JP6659227B2 - 翼アセンブリを支持するための装置、システム、及び方法 - Google Patents

翼アセンブリを支持するための装置、システム、及び方法 Download PDF

Info

Publication number
JP6659227B2
JP6659227B2 JP2015052833A JP2015052833A JP6659227B2 JP 6659227 B2 JP6659227 B2 JP 6659227B2 JP 2015052833 A JP2015052833 A JP 2015052833A JP 2015052833 A JP2015052833 A JP 2015052833A JP 6659227 B2 JP6659227 B2 JP 6659227B2
Authority
JP
Japan
Prior art keywords
support
load balancing
connection
balancing structure
respect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015052833A
Other languages
English (en)
Other versions
JP2015212136A (ja
Inventor
マシュー レイ デスジャーディエン,
マシュー レイ デスジャーディエン,
エリック エム. リード,
エリック エム. リード,
スティーヴン エー. ベスト,
スティーヴン エー. ベスト,
ジェウン シン,
ジェウン シン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2015212136A publication Critical patent/JP2015212136A/ja
Application granted granted Critical
Publication of JP6659227B2 publication Critical patent/JP6659227B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/50Handling or transporting aircraft components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/10Manufacturing or assembling aircraft, e.g. jigs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/50Aeroplanes, Helicopters
    • B60Y2200/51Aeroplanes
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/502Application of doors, windows, wings or fittings thereof for vehicles for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/50Convertible metal working machine

Description

本開示は、概して、構造体の製造に関し、特に、航空機の構造体の製造に関する。更により具体的には、本開示は、構造体を使用する完成した航空機の構造体の製造の間に、構造体の選択された構成を維持するための方法及び装置に関する。
1つの実施例のように、翼のための前スパーアセンブリ及び後ろスパーアセンブリは、翼をアセンブリングするために実行される様々な作動の間に、互いに関して特定の位置に保持される必要があり得る。これらの作動は、同時に、異なる時間において、又はその両方で実行され得る。例えば、非限定的に、実行される作動は、ドリリング、カウンターシンキング、締結、結合、密封、被覆、検査、塗装、溶接、機械加工、接着、積層造形工程、又は他の適切なタイプの作動の任意の組み合わせを含み得る。
航空機の構造体をアセンブリングするための幾つかの現在利用可能な方法は、アセンブリング工程の間に構成要素を特定の位置に保持するために、固定された治具を使用する。幾つかの場合において、これらの固定された治具は、航空機の構造体を製造するためのアセンブリラインを形成するために、工場の床に締結され得る。しかしながら、これらの治具は、治具が典型的には永久的に工場の床に締結されているので、アセンブリラインの将来の拡大を制限し得る。例えば、これらの固定された治具は、工場の床にボルトで固定されるか、又は何らかのやり方で工場の床に固定される、固定された建造物の形をとり得る。
更に、これらの治具は、種々の形状及びサイズの航空機の構造体の製造を受け入れることができない可能性がある。一旦設置されると、固定された治具は、航空機の設計の変化、製造位置における変化、航空機の生産速度における変化、又は他のタイプの変化を構成するために必要な柔軟性を許容し得ない。結論として、航空機の構造体のアセンブリに対してこれらのタイプの固定された治具を使用することは、アセンブリ工程が望ましいものよりも時間がかかり、かつ高価になることをもたらし得る。付加的に、固定された治具は、長期にわたり望ましいものよりも多くの整備を必要とし得る。
例えば、翼などの航空機の構造体が水平な位置に現在保持されている1つのやり方は、固定された治具などの固定された支持体の使用を含み得る。このタイプの翼のアセンブリングは、水平構築として言及され得る。固定された治具は、翼に対して部品を保持するために使用され得る構造体又は装置であり得る。
固定された治具は、製造環境の床に取り付けられ得、かつ1つの床の位置から別の床の位置へ移動し得ず又は移動され得ない。言い換えると、固定された治具は不動であり得る。固定された治具は、制御ポイントにおいて翼のための部品に取り付けられ得る、ツールを有し得る。これらのツールは、アセンブリの寸法形状を許容範囲内に収め、かつ部品を翼のアセンブリのための望ましい位置の中へ収めるために、制御ポイントにおいて部品を保持し得る。制御ポイントは、前縁又は後縁端付着点などの構造体上の付着点、又はスラット、スポイラー、ラダー、フラップ、操縦翼面、又は何らかの物が構築工程の間において構造体に取り付けられ得る他のポイントなどの、構造体のための操縦翼面ヒンジポイントであり得る。
固定された治具の中のツールは、フィードバックループを有し得、床に対する支持体を有し得、かつ地球的位置に関して校正され得る。これらのタイプの固定された治具は、高価で、不動で、柔軟性がなく、かつ製造における障壁をもたらし得る。個別のポゴ(discrete pogos)のシステムが、アセンブリのための部品を翼の中へ保持するために使用され得る。制御ポイントの数が増加する場合、このタイプのシステムは雑然となり得、かつこのタイプのシステムの利点は低減され得る。更に、ポゴは数値制御され得、かつ膨大な資本の投資を必要とし得る。
アセンブリのための部品を翼の中へ保持するための現在使用されているシステムを用いて、翼が正しい方位、位置、及び受け入れ可能な変位を伴ってアセンブリングされ得ることを確実にするために、多くの数の制御ポイントが使用される。翼のための水平構築を用いてこれらの制御ポイントを管理することは、望ましい製造状態をもたらさない可能性がある。例えば、多くの数の制御ポイントを伴って、スパー、翼端、及び翼のためのアセンブリの底部側に対するアクセスは、望ましいものよりも困難になり得る。それ故、他の潜在的な問題と同様に、上述された問題のうちの少なくとも幾つかを考慮に入れる方法及び装置を有することが望まれる。
1つの例示的な実施形態において、装置は、支持体、支持体に関連する負荷バランシング構造体、及び負荷バランシング構造体と関連する接続装置の組を備え得る。接続装置の組は、制御ポイントの組を形成するために、構造体に接続するように構成され得る。接続装置の組のうちの各々は、制御ポイントの組の中の対応する制御ポイントの位置を独立して制御するように構成され得る。
別の例示的な実施形態において、装置は、第1の支持体、第2の支持体、第1の支持体及び第2の支持体に関連する負荷バランシング構造体、及び負荷バランシング構造体と関連する接続装置の組を備え得る。接続装置の組は、制御ポイントの組を形成するために、構造体に接続するように構成され得る。接続装置の組のうちの各々は、制御ポイントの組の中の対応する制御ポイントの位置を独立して制御するように構成され得る。
更に別の例示的な実施形態において、装置は、任意の数の支持体、任意の数の支持体に関連する負荷バランシング構造体、及び負荷バランシング構造体に関連する接続装置の組を備え得る。任意の数の支持体は、構造体に関して大まかに位置決めされるように構成され得る。接続装置の組は、制御ポイントの組において、構造体に精密に接続するように構成され得る。
更に別の例示的な実施形態では、構造体を支持するための方法が提供され得る。任意の数の支持体は、第1の動作システムを使用して、任意の数の支持体を構造体に関して位置決めするために、ワークサーフェイス(work surface)に関して移動され得る。任意の数の支持体に関連する負荷バランシング構造体は、第2の動作システムを使用して、負荷バランシング構造体を構造体に関して位置決めするために移動され得る。負荷バランシング構造体に関連する要素は、第3の動作システムを使用して、要素を構造体上の位置に関して位置決めするために移動され得る。
更に別の例示的な実施形態では、構造体を支持するための方法が提供され得る。第1の動作システムを使用して、構造体に関して支持体をおおまかに位置決めするために、支持体はワークサーフェイス上に移動され得る。支持体に関連する負荷バランシング構造体は、第2の動作システムを使用して、支持体に関して負荷バランシング構造体に関連する接続装置を細かく位置決めするために移動され得る。接続装置の要素は、第3の動作システムを使用して、構造体上の位置において要素を精密に位置決めするために、負荷バランシング構造体に関して移動され得る。
特徴及び機能は、本開示の様々な実施形態で独立に実現することが可能であるか、以下の説明及び図面を参照してさらなる詳細が理解され得る、更に別の実施形態で組み合わせることが可能である。
例示的な実施形態の特徴と考えられる新規な特徴は、添付の特許請求の範囲において説明される。しかしながら、例示的な実施形態と、好ましい使用モード、更にはその目的と特徴は、添付図面を参照しながら本開示の例示的な実施形態の以下の詳細な説明を読むことによって最もよく理解されるであろう。
例示的な実施形態による、製造環境のブロック図である。 例示的な実施形態による、負荷バランシング構造体に関連する接続装置の等角図である。 例示的実施形態による、接続装置の拡大等角図である。 例示的な実施形態による、接続装置の前面図である。 例示的な実施形態による、接続装置の側面図である。 例示的な実施形態による、2つの支持体に取り付けられたビームの等角図である。 例示的な実施形態による、ビーム、第1の支持体、及び第2の支持体の前面図である。 例示的な実施形態による、支持体の等角図である。 例示的な実施形態による、支持体の前面図である。 例示的な実施形態による、製造環境の等角図である。 例示的な実施形態による、製造環境の一部分及び操縦可能支持システムの拡大図である。 例示的実施形態による、構造体を保持するための方法の流れ図である。 例示的実施形態による、航空機のための翼のアセンブリングの間に構造体を保持するための方法の流れ図である。 例示的な実施形態による、航空機の製造及び保守方法を示すブロック図である。 例示的な実施形態が実装され得る、航空機のブロック図である。
例示的な実施形態は、種々の検討事項を認識し考慮する。例えば、例示的な実施形態は、航空機の構造体のアセンブリの中で使用される構成要素を保持するために、持ち運びができ、かつ再構成可能な支持システムを使用することが望ましいことを認識し、かつ考慮している。この持ち運びができ、再構成可能な支持システムは、任意の数の自動ガイドビークル(AGV)を含み得る。特に、工場領域などの製造環境の中へ、かつ1以上の種々のタイプの航空機の構造体をアセンブリングするために必要とされるような製造環境の外へ、移動されることができる支持システムが望ましい。大抵、持ち運びができ、かつ再構成可能な支持システムは、おそらく、製造環境の範囲内で1つの位置から別の位置へ工場の作業現場を横断して、移動され又は操縦される。
付加的に、例示的な実施形態は、各々が製造工程の異なる段階に対して設計される、製造環境の範囲内の種々のワークセル又は作業領域の間で、移動されることができる支持システムを有する支持体を有することが望ましいことを認識し、かつ考慮している。例示的な実施形態はまた、自動ガイドビークルが使用される場合、選択された構成へ集合する自動ガイドビークルを有することが望ましいことを認識し、かつ考慮している。この選択された構成は、構築工程の間に翼のための部品のアセンブリを保持する、運搬できる治具を形成し得る。
