問題を生じない。
有機重合体の例としては、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体、ポリオキシプロピレン−ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン−プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε−カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε−アミノウンデカン酸の縮重合によるナイロン11、ε−アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;たとえばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が挙げられる。
これらの中で、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れることから特に好ましい。
本発明に用いる(A)有機重合体の架橋性珪素基は、珪素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋しうる基である。前記架橋性珪素基としては、例えば、下記一般式(1)で示される基が好適である。
Figure 0006667125
前記式(1)中、Rは、炭素数1〜20のアルキル基、炭素数3〜20のシクロアルキル基、炭素数6〜20のアリール基、炭素数7〜20のアラルキル基またはR SiO−(Rは、前記と同じ)で示されるトリオルガノシロキシ基を示し、Rが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Xは加水分解性基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。aは0、1、2または3を、bは0、1または2を、それぞれ示す。またp個の下記一般式(2)におけるbは同一である必要はない。pは0〜19の整数を示す。但し、a+(bの和)≧1を満足するものとする。
Figure 0006667125
該加水分解性基は1個の珪素原子に1〜3個の範囲で結合することができ、a+(bの和)は1〜5の範囲が好ましい。加水分解性基が架橋性珪素基中に2個以上結合する場合には、それらは同一であってもよく、異なっていてもよい。架橋性珪素基を形成する珪素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結された珪素原子の場合には、20個程度あってもよい。
前記架橋性珪素基としては、下記一般式(3)で示される架橋性珪素基が、入手が容易である点から好ましい。
Figure 0006667125
前記式(3)中、R、Xは前記におなじ、aは1、2又は3の整数である。硬化性を考慮し、十分な硬化速度を有する硬化性組成物を得るには、前記式(3)においてaは2以上が好ましく、3がより好ましい。
上記Rの具体例としては、たとえばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R SiO−で示されるトリオルガノシロキシ基等があげられる。これらの中ではメチル基が好ましい。
上記Xで示される加水分解性基としては、F原子以外であれば特に限定されず、従来公知の加水分解性基であればよい。具体的には、たとえば水素原子、ハロゲン原子、アルコキシル基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等があげられる。これらの中では、水素原子、アルコキシル基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、アルコキシル基、アミド基、アミノオキシ基がさらに好ましい。加水分解性が穏やかで取扱やすいという観点からアルコキシル基が特に好ましい。アルコキシル基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなるほどに反応性が低くなる。目的や用途に応じて選択できるが通常メトキシ基やエトキシ基が使用される。
架橋性珪素基の具体的な構造としては、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基[−Si(OR)]、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基[−SiR(OR)]が挙げられ、反応性が高いことにより、トリアルコキシシリル基[−Si(OR)]が好適であり、トリメトキシシリル基がより好適である。ここでRはメチル基やエチル基のようなアルキル基である。
また、架橋性珪素基は1種で使用しても良く、2種以上併用してもかまわない。架橋性珪素基は、主鎖または側鎖あるいはいずれにも存在しうる。架橋性珪素基を形成する珪素原子は1個以上であるが、シロキサン結合などにより連結された珪素原子の場合には、20個以下であることが好ましい。
架橋性珪素基を有する有機重合体は直鎖状、または分岐を有してもよく、その数平均分子量はGPCにおけるポリエチレングリコール換算において500〜100,000程度、より好ましくは1,000〜50,000であり、特に好ましくは3,000〜30,000である。数平均分子量が500未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を越えると、高粘度となる為に作業性の点で不都合な傾向がある。
高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体に含有される架橋性珪素基は重合体1分子中に平均して0.8個以上、さらには1.0個以上、特には1.1〜5個存在するのが好ましい。分子中に含まれる架橋性珪素基の数が平均して0.8個未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。架橋性珪素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、架橋性珪素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。
前記ポリオキシアルキレン系重合体は、本質的に下記一般式(4)で示される繰り返し単位を有する重合体である。
−R−O−・・・(4)
前記一般式(4)中、Rは炭素数1〜14の直鎖状もしくは分岐アルキレン基であり、炭素数1〜14の、さらには2〜4の、直鎖状もしくは分岐アルキレン基が好ましい。
一般式(4)で示される繰り返し単位の具体例としては、
−CHO−、−CHCHO−、−CHCH(CH)O−、−CHCH(C)O−、−CHC(CHO−、−CHCHCHCHO−
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。
ポリオキシアルキレン系重合体の合成法としては、たとえばKOHのようなアルカリ触媒による重合法、たとえば特開昭61−197631号、同61−215622号、同61−215623号、同61−215623号に示されるような有機アルミニウム化合物とポルフィリンとを反応させて得られる、有機アルミ−ポルフィリン錯体触媒による重合法、たとえば特公昭46−27250号および特公昭59−15336号などに示される複金属シアン化物錯体触媒による重合法等があげられるが、特に限定されるものではない。有機アルミ−ポルフィリン錯体触媒による重合法や複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。
上記ポリオキシアルキレン系重合体の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、たとえばトルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン系重合体との反応から得られるものをあげることができる。
ポリオキシアルキレン系重合体への架橋性珪素基の導入は、分子中に不飽和基、水酸基、エポキシ基やイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を示す官能基および架橋性珪素基を有する化合物を反応させることにより行うことができる(以下、高分子反応法という)。
高分子反応法の具体例として、不飽和基含有ポリオキシアルキレン系重合体に架橋性珪素基を有するヒドロシランや架橋性珪素基を有するメルカプト化合物を作用させてヒドロシリル化やメルカプト化し、架橋性珪素基を有するポリオキシアルキレン系重合体を得る方法をあげることができる。不飽和基含有ポリオキシアルキレン系重合体は水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有するポリオキシアルキレン系重合体を得ることができる。
また、高分子反応法の他の具体例として、末端に水酸基を有するポリオキシアルキレン系重合体とイソシアネート基および架橋性珪素基を有する化合物を反応させる方法や末端にイソシアネート基を有するポリオキシアルキレン系重合体と水酸基やアミノ基等の活性水素基および架橋性珪素基を有する化合物を反応させる方法をあげることができる。イソシアネート化合物を使用すると、容易に架橋性珪素基を有するポリオキシアルキレン系重合体を得ることができる。
架橋性珪素基を有するポリオキシアルキレン系重合体の具体例としては、特公昭45−36319号、同46−12154号、特開昭50−156599号、同54−6096号、同55−13767号、同57−164123号、特公平3−2450号、特開2005−213446号、同2005−306891号、国際公開特許WO2007−040143号、米国特許3,632,557、同4,345,053、同4,960,844等の各公報に提案されているものをあげることができる。上記の架橋性珪素基を有するポリオキシアルキレン系重合体は、単独で使用してもよく、2種以上併用してもよい。
前記飽和炭化水素系重合体は芳香環以外の炭素−炭素不飽和結合を実質的に有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、1−ブテン、イソブチレンなどのような炭素数2〜6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、上記オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、及び湿気遮断性に優れる特徴を有する。
イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよいが、ゴム特性の面からイソブチレンに由来する繰り返し単位を50質量%以上含有するものが好ましく、80質量%以上含有するものがより好ましく、90〜99質量%含有するものが特に好ましい。
飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されているが、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J. P. Kennedyら、J. Polymer Sci., Polymer Chem. Ed. 1997年、15巻、2843頁)を用いることにより容易に製造することが可能であり、分子量500〜100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。
架橋性珪素基を有する飽和炭化水素系重合体の製法としては、たとえば、特公平4−69659号、特公平7−108928号、特開昭63−254149号、特開昭64−22904号、特開平1−197509号、特許公報第2539445号、特許公報第2873395号、特開平7−53882号の各明細書などに記載されているが、特にこれらに限定されるものではない。上記の架橋性珪素基を有する飽和炭化水素系重合体は、単独で使用してもよいし2種以上併用してもよい。
前記(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例えば、(メタ)アクリル酸;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル系モノマー;(メタ)アクリル酸シクロヘキシル、イソボルニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、テトラメチルピペリジニル(メタ)アクリレート、ペンタメチルピペリジニル(メタ)アクリレート等の脂環式(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、フェノキシエチル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、ヒドロキシエチル化o−フェニルフェノール(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェニルチオエチル(メタ)アクリレート等の芳香族(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル等の(メタ)アクリル酸エステル系モノマー;γ−(メタクリロイルオキシプロピル)トリメトキシシラン、γ−(メタクリロイルオキシプロピル)ジメトキシメチルシラン、メタクリロイルオキシメチルトリメトキシシラン、メタクリロイルオキシメチルトリエトキシシラン、メタクリロイルオキシメチルジメトキシメチルシラン、メタクリロイルオキシメチルジエトキシメチルシラン等のシリル基含有(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸のエチレンオキサイド付加物等の(メタ)アクリル酸の誘導体;(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2−トリフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等のフッ素含有(メタ)アクリル酸エステル系モノマー等が挙げられる。
前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等の珪素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。
これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、(メタ)アクリル酸系モノマーからなる重合体が好ましい。より好ましくは、1種又は2種以上の(メタ)アクリル酸アルキルエステルモノマーを用い、必要に応じて他の(メタ)アクリル酸モノマーを併用した(メタ)アクリル酸エステル系重合体であり、シリル基含有(メタ)アクリル酸エステル系モノマーを併用することにより、(メタ)アクリル酸エステル系重合体(A)中の珪素基の数を制御することができる。接着性が良いことから特に好ましくはメタクリル酸エステルモノマーからなるメタクリル酸エステル系重合体である。また、低粘度化、柔軟性付与、粘着性付与を行う場合には、アクリル酸エステルモノマーを適時使用することが好適である。なお、本明細書において、(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
本発明において、(メタ)アクリル酸エステル系重合体を得る方法は、特に限定されず、公知の重合法(例えば、特開昭63−112642号、特開2007−230947号、特開2001−40037号、特開2003−313397号等の記載の合成法)を利用することができ、ラジカル重合反応を用いたラジカル重合法が好ましい。ラジカル重合法としては、重合開始剤を用いて所定の単量体単位を共重合させるラジカル重合法(フリーラジカル重合法)や、末端などの制御された位置に架橋性珪素基を導入することが可能な制御ラジカル重合法が挙げられる。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、制御ラジカル重合法を用いることが好適である。
制御ラジカル重合法としては、特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法やリビングラジカル重合法が挙げられ、付加−開裂移動反応(Reversible Addition-Fragmentation chain Transfer;RAFT)重合法、遷移金属錯体を用いたラジカル重合法(Transition-Metal-Mediated Living Radical Polymerization)等のリビングラ
ジカル重合法がより好ましい。また、架橋性珪素基を有するチオール化合物を用いた反応や、架橋性珪素基を有するチオール化合物及びメタロセン化合物を用いた反応(特開2001−40037号公報)も好適である。上記の架橋性珪素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。
これらの架橋性珪素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、架橋性珪素基を有するポリオキシアルキレン系重合体、架橋性珪素基を有する飽和炭化水素系重合体、及び架橋性珪素基を有する(メタ)アクリル酸エステル系重合体、からなる群から選択される2種以上をブレンドしてなる有機重合体も使用できる。特に架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体を両者を含有する重合体は耐候性や接着性が優れる等の利点を有しており、好ましい。
架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59−122541号、特開昭63−112642号、特開平6−172631号、特開平11−116763号公報等に提案されているが、特にこれらに限定されるものではない。
好ましい具体例は、架橋性珪素基を有し分子鎖が実質的に、下記一般式(5):
−CH−C(R)(COOR)−・・・(5)
(式中、Rは水素原子またはメチル基、Rは炭素数1〜5のアルキル基を示す)で表される(メタ)アクリル酸エステル単量体単位と、下記一般式(6):
−CH2−C(R)(COOR)−・・・(6)
(式中、Rは前記に同じ、Rは炭素数6以上のアルキル基を示す)で表される(メタ)アクリル酸エステル単量体単位からなる共重合体に、架橋性珪素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
前記一般式(5)のRとしては、たとえばメチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基等の炭素数1〜5、好ましくは1〜4、さらに好ましくは1〜2のアルキル基があげられる。なお、Rのアルキル基は単独でもよく、2種以上混合していてもよい。
前記一般式(6)のRとしては、たとえば2−エチルヘキシル基、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素数6以上、通常は7〜30、好ましくは8〜20の長鎖のアルキル基があげられる。なお、Rのアルキル基はRの場合と同様、単独でもよく、2種以上混合したものであってもよい。
該(メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(5)及び式(6)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する式(5)及び式(6)の単量体単位の合計が50質量%をこえることを意味する。式(5)及び式(6)の単量体単位の合計は好ましくは70質量%以上である。また式(5)の単量体単位と式(6)の単量体単位の存在比は、質量比で95:5〜40:60が好ましく、90:10〜60:40がさらに好ましい。
該共重合体に含有されていてもよい式(5)及び式(6)以外の単量体単位としては、たとえばアクリル酸、メタクリル酸等のα,β−不飽和カルボン酸;アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α−メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。
架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法に用いられる架橋性珪素基を有する(メタ)アクリル酸エステル系重合体として、例えば、特開昭63−112642号公報記載の架橋性珪素基を有し、分子鎖が実質的に(1)炭素数1〜8のアルキル基を有する(メタ)アクリル酸アルキルエステル単量体単位と、(2)炭素数10以上のアルキル基を有する(メタ)アクリル酸アルキルエステル単量体単位を含有する(メタ)アクリル酸エステル系共重合体等の公知の(メタ)アクリル酸エステル系共重合体も使用可能である。
前記(メタ)アクリル酸エステル系重合体の数平均分子量は、600〜10,000が好ましく、600〜5,000がより好ましく、1,000〜4,500がさらに好ましい。数平均分子量を該範囲とすることにより、架橋性珪素基を有するポリオキシアルキレン系重合体との相溶性を向上させることができる。前記(メタ)アクリル酸エステル系重合体は、単独で使用しても良く、2種以上併用しても良い。前記架橋性珪素基を有するポリオキシアルキレン系重合体と前記架橋性珪素基を有する(メタ)アクリル酸エステル系重合体との配合比には特に制限はないが、前記(メタ)アクリル酸エステル系重合体と前記ポリオキシアルキレン系重合体との合計100質量部に対して、前記(メタ)アクリル酸エステル系重合体を10〜60質量部の範囲内であることが好ましく、より好ましくは20〜50質量部の範囲内であり、さらに好ましくは25〜45質量部の範囲内である。前記(メタ)アクリル酸エステル系重合体が60質量部より多いと粘度が高くなり、作業性が悪化するため好ましくない。
架橋性珪素基を有する飽和炭化水素系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系共重合体をブレンドしてなる有機重合体は、特開平1−168764号、特開2000−186176号公報等に提案されているが、特にこれらに限定されるものではない。
さらに、架橋性珪素基を有する(メタ)アクリル酸エステル系共重合体をブレンドしてなる有機重合体の製造方法としては、他にも、架橋性珪素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59−78223号、特開昭59−168014号、特開昭60−228516号、特開昭60−228517号等の各公報に具体的に開示されているが、これらに限定されるものではない。
2種以上の重合体をブレンドして使用するときは、架橋性珪素基を有するポリオキシアルキレン系重合体100質量部に対し、架橋性珪素基を有する飽和炭化水素系重合体、及び/又は架橋性珪素基を有する(メタ)アクリル酸エステル系重合体を10〜200質量部使用することが好ましく、20〜80質量部使用することがさらに好ましい。
本発明において、(B)Si−F結合を有するケイ素基を有する化合物(本明細書においては、フルオロシリル基を有する化合物とも称する)は、(A)架橋性珪素基含有有機重合体の硬化触媒として作用する。前記(B)フルオロシリル基を有する化合物としては、フルオロシリル基を有する公知の化合物を広く使用することができ、特に制限はなく、低分子化合物及び高分子化合物のいずれも使用可能であるが、フルオロシリル基を有する有機珪素化合物が好ましく、フルオロシリル基を有する有機重合体が、安全性が高くより好適である。
前記(B)フルオロシリル基を有する化合物としては、具体的には、下記式(7)で示されるフルオロシラン類や、下記式(8)で示されるフルオロシリル基を有する化合物、フルオロシリル基を有する有機重合体等が好適な例として挙げられる。
4−cSiF・・・(7)
(式(7)において、Rはそれぞれ独立して、置換あるいは非置換の炭素原子数1〜20の炭化水素基、またはRSiO−(Rはそれぞれ独立に、炭素原子数1〜20の置換あるいは非置換の炭化水素基、又はフッ素原子である)で示されるオルガノシロキシ基のいずれかを示す。cは1〜3のいずれかであり、cが3であることが好ましい。R及びRが複数存在する場合、それらは同じであっても異なっていてもよい。)
−SiF ・・・(8)
(式(8)中、R及びcはそれぞれ式(7)と同じであり、Zはそれぞれ独立して水酸基又はフッ素以外の加水分解性基であり、dは0〜2のいずれかであり、eは0〜2のいずれかであり、c+d+eは3である。R、R及びZが複数存在する場合、それらは同じであっても異なっていてもよい。)