例示的な実施形態は、アセンブリが自動ガイドビークルのための構成によって生成される運搬できる治具から取り除かれ得るように、アセンブリのポイントが到達されるまで、協働的なやり方で種々の作業領域、セル、又は他の位置に対して位置から位置へ、運搬できる治具の中のこれらの自動ガイドビークルを移動させることが望ましいことを認識し、かつ考慮している。例示的な実施形態は、自動ガイドビークルを、別の運搬できる治具、保管場所、又はその両方の構成に対する別の位置へ戻すように移動させることが望ましいことを認識し、かつ考慮している。
このやり方において、支持システムによって支持されている構造体は、ワークセルの間でより容易に、かつより素早く移動され得る。例示的な実施形態は、持ち運びができ、かつ再構成可能な支持システムが、全体の製造工程に柔軟性を提供し得、かつ航空機の構造体などの製品を製造するために必要な、全体の時間、費用、及び労力を低減し得ることを認識し、かつ考慮している。
更に、例示的な実施形態は、支持体が、工場の床に関して何らかの望ましい構成又は配置を形成するために、工場の床に沿って移動することができるように、互いに関して独立で運搬できる支持体を使用することが望ましいことを認識し、かつ考慮している。このやり方において、種々の数の支持体が、種々のサイズの、種々の形状の、又はその両方の構成要素を支持するために使用され得る。
例示的な実施形態は、自動ガイドビークルの構成又は配置が、構築工程の間に、工場の作業現場に関して1つの位置から別の位置へアセンブリを移送するために、1以上の運搬できる治具を形成し得ることを認識し、かつ考慮している。更に、例示的な実施形態はまた、部品のアセンブリングが、1つの位置から別の位置への運搬できる治具の移動の間に生じ得ることを認識し、かつ考慮している。
例示的な実施形態はまた、過去に、アセンブリの寸法制御がフィクスチャリング(fixturing)に大きく依存していたことを認識し、かつ考慮している。この依存は、治具が、重く、柔軟性がなく、かつ工場の作業現場にボルトで固定されることを必要とする。例示的な実施形態は、トレンドが、アセンブリの寸法制御がアセンブリの構成要素及び構築工程に基づく方へ向かっており、かつ固く、大きく、硬く、かつ取り付けられた治具に基づかない方へ向かっていることを認識し、かつ考慮している。例示的な実施形態は、このトレンドを伴って、アセンブリングされる構造体の方向及び寸法制御が、アセンブリングの間のフィクスチャリング(fixturing)によって制御される比較的多くの数のポイントによって制御されることを認識し、かつ考慮している。保持ポイントの数が増加するにしたがって、アセンブリングの間の構造体の寸法制御に対する潜在的な能力がまた増加する。自動ガイドビークル(AGV)は、アセンブリングの間のフィクスチャリングによって制御される、多くの数のポイントにおいて構造体を保持するために採用され得る。
しかしながら、例示的な実施形態はまた、多くの数の保持ポイントがまた、1つの制御ポイントに対する1つの自動ガイドビークルの比率が使用される場合、多くの数の自動ガイドビークルを必要とすることを認識し、かつ考慮している。1対1の比率のために、より多くの数の自動ガイドビークルは、アセンブリングの間に構造体の下の工場の作業現場の一部分を高い密度で占め得る。翼の前縁及び後縁端、翼先端、並びに翼上側及び下側上でのアセンブリングの作動のための、構造体の下の領域、及び自動ガイドビークルの周りの領域へのアクセスは、望ましいものよりも困難になり得る。この困難さは、構造体のアセンブリングに関する、時間、費用、又はそれらの両方を増加させ得る。
それ故、例示的な実施形態は、1つの制御ポイントに対する1つの自動ガイドビークルの比率を避けることが望ましいことを認識し、かつ考慮している。自動ガイドビークル毎の制御ポイントの数が増加する場合、アセンブリング作動のためのアクセス及び退出が改良され得る。例えば、例示的な実施形態は、自動ガイドビークルに対する制御ポイントの比率が、3:2、4:2、5:2、3:1、4:1、2:1、6:2、8:2又は1:1以外の何らかの他の比率へ増加され得ることを認識し、かつ考慮している。それ故、より少ない自動ガイドビークルが、アセンブリのより柔軟な領域において必要とされ得る。例えば、より少ない自動ガイドビークルが、翼アセンブリの先端部分において必要とされ得る。
付加的に、例示的な実施形態は、その上で治具が取り外し可能に締結される、可動プラットフォームを含む支持システムを有することが望ましいことを認識し、かつ考慮している。このやり方において、支持システムは、アセンブリラインが必要に応じて拡大したり、又は縮小したりすることを可能にし得る。更に、このタイプの支持システムは、航空機の設計の変化、製造位置における変化、航空機の生産速度における変化、又は他のタイプの変化を構成するために必要な柔軟性を提供し得る。
しかしながら、例示的な実施形態はまた、支持システムを移動させることが、支持システムによって保持されている構成要素の位置が、これらの構成要素のための望ましい位置から逸脱することをもたらし得ることを認識し、かつ考慮している。幾つかの場合において、製造工程の間の特定の作動の実行は、支持システムによって支持されている構成要素の望ましくない動作をもたらし得る。
それ故、例示的な実施形態は、接続ポイントの自動的な選択、及びアセンブリングの間の接続ポイントのモニタリングを有することが望ましいことを認識し、かつ考慮している。それ故、例示的な実施形態は、自動ガイドビークルの中にコンピュータ数値制御(CNC)を含み得、又は組み込み得る。
1つの実施例として、支持システムは、工場の中の翼の製造の間に、選択された構成において航空機のための翼を形成するための翼アセンブリを保持するために使用され得る。例示的な実施形態は、増加し又は減少する重力、及び製造の間に翼アセンブリに対して適用される負荷に基づいて、ワークセルと選択された構成からの逸脱との間の支持システムの動作の間の選択された構成からの任意の逸脱を構成する製造の間の翼アセンブリの選択された構成を維持することができる、支持システムを有することが望ましいことを認識し、かつ考慮しいている。
それ故、例示的な実施形態は、おおまかに、細かく、かつ精密に制御ポイントを構造体上に位置決めすることができる支持システムを有することが望ましいことを認識し、かつ考慮している。例えば、支持システムは、自動ガイドビークルのより高い負荷容量を活用し得る。単一の高性能スプレッダービーム(spreader beam)上で、多数のポイントを支持するために、2つの自動ガイドビークルの間にブリッジが作られ得る。このタイプの支持体は、翼の先端において殊に上手く働き得、そこでは負荷が軽く、かつ制御ポイントの密度が高い。このやり方において、作業のためのアクセス及び退出は改良され得る。
更に、計測システムが、自動ガイドビークル及び高性能スプレッダービームによって提供される様々な制御ポイントが、制御ポイントのうちの各々のフィードバック制御を提供するために使用し得ることを確実にするために使用され得る。特に、高性能スプレッダービーム及び自動ガイドビークルによって支持される翼アセンブリ上の各々のポイントは、計測システムを使用してモニターされ得る。自動ガイドビークル及び高性能スプレッダービーム上の接続装置は、支持されているポイントが望ましい位置にあることを確実にするために作動され得る。
このやり方において、スプレッダービーム及び自動ガイドビークルは、自動接続ポイント位置及びアセンブリングの間の接続ポイントのモニタリングを提供し得る。更に、計測システムは、自動接続ポイント位置の望ましい精度を確実にするために、重要なデータのフィードバックを提供し得る。
1つの例示的な実施例において、コンピュータ数値制御のために使用される工程は、自動ガイドビークルの中に含まれ得る。例示的な実施例は、制御ポイントにおいて、部品を地球的に位置付け、かつ細かい位置決めシステムを使用する柔軟性を提供する。このやり方において、1以上の例示的な実施形態は、自動ガイドビークルの能力を活用し得、かつコンピュータ数値制御工程を介して付加的な制御を提供する。以下に説明される例示的な実施形態の中におけるこれらの及び他の特徴を伴って、自動ガイドビークルの数、サイズ、及び重量又はそれらの何らかの組み合わせが低減され得る。
例えば、単一の自動ガイドビークルが採用される場合よりも、軽く成り得、かつ低い剛性を必要とするやり方において、2つの自動ガイドビークルに接続する、負荷バランシング構造体が使用され得る。このやり方において、アセンブリ、ツールの動作、人々、及び様々な位置に対する装備に対するアクセスが、より容易に生じ得る。
ここで図面を参照し、かつ特に、図1を参照すると、例示的な実施形態による、ブロック図の形をとる製造環境の図が描かれている。この例示的な実施例において、製造環境100は、製品101が製造され得る環境の実施例であり得る。製品101は、任意の数の部品、構成要素、サブアセンブリ、アセンブリ、又はシステムから成る物理的な製品である。1つの例示的な実施例において、製品101は、航空機104のための翼102の形をとり得る。アセンブリングされた翼102は、製品101に対する1つの実施態様の実施例であり得る。
他の例示的な実施例において、製品101は、例えば、非限定的に、航空機104のための胴体、航空機104のための操縦翼面、航空機104のためのエンジンシステム、航空機104それ自体、船体、衛星、ハウジング、フレーム、コンテナ、又は何らかの他のタイプの製品などの、何らかの他の形をとり得る。
製品101の製造は、任意の数の種々のやり方において実行され得る。製品101の製造は、任意の数の作動の実行を含み得る。例えば、製造工程105は、製品101を製造するために使用され得る。製造工程105は、ドリリング、カウンターシンキング、締結、結合、密封、被覆、検査、塗装、溶接、機械加工、接着、積層造形工程、又は他の適切なタイプの作動の任意の数及び任意の組み合わせを含み得る。
1つの例示的な実施例において、製造工程105を実行するために使用される製造システムは、柔軟な製造システム106の形をとり得る。柔軟な製造システム106は、新しい製品タイプを生み出すように変化する柔軟性、製品101のための部品上で遂行される作動の順序を変化する能力、部品上で同じ作動を実行するために複数の装置を使用する能力、容積、容量、若しくは機能、又は何らかのそれらの組み合わせにおける大きなスケールの変化を取り扱う能力を有する、製造システムである。
この例示的な実施例において、柔軟な製造システム106は、少なくとも部分的に自動化された製造システムであり得る。1つの例示的な実施例において、柔軟な製造システム106は、ワークサーフェイス(work surface)115上の製品101を製造するために、実質的に十分に自動化されたシステムである。この実施例において、柔軟な製造システム106は、自動柔軟製造システムとして言及され得る。
幾つかの例示的な実施例において、製造工程105は、アセンブリ工程107の形をとり得る。アセンブリ工程107は、製品101を形成するために必要な、様々な部品、サブアセンブリ、及びアセンブリをアセンブリングするために使用され得る。製造工程105がアセンブリ工程107の形をとる場合、柔軟製造システム106は、柔軟なアセンブリシステムの形をとり得る。
柔軟製造システム106は、この例示的な実施例の中において可動であり得、かつ再構成可能である。特に、柔軟製造システム106は、複数の装置110を含み得、それらのうちの各々は、ワークサーフェイス115に関して様々な位置197へ移動されることが可能である。位置197のうちの各々は、ワークサーフェイス115に関する、位置、方向、又はそれらの両方から成り得る。位置は、2次元座標システム、又は3次元座標システムに関し得る。
本明細書の中において使用されるように、「可動な」装置は、そのアイテムが移動し又は移動されることができることを意味し得る。幾つかの場合において、可動装置は、運搬できる装置の形をとり得る。「運搬できる」装置は、3次元空間の中の1つの位置から、3次元空間の中の別の位置へ移動することができる。特に、装置の全体は、装置を作り上げる構成要素のうちの全てを含み得、3次元空間の中の1つの位置から3次元空間の中の別の位置へ移動し又は移動されることができる。このやり方において、装置は、特定の位置に固定されない。幾つかの場合において、運搬できる装置は、操縦可能装置の形をとり得る。
「操縦可能」装置は、上述したように、3次元空間の中の1つの位置から、3次元空間の中の別の位置へ移動することができる。例えば、非限定的に、操縦可能装置の動作は、装置のためのコントローラ、柔軟製造システム106のためのシステムコントローラ、又は何らかの他のタイプのコントローラを使用して制御され得る。実施態様に応じて、操縦可能装置の動作は、電気的、機械的、電気機械的、又は手動のうちの少なくとも1つによって制御され得る。このやり方において、操縦可能装置は、任意の数の種々のやり方においてその全体が移動し、又は移動されることができる。幾つかの場合において、操縦可能装置の動作は、電気的及び手動の両方によって制御され得る。例えば、装置は、ワークサーフェイス115を横断して操縦可能であり得、かつワークサーフェイス115上の1つの位置から別の位置へ移動し得る。