前記式(7)で示されるフルオロシラン類の例としては、フルオロトリメチルシラン、フルオロトリエチルシラン、フルオロトリプロピルシラン、フルオロトリブチルシラン、フルオロジメチルビニルシラン、フルオロジメチルフェニルシラン、フルオロジメチルベンジルシラン、フルオロジメチル(3−メチルフェニル)シラン、フルオロジメチル(4−メチルフェニル)シラン、フルオロジメチル(4−クロロフェニル)シラン、フルオロトリフェニルシラン、ジフルオロジメチルシラン、ジフルオロジエチルシラン、ジフルオロジブチルシラン、ジフルオロメチルフェニルシラン、ジフルオロジフェニルシラン、トリフルオロエチルシラン、トリフルオロプロピルシラン、トリフルオロブチルシラン、トリフルオロフェニルシラン、γ−メタクリロキシプロピルフルオロジメチルシラン、γ−メタクリロキシプロピルジフルオロメチルシラン、γ−メタクリロキシプロピルトリフルオロシラン、3−メルカプトプロピルトリフルオロシラン、オクタデシルフルオロジメチルシラン、オクタデシルジフルオロメチルシラン、オクタデシルトリフルオロシラン、1,3−ジフルオロ−1,1,3,3−テトラメチルジシロキサン、テトラフルオロシラン、オクタフルオロトリシラン、1,3,5,7−テトラフルオロ−1,3,5,7−テトラシラトリシクロ[3.3.1.1(3,7)]デカン、1,1−ジフルオロ−1−シラシクロ−3−ペンテン、フルオロトリス(トリメチルシロキシ)シランなどが挙げられる。
これらのなかでも、原料の入手が容易なこと、合成が容易なことなどから、フルオロジメチルビニルシラン、フルオロジメチルフェニルシラン、フルオロジメチルベンジルシラン、γ−メタクリロキシプロピルフルオロジメチルシラン、γ−メタクリロキシプロピルジフルオロメチルシラン、γ−メタクリロキシプロピルトリフルオロシラン、3−メルカプトプロピルトリフルオロシラン、オクタデシルフルオロジメチルシラン、オクタデシルジフルオロメチルシラン、オクタデシルトリフルオロシラン、1,3−ジフルオロ−1,1,3,3−テトラメチルジシロキサン等が好ましい。
前記式(8)で示されるフルオロシリル基において、Zで示される加水分解性基としては、例えば、式(1)のXの加水分解性基と同様の基を挙げることができるが、具体的には、水素原子、フッ素以外のハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、アルコキシ基が特に好ましい。
また、前記Rとしては、例えば、メチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、Rがメチル基、フェニル基等であるRSiO−で示されるトリオルガノシロキシ基等が挙げられる。これらの中ではメチル基が特に好ましい。
前記式(8)で表されるフルオロシリル基を具体的に例示すると、フッ素以外に加水分解性基を持たないケイ素基として、フルオロジメチルシリル基、フルオロジエチルシリル基、フルオロジプロピルシリル基、フルオロジフェニルシリル基、フルオロジベンジルシリル基等のケイ素基上に1個のフッ素が置換したケイ素基;ジフルオロメチルシリル基、ジフルオロエチルシリル基、ジフルオロフェニルシリル基、ジフルオロベンジルシリル基等のケイ素基上に2個のフッ素が置換したケイ素基;トリフルオロシリル基であるケイ素基上に3個のフッ素が置換したケイ素基;が挙げられる。
フッ素とその他の加水分解性基を両方有するケイ素基として、フルオロメトキシメチルシリル基、フルオロエトキシメチルシリル基、フルオロメトキシエチルシリル基、フルオロメトキシフェニルシリル基、フルオロジメトキシシリル基、フルオロジエトキシシリル基、フルオロジプロポキシシリル基、フルオロジフェノキシシリル基、フルオロビス(2−プロペノキシ)シリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基、ジフルオロフェノキシシリル基、フルオロジクロロシリル基、ジフルオロクロロシリル基などが挙げられる。
フッ素以外に加水分解性基を持たないケイ素基やRがメチル基であるフルオロシリル基が好ましく、トリフルオロシリル基がより好ましい。また、合成の容易さからフルオロジメチルシリル基、ジフルオロメチルシリル基、トリフルオロシリル基、フルオロメトキシメチルシリル基、フルオロエトキシメチルシリル基、フルオロメトキシエチルシリル基、フルオロジメトキシシリル基、フルオロジエトキシシリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基がより好ましく、安定性の観点からフルオロジメチルシリル基、ジフルオロメチルシリル基、トリフルオロシリル基などのフッ素以外に加水分解性基を持たないケイ素基がさらに好ましく、硬化性の高さからは、ジフルオロメチルシリル基、ジフルオロメトキシシリル基、ジフルオロエトキシシリル基、トリフルオロシリル基など、ケイ素基上に2個ないし3個のフッ素が置換したケイ素基が好ましく、取扱いやすさからジフルオロメチルシリル基が最も好ましい。
前記式(8)で示されるフルオロシリル基を有する化合物としては、特に限定されず、単分子化合物、高分子化合物のいずれも使用可能であり、例えば、前記式(7)で示されるフルオロシラン類、フルオロトリメトキシシラン、ジフルオロジメトキシシラン、トリフルオロメトキシシラン、フルオロトリエトキシシラン、ジフルオロジエトキシシラン、トリフルオロエトキシシラン、メチルフルオロジメトキシシラン、メチルジフルオロメトキシシラン、メチルトリフルオロシラン、メチルフルオロジエトキシシラン、メチルジフルオロエトキシシラン、ビニルフルオロジメトキシシラン、ビニルジフルオロメトキシシラン、ビニルトリフルオロシラン、ビニルフルオロジエトキシシラン、ビニルジフルオロエトキシシラン、フェニルフルオロジメトキシシラン、フェニルジフルオロメトキシシラン、フェニルトリフルオロシラン、フェニルフルオロジエトキシシラン、フェニルジフルオロエトキシシラン、フルオロトリメチルシラン等の低分子化合物や末端に式(8)で示されるフルオロシリル基を有するフッ素化ポリシロキサンなどの高分子化合物が挙げられ、主鎖又は側鎖の末端に式(8)で示されるフルオロシリル基を有する重合体が好適である。
前記式(7)で示されるフルオロシラン類及び前記式(8)で示されるフルオロシリル基を有する化合物は、市販の試薬を用いても良いし、原料化合物から合成してもよい。合成方法としても特に制限はないが、下記式(9)で示されるケイ素基を有する化合物と、フッ素化剤とを公知の方法(例えば、Organometallics 1996年,15,2478頁(Ishikawaほか)等)を用いて反応させることにより得られる化合物が好適に用いられる。
−SiR 3−q・・・(9)
(式(9)中、R及びZはそれぞれ式(8)と同じであり、qは1〜3のいずれかである。)
前記式(9)で示される加水分解性ケイ素基としては、例えば、アルコキシシリル基、シロキサン結合、クロロシリル基等のハロシリル基、ヒドロシリル基等が挙げられる。
アルコキシシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、NHF、BuNF、HF、BF、EtNSF、HSOF、SbF、VOF、CFCHFCFNEtなどが挙げられる。ハロシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、AgBF、SbF、ZnF、NaF、KF、CsF、NHF、CuF、NaSiF、NaPF、NaSbF、NaBF、MeSnF、KF(HF)1.5〜5などが挙げられる。ヒドロシリル基のフッ素化に使用されるフッ素化剤の具体例としては、特に限定されず、例えば、AgF、PF、PhCBF、SbF、NOBF、NOBFなどが挙げられる。シロキサン結合を有する化合物はBFなどにより開裂し、フルオロシリル基が得られる。
これらのフッ素化剤を用いたフルオロシリル基の合成方法のなかでも、反応が簡便であること、反応効率が高いこと、安全性が高いことなどから、BFを用いたアルコキシシランのフッ素化法、CuFまたはZnFを用いたクロロシランのフッ素化法が好ましい。
BFとしては、BFガス、BFエーテル錯体、BFチオエーテル錯体、BFアミン錯体、BFアルコール錯体、BFカルボン酸錯体、BFリン酸錯体、BF水和物、BFピペリジン錯体、BFフェノール錯体等が使用できるが、取扱いが容易であることなどからBFエーテル錯体、BFチオエーテル錯体、BFアミン錯体、BFアルコール錯体、BFカルボン酸錯体、BF水和物が好ましい。中でもBFエーテル錯体、BFアルコール錯体、BF水和物は反応性が高く好ましく、BFエーテル錯体が特に好ましい。
前記フルオロシリル基を有する有機重合体(本明細書では、フッ素化ポリマーとも称する)としては、Si−F結合を有する有機重合体であれば特に制限はなく、公知のSi−F結合を有する有機重合体を広く使用可能である。有機重合体中のSiF結合の位置も特に制限はなく、重合体分子内のいずれの部位にあっても効果を発揮し、主鎖または側鎖の末端であれば−SiR’F、重合体の主鎖に組み込まれていれば、−SiR’F−または≡SiF(R’はそれぞれ独立に、任意の基)の形で表される。主鎖又は側鎖の末端にSi−F結合を有する有機重合体としては、前述した式(8)で示されるフルオロシリル基を有する重合体が好適である。重合体中のフルオロシリル基としては、前記式(8)中のcが2である2官能のフルオロシリル基が好ましく、ジフルオロメチルシリル基がより好ましい。フルオロシリル基が重合体の主鎖中に組み込まれたものの例としては、−Si(CH)F−、−Si(C)F−、−SiF−、≡SiFなどが挙げられる。
前記フッ素化ポリマーは、フルオロシリル基および主鎖骨格が同種である単一の重合体、すなわち、1分子あたりのフルオロシリル基の数、その結合位置、および該フルオロシリル基が有するFの数、ならびに主鎖骨格が同種である単一の重合体であってもよく、これらのいずれか、またはすべてが異なる、複数の重合体の混合物であってもよい。フッ素化ポリマーが単一の重合体、複数の重合体の混合物のいずれの場合においても、フッ素化ポリマーは、速硬化性を示す硬化性組成物の樹脂成分として好適に用いることができるが、高い硬化性を発揮し、かつ高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、フッ素化ポリマーに含有されるフルオロシリル基は、重合体1分子あたり平均して少なくとも1個、好ましくは1.1〜5個、さらに好ましくは1.2〜3個存在するのがよい。1分子中に含まれるフルオロシリル基の数が平均して1個未満になると、硬化性が不十分になり、良好なゴム弾性挙動を発現しにくくなる可能性がある。また、1分子中に含まれるフルオロシリル基の数が平均して5個より多い場合には、ゴム状硬化物の伸びが小さくなる場合がある。なお、上述のように、フルオロシリル基は、重合体分子鎖の主鎖の末端あるいは側鎖の末端に存在していてもよく、または主鎖中に組み込まれていてもよいが、特に主鎖の末端に存在するときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。1分子中にフルオロシリル基が2個以上存在する場合は、それぞれのケイ素基は同じであっても異なっていてもよい。
また、フッ素化ポリマーは、フルオロシリル基とともに、加水分解性基としてフッ素以外の加水分解性基のみを有するケイ素基(たとえば、メチルジメトキシシリル基等)などのフルオロシリル基以外の置換基を含有していてもよい。このようなフッ素化ポリマーとしては、たとえば一方の主鎖末端がフルオロシリル基であり、他方の主鎖末端が、加水分解性基としてフッ素以外の加水分解性基のみを有するケイ素基である重合体を挙げることができる。
フッ素化ポリマーにおいて、フルオロシリル基の導入は、いかなる方法を用いてもよいが、フルオロシリル基を有する低分子ケイ素化合物と重合体との反応による導入方法(方法(i))と、フッ素以外の加水分解性基を有する架橋性珪素基を含有する重合体の珪素基をフルオロシリル基に変性する方法(方法(ii))が挙げられる。
方法(i)の具体例として、以下の方法が挙げられる。
(イ)分子中に水酸基、エポキシ基やイソシアネート基等の官能基を有する重合体に、この官能基に対して反応性を示す官能基およびフルオロシリル基を有する化合物を反応させる方法。たとえば、末端に水酸基を有する重合体とイソシアネートプロピルジフルオロメチルシランを反応させる方法や、末端にSiOH基を有する重合体とジフルオロジエトキシシランを反応させる方法が挙げられる。
(ロ)分子中に不飽和基を含有する重合体に、フルオロシリル基を有するヒドロシランを作用させてヒドロシリル化する方法。たとえば、末端にアリル基を有する重合体に、ジフルオロメチルヒドロシランを反応させる方法が挙げられる。
(ハ)不飽和基を含有する重合体に、メルカプト基およびフルオロシリル基を有する化合物を反応させる方法。たとえば、末端にアリル基を有する重合体に、メルカプトプロピルジフルオロメチルシランを反応させる方法が挙げられる。
上記方法(ii)で用いる、フッ素以外の加水分解性基を有する架橋性珪素基を有する重合体としては、前述した架橋性珪素基を有する有機重合体(A)が好適に用いられる。
また、方法(ii)において、フッ素以外の加水分解性基を有する架橋性珪素基をフルオロシリル基に変換する方法としては、公知の方法が使用でき、例えば、前述した前記式(9)で示される架橋性珪素基を、フッ素化剤でフルオロシリル基に変換する方法が挙げられる。フッ素化剤としては、例えば、前述したフッ素化剤が挙げられ、中でも、BFエーテル錯体、BFアルコール錯体、BF二水和物は活性が高く、効率よくフッ素化が進行し、さらに副生成物に塩等が生じず、後処理が容易であるためにより好ましく、BFエーテル錯体が特に好ましい。さらに、BFエーテル錯体によるフッ素化は、加熱しなくても反応が進行するが、より効率よくフッ素化を行なうためには、加熱することが好ましい。加熱温度としては50℃以上150℃以下が好ましく、60℃以上130℃がより好ましい。50℃以下であると反応が効率よく進行せず、フッ素化に時間がかかる場合がある。150℃以上であるとフッ素化ポリマーが分解する虞がある。BF錯体によるフッ素化において、用いる原料重合体の種類によっては着色が起こる場合があるが、着色の抑制の点から、BFアルコール錯体、BF二水和物を用いることが好ましい。
フッ素化ポリマーの製造に使用されるフッ素化剤は、フッ素化ポリマーの硬化触媒としても作用する可能性があり、上記(ii)の方法を用いてフッ素化ポリマーを製造するときに水分が存在すると、シラノール縮合反応が進行し、得られるフッ素化ポリマーの粘度が上昇してしまう虞がある。このため、フッ素化ポリマーの製造は、できるだけ水分が存在しない環境下で行なわれることが望ましく、フッ素化前に、フッ素化する重合体をトルエンやヘキサン等を利用して共沸脱水に供するなどの脱水操作を行なうことが好ましい。但し、BFアミン錯体を用いる場合には、脱水操作後にはフッ素化が進行し難く、微量の水分を添加することで反応性が向上する傾向があるため、粘度上昇が許容される範囲で水分を添加することが好ましい。また、フッ素化ポリマーの安定性の点で、フッ素化後にフッ素化剤および副生したフッ素化剤由来成分を、濾過、デカンテーション、分液、減圧脱揮などで除去することが好ましい。上記したBF系のフッ素化剤を用いてフッ素化ポリマーを製造する場合には、製造されたフッ素化ポリマー中に残存するBFおよび反応によって生成したBF由来成分が、B量で500ppm未満であることが好ましく、100ppm未満であることがより好ましく、50ppm未満であることが特に好ましい。BFおよびBF由来成分を除去することで、得られたフッ素化ポリマー自身およびフッ素化ポリマーと原料重合体との混合物の粘度上昇などが抑制できる。この点を考慮すると、BFエーテル錯体、BFアルコール錯体を用いたフッ素化法は、ホウ素成分を真空脱揮により比較的簡便に除去できるため好ましく、BFエーテル錯体を用いた方法が特に好ましい。
ここで、フッ素化すべき重合体が、フッ素以外の加水分解性基を2個以上有する場合は、全ての加水分解性基をフッ素化してもよいし、フッ素化剤の量を減量するなどの方法によって、フッ素化の条件を調整することにより、部分的にフッ素化してもよい。たとえば、上記(ii)の方法において、フッ素化すべき重合体を用いてフッ素化ポリマーを製造する場合、フッ素化剤の使用量は特に制限されるものではなく、フッ素化剤中のフッ素原子のモル量が、フッ素化すべき重合体のモル量に対して等モル以上になる量であればよい。(ii)の方法により、フッ素化すべき重合体が有する加水分解性基のすべてをフッ素化しようとする場合には、フッ素化剤中のフッ素原子のモル量が、原料重合体が含有する架橋性珪素基中の加水分解性基の総モル量に対して等モル以上となるような量のフッ素化剤を使用することが好ましい。ここで、「フッ素化剤中のフッ素原子」とは、フッ素化剤中のフッ素化に有効なフッ素原子、具体的には、フッ素化すべき重合体の架橋性珪素基中の加水分解性基を置換できるフッ素原子をいう。
上記方法(i)におけるフルオロシリル基を有する低分子化合物も、上記フッ素化方法を利用して、汎用な架橋性珪素基含有低分子化合物から合成することができる。
方法(i)では、フルオロシリル基とともに、重合体と珪素含有低分子化合物を反応させるための反応性基があるため、反応が複雑になる場合には、方法(ii)によってフッ素化ポリマーを得ることが好ましい。
フッ素化ポリマーのガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、−20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり取り扱い難くなる場合があり、また、硬化性組成物として使用した場合に得られる硬化物の柔軟性が低下し、伸びが低下する場合がある。ガラス転移温度はDSC測定により求めることができる。
フッ素化ポリマーは直鎖状であってもよく、または分岐を有してもよい。フッ素化ポリマーの数平均分子量は、GPCにおけるポリエチレングリコール換算において1,000〜100,000が好ましく、より好ましくは1,000〜50,000、さらに好ましくは2,000〜30,000、特に好ましくは2,000〜25,000である。数平均分子量が1,000未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を越えると、高粘度となるために作業性の点で不都合な傾向がある。
前記Si−F結合を有するケイ素化合物(B)の配合割合は(A)重合体100質量部に対して(B)ケイ素化合物を0.1〜20質量部、好ましくは0.1〜10質量部配合することが好適である。
本発明の硬化性組成物は、(C)成分としてフュームドシリカを使用する。フュームドシリカは主にチクソ性改良剤(揺変剤、タレ防止剤)として使用するが補強性の充填剤としても作用する。フュームドシリカとしては、親水性シリカや疎水性シリカが挙げられ、疎水性シリカが好ましい。
親水性シリカとしては、四塩化ケイ素の火炎加水分解法により得られる親水性のフュームドシリカが挙げられる。親水性のフュームドシリカは、その表面に親水性のシラノール基を持ち、一次粒子径が5〜20nmで、比表面積(BET)が40〜400m/gのものが好ましい。このような親水性フュームドシリカの市販品としては、例えば、アエロジル#300、#200(以上、いずれも日本アエロジル(株)製、商品名)等が挙げられる。
疎水性シリカとしては、上記のような親水性フュームドシリカを、シラン、シロキサン等で化学的に処理することによって疎水化したフュームドシリカで、一次粒子径が7〜25nmで、比表面積(BET)が50〜500m/gのものが好ましい。このような疎水性フュームドシリカの市販品としては、例えば、R972、R974、RY200S(いずれも日本アエロジル(株)製、商品名)等が挙げられる。なお、上記親水性シリカおよび疎水性シリカの一次粒子径は、例えば、動的光散乱法により測定することができる。
ここで(C)フュームドシリカの配合量は、上記(A)成分の架橋性珪素基を有する有機重合体100質量部に対し0.1〜30質量部使用する。0.5〜10質量部が好ましく、1〜5質量部がより好ましい。0.1質量部未満では、チクソ性付与が不十分となり、30質量部を超えると、組成物の粘度が高くなる傾向にある。
本発明の硬化性組成物は、(D)成分としてカーボンブラックを使用する。使用するカーボンブラックの例としてはアセチレンブラック、オイルファーネスブラック、サーマルブラック、チャンネルブラックを挙げることができる。これらの中でも、アセチレンブラック及びオイルファーネスブラックが好ましく、特に、アセチレンブラック、及び、オイルファーネスブラックであるケッチェンブラックが好ましく、オイルファーネスブラックであるケッチェンブラックが最も好ましい。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
カーボンブラックのDBP吸油量は、通常30〜800ml/100g、好ましくは200〜700ml/100g、より好ましくは300〜700ml/100gの範囲内である。DBP吸油量が異なる2種以上のカーボンブラックを組み合わせて使用することもできる。
DBP吸油量は、カーボンブラック100g当りに包含される油のml数であり、常法に従って、ジブチルフタレートアブソープトメータを用いて測定することができる。より具体的に、DBP吸油量は、JISK6217に規定された方法に従って測定することができる。測定装置(Absorptometer)のチャンバー内にカーボンブラックを入れ、そのチ
ャンバー内に、一定速度でDBP(n−ジブチルフタレート)を加える。DBPを吸収するに従い、カーボンブラックの粘度は上昇するが、その粘度がある程度に達した時までに吸収したDBPの量に基づいてDBP吸油量を算出する。粘度の検出は、トルクセンサーで行う。
カーボンブラックの揮発分の含有量は、好ましくは1.5重量%以下、より好ましくは1.0重量%以下、特に好ましくは0.5重量%以下である。揮発分とは、950℃での加熱脱着ガスである。
カーボンブラックの窒素比表面積は、通常50〜2000m/gであり、好ましい比表面積は600〜2000m/gである。またカーボンブラックは表面処理することにより酸性のpHとなるが、本発明においてはpH7.1以上のアルカリ性のpHが好ましい。
(D)成分のカーボンブラックの配合量は、上記(A)成分の架橋性珪素基を有する有機重合体100質量部に対し0.01〜10質量部使用する。0.05〜10質量部が好ましく、0.1〜5質量部がより好ましい。0.01質量部未満では、チクソ性付与が不十分となり、10質量部を超えると、組成物の粘度が高くなる傾向にある。
本発明の硬化性組成物には、さらに(B)成分以外の硬化触媒(シラノール縮合触媒)、(C)成分や(D)成分以外の充填剤、可塑剤、接着性付与剤、(C)成分や(D)成分以外のチクソ性付与剤、脱水剤、酸化防止剤、紫外線吸収剤、希釈剤、顔料、滑剤などを必要に応じて添加することができる。
本発明の(B)成分のフルオロシリル基を有する化合物は硬化触媒(シラノール縮合触媒)として作用するが、本発明の硬化性組成物には(B)成分以外の硬化触媒を添加してもよい。
そのような硬化触媒の例としては、テトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;ジルコニウムテトラアセチルアセトナート、チタンテトラアセチルアセトナート等のキレート化合物類;オクチル酸鉛及びナフテン酸鉛等の有機酸鉛;オクチル酸ビスマス、ネオデカン酸ビスマス及びロジン酸ビスマス等の有機酸ビスマス;シラノール縮合触媒として公知のその他の有機アミン等の塩基性触媒、有機カルボン酸等の酸性触媒あるいは酸性触媒と塩基性触媒の塩が挙げられる。
これらの中では有機アミン等の塩基性触媒と有機カルボン酸等の酸性触媒の塩が好ましい。塩を構成する塩基性触媒としては有機アミンが好ましく、アミジン類がさらに好ましく、アミジン骨格を有する環状ジアミン化合物がより好ましく、1,8−ジアザビシクロ(5.4.0)ウンデセン−7(DBU)及び5−ジアザビシクロ(4.3.0)ノネン−5(DBN)等が特に好ましい。
塩を構成する酸性触媒としては、有機酸及び無機酸のいずれも使用可能である。前記酸としては、例えば、酢酸、オクチル酸、ノナン酸、アクリル酸、安息香酸、トリフルオロ酢酸等のカルボン酸、ジフルオロ酢酸等のカルボン酸、フルオロ酢酸等のカルボン酸、トリクロロ酢酸等のカルボン酸、ジクロロ酢酸等のカルボン酸、クロロ酢酸等のカルボン酸;フェノール、o−クレゾール等のフェノール類;ベンゼンスルホン酸等のスルホン酸;及びそれらの酸無水物等が挙げられ、カルボン酸、無水カルボン酸、スルホン酸が好ましく、安定性がよい点からカルボン酸がより好適である。
酸性触媒と塩基性触媒の塩(酸性触媒と塩基性触媒の反応生成物)においては特にアミジン類と酸の反応生成物を使用することが特に好ましい。このような反応生成物は、アミジン類と酸とが完全に反応したものであってもよく、未反応のアミジン類や酸が含まれていてもよい。また、反応生成物にアミジン類や酸を別途添加してもよい。
(B)成分以外の硬化触媒を使用する場合、(A)成分の重合体100質量部に対して0.1〜20質量部、好ましくは0.1〜10質量部配合することが好適である。