ワークサーフェイス115は、プラットフォーム、グランド、製造環境100の床、工場の作業現場、又は何らかの他のタイプのワークサーフェイスの形をとり得る。1つの例示的な実施例として、ワークサーフェイス115は、工場の床199などの床の形をとり得る。別の例示的な実施例において、ワークサーフェイス115は、工場の床199上に配置された個別のフローリングの形をとり得る。この個別のフローリングは、その上に複数の装置110が容易に移動し得る、実質的に滑らかでかつ実質的に水平な表面を生成するために使用され得る。
描かれているように、複数の装置110のうちの一部分は、支持システム112を形成し得る。例えば、複数の装置110は、支持システム112を形成する任意の数の支持体111を含み得る。実施態様に応じて、任意の数の支持体111は、1以上の支持体を含み得る。支持体128は、任意の数の支持体111のうちの1つの実施例であり得る。任意の数の支持体111が、1より多い数の支持体を含む場合、任意の数の支持体111は、支持システム112を形成する複数の支持体113の形をとり得る。
支持システム112は、柔軟で、可動で、かつ再構成可能である。例えば、支持システム112は、この例示的な実施例の中において、操縦可能支持システム114の形をとり得る。操縦可能支持システム114は、幾つかの場合において、工場の床199を横断して移動し得る可動支持システムであり得る。特に、操縦可能支持システム114を形成する複数の支持体113は、様々な位置197へ操縦され得る。このやり方において、複数の支持体113は、複数の操縦可能支持体117として言及され得る。
1つの例示的な実施例において、複数の操縦可能支持体117は、複数の自動ガイドビークル195の形をとり得る。これらの例示的な実施例において、複数の自動ガイドビークル195は、製造工程105を実行することにおける使用のために、運搬できるアセンブリ治具193を形成するように操縦され得、かつ配置され得る。
複数の自動ガイドビークル195の中の任意の数の自動ガイドビークルを使用する、運搬できるアセンブリ治具193の構成は、例示的な実施例の中において工場の床199上の構造体116の動作の間に生じ得る。複数の自動ガイドビークル195のうちの付加的なものは、構造体116、構造体116のアセンブリ、又はそれらの両方の動作の間に、運搬できるアセンブリ治具193に付加され得る。このやり方において、運搬できるアセンブリ治具193は、製造工程105の前、間、及び後に、再構成可能である。
操縦可能支持システム114は、ワークサーフェイス115に関して移動するように構成され得る。例えば、非限定的に、操縦可能支持システム114は、ワークサーフェイス115に沿って移動されることができる。ワークサーフェイス115は、その上で構造体116をアセンブリングするために作動が実行され得る、位置又は表面であり得る。これらの作動は、製造環境100の中において実行され得る、ドリリング、検査、締結具設置、密封、移送、又は構造体116に関する他の作動を含み得る。
操縦可能支持システム114は、製造工程105の任意の数の段階120の間に、構造体116を支持し、かつ保持するために使用され得る。本明細書の中において使用されるように、「任意の数の」アイテムは、1以上のアイテムを含み得る。このやり方において、任意の数の段階120は、1以上の段階を含み得る。操縦可能支持システム114は、工場の床199に取り付けられ、ボルトで留められ、又はさもなければ接続される、固定された治具又は他の固定された建造物に取って代わり得る。
構造体116は、任意の数の段階120のうちの任意の1つの間の製品101である。このやり方において、構造体116は、製品101、部分的に完成した製品101、又は十分に完成した製品101を形成するために使用される、1以上の構成要素であり得る。幾つかの場合において、任意の数の段階120が複数の段階を含む場合、構造体116は、製造工程105の任意の数の段階120の中の1つの段階から、任意の数の段階120の中の次の段階へ変わり得る。
例えば、製造される製品101が翼102である場合、スパーアセンブリ121、リブアセンブリ122、及び外板123は、製造工程105の任意の数の段階120の中の種々の段階において設置され得る。幾つかの場合において、構造体116は、翼アセンブリ124として言及され得、それは、任意の数の段階120のうちの特定の段階に応じて、スパーアセンブリ121、リブアセンブリ122、外板123、他の構成要素、又はそれらの何らかの組み合わせを含む。
この例示的な実施例において、任意の数の段階120は、製造環境100の範囲内の複数のワークセル126の中で実行され得る。複数のワークセル126は、製造環境100の範囲内の1以上の位置又は領域であり得る。複数のワークセル126のうちの各々は、製造工程105の任意の数の段階120のうちの少なくとも1つを実行するために指定され得る。幾つかの例示的な実施例において、製造工程105の任意の数の段階120のうちの一部分のみが、製造環境100の範囲内において実行され得、一方、製造工程105の任意の数の段階120のうちの別の部分は、1以上の他の環境の範囲内で実行され得る。
支持体128は、この例示的な実施例の中の操縦可能支持体であり得る。支持体128は、この例示的な実施例の中で、ベース構造体129、支持部材130、及び操縦システム131を含み得る。支持部材130及び操縦システム131は、ベース構造体129に関連し得る。1つの例示的な実施例において、支持体128は、第1の自動ガイドビークル191の形をとり得る。
本明細書の中において使用されるように、1つの構成要素が別の構成要素と「関連」している場合、その関連は、描かれている実施例における物理的な関連である。例えば、支持部材130などの第1の構成要素は、第2の構成要素に固定されること、第2の構成要素に接着されること、第2の構成要素に設置されること、第2の構成要素に溶接されること、第2の要素に締結されること、第2の構成要素に結合されること、又は何らかの他の適切なやり方において第2の構成要素に接続されること、のうちの少なくとも1つにより、ベース構造体129などの第2の構成要素に関連すると考えられ得る。第1の構成要素はまた、第3の構成要素を使用して第2の構成要素に接続され得る。更に、第1の構成要素は、第2の構成要素の一部として、第2の構成要素の延長として、又はそれらの両方として形成されることにより、第2の構成要素に関連すると考えられる。
本明細書の中において使用されるように、「少なくとも1つ」というフレーズは、アイテムのリストとともに使用される場合、リストされたアイテムのうちの1以上の種々の組み合わせが使用され、かつリストの中の各々のアイテムのうちの1つだけが必要とされ得る、ということを意味する。アイテムは、具体的な物体、物事、動作、工程、又はカテゴリーである。言い換えると、「少なくとも1つ」は、アイテムの任意の組み合わせを意味し、又は任意の数のアイテムがリストから使用され得るが、リストの中の全てのアイテムが必要とされるわけではない。
例えば、「アイテムA、アイテムB、及びアイテムCのうちの少なくとも1つ」は、アイテムA;アイテムA及びアイテムB;アイテムB;アイテムA、アイテムB、及びアイテムC;又はアイテムB又はアイテムCを意味し得る。幾つかの場合において、「アイテムA、アイテムB、及びアイテムCのうちの少なくとも1つ」は、例えば、非限定的に、アイテムAのうちの2つ、アイテムBのうちの1つ、及びアイテムCのうちの10個;アイテムBのうちの4つ及びアイテムCのうちの7つ;又は何らかの他の適切な組み合わせを意味し得る。
この例示的な実施例において、接続装置132は、支持部材130に関連し得る。接続装置132は、支持体128を構造体116に接続するために使用され得る。この例示的な実施例において、接続装置132は、構造体116の少なくとも一部分を保持し、かつ支持するために使用され得る任意の数の要素134を含み得る。任意の数の要素134は、支持体128を構造体116に接続するために使用され得る。例えば、非限定的に、任意の数の要素134は、締結装置、接続プレート、ブラケット、接続金具、又は何らかのタイプの接続要素のうちの少なくとも1つを含み得る。
ベース構造体129は、ワークサーフェイス115に対して指定されるX‐Y平面に沿った1つの位置から、このX‐Y平面に沿った別の位置へ移動されることができる。幾つかの例示的な実施例において、ベース構造体129は、3次元空間の中の1つの位置から3次元空間の中の別の位置へ移動されることができる。
例えば、ベース構造体129は、操縦システム131を使用して、ワークサーフェイス115に関して移動されることができる。1つの例示的な実施例において、操縦システム131は、ワークサーフェイス115に沿って、ベース構造体129を任意の数の方向へ移動させることができる。このやり方において、ベース構造体129は、ワークサーフェイス115に関して全方向的になり得る。
操縦システム131は、任意の数の構成要素を含み得る。例えば、非限定的に、操縦システム131は、レールシステム、1以上の車輪を備えるホイールシステム、1以上のローラーを備えるローラーシステム、任意の数のスライダー、任意の数の空気軸受、ホロノミック(holonomic)ホイールシステム、ホロノミックホイール、メカナム(mecanum)ホイール、オムニホイール、ポリホイール、任意の数のモーター、1以上のアクチュエータを備えるアクチュエータシステム、トラックシステム、又は何らかの他のタイプの動作装置若しくはシステムのうちの少なくとも1つを含み得る。
支持部材130、接続装置132、及び任意の数の要素134は、ベース構造体129の動作が、ベース構造体129を用いて、支持部材130、接続装置132、及び任意の数の要素134を移動させるようなやり方で、ベース構造体129に関連し得る。このやり方において、ベース構造体129、支持部材130、接続装置132、及び任意の数の要素134を含む支持体128の全体は、一緒に移動され得る。言い換えると、支持体128は、十分に運搬できる支持体であり得る。
接続装置132は、接続ポイント133を形成するために、構造体116上の位置137に接続するために使用され得る。例えば、非限定的に、接続ポイント133は、接続装置132が構造体116に接触する所であり得る。他の例示的な実施例において、接続ポイント133は、接触ポイント又は接触のポイントとして言及され得る。接続ポイント133は、制御ポイント135を提供し得る。1つの例示的な実施例において、接続ポイント133は、制御ポイント135の形をとり得、かつそれ故、制御ポイント135は接続ポイント133と同じ位置に配置され得る。他の例示的な実施例において、制御ポイント135は、接続ポイント133が形成される位置137からオフセットされ得る。
制御ポイント135は、制御ポイント135が、構造体116又は製造される製品101のための基準座標システム157と位置合わせされるように、制御可能である。例えば、非限定的に、基準座標システム157は、翼座標システム、航空機座標システム、又は何らかの他のタイプの座標システムの形をとり得る。
例えば、非限定的に、基準座標システム157は、製品101、又は製品101がそのために製造されている物体若しくはプラットフォームに基づき得る。例えば、非限定的に、製品101が航空機104のためにアセンブリングされている場合、基準座標システム157は航空機座標システムであり得る。制御ポイント135は、その航空機座標システムに関する構造体116上の既知の位置に配置され得る。制御ポイント135は、製造環境100のための、基準座標システム157と地球的座標システム139との間の移行のために使用され得る。地球的座標システム139は、計測システム162を使用して識別され得る。
地球座標システム139の中の制御ポイント135の位置137は、基準座標システム157の中の制御ポイント135の位置に対応し得る。例えば、非限定的に、このやり方において、特定の作動がそこで実行され得る基準座標システム157の範囲内の位置は、地球座標システム139の範囲内の位置へと変換され得る。更に、特定の作動がそこで実行される地球座標システム139の範囲内の位置は、基準座標システム157の範囲内の位置へと変換され得る。
例えば、制御ポイント135は、製造環境100のための地球座標システム139と、基準座標システム157との間で移行するために使用され得、基準座標システム157は、翼102に対するものであるか、又は航空機104に対するものであり得る。このやり方において、制御ポイント135は、基準座標システム157に関して構造体116を位置付けるために使用され得る。
制御ポイント135は、動作システム136を使用して制御可能である。動作システム136は、接続装置132に関連し得る。この例示的な実施例の中において、動作システム136は、接続装置132の部分であると考えられ得る。動作システム136は、任意の数の種々の形をとり得る。例えば、非限定的に、動作システム136は、レールシステム、1以上の車輪を備えるホイールシステム、1以上のローラーを備えるローラーシステム、任意の数のスライダー、任意の数の空気軸受、ホロノミック(holonomic)ホイールシステム、ホロノミックホイール、メカナム(mecanum)ホイール、オムニホイール、ポリホイール、任意の数のモーター、1以上のアクチュエータを備えるアクチュエータシステム、トラックシステム、又は何らかの他のタイプの動作装置若しくはシステムのうちの少なくとも1つを含み得る。