本発明の硬化性組成物は、本発明の目的が達成される範囲で(C)成分や(D)成分以外の充填剤をさらに使用することができる。このような充填剤の例としては、炭酸カルシウム、炭酸マグネシウム、珪藻土含水ケイ酸、含水けい酸、無水ケイ酸、ケイ酸カルシウム、(C)成分以外のシリカ、二酸化チタン、クレー、タルク、スレート粉、マイカ、カオリン、ゼオライト、高分子粉体等が挙げられ、炭酸カルシウム、(C)成分以外のシリカ及び高分子粉体が好ましく、表面処理炭酸カルシウム、粒径0.01〜300μmの(C)成分以外の非晶質シリカ及び粒径0.01〜300μmの高分子粉体からなる群から選択される1種以上がより好ましい。また、ガラスビーズ、(C)成分以外のシリカビーズ、アルミナビーズ、カーボンビーズ、スチレンビーズ、フェノールビーズ、アクリルビーズ、(C)成分以外の多孔質シリカ、シラスバルーン、ガラスバルーン、シリカバルーン、サランバルーン、アクリルバルーン等を用いることもでき、これらの中で、組成物の硬化後の伸びの低下が少ない点からアクリルバルーンがより好ましい。
前記(C)成分以外の非晶質シリカとしては、公知の非晶質シリカを広く使用可能であり、特に制限はないが、その粒径が0.01〜300μmであることが好ましく、0.1〜100μmがより好ましく、1〜30μmがさらに好ましい。
前記高分子粉体としては、公知の高分子粉体を広く使用可能であり、特に制限はないが、その粒径が0.01〜300μmであることが好ましく、0.1〜100μmがより好ましく、1〜30μmがさらに好ましい。
前記高分子紛体としては、例えば、(メタ)アクリル酸エステル、酢酸ビニル、エチレン及び塩化ビニルからなる群から選択されたモノマーを単独で重合するか、もしくは、該モノマーと1種以上のビニル系モノマーとを共重合することによって得られる重合体を原料とした高分子粉体が好適に用いられ、アクリル系高分子粉体やビニル系高分子粉体がより好ましく、アクリル系高分子粉体がさらに好ましい。
(C)成分や(D)成分以外の充填剤を使用する場合、前記(A)成分の有機重合体100質量部に対して、0.1〜500質量部配合することが好ましく、2〜250質量部配合することがより好ましく、5〜125質量部配合することがさらに好ましい。前記高分子紛体は1種で用いてもよく、2種以上組み合わせて用いてもよい。
可塑剤は硬化後の伸び物性を高めたり、低モジュラス化を可能とする目的で添加される。可塑剤の例としては、ジオクチルフタレート、ジブチルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジイソウンデシルフタレートなどの如きフタル酸エステル類;アジピン酸ジオクチル、コハク酸イソデシル、セバシン酸ジオクチル、アジピン酸ジブチルなどの如き脂肪族二塩基酸エステル類;ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート、ペンタエリスリトールエステルなどの如きグリコールエステル類;オレイン酸ブチル、アセチルリシノール酸メチルなどの如き脂肪族エステル類;リン酸トリクレジル、リン酸トリオクチル、リン酸オクチルジフェニル、リン酸トリブチル、リン酸トリクレジルなどの如きリン酸エステル類;エポキシ化大豆油、エポキシ化アマニ油、エポキシステアリン酸ベンジルなどの如きエポキシ可塑剤類;二塩基酸と2価アルコールとのポリエステル類などのポリエステル系可塑剤;ポリプロピレングリコールやポリエチレングリコールの誘導体などのポリエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル等の繰返しが2のもの、トリエチレングリコールジエチルエーテル、トリエチレングリコールエチルメチルエーテル、トリエチレングリコールジエチルエーテル等の繰返しが3のもの、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールエチルメチルエーテル、テトラエチレングリコールジエチルエーテル等の繰り返しが4のもの、繰り返しがそれ以上のポリオキシエチレンジメチルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリ−α−メチルスチレン、ポリスチレンなどのポリスチレン類;ポリブタジエン、ブタジエン−アクリロニトリル共重合体、ポリクロロプレン、ポリイソプレン、ポリブテン、水添ポリブタジエン、水添ポリイソプレン、プロセスオイルなどの炭化水素系オリゴマー類;塩素化パラフィン類;UP−1080(東亞合成(株)製)やUP−1061(東亞合成(株)製)などの如きアクリル系可塑剤類;UP−2000(東亞合成(株)製)、UHE−2012(東亞合成(株)製)などの如き水酸基含有アクリル系可塑剤類;UC−3510(東亞合成(株)製)などの如きカルボキシル基含有アクリルポリマー類;UG−4000(東亞合成(株)製)などの如きエポキシ基含有アクリルポリマー類;US−6110(東亞合成(株)製)、US−6120(東亞合成(株)製)などの如き0.8個未満、好ましくは0.4個未満のシリル基含有アクリルポリマー類などが例示される。
接着性付与剤としては、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、1,3−ジアミノイソプロピルトリメトキシシラン等のアミノ基含有シラン類;γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等の塩素原子含有シラン類;γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン等のイソシアネート含有シラン類;メチルジメトキシシラン、トリメトキシシラン、メチルジエトキシシラン等のハイドロシラン類等が具体的に例示されうるが、これらに限定されるものではない。
接着性付与剤を使用する場合、あまりに多く添加すると、硬化物のモジュラスが高くなり、少なすぎると接着性が低下することから、(A)成分の有機重合体100質量部に対して0.1〜15質量部添加することが好ましく、さらには0.5〜10質量部添加することが好ましい。
本発明の硬化性組成物は、本発明の目的が達成される範囲で(C)成分や(D)成分以外のチクソ性付与剤をさらに使用することができる。(C)成分や(D)成分以外のチクソ性付与剤の例としては、石綿粉等の無機揺変剤、有機ベントナイト、変性ポリエステルポリオール、脂肪酸アマイド等の有機揺変剤、水添ヒマシ油誘導体、脂肪酸アマイドワックス、ステアリル酸アルミニウム、ステアリル酸バリウム等が挙げられる。
脱水剤は保存中における水分を除去する目的で添加される。脱水剤の例としてビニルトリメトキシシラン、ジメトルジメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のシラン化合物や、ゼオライト、酸化カルシウム、酸化マグネシウム、酸化亜鉛等が挙げられる。脱水剤を使用する場合、(A)成分100質量部に対し、0.1〜10質量部が好ましく、0.1〜5質量部がより好ましい。
酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系、ヒンダードアミン系が例示できるが、特にヒンダードフェノール系やヒンダードアミン系が好ましい。酸化防止剤を使用する場合、(A)成分100質量部に対し、0.1〜10質量部が好ましく、0.1〜5質量部がより好ましい。
本発明の硬化性組成物には紫外線吸収剤を添加することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系および金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。紫外線吸収剤を使用する場合、(A)成分100質量部に対し、0.1〜10質量部が好ましく、0.1〜5質量部がより好ましい。
本発明の硬化性組成物には希釈剤を添加することができる。希釈剤を配合することにより、粘度等の物性を調整することができる。希釈剤としては、公知の希釈剤を広く用いることができ、特に制限はないが、例えば、ノルマルパラフィン、イソパラフィン等の飽和炭化水素系溶剤,リニアレンダイマー(出光興産株式会社商品名)等のα−オレフィン誘導体,トルエン、キシレン等の芳香族炭化水素系溶剤,エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、ダイアセトンアルコール等のアルコール系溶剤、酢酸エチル、酢酸ブチル、酢酸アミル、酢酸セロソルブ等のエステル系溶剤,クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、クエン酸トリエチル等のクエン酸エステル系溶剤,メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤等の各種溶剤が挙げられる。
希釈剤の引火点には特に制限はないが、得られる硬化性組成物の安全性を考慮すると硬化性組成物の引火点は高い方が望ましく、硬化性組成物からの揮発物質は少ない方が好ましい。そのため、希釈剤の引火点は60℃以上であることが好ましく、70℃以上であることがより好ましい。2以上の希釈剤を混合して使用するときは、混合した希釈剤の引火点が70℃以上であることが好ましい。しかし、一般的に引火点が高い希釈剤は硬化性組成物に対する希釈効果が低くなる傾向が見られるため、引火点は250℃以下であることが好適である。
本発明の硬化性組成物の安全性、希釈効果の双方を考慮すると、希釈剤としては飽和炭化水素系溶剤が好適であり、ノルマルパラフィン、イソパラフィンがより好適である。ノルマルパラフィン、イソパラフィンの炭素数は10〜16であることが好ましい。具体的にはN−11(ノルマルパラフィン、JX日鉱日石エネルギー(株)製、炭素数11、引火点68℃)、N−12(ノルマルパラフィン、JX日鉱日石エネルギー(株)製、炭素数12、引火点85℃)、IPソルベント2028(イソパラフィン、出光興産(株)製、炭素数10から16、引火点86℃)等が挙げられる。
希釈剤の配合割合は特に制限はないが、(A)成分の架橋性珪素基を有する有機重合体100質量部に対して、希釈剤を0.1〜50質量部配合することが好ましく、0.1〜30質量部配合することがより好ましく、0.1〜15質量部配合することがさらに好ましい。希釈剤は1種で用いてもよく、2種以上組み合わせて用いてもよい。
本発明の硬化性組成物は、必要に応じて1液型とすることもできるし、2液型とすることもできるが、特に1液型として好適に用いることができる。本発明の硬化性組成物は大気中の湿気により常温で硬化することが可能であり、常温湿気硬化型硬化性組成物として好適に用いられるが、必要に応じて、適宜、加熱により硬化を促進させてもよい。
本発明の硬化性組成物を製造する方法は特に制限はなく、例えば、前記成分(A)、(B)、(C)及び(D)を所定量配合し、また必要に応じて他の配合物質を配合し、脱気攪拌することにより製造することができる。成分(A)〜(C)、及び他の配合物質の配合順は特に制限はなく、適宜決定すればよい。
本発明の硬化性組成物によれば、低粘度の硬化性組成物を提供することができる。また、本発明によれば、チクソトロピック性に優れた硬化性組成物を得ることができる。
本発明の硬化性組成物は、接着剤、シーリング材、粘着材、コーティング材、ポッティング材、塗料、パテ材及びプライマー等として用いることができる。特に接着剤やシーリング材に好適に使用することができる。本発明の硬化性組成物は、チクソ性、接着性、貯蔵安定性、硬化性に優れているため、特に、接着剤に用いることが好ましく、各種建築物用、自動車用、土木用、電気・電子分野用等に使用することができる。
本発明の製品は、本発明の硬化性組成物を用いて製造されてなる製品であり、電子回路、電子部品、建材、土木製品、自動車等の各種製品に好適に利用可能である。
合成例、実施例および比較例における分析、測定は以下の方法に従って行った。
1)数平均分子量の測定
ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定した。本発明において、該測定条件でGPCにより測定し、標準ポリエチレングリコールで換算した最大頻度の分子量を数平均分子量と称する。
・分析装置:Alliance(Waters社製)、2410型示差屈折検出器(Waters社製)、996型多波長検出器(Waters社製)、Milleniamデータ処理装置(Waters社製)
・カラム:Plgel GUARD+5μmMixed−C×3本(50×7.5mm,300×7.5mm:PolymerLab社製)
・溶媒:THF
・流速:1mL/分
・換算したポリマー:ポリエチレングリコール
・測定温度:40℃
2)重合体1分子あたりの架橋性珪素基の個数の測定
FT−NMR測定装置(日本電子(株)製JNM−ECA500(500MHz))を用いて測定した。
3)粘度
硬化性組成物の粘度が200Pa・s未満の時はBH型回転粘度計(ローターNo.7−20rpm)により測定し、硬化性組成物の粘度が200Pa・s以上の時はBS型回転粘度計(ローターNo.7−10rpm)により測定した(測定温度23℃)。
4)チクソ性
SVI値を測定することによりチクソ性を評価した。すなわち、硬化性組成物の粘度が200Pa・s未満の時はBH型回転粘度計(ローターNo.7)を用いて、2rpmの粘度を20rpmの粘度で割ることにより算出し、硬化性組成物の粘度が200Pa・s以上の時はBS型回転粘度計(ローターNo.7)を用いて、1rpmの粘度を10rpmの粘度で割ることにより算出した(測定温度23℃)。上記求められたSVI値をチクソ性を示す指標として用いた。
5)硬化時間
JISA14395.19タックフリー試験に準じて、23℃RH50%の環境下にて指触乾燥時間(TFT)を測定した。
6)接着性試験
硬化性組成物を被着材(アルミ同士)に片面100μmで両面塗布し、オープンタイムを2分間取った後、ピンチ2個で圧締し、23℃50%RH条件下で7日間養生し、試験体を作製した。作製した試験体を用いて、引張速度50mm/分の条件で引張試験を行い、引張せん断接着強さを測定した。
7)組成物を貯蔵した後の粘度とチクソ性
硬化性組成物を密封ガラス容器で50℃雰囲気下にて4週間放置し、粘度、硬化時間及びSVI値を測定した。該測定された粘度、硬化時間及びSVI値をそれぞれ貯蔵後の粘度、貯蔵後のTFT及び貯蔵後のSVI値とした。
(合成例1)
攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート−グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量24000、かつ分子量分布1.3のポリオキシプロピレンジオールを得た。得られたポリオキシプロピレンジオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレンジオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体を得た。
次にこのポリオキシアルキレン系重合体100質量部に対し、塩化アリル0.74質量部を反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、トリメトキシシラン1.17質量部を触媒として白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1を得た。得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1の分子量をGPCにより測定した結果、ピークトップ分子量は25000、分子量分布1.3であった。H−NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
(合成例2)
攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート−グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量11000、かつ分子量分布1.3のポリオキシプロピレンジオールを得た。得られたポリオキシプロピレンジオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレンジオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体を得た。
次にこのポリオキシアルキレン系重合体100質量部に対し、塩化アリル0.53質量部を反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、トリメトキシシラン2.44質量部を触媒として白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2を得た。得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2の分子量をGPCにより測定した結果、ピークトップ分子量は12000、分子量分布1.3であった。H−NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
(合成例3)
攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテート−グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量14500、かつ分子量分布1.3のポリオキシプロピレンジオールを得た。得られたポリオキシプロピレンジオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレンジオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体を得た。
次にこのポリオキシアルキレン系重合体100質量部に対し塩化アリル1.6質量部を反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるメチルジメトキシシラン1.8質量部を触媒として白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体A3を得た。得られた末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体A3の分子量をGPCにより測定した結果、ピークトップ分子量は15000、分子量分布1.3であった。H−NMR測定により末端のメチルジメトキシシリル基は1分子あたり1.7個であった。
(合成例4)
攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例1で得た末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1を400g、合成例2で得た末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2を200g加え、80℃に加温した。別の容器にメチルメタクリレート(商品名:ライトエステルM、共栄社(株)製)247g、n−ブチルアクリレート23g、ステアリルメタクリレート(商品名:ライトエステルS、共栄社(株)製)49g、3−メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業(株)製)45g、3−メルカプトプロピルトリメトキシシラン23.77g、AIBN10.56gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、ポリオキシアルキレン系重合体とビニル系重合体(GPCで測定した分子量約5000、分子量分布1.6)の混合物であるトリメトキシシリル基を有する有機重合体A4を得た。ポリオキシアルキレン系重合体とビニル系重合体の混合重量比は61:39である。
(合成例5)
攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例3で得た末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体A3を600g加え、80℃に加温した。別の容器にメチルメタクリレート(商品名:ライトエステルM、共栄社(株)製)247g、n−ブチルアクリレート23g、ステアリルメタクリレート(商品名:ライトエステルS、共栄社(株)製)49g、3−メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業(株)製)45g、3−メルカプトプロピルトリメトキシシラン23.77g、AIBN10.56gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、ポリオキシアルキレン系重合体とビニル系重合体(GPCで測定した分子量約5000、分子量分布1.6)の混合物である有機重合体A5を得た。ポリオキシアルキレン系重合体とビニル系重合体の混合重量比は61:39である。
(合成例6)
攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、減圧脱気後、窒素ガス置換して、窒素気流下にてBFジエチルエーテル錯体2.4g入れ、50℃に加温した。続いて脱水メタノール1.6gの混合物をゆっくりと滴下し混合させた。撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えた新たなフラスコに、合成例3で得られた重合体A3を100g、トルエン5g入れた。23℃にて30分間撹拌後、110℃に加温し減圧撹拌を2時間行い、トルエンを除去した。この容器に先ほど得られた混合物を窒素気流下にて4.0gゆっくりと滴下し、滴下終了後、反応温度を120℃に昇温し、30分間反応させた。反応終了後、減圧脱気を行い未反応物の除去を行った。末端にジフルオロメチルシリル基を有するポリオキシアルキレン系重合体B1を得た。得られた重合体B1の1H−NMRスペクトル(Shimazu社製のNMR400を用いて、CDCl溶媒中で測定)を測定したところ、原料である重合体A3のシリルメチレン(−CH−Si)に対応するピーク(m,0.63ppm)が消失し、低磁場側(0.7ppm〜)にブロードピークが現れた。
(実施例1〜6)
攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、表1に示した各成分を表1に示した量(単位g)添加し、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の初期及び貯蔵後それぞれの粘度、チクソ性(SVI値)、硬化性(タックフリータイム、TFT)及び接着性を測定した。結果を表2に示した。
Figure 0006667125
*1 アエロジル R972:日本アエロジル(株)製
*2 ケッチェンブラックEC600JD:ライオン(株)製、BET比表面積1270m/g、1次粒子系34mm、pH値9。
*3 ケッチェンブラックEC300JD:ライオン(株)製、BET比表面積800m/g、1次粒子系39.5mm、pH値9。
*4 DBU(1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン)とオクチル酸との反応物、U−CAT SA102:サンアプロ(株)製
*5 ゼフィアック F320:ゼオン化成(株)製
*6 ARUFON UP−1110:東亜合成(株)製
*7 KBM603:信越化学工業(株)製
*8 KBM1003:信越化学工業(株)製
*9 N−11:JX日鉱日石エネルギー(株)製
Figure 0006667125
(比較例1〜5)
表3に示した成分、量を用いたほかは実施例1と同様に硬化性組成物を調製し、特性を評価した。結果を表4に示した。
Figure 0006667125
Figure 0006667125
(評価結果)
表4の比較例2から明らかなように、フュームドシリカのみを使用して2程度のSVIを得ようとするとフュームドシリカを7質量部必要とする。この場合、初期粘度が大きいものになり、また、貯蔵後に粘度が大きく上昇し貯蔵安定性も良くない。また、比較例3から明らかなように、カーボンブラックのみを使用して高いSVIを得ようとすると可塑剤量を増量しないと粘度測定が困難になるほど粘度が高い組成物となり、また、硬化時間が少し長いものになる。比較例4、5のようにカーボンブラックのみを添加した場合少量では高いSVIがでない。
これに対し、実施例1,2,5から明らかなように、フュームドシリカに少量のカーボンブラックを添加すると、高いSVI値と低い粘度を有する硬化性組成物が得られる。また、この硬化性組成物は硬化時間も短く、若干の増粘はあるが貯蔵安定性にも優れている。実施例4のように硬化時間の長い末端にメチルジメトキシシリル基を有するポリオキシアルキレン系重合体とビニル系重合体の混合物である有機重合体A5を用いても高いSVIを得られた。実施例6のようにポリオキシアルキレン系重合体である有機重合体A1を用いても高いSVIを得られた。