動作システム136は、少なくとも1次元の自由度から6次元までの自由度を伴って、支持部材130に関して接続装置132を移動させるために使用され得る。支持部材130に関して接続装置132を移動させることは、3次元空間の中の制御ポイント135の位置を変化させることをもたらし得る。
例えば、動作システム136は、支持部材130に関して、接続装置132を平行移動させるか、又は接続装置132を回転させるうちの少なくとも1つのために使用され得る。例えば、動作システム136は、少なくとも1次元の並進運動の自由度から3次元までの並進運動の自由度を伴って、支持部材130に関して接続装置132を平行移動させるように構成され得る。動作システム136は、少なくとも1次元の回転運動の自由度から3次元までの回転運動の自由度を伴って、接続装置132を回転させるように構成され得る。このやり方において、接続装置132は、支持部材130に関して線形に移動されるか、若しくは支持部材130に関して平行移動されるか、支持部材130に関して回転されるか、又はそれらの両方であり得る。
この例示的な実施例において、負荷バランシング構造体138は、支持体128に関連し得る。特に、負荷バランシング構造体138は、支持体128の支持部材130に関連し得る。負荷バランシング構造体138は、高性能スプレッダービーム170であり得る。
接続装置の組140は、負荷バランシング構造体138に関連し得る。本明細書の中において使用されるように、アイテム「の組」は、1以上のアイテムを含み得る。このやり方において、接続装置の組140は、1以上の接続装置を含み得る。接続装置の組140の中の接続装置は、上述された接続装置132に類似するやり方で実装され得る。
接続装置の組140は、負荷バランシング構造体138に沿って位置決めされ得る。接続装置の組140の中の接続装置は、接続装置の組140の中の接続装置が、負荷バランシング構造体138に関して移動され得るように、負荷バランシング構造体138に対して移動可能な状態で関連し得る。
接続装置の組140のうちの各々は、制御ポイントの組142を形成するために、接続ポイントの組153において構造体116に接続するように構成され得る。接続ポイントの組153の中の接続ポイントは、上述された接続ポイント133と類似し得る。制御ポイントの組142の中の制御ポイントは、上述された制御ポイント135と類似し得る。
1つの例示的な実施例において、接続ポイントの組153は、制御ポイントの組142を形成する。接続装置の組140は、ワークサーフェイス115の上方に構造体116の少なくとも一部分を保持するために、制御ポイントの組142において構造体116に接続するように構成され得る。
接続装置143は、接続装置の組140のうちの1つの実施例であり得る。実装に応じて、接続装置143は、負荷バランシング構造体138に対して固定的に関連し得、又は負荷バランシング構造体138に対して移動可能な状態で関連し得る。例えば、接続装置143はベース145を有し得る。ベース145は、負荷バランシング構造体138に対して移動不可能、又は移動可能な状態のうちのいずれかで取り付けられ得る。更に実装に応じて、ベース145は、負荷バランシング構造体138に対して永続的に取り付けられ得、又は負荷バランシング構造体138に対して取り外し可能に取り付けられ得る。
接続装置143は、要素146を含み得る。要素146は、ベース145に対して移動可能に関連し得る。例えば、ベース145が、負荷バランシング構造体138に固定的に取り付けられ、かつ負荷バランシング構造体138に関していかなるやり方においても移動されることができない場合、要素146は、ベース145に関して移動することができ得る。要素146は、接続ポイント147を形成するために、接続装置143を構造体116上の位置151に接続するために使用され得る。接続ポイント147は、接続ポイントの組153のうちの1つの実施例であり得る。1つの例示的な実施例において、接続ポイント147は制御ポイント149を形成し得、制御ポイント149は、制御ポイントの組142のうちの1つの実施例であり得る。それ故、要素146は、制御ポイント149を形成するために、接続装置143を位置151に接続するために使用され得る。接続ポイント147及び制御ポイント149は、それぞれ、上述されたように、接続ポイント133及び制御ポイント135に類似し得る。他の例示的な実施例において、制御ポイント149は、要素146と構造体116との間に形成される接続ポイント147からオフセットされ得る。
例えば、非限定的に、構造体116が翼102に対するものである場合、制御ポイント149は、スパーアセンブリ、リブアセンブリ、外板、操縦翼面、又は翼102を形成するために使用される何らかの他のタイプの構成要素上の位置であり得る。制御ポイント149は、制御ポイント149の位置151が、翼102のための基準座標システム157、製造環境100のための地球的座標システム139、又は航空機104のための基準座標システム157と位置合わせされるように、制御され得る。このやり方において、制御ポイント149は、この位置151が何らかの基準座標システム157に関して制御され得るように、接続装置143が接続する構造体116上の任意の位置151であり得る。
接続装置143は、動作システム148を含み得る。動作システム148は、制御ポイント149を、3次元空間の中の1つの位置から、3次元空間の中の別の位置へ移動させるために使用され得る。例えば、非限定的に、動作システム148は、制御ポイント149を移動させるために、要素146を負荷バランシング構造体138に関して移動させるために使用され得る。このやり方において、制御ポイント149の位置は、少なくとも1次元の自由度から6次元の自由度までを伴って移動され得る。動作システム148は、1以上の線形な方向において制御ポイント149を平行移動させるか、1以上の軸の周りにおいて制御ポイント149を回転させるか、又はその両方のために使用され得る。
動作システム148は、任意の数の種々の形をとり得る。例えば、非限定的に、動作システム148は、レールシステム、1以上の車輪を備えるホイールシステム、1以上のローラーを備えるローラーシステム、任意の数のスライダー、任意の数の空気軸受、ホロノミック(holonomic)ホイールシステム、ホロノミックホイール、メカナム(mecanum)ホイール、オムニホイール、ポリホイール、任意の数のモーター、1以上のアクチュエータを備えるアクチュエータシステム、トラックシステム、又は何らかの他のタイプの動作装置若しくはシステムのうちの少なくとも1つを含み得る。
接続装置の組140が、負荷バランシング構造体138に取り付けられる複数の接続装置を含む場合、接続装置の組140は、負荷バランシング構造体138の長さに沿って間隔を空けて配置され得る。例えば、2つ、3つ、4つ、5つ、又は何らかの他の数の接続装置が、負荷バランシング構造体138に沿って展開され得る。実装に応じて、これらの接続装置は、負荷バランシング構造体138に沿って固定された間隔を置いて等しく配置されるか、又は接続装置のうちの1以上を移動させることによって、変化し得る間隔を置いて配置され得る。
負荷バランシング構造体138は、制御ポイントの組142において接続装置の組140に接続される構造体138によって、接続装置の組140に適用される任意の数の負荷144をバランスさせ得る。特に、負荷バランシング構造体138は、負荷バランシング構造体138に沿って、任意の数の負荷144を支持体128に対して分散し得る。
1つの例示的な実施例において、負荷バランシング構造体138は、ビームの形をとり得る。他の例示的な実施例において、負荷バランシング構造体138は、任意の数の負荷144をバランスさせるように構成される形状及びサイズを有する任意の物理的な構造体の形をとり得る。言い換えると、負荷バランシング構造体138は、接続装置の組140によって、負荷バランシング構造体138に適用される任意の数の負荷144を、接続装置の組140から支持体128に対して分散させるように構成される任意の構造体であり得る。
幾つかの例示的な実施例において、支持体128は第1の支持体150であり得る。複数の支持体113は、第2の支持体152を含み得る。負荷バランシング構造体138は、第1の支持体150及び第2の支持体152の両方に関連し得る。例えば、負荷バランシング構造体138は、第1の支持体150に関連する第1の端部154、及び第2の支持体152に関連する第2の端部156を有し得る。
1つの例示的な実施例において、動作システム160は、負荷バランシング構造体138、第1の支持体150、又は第2の支持体152のうちの少なくとも1つに関連し得る。動作システム160は、負荷バランシング構造体138を、3次元空間の中の1つの位置から、3次元空間の中の別の位置へ移動させるように構成され得る。
例えば、非限定的に、動作システム160は、負荷バランシング構造体138を、支持体128のベース構造体129に関して移動させるために使用され得る。このやり方において、支持体128に関する負荷バランシング構造体138の位置は、少なくとも1次元の自由度を伴って移動され得る。例えば、非限定的に、動作システム160は、負荷バランシング構造体138を、1以上の線形な方向において平行移動させるため、負荷バランシング構造体138を、1以上の軸の周りにおいて回転させるため、又はそれらの両方のために使用され得る。
それ故、操縦可能支持システム114は、複数の接続ポイント161において構造体116に接続する複数の接続装置163を有し得る。特に、複数の接続装置163のうちの各々は、複数の接続ポイント161の中の少なくとも1つの対応する接続ポイントを形成するために、構造体116と接続し得る。
複数の接続装置163は、支持体128と関連する接続装置132、及び負荷バランシング構造体138と関連する接続装置の組140を含み得る。複数の支持体113の中の他の支持体は、複数の接続装置163の中に含まれる接続装置を有し得る。複数の接続装置161は、接続ポイント133、及び接続ポイントの組153を含み得る。更に、複数の接続ポイント161は、構造体116に関して複数の制御ポイント141を提供し得る。複数の制御ポイント141は、制御ポイント135、及び制御ポイントの組142を含み得る。
複数の制御ポイント141は、構造体116の位置を制御することにおける使用に対して関心があるポイントであり得る。例えば、複数の制御ポイント141のうちの各々は、構造体116の対応する部分が移動され得るように、移動可能となり得る。
例えば、非限定的に、複数の接続装置163のうちの各々は、複数の接続ポイント161のうちの対応する1つを形成するために、構造体116上の位置に接続する、任意の数の要素134又は要素146のうちの1つに類似する、要素を有し得る。今度は、複数の接続ポイント161のうちのこの対応する1つが、構造体116上の複数の制御ポイント141のうちの対応する1つを提供し得る。実装に応じて、複数の制御ポイント141は、複数の接続装置163によって提供され、又は複数の接続ポイント161と直接に同じ位置に配置される、複数の接続ポイント161からオフセットされるポイントであり得る。
複数の装置110のうちの各々、複数の接続装置163のうちの各々は、製造環境100のための、基準座標システム157、地球的座標システム139、又はそれらの両方に基づいて作動され得る。複数の制御ポイント141は、基準座標システム157に関する既知の位置を有し得る。それ故、一旦、複数の制御ポイント141の位置が地球的座標システム139の範囲内で識別されてしまうと、それは計測システム162を使用して識別され得るが、複数の制御ポイント141は、地球的座標システム139と基準座標システム157との間で移行するために使用され得る。
描かれているように、計測システム162は、複数のセンサシステム196を含み得る。計測システム162の中の複数のセンサシステム196は、計測データ194を生成するために使用され得る。その後、計測データ194は、複数の接続装置163を構造体116に接続するために使用され得る。更に、計測システム162は、3次元座標システムの範囲内で、複数の制御ポイント141のうちの各々の位置を制御するために、フィードバック制御を提供し得る。
この例示的な実施例において、複数のセンサシステム196は、複数のターゲットシステム164又は複数の送信機165のうちの少なくとも1つを含み得る。複数のターゲットシステム164のうちの各々は、複数の接続装置163のうちの対応する1つと関連し得る。特に、複数のターゲットシステム164のうちの各々は、複数の接続装置163のうちの対応する1つの要素と関連し得る。更に、その後、複数のターゲットシステム164のうちの各々は、複数の制御ポイント141における対応する制御ポイントに対応し得る。複数のターゲットシステム164のうちの各々は、3以上のセンサ又はセンサ装置を含み得る。
この例示的な実施例において、操舵方向167は、柔軟な製造システム106の中の複数の装置110のうちの様々な装置に対して提供され得る。1つの実施例として、操舵方向167は、複数の操縦可能支持体117が、製造環境100を通って移動するように構成される場合、複数の操縦可能支持体117に対して提供され得る。操舵方向167はまた、ワークサーフェイス115上の位置197の間で移動する、複数の装置110に対して提供され得る。