Claims (4)

  1. (A)珪素原子に結合した加水分解性基を有し、シロキサン結合を形成することにより架橋し得る珪素基を有し且つ主鎖がポリシロキサンでない有機重合体(但し、Si−F結合を有するものを除く)100質量部、
    (B)Si−F結合を有する珪素基を有する化合物0.1〜20質量部、
    (C)フュームドシリカ0.1〜質量部、及び
    (D)カーボンブラック0.01〜10質量部
    を含有し、
    前記重合体(A)の主鎖骨格が、ポリオキシアルキレン系重合体及び(メタ)アクリル系重合体からなる群から選択された少なくとも1種の化合物であり、
    前記(D)カーボンブラックの比表面積が600〜2000m/gであり、pHが7.1以上であることを特徴とする硬化性組成物。
  2. 請求項1記載の硬化性組成物を用いてなる接着剤。
  3. 請求項1記載の硬化性組成物を用いてなるシーリング材。
  4. 請求項1記載の硬化性組成物を用いて製造されてなる製品。
JP2015103027A 2014-06-26 2015-05-20 チクソトロピック性に優れた硬化性組成物 Active JP6667125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015103027A JP6667125B2 (ja) 2014-06-26 2015-05-20 チクソトロピック性に優れた硬化性組成物

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014131111 2014-06-26
JP2014131111 2014-06-26
JP2015103027A JP6667125B2 (ja) 2014-06-26 2015-05-20 チクソトロピック性に優れた硬化性組成物

Publications (2)

Publication Number Publication Date
JP2016027088A JP2016027088A (ja) 2016-02-18
JP6667125B2 true JP6667125B2 (ja) 2020-03-18

Family

ID=55352631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015103027A Active JP6667125B2 (ja) 2014-06-26 2015-05-20 チクソトロピック性に優れた硬化性組成物

Country Status (1)

Country Link
JP (1) JP6667125B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469875B2 (ja) * 2019-12-23 2024-04-17 株式会社カネカ 硬化性組成物及びその硬化物
CN115572273B (zh) * 2022-08-30 2024-04-09 万华化学集团股份有限公司 一种甲基丙烯酸缩水甘油酯的连续制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045547A (ja) * 2004-07-05 2006-02-16 Toto Ltd タイル用接着剤
JP2009215331A (ja) * 2008-03-06 2009-09-24 Kaneka Corp SiF基を有する重合体を含有する硬化性組成物

Also Published As

Publication number Publication date
JP2016027088A (ja) 2016-02-18

Similar Documents

Publication Publication Date Title
JP6527589B2 (ja) 硬化性組成物
JP6475615B2 (ja) 硬化性組成物およびその硬化物
JP5991523B2 (ja) 常温湿気硬化性接着剤組成物
JPH06172631A (ja) 硬化性組成物
JP6561062B2 (ja) 硬化性組成物
WO2014192842A1 (ja) 硬化性組成物
JP6682227B2 (ja) 硬化性組成物
WO2015133564A1 (ja) 硬化性組成物
JP6108514B2 (ja) 硬化性組成物
JP2013241578A (ja) 硬化性組成物
WO2022203065A1 (ja) 硬化性組成物及びその硬化物
JP6198180B2 (ja) 2液型硬化性組成物
JP6667125B2 (ja) チクソトロピック性に優れた硬化性組成物
JP7224131B2 (ja) 硬化性組成物
JP6052061B2 (ja) 硬化性組成物及び硬化触媒
JP6667124B2 (ja) 貯蔵安定性に優れた硬化性組成物
JP4675126B2 (ja) 硬化性組成物、シーリング剤及び接着剤
WO2022163563A1 (ja) ポリオキシアルキレン系重合体及びその混合物
JP4741867B2 (ja) 硬化性組成物、シーリング剤及び接着剤
JP2012188594A (ja) 接着性が改善された硬化性組成物
JP6640723B2 (ja) 積層体およびシーリング方法
JP2015038196A (ja) 湿気硬化型硬化性組成物
JP2020164607A (ja) 反応性シリル基含有(メタ)アクリル酸エステル系重合体およびこれを含有する硬化性組成物
JP2020158733A (ja) 硬化性組成物、及び硬化物
JP2015025689A (ja) 放射線遮蔽材の接合方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200206

R150 Certificate of patent or registration of utility model

Ref document number: 6667125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250