操舵方向167は、コマンド、インストラクション、経路発生、装置の動作の方向を物理的に変えること、及びガイダンスの他の方法の形において提供され得る。この例示的な実施例において、操舵方向167は、製造環境100の範囲内の状態が変化する際に、動的に変化し得る。
操舵方向167は、搭載されているコントローラ、システムコントローラ、人間のオペレータ、又は何らかの他の適切な装置のうちの少なくとも1つによって提供され得る。他の例示的な実施例において、複数の支持体113、複数の装置110 又はそれらの両方のうちの各々の1つは、コントローラの支持の下ではなくそれ自身を操縦し得る。
図1の中の製造環境100の図解は、例示的な実施形態が実装されるやり方に対する物理的又は構造的な限定を企図するものではない。図示されているものに加えて又は代えて、他の構成要素が使用され得る。幾つかの構成要素は、随意であり得る。また、ブロックは、幾つかの機能的な構成要素を示すために提示されている。例示的な実施形態において実施される場合、これらのブロックの1以上を、異なるブロックに統合、分割、又は統合かつ分割することができる。
例えば、幾つかの場合において、支持体128は、複数の接続ポイント161を形成するために使用され得ず、かつそれによって、複数の制御ポイント141を形成するために使用され得ない。むしろ、負荷バランシング構造体138は、2以上の制御ポイントを含む制御ポイントの組142を形成するために使用され得る。負荷バランシング構造体138は、支持体128がこれらの2つの制御ポイントの間で位置決めされるように、支持体128と関連し得る。
このやり方において、制御ポイントの任意の構成は、複数の支持体113及び負荷バランシング構造体138のうちの少なくとも1つを使用して生成され得る。幾つかの例示的な実施例において、第1の支持体150及び第2の支持体152は、負荷バランシング構造体138を支持するために使用され得るが、制御ポイントを提供するためには使用され得ない。むしろ、全ての制御ポイントは、負荷バランシング構造体に沿って提供され得る。他の例示的な実施例において、支持体128などの単一の支持体、及び負荷バランシング構造体138などの単一の負荷バランシング構造体は、3つの制御ポイント、4つの制御ポイント、5つの制御ポイント、又は何らかの他の数の制御ポイントを生成するために一緒に使用され得る。これらの制御ポイントのうちの各々は、単一の負荷バランシング構造体又は支持体と関連する接続装置のいずれかによって形成され得る。
同様に、負荷バランシング構造体138などの単一の負荷バランシング構造体は、2つの制御ポイント、3つの制御ポイント、4つの制御ポイント、又は何らかの他の数の制御ポイントを提供することができるシステムを形成するために、複数の支持体によって支持され得る。これらの制御ポイントのうちの各々は、単一の負荷バランシング構造体又は複数の支持体のうちの1つと関連する接続装置によって形成され得る。
更に他の例示的な実施例において、接続装置の組140の中の接続装置は、何らかの他のタイプの構造体を介して、負荷バランシング構造体138と関連し得る。例えば、非限定的に、接続装置の組140の中の接続装置は、第2の負荷バランシング構造体が負荷バランシング構造体138に関して実質的に垂直に、又は何らかの他の角度で方向付けられる、負荷バランシング構造体138に取り付けられる第2の負荷バランシング構造体に関連し得る。1つの例示的な実施例として、第2の負荷バランシング構造体は、負荷バランシング構造体138が水平であり得る一方で、垂直であり得る。
それ故、支持システム112は、制御ポイントの組142に対して望ましい比率を提供し得る。1つの例示的な実施例において、負荷バランシング構造体138は、第1の支持体150と第2の支持体152との間に位置決めされる高性能スプレッダービーム170であり得る。描かれているように、第1の支持体150は、第1の自動ガイドビークル191の形をとり得、かつ第2の支持体152は、第2の自動ガイドビークル192の形をとり得る。第1の自動ガイドビークル191及び第2の自動ガイドビークル192は、計測システム162の中の複数のセンサシステム196によって生成される計測データ194を使用して、制御され得る。
例示的な実施例において、第1の自動ガイドビークル191及び第2の自動ガイドビークル192は、調和されたやり方において移動し得る。また、高性能スプレッダービーム170は、第1の自動ガイドビークル101及び第2の自動ガイドビークル192から独立して、動作システム160によって移動され得る。言い換えると、高性能スプレッダービーム170は、第1の自動ガイドビークル191及び第2の自動ガイドビークル192が移動することに関して移動し得る。第1の自動ガイドビークル191及び第2の自動ガイドビークル192、動作システム160、又はそれらの両方による高性能スプレッダービーム170の動作はまた、制御ポイントの組142を移動させ得る。結果として、より高い解像度の制御が、制御ポイントの組142を制御することにおいて達成され得る。
今度は、図2を参照すると、例示的な実施形態による、負荷バランシング構造体に関連する接続装置の等角図が描かれている。この例示的な実施例において、負荷バランシング構造体200、接続装置202、及び接続装置204が示されている。負荷バランシング構造体200は、図1の中における負荷バランシング構造体138に対する1つの実施態様の例であり得る。接続装置202及び接続装置204は、図1の中の接続装置の組140に対する1つの実施態様の例であり得る。
描かれているように、負荷バランシング構造体200は、ビーム201の形をとり得る。接続装置202及び接続装置204は、ビーム201に固定的に関連し得る。特に、ビーム201に沿った、接続装置202の位置及び接続装置204の位置は固定され得る。しかしながら、他の例示的な実施例において、接続装置202及び接続装置204のうちの各々は、x‐軸213に実質的に平行な方向において、ビーム201の長さ205に沿って移動可能であり得る。
この例示的な実施例において、接続装置202は、ベース208、要素210、及び動作システム212を含み得る。ベース208、要素210、及び動作システム212は、それぞれ、図1の中におけるベース145、要素146、及び動作システム148に対する実施態様の例であり得る。接続装置202のベース208は、ビーム201に取り付けられ得る。要素210は、ベース208に対して移動可能な状態で関連し得る。
接続金具211は、要素210と関連し得る。幾つかの例示的な実施例において、接続金具211は、要素210の部品であると考えられ得る。この例示的な実施例において、接続金具211は、要素210に対して取り外し可能な状態で関連する構成要素であり得る。
接続金具211は、例えば、非限定的に、図1の中における構造体116などの(図示せぬ)構造体に対して、接続装置202を接続するために使用され得る。特に、接続金具211は、例えば、非限定的に、図1の中の制御ポイント149などの(図示せぬ)制御ポイントにおいて、この構造体に対して接続装置202を接続するために使用され得る。
更に、動作システム212は、少なくとも1次元の自由度を伴って、ベース208に関して要素210を移動させるように構成され得る。例えば、動作システム212は、x‐軸213に実質的に平行な方向において、y‐軸206に実質的に平行な方向において、かつz‐軸214に実質的に平行な方向において、要素210を移動させるように構成され得る。更に、動作システム212は、z‐軸214の周りの矢印215の方向において、要素210を移動させるように構成され得る。動作システム212による要素210の移動は、要素210が接続される制御ポイントが、3次元空間の中の1つの位置から3次元空間の中の第2の位置へ移動することをもたらし得る。
接続装置204は、ベース216、要素217、及び動作システム218を含み得る。接続装置204のベース216は、ビーム201に取り付けられ得る。要素217は、ベース216に対して移動可能な状態で関連し得る。
接続金具219は、要素217と関連し得る。幾つかの例示的な実施例において、接続金具219は、要素217の部品であると考えられ得る。この例示的な実施例において、接続金具219は、要素217に対して取り外し可能な状態で関連する構成要素であり得る。接続金具219に対する実施態様は、例示的な実施例において接続金具219が取り付けられている制御ポイントに応じて種々の形をとり得る。
接続金具219は、例えば、非限定的に、図1の中における構造体116などの(図示せぬ)構造体に対して、接続装置204を接続するために使用され得る。特に、接続金具219は、例えば、非限定的に、図1の中の制御ポイント149などの(図示せぬ)制御ポイントにおいて、この構造体に対して接続装置204を接続するために使用され得る。
更に、動作システム218は、ベース216に関して要素217を移動させるように構成され得る。例えば、動作システム218は、x‐軸213に実質的に平行な方向において、y‐軸206に実質的に平行な方向において、かつz‐軸214に実質的に平行な方向において、要素217を移動させるように構成され得る。更に、動作システム218は、z‐軸214の周りの矢印215の方向において、要素217を移動させるように構成され得る。動作システム218による要素217の動作は、要素217が接続される制御ポイントが、3次元空間の中の1つの位置から3次元空間の中の第2の位置へ移動することをもたらし得る。
動作システム212及び動作システム218のうちの各々は、独立して制御され得る。この例示的な実施例において、動作システム212及び動作システム218のうちの各々は、(図示せぬ)システムコントローラによって制御され得る。接続装置202及び接続装置204は、互いに関して独立して移動され得る。このやり方において、接続装置202が接続される制御ポイントは、接続装置204が接続される制御ポイントから独立して移動され得る。
描かれているように、ビーム201は、第1の端部220及び第2の端部222を有し得る。ビーム201は、第1の端部220において第1の接続金具224を有し得る。第1の接続金具224は、例えば、非限定的に、図1の中における支持体128などの(図示せぬ)支持体に対して、ビーム201の第1の端部220を接続するために使用され得る。更に、ビーム201は、第2の端部222において第2の接続金具226を有し得る。第2の接続金具226は、例えば、非限定的に、図1の中における支持体128などの(図示せぬ)支持体に対して、ビーム201の第2の端部222を接続するために使用され得る。
ここで図3を参照すると、例示的実施形態による、図2からの接続装置202の拡大等角図が描かれている。図3の中において、図2からの要素210の接続金具211は示されていない。
要素210は、動作システム212によって、ベース208に関して移動され得る。描かれているように、動作システム212は、第1のレールシステム300、第2のレールシステム302、第3のレールシステム304、及び回転可能装置306を含み得る。第1のレールシステム300、第2のレールシステム302、及び第3のレールシステム304のうちの各々は、接続装置202の要素210に対して異なる次元の平行移動の自由度を提供し得る。本明細書の中において示されるように、第1のレールシステム300、第2のレールシステム302、及び第3のレールシステム304のうちの1つなどの、「レールシステム」は1以上のレールを含み得る。
無論、他の例示的な実施例において、動作システム212は何らかの他の形をとり得る。例えば、非限定的に、動作システム212は、トラック、軸受、スライダー、グライダー、空気軸受、ローラー、ホイール、ホロノミックホイール、メカナムホイール、オムニホイール、ポリホイール、又は何らかのタイプの動作装置のうちの少なくとも1つを含み得る。
例えば、非限定的に、接続装置202は、部材308、部材310、及び部材312を含み得る。要素210は、部材308に関連し得る。部材308は、x‐軸213に実質的に平行な方向において、第1のレールシステム300に沿って移動するように構成され得る。特に、部材308は、x‐軸213に実質的に平行な方向において、第1のレールシステム300に沿ってスライドするように構成され得る。要素210は、要素210が、部材308が第1のレールシステム300に沿って移動する場合に、部材308と同じ方向において、かつ部材308と実質的に同じ距離だけ移動するようなやり方において、部材308と関連し得る。
同様に、要素210は、部材310と関連し得る。部材310は、y‐軸206と実質的に平行な方向において、第2のレールシステム302に沿って移動するように構成され得る。特に、部材310は、y‐軸206に実質的に平行な方向において、第2のレールシステム302に沿ってスライドするように構成され得る。要素210は、要素210が、部材310が第2のレールシステム302に沿って移動する場合に、部材310と同じ方向において、かつ部材310と実質的に同じ距離だけ移動するようなやり方において、部材310と関連し得る。
更に、要素210は、部材312と関連し得る。部材312は、z‐軸214と実質的に平行な方向において、第3のレールシステム304に沿って移動するように構成され得る。特に、部材312は、z‐軸214に実質的に平行な方向において、第3のレールシステム304に沿ってスライドするように構成され得る。要素210は、要素210が、部材312が第3のレールシステム304に沿って移動する場合に、部材312と同じ方向において、かつ部材312と実質的に同じ距離だけ移動するようなやり方において、部材312と関連し得る。
更に、要素210は、部材314を介して回転可能装置306と関連し得る。回転可能装置306は、z‐軸214の周りの矢印215の方向において回転するように構成され得る。部材314は、部材314が回転可能装置306を伴って回転するように、回転可能装置306に接続され得る。特に、部材314、及び部材314に接続される要素210は、回転可能装置306と同じ方向において、かつ回転可能装置306と実質的に同じ量だけ回転し得る。
このやり方において、動作システム212は、要素210が、少なくとも4次元の自由度を伴って移動されることを可能にする。これらの4次元の自由度は、3次元の平行移動の自由度、及び回転の1次元の自由度を含む。図2の中における接続装置204は、図3の中において表現された接続装置202の実装と類似するやり方において実装され得る。
ここで図4を参照すると、例示的実施形態による、図2及び図3からの接続装置202の前面図が描かれている。この例示的な実施例において、図2及び図3からの接続装置202の前面図が、図3の中の4‐4線の方向において描かれ得る。
ここで図5を参照すると、例示的実施形態による、図2、図3、及び図4からの接続装置202の側面図が描かれている。この例示的な実施例において、図2、図3、及び図4からの接続装置202の側面図が、図3の中の5‐5線の方向において描かれ得る。
今度は、図6を参照すると、例示的な実施形態による、2つの支持体に取り付けられた図2からのビーム201の等角図が描かれている。この例示的な実施例において、ビーム201は、第1の支持体600及び第2の支持体602に取り付けられ得る。第1の支持体600及び第2の支持体602は、それぞれ、図1の中における第1の支持体150及び第2の支持体152の実施態様の例であり得る。
この例示的な実施例において、第1の支持体600及び第2の支持体602は、それぞれ、第1の運搬できる支持体、及び第2の運搬できる支持体であり得る。特に、第1の支持体600、及び第2の支持体602は、それぞれ、第1の操縦可能支持体601、及び第2の操縦可能支持体603の形をとり得る。描かれているように、第1の操縦可能支持体601は、第1の自動ガイドビークル(AGV)として実装され、かつ第2の操縦可能支持体603は、第2の自動ガイドビークルとして実装され得る。
描かれているように、ビーム201の第1の端部220は、第1の支持体600に取り付けられ得、かつビーム201の第2の端部222は、第2の支持体602に取り付けられ得る。この例示的な実施例において、第1の支持体600は、ベース構造体604、支持部材606、及び操縦システム607を含み得る。第2の支持体602は、ベース構造体608、支持部材610、及び操縦システム611を含み得る。
ベース構造体604、支持部材606、及び操縦システム607は、それぞれ、図1の中におけるベース構造体129、支持部材130、及び操縦システム131に対する実施態様の例であり得る。同様に、ベース構造体608、支持部材610、及び操縦システム611は、それぞれ、図1の中におけるベース構造体129、支持部材130、及び操縦システム131に対する実施態様の例であり得る。
この例示的な実施例において、第1の支持体600を作り上げる構成要素のうちの全ては、この例示的な実施例の中のベース構造体604に関連し得る。操縦システム607は、第1の支持体600のベース構造体604を移動するために使用され得、かつそれによって、第1の支持体600の全体を移動するために使用され得る。例えば、非限定的に、操縦システム607は、(図示せぬ)工場の床などの表面に沿った任意の方向において、第1の支持体600を移動させることができ得る。
支持部材606は、第1の支持体600のベース構造体604に対して、移動可能な状態で関連し得る。支持部材606は、z‐軸214に実質的に平行な方向において移動され得る。特に、第1の支持体600は、このz‐軸の方向において支持部材606を移動させ得る、動作システム612を有し得る。
同様に、支持部材610は、第2の支持体602のベース構造体608に対して、移動可能な状態で関連し得る。支持部材610は、z‐軸214に実質的に平行な方向において移動され得る。特に、第2の支持体602は、このz‐軸の方向において支持部材610を移動させ得る、動作システム614を有し得る。
描かれているように、第1の支持体600はまた、支持部材606と関連する接続装置616を含み得る。第2の支持体602はまた、支持部材610と関連する接続装置618を含み得る。接続装置616及び接続装置618のうちの各々が、上述の図2から図5の中において示される接続装置202の実装に類似するやり方において実装され得る。
接続装置202、接続装置204、接続装置616、及び接続装置618は、一緒に、第1の支持体600及び第2の支持体602を使用して少なくとも部分的に支持される、構造体上の4つの制御ポイントに対する潜在的な可能性を提供し得る。1つの例示的な実施例のように、第1の支持体600及び第2の支持体602は、図1の中において表現されたワークサーフェイス115などの、(図示せぬ)ワークサーフェイスの上に移動され得る。第1の支持体600及び第2の支持体602は、例えば、非限定的に、図1の中の構造体116などの、(図示せぬ)構造体に関して第1の支持体600及び第2の支持体602をおおまかに位置決めするために、ワークサーフェイスに沿って移動され得る。
一旦、第1の支持体600及び第2の支持体602が構造体に関しておおまかに位置決めされると、第1の支持体600の動作システム612及び第2の支持体602の動作システム614は、構造体に関して、接続装置202、接続装置204、接続装置616、及び接続装置618をより細かく位置決めするために使用され得る。例えば、非限定的に、動作システム612は、支持部材606に関連する接続装置616がまた持ち上げられるように、支持部材606をz‐軸214に関して上方へ持ち上げ得る。動作システム614は、支持部材606に関連する接続装置616がまた持ち上げられるように、支持部材610をz‐軸214に関して上方へ持ち上げ得る。このやり方において支持部材606及び支持部材610を移動させることはまた、これらの支持部材に取り付けられるビーム201が、z‐軸214に関して上方へ持ち上げられることをもたらす。
その後、接続装置202、接続装置204、接続装置616、及び接続装置618のうちの個別の動作システムは、構造体に関してこれらの接続装置の要素をより精密に位置決めするために使用され得る。例えば、非限定的に、動作システム212は、要素210が構造体に接触する所で制御ポイントが形成され得るように、構造体に関して接続装置202の要素210をより精密に位置決めするために使用され得る。動作システム218は、要素217が構造体に接触する所で制御ポイントが形成され得るように、構造体に関して接続装置204の要素217をより精密に位置決めするために使用され得る。接続装置616及び接続装置618は、2以上の制御ポイントを形成するために、類似のやり方において作動され得る。
このやり方において、4つの制御ポイントが提供され得る。これらの4つの制御ポイントのうちの各々は、接続装置202、接続装置204、接続装置616、及び接続装置618を使用して、独立して制御され得る。これらの4つの制御ポイントが形成された後であっても、接続装置202、接続装置204、接続装置616、及び接続装置618は、これらの接続装置によって支持される構造体の位置を制御するために、3次元空間の範囲内においてこれらの制御ポイントの位置を更に制御することができ得る。
この例示的な実施例において、ターゲットシステム620、ターゲットシステム622、ターゲットシステム624、及びターゲットシステム626は、接続装置616、接続装置202、接続装置204、及び接続装置618に、それぞれ関連し得る。ターゲットシステム620、ターゲットシステム622、ターゲットシステム624、及びターゲットシステム626は、図1の中の複数のターゲットシステム164のうちの一部分に対する1つの実施態様の例であり得る。
ターゲットシステム620、ターゲットシステム622、ターゲットシステム624、及びターゲットシステム626は、接続装置616、接続装置202、接続装置204、及び接続装置618を、それぞれ使用して形成される制御ポイントに対応し得る。これらのターゲットシステムは、計測システム628の部分であり得る。計測システム628はまた、(この図の中においては図示せぬ)送信機を含み得る。ターゲットシステム620、ターゲットシステム622、ターゲットシステム624、及びターゲットシステム626のうちの各々は、接続装置616、接続装置202、接続装置204、及び接続装置618のそれぞれの動作システムの作動を制御することにおける使用のための、計測データを生成するターゲットの群を含み得る。
この例示的な実施例において、ビーム201に沿って位置決めされる接続装置202及び接続装置204を有するビーム201を有することは、制御ポイントが、第1の支持体600及び第2の支持体602などの、付加的な大きい支持体を必要とすることなく、提供されることを可能にする。特に、ビーム201は、人間のオペレータ、ツール、ロボット装置、装備、操縦可能ツール、及び他のタイプのアイテムのうちの任意の数又は組み合わせが、製造の間にオープンスペース630を通り抜けることを可能にするために、オープンスペース630が提供されることを可能にする。オープンスペース630は、接続装置202、接続装置204、接続装置616、及び接続装置618を使用して支持される構造体に対する改良されたアクセスを可能にする。
更に、ビーム201は、これらの接続装置を使用して支持される構造体によって、接続装置202、接続装置204、接続装置616、及び接続装置618に適用される負荷を分散し得る。負荷は、ビーム201の長さ205に沿って分散され得、かつ第1の支持体600及び第2の支持体602に対して分散され得る。このやり方において、構造体を支持するために使用される接続装置202、接続装置204、接続装置616、及び接続装置618の構成要素は、剛性を低減し得、かつそれ故、重量においてより軽くなる。
ここで図7を参照すると、例示的な実施形態による、図6からのビーム201、第1の支持体600、及び第2の支持体602の前面図が描かれている。この例示的な実施例において、図6からのビーム201、第1の支持体600、及び第2の支持体602の前面図は、図6の中の7‐7線の方向において描かれ得る。
ここで図8を参照すると、例示的な実施形態による、支持体の等角図が描かれている。この例示的な実施例において、支持体800は運搬できる支持体であり得る。特に、支持体800は、操縦可能支持体801の形をとり得る。描かれているように、図6からの第1の操縦可能支持体601は、自動ガイドビークル(AGV)として実装され得る。
支持体800は、ベース構造体802、支持部材804、及び操縦システム805を含み得る。この例示的な実施例において、ベース構造体802、支持部材804、及び操縦システム805は、それぞれ、図1の中におけるベース構造体129、支持部材130、及び操縦システム131に対する実施態様の例であり得る。
この例示的な実施例において、支持体800を作り上げる構成要素のうちの全ては、この例示的な実施例の中のベース構造体802に関連し得る。操縦システム805は、支持体800のベース構造体802を移動するために使用され得、かつそれによって、支持体800の全体を移動するために使用され得る。例えば、非限定的に、操縦システム805は、(図示せぬ)工場の床などの表面に沿った任意の方向において、支持体800を移動させることができ得る。
支持部材804は、支持体800のベース構造体802に対して、移動可能な状態で関連し得る。支持体800は、レールシステム807を含み得る。(この図の中では図示せぬ)動作システムは、レールシステム807に沿って、z‐軸806に実質的に平行な方向において、支持部材804を移動させ得る。特に、支持体800は、z‐軸に対して実質的に平行な方向において、支持部材804を移動させ得る、動作システム811を有し得る。
描かれているように、支持体800はまた、支持部材804と関連する接続装置808を含み得る。接続装置808は、上述の図2から図5の中において示される接続装置202の実装に類似するやり方において実装され得る。特に、接続装置808は、ベース810、要素812、及び動作システム814を含み得る。ベース810、要素812、及び動作システム814は、それぞれ、図1の中におけるベース145、要素146、及び動作システム148に対する実施態様の例であり得る。
ベース810は、z‐軸806に実質的に平行な方向における支持部材804の動作が、同じ方向における、かつ実質的に同じ量の接続装置808の動作をもたらすように、支持部材804と関連し得る。要素812は、例えば、非限定的に、図1の中における構造体116などの(図示せぬ)構造体に対して、接続装置808を接続するために使用され得る。
動作システム814は、要素812を使用して形成された制御ポイントの3次元位置が制御され得るように、ベース810に関して要素812を移動させるように使用され得、かつそれによって、支持部材804に関して要素812を移動させるように使用され得る。この例示的な実施例において動作システム814は、要素に、図2の中の動作システム212と類似して、少なくとも3次元の平行移動の自由度、及び回転の1次元の自由度を提供し得る。特に、動作システム814は、要素812が、z‐軸806に実質的に平行な方向において、x‐軸813に実質的に平行な方向において、かつy‐軸815に実質的に平行な方向において、ベース810に関して平行移動することを可能にし、かつそれによって支持部材804に関して平行移動することを可能にし得る。更に、動作システム814は、z‐軸806の周りの矢印809の方向において、要素812を回転させるように構成され得る。
描かれているように、負荷バランシング構造体817は、支持部材804に関連し得る。負荷バランシング構造体817は、図1の中における負荷バランシング構造体138に対する1つの実施態様の例であり得る。この例示的な実施例において、負荷バランシング構造体817は、z‐軸806に実質的に平行な方向における支持部材804の動作が、同じ方向における、かつ実質的に同じ量の接続装置808の動作をもたらすように、支持部材804と固定的に関連し得る。
接続装置818及び接続装置820は、負荷バランシング構造体817に関連し得る。接続装置818及び接続装置820は、図1の中の負荷バランシング構造体138に関連する接続装置の組140に対する1つの実施態様の例であり得る。
描かれているように、接続装置818は、レールシステム822及びレールシステム824を有し得、それらは一緒に、動作システム825を形成する。レールシステム822及びレールシステム824は、接続装置818が、それぞれ、x‐軸813と実質的に平行な方向において、かつy‐軸815と実質的に平行な方向において、平行移動することを可能にし得る。幾つかの例示的な実施例において、動作システム825はまた、接続装置818の高さが、計測システムのフィードバックに基づいてわずかに変化し得るように、z‐軸806と実質的に平行な方向において移動し得る。
同様に、接続装置820は、レールシステム826及びレールシステム828を有し得、それらは一緒に、動作システム829を形成する。レールシステム826及びレールシステム828は、接続装置820が、それぞれ、x‐軸813と実質的に平行な方向において、かつy‐軸815と実質的に平行な方向において、平行移動することを可能にし得る。幾つかの例示的な実施例において、動作システム829はまた、接続装置820の高さが、計測システムのフィードバックに基づいてわずかに変化し得るように、z‐軸806と実質的に平行な方向において移動し得る。
この例示的な実施例において、接続装置818は部材830を含み得、かつ接続装置820は部材832を含み得る。接続装置808の要素812などの(図示せぬ)要素は、部材830及び部材832のうちの各々に対して取り外し可能な状態で取り付けられ得る。この要素は、実施態様に応じて、接続装置818及び接続装置820のうちの各々に対して異なり得る。幾つかの場合において、同じタイプの要素は、部材830及び部材832に対して、取り外し可能な状態で取り付けられ得る。部材830及び部材832のうちの各々に対して、取り外し可能な状態で取り付けられる要素のタイプは、それぞれ、接続装置818及び接続装置820を使用して支持される構造体の部分に基づいて選択され得る。
描かれているように、負荷バランシング構造体817は、接続装置818及び接続装置820が、z‐軸806に関して接続装置808よりも下に位置決めされるように、支持部材804に固定的に関連し得る。このやり方において、支持体800は、ワークサーフェイスに関してz‐軸806に沿った種々の平面において、制御ポイントを提供するために使用され得る。
更に、この例示的な実施例において、負荷バランシング構造体817は、例えば、非限定的に、別の支持体又はビーム及び別の支持体を使用して可能となるよりも、接続装置818及び接続装置820が、y‐軸815に関して接続装置808により近く位置決めされることを可能にし得る。負荷バランシング構造体817は、これらの接続装置がより軽く、かつ低減された剛性を伴って設計され得るように、接続装置818及び接続装置820に適用される負荷を、支持体800に分散し得る。
操縦システム805は、支持体800が構造体に関しておおまかに位置決めされることを可能にする。レールシステム807に沿って支持部材804を移動させるために使用される(この図の中では図示せぬ)動作システムは、接続装置808、接続装置818、及び接続装置820をより細かく位置決めするために使用され得る。更に、接続装置808、接続装置818、及び接続装置820の、動作システム811、動作システム825、及び動作システム829は、それぞれ、これらの接続装置によって形成される制御ポイントをより精密に位置決めするために、支持部材804及び負荷バランシング構造体817に関して、これらの接続装置の要素を移動させるために使用され得る。特に、これらの接続装置の要素は、これらの接続装置によって形成される制御ポイントをより精密に位置決め、又は再位置決めするために操縦され得る。
ここで図9を参照すると、例示的実施形態による、図8からの支持体800の前面図が描かれている。この例示的な実施例において、図8からの支持体800の前面図が、図8の中の9‐9線の方向において描かれ得る。この例示的な実施例において、要素812は、接続装置818の部材830に対して、取り外し可能な状態で関連してきた。更に、要素812は、接続装置820の部材832に対して、取り外し可能な状態で関連してきた。
ここで図10を参照すると、例示的な実施形態による、製造環境の等角図が描かれている。この例示的な実施例において、製造環境1000は、図1の製造環境100に対する1つの実施態様の例であり得る。例えば、非限定的に、製造環境1000は、工場の内部、又は何らかのタイプの製造建造物であり得る。
描かれているように、製造環境1000はワークサーフェイス1002を有する。例えば、非限定的に、ワークサーフェイス1002は、実質的に滑らかな床であり得る。この例示的な実施例において、操縦可能支持システム1004は、製造環境1000の中へ移動され得、かつワークサーフェイス1002上に引き出される。操縦可能支持システム1004は、図1の中の操縦可能支持システム114に対する1つの実施態様の例であり得る。
操縦可能支持システム1004は、複数の支持体1006を含み得、それらは、図1の中の複数の支持体113に対する1つの実施態様の例であり得る。この例示的な実施例において、複数の支持体1006のうちの各々は、自動ガイドビークルとして実装され得る。言い換えると、複数の支持体1006のうちの各々は、ワークサーフェイス1002上の任意の位置からワークサーフェイス1002上の任意の他の位置へ、自律的に操縦することができ得る。特に、複数の支持体1006のうちの各々は、ワークサーフェイス1002に関して全方向的なやり方で移動され、かつ操縦され得る。このやり方において、複数の支持体1006は、図1の中の複数の操縦可能支持体117に対する1つの実施態様の例であり得る。
この例示的な実施例において、複数の支持体1006は、翼アセンブリ1008を支持し、かつ保持するために使用され得る。翼アセンブリ1008は、図1の中の翼アセンブリ124に対する1つの実施態様の例であり得る。複数の支持体1006の中の支持体の実施例は、支持体1010及び支持体1012を含み得る。支持体1010及び支持体1012は、運搬できる支持体であり得る。特に、支持体1010及び支持体1012は、操縦可能支持体であり得る。支持体1010及び支持体1012のうちの各々は、上述の図8の中の支持体800に類似するやり方において実装され得る。
更に、例えば、非限定的に、複数の支持体1006は、支持体1014及び支持体1016を含み得、それらは、それぞれ図6の中の第1の支持体600及び第2の支持体602に類似するやり方において実装され得る。この例示的な実施例において、ビーム1018は、支持体1014及び支持体1016に関連し得る。ビーム1018は、図2の中のビーム201に類似するやり方で実装され得る。
描かれているように、接続装置の組1020は、ビーム1018に関連し得る。特に、接続装置の組1020のうちの各々は、接続装置が翼アセンブリ1008上の特定の位置に接続するように構成され得るように、ビーム1018に沿って位置決めされ得る。接続装置の組1020のうちの各々は、図2から図5の中において示される接続装置202の実装に類似するやり方で実装され得る。
この例示的な実施例において、操縦可能支持システム1004は、翼アセンブリ1008に沿って複数の制御ポイント1022を提供するために使用され得る。複数の制御ポイント1022のうちの各々は、3次元空間の中に移動されることができ得る。複数の制御ポイント1022の中の各々の制御ポイントは、z‐軸1023と実質的に平行な方向、x‐軸1024と実質的に平行な方向、y‐軸1026と実質的に平行な方向、又はz‐軸1023の周りの矢印1028の方向のうちの少なくとも1つにおいて、移動され得る。
これらの例示的な実施例において、制御ポイント1021は、製造環境1000のためのz‐軸1023、x‐軸1024、及びy‐軸1026によって提供される地球的座標システムと、翼が形成される翼座標システム又は翼が形成されている航空機のための航空機座標システムとの間で移行するために使用され得る。このやり方において、制御ポイント1021は、航空機座標システム上にアセンブリを配置するために使用され得る。
例えば、非限定的に、制御ポイント1021は翼アセンブリ1008上の既知の位置であり得る。z‐軸1023、x‐軸1024、及びy‐軸1026によって、製造環境1000のための地球的座標システムの中の制御ポイント1021の位置を識別することは、制御ポイント1021が、翼座標システム又は航空機座標システムに関して知られることを可能にし得る。
計測システム1030がまた、存在し得る。計測システム1030は、複数の送信機1032及び複数のターゲットシステム1034を含み得る。複数の送信機1032は、ワーキングサーフェイス1002に関連し得、かつ製造環境1000のための地球的座標システムを生成するために使用され得る。複数のターゲットシステム1034は、操縦可能支持システム1004の接続装置のうちの各々に関連し得る。
複数のターゲットシステム1034は、その後、翼アセンブリ1008の精密な位置決めのために使用され得る、計測データを生成するために使用され得る。特に、計測データは、複数の送信機1032を使用して識別される地球的座標システムに関して、複数の制御ポイント1022のうちの各々の位置を精密に制御するために、操縦可能支持システム1004の様々な動作システムの作動を制御するために使用され得る。部分1025の拡大された図が、以下の図11の中で描かれ得る。
ここで図11を参照すると、例示的実施形態による、図10からの製造環境1000及び操縦可能支持システム1004の部分1025拡大図が、描かれている。描かれているように、接続装置1100は、支持体1014と関連し得る。接続装置の組1020は、ビーム1018に沿って位置決めされる接続装置1102及び接続装置1104を含み得る。接続装置1106は、支持体1016に関連し得る。
接続装置1100、接続装置1102、接続装置1104、及び接続装置1106は、制御ポイント1108、制御ポイント1110、制御ポイント1112、及び制御ポイント1114のそれぞれにおいて、翼アセンブリ1008に接触し得る。これらの接続装置は、これらの制御ポイントの位置を制御するために、これらの制御ポイントの細かい、精密な位置決めを制御するように構成され得る。この位置決めは、アセンブリングに先立って、かつアセンブリング作動の間において、維持され得る。ビーム1018は、翼アセンブリ1008によって、接続装置1100、接続装置1102、接続装置1104、及び接続装置1106に適用される負荷を、ビーム1018に沿って支持体1014及び支持体1016に分散し得る。
更に、ビーム1018を使用することは、オープンスペース1120が生成され得るように、支持体1014及び支持体1016が広げられることを可能にする。人間のオペレータ、他の運搬できる装置、自動ツール、及び他のタイプの装備は、支持体1014及び支持体1016の間のオープンスペース1120を通り抜けることを可能にされ得る。このやり方において、支持体1014、支持体1016、及びビーム1018の構成は、翼アセンブリ1008に対する、かつ特に、翼アセンブリ1008の下側に対する改良されたアクセスを可能にし得る。
図2、図6又は図7の中の負荷バランシング構造体200、接続装置202、及び接続装置204、図2から図5の中の接続装置202、図8及び図9の中の支持体800、及び図10及び図11の中の製造環境1000は、例示的な実施形態が実装され得るやり方に対する物理的又は構造的な限定を企図するものではない。図示されているものに加えて又は代えて、他の構成要素が使用され得る。幾つかの構成要素は、随意であり得る。
図2から図11の中の種々の構成要素は、図1の中のブロックの形で示される構成要素が、どのようにして物理的な構造体として実装され得るかを示す実施例である。付加的に、図2から図11の構成要素の幾つかを、図1の中の構成要素と組み合わせるか、図1の中の構成要素とともに使用するか、又はそれら2つの場合を組み合わせることができる。
ここで図12を参照すると、例示的な実施形態による、構造体を保持するための方法が流れ図の形で描かれている。例えば、非限定的に、図12において示された工程は、図1の中の支持システム112などを使用して実装され得る。
工程は、第1の動作システムを使用して、構造体116に関して支持体128を位置決めするために、ワークサーフェイス115に関して支持体128を移動させることによって開始され得る(作動1200)。例えば、非限定的に、第1の動作システムは、図1の中の操縦システム131であり得る。作動1200は、構造体116に関して支持体128をおおまかに位置決めするために実行され得る。
次に、負荷バランシング構造体138は、支持体128に関連し、第2の動作システムを使用して、構造体116上の制御ポイントの組142に関して、負荷バランシング構造体138に関連する接続装置の組140を位置決めするために、支持体128に関して移動され得る(作動1202)。例えば、非限定的に、作動1202は、構造体116に関して接続装置の組140を細かく位置決めするために、図1の中の動作システム160を使用して実行され得る。制御ポイントの組142は、接続のための接続ポイントの組又は構造体116上の任意の数の位置であり得る。
その後、接続装置の組140のうちの各々の中の要素は、構造体116上の制御ポイントの組142の中の対応する制御ポイントに関して位置決めされ得る(作動1204)。作動1204において、要素は、第3の作動システムを使用して、構造体116上に対応する制御ポイントを形成するために、位置151に関して要素を位置決めするように移動され得る。1つの例示的な実施例として、要素は図1の中の要素146であり得、かつ第3の動作システムは図1の中の動作システム148であり得る。動作システム148は、対応する制御ポイント149に関する要素146の精密な位置決めを提供し得る。
このやり方において、作動1204は、望ましいレベルの精度を伴って、接続のための対応する制御ポイントに関して構造体116に接続される、接続装置の組140のうちの各々の要素を精密に位置決めするために実行され得る。その後、接続装置の組140のうちの各々の中の要素は、制御ポイントの組142において構造体116に接続され得(作動1206)、その後、工程は終了する。
ここで図13を参照すると、例示的な実施形態による、航空機の翼のアセンブリングの間に構造体を保持するための方法が、流れ図の形をとって描かれている。図13の中において示される工程は、図1の中の操縦可能支持システム114を使用して実装され得る。
工程は、構造体116に関して任意の数の支持体111をおおまかに位置決めすることによって開始される(作動1300)。任意の数の支持体111は、図1の中の支持体128などの1つの支持体又は複数の支持体113を含み得る。
次に、第1の支持体150及び第2の支持体152に関連する負荷バランシング構造体138は、構造体116に関して、負荷バランシング構造体138に関連する接続装置の組140を細かく位置決めするために、任意の数の支持体111に関して移動され得る(作動1302)。その後、負荷バランシング構造体138に関連する接続装置の組140は、制御ポイントの組142において構造体116に精密に接続され得る(作動1304)。
接続装置の組140に対して計測システム162によって生成される計測データ194が、受信され得る(作動1306)。計測データ194は、接続装置の組140に関連するターゲットシステムの組によって生成され得る。制御ポイントの組142は、制御ポイントの組142が、計測システム162を使用して識別される地球的座標システム139から、基準座標システム157へ移行するために使用され得るように、構造体116上の既知の位置であり得る。基準座標システム157は、実装に応じて、翼座標システム、航空機座標システム、又は何らかの他のタイプの座標システムの形をとり得る。
計測システム162を使用して識別される地球的座標システム139に関する、制御ポイントの組142の位置の組が識別され得る(作動1308)。殊に、位置は、地球的座標システム139に関して、制御ポイント149のための位置151などの、制御ポイントの組142のうちの各々に対して識別され得る。
識別された位置の組が、制御ポイントの組142のための望ましい位置の組の選択された許容範囲内にあるか否かに関する判定が行われ得る(作動1310)。識別された位置の組が、制御ポイントの組142のための望ましい位置の組の許容範囲内にある場合、工程は上述の作動1306へ戻る。さもなければ、計測データ194が、制御ポイントの組142を移動させるために、任意の数の支持体111のうちの少なくとも1つ、接続装置の組のうちの少なくとも1つ、又はその両者に対する任意の数のコマンドを識別するために使用され得る。
図示した種々の実施形態における流れ図及びブロック図は、例示的な実施形態の中の、装置及び方法のうちの幾つかの可能な実装の構造、機能、及び作動を示している。これに関し、流れ図又はブロック図の各ブロックは、1つのモジュール、セグメント、機能、動作及び/又はステップの部分、これらの何らかの組み合わせを表わすことができる。
例示的な実施形態の幾つかの代替的な実施態様において、ブロックの中に記載された機能又は複数の機能は、図面に記載された順序と関係なく生じ得る。例えば、幾つかの場合において、連続して示されている2つのブロックは、関係する機能性に応じて、実質的に同時に実行されることができ、又は時々ブロックは逆の順序で実行され得る。また、他のブロックは、流れ図又はブロック図の中で描かれているブロックに加えて追加されることができる。
本発明の例示的な実施形態は、図14の航空機の製造および保守方法1400と図15の航空機1500に関連して記載されている。先ず図14に戻ると、例示的な実施形態による、航空機の製造及び保守方法がブロック図の形で描かれている。製造前の段階では、航空機の製造及び保守方法1400は、図15の航空機1500の仕様及び設計1402、並びに材料の調達1404を含む。
製造段階では、図15の航空機1500の構成要素及びサブアセンブリの製造1406並びにシステムインテグレーション1408が行われる。その後、図15の航空機1500は認可及び納品1410を経て運航1412に供される。顧客による運航1412中、図15の航空機1500は、定期的な整備及び保守1414(改造、再構成、改修、およびその他の整備または点検を含み得る)がスケジューリングされる。
航空機の製造及び保守方法1400の各工程は、システムインテグレーター、第三者、若しくはオペレータのうちの少なくとも1つによって実施又は実行されることがある。これらの実施例では、オペレータは顧客であってもよい。本明細書の目的では、システムインテグレーターは、任意の数の航空機製造者、及び主要システムの下請業者を含むことができ(これらに限定せず)、サードパーティは、任意の数のベンダー、下請業者、および供給業者を含むことができ(これらに限定せず)、オペレータは航空会社、リース会社、軍事団体、サービス機関などであってよい。
ここで図15を参照すると、例示的な実施形態が実装され得る航空機のブロック図が示される。この実施例では、航空機1500は、図14の航空機の製造及び保守方法1400によって製造され、複数のシステム1504及び内装1506を有する機体1502を含むことができる。システム1504の例には、推進システム1508、電気システム1510、油圧システム1512、及び環境システム1514のうちの1つ以上が含まれる。任意の数の他のシステムが含まれてもよい。航空宇宙産業の例を示したが、自動車産業などの他の産業に種々の例示的な実施形態を適用することができる。
本明細書で具現化される装置および方法は、図14の航空機の製造および保守方法1400のうちの少なくとも1つの段階で採用可能である。特に、図1からの柔軟な製造システム106は、航空機の製造及び保守方法1400の各段階のうちの任意の1つの間において、航空機構造体を製造するために使用され得る。例えば、非限定的に、図1からの柔軟な製造システム106は、構成要素及びサブアセンブリの製造1406、システムインテグレーション1408、所定の整備及び保守1414、又は何らかの他の航空機の製造及び保守方法1400の段階のうちの少なくとも1つの間において、航空機構造体を製造するために使用され得る。例えば、図1からの柔軟な製造システム106は、航空機1500及び航空機1500の他の構成要素を製造するために使用され得る。
1つの例示的な実施例において、図14の中の構成要素及びサブアセンブリの製造1406において生産される構成要素又はサブアセンブリは、図14の中の航空機1500の運航1412期間中に生産される構成要素またはサブアセンブリと同様のやり方で作製または製造され得る。更に別の実施例において、1以上の装置の実施形態、方法の実施形態、又はそれらの組み合わせは、図14の中の構成要素及びサブアセンブリの製造1406並びにシステムインテグレーション1408などの、生産段階の間に利用され得る。1以上の装置の実施形態、方法の実施形態、又はこれらの組み合わせを、航空機1500が図14における運航1412、及び/又は整備及び保守1414の間に、利用することができる。任意の数の種々の例示的な実施形態の利用により、航空機1500の組立てを大幅に効率化し費用を削減することができる。
種々の例示的な実施形態の説明が、例示及び説明の目的で提示されてきており、かつそれは開示された形の中の実施形態に対して包括的又は限定的であることを意図していない。当業者にとって、多くの修正及び変形が自明のものであろう。
例えば、種々の例示的な実施形態が航空機の製造に関して説明されてきたが、例示的な実施形態は他のタイプの製造に対して適用可能である。例えば、種々の例示的な実施形態は、風洞ブレード、船舶、住宅、自動車、及び他の適切なタイプの構造体などの、構造体を製造するために適用され得る。種々の例示的な実施形態は、工場の床の上において再構成可能支持システムが望ましい、任意のタイプの製造に対して適用され得る。
更に、種々の例示的な実施形態は、他の望ましい実施形態と比較して、種々の利点を提供することができる。実施形態の原理、実際の用途を最もよく説明するために、かつ当業者が様々な変形例を有する様々な実施形態のための開示を、熟慮された特定の使用に対して適切であると理解するために、選択された実施形態又は複数の実施形態が選ばれ、かつ説明されてきた。
それ故、本発明の第1の側面の要約が、以下に提供される。
A1
ワークサーフェイス上に位置決めされる支持体;前記支持体に関連する負荷バランシング構造体;及び接続装置の組が制御ポイントの組を生成するために構造体に接続するように構成され、かつ前記接続装置の組のうちの各々が前記制御ポイントの組の中の対応する制御ポイントの位置を独立して制御するように構成される、前記負荷バランシング構造体に関連する前記接続装置の組を備える、装置。
A2
前記支持体は、前記ワークサーフェイスに関して支持体を移動させるように構成される操縦システムを備える、条項A1に記載の装置。
A3
前記支持体は、前記負荷バランシング構造体が関連する支持部材を備える、条項A1に記載の装置。
A4
前記支持部材に関して前記負荷バランシング構造体を移動させるように構成される動作システムを更に備える、条項A3に記載の装置。
A5
前記接続装置の組は、前記ワークサーフェイスの上に前記構造体の少なくとも一部分を保持するように構成され、かつ前記接続装置の組のうちの各々は、前記負荷バランシング構造体に関して独立して移動可能である、条項A1に記載の装置。
A6
前記接続装置の組は、前記負荷バランシング構造体の長さに沿って間隔を空けて配置される複数の接続装置を含む、条項A1に記載の装置。
A7
前記負荷バランシング構造体は、前記接続装置の組に接続される前記構造体によって、前記接続装置の組に適用される任意の数の負荷を、前記負荷バランシング構造体に沿って前記支持体に分散する、条項A1に記載の装置。
A8
前記接続装置の組の中の接続装置を前記負荷バランシング構造体に関して移動させることは、複数の制御ポイントの中の対応する制御ポイントの位置を移動させる、条項A1に記載の装置。
A9
前記接続装置は、少なくとも1次元の自由度を伴って、前記負荷バランシング構造体に関して移動可能である、条項A8に記載の装置。
A10
前記支持体は第1の支持体であり、かつ第2の支持体を更に備え、前記負荷バランシング構造体は前記第1の支持体及び前記第2の支持体の両方と関連し、かつ前記負荷バランシング構造体は、前記接続装置の組に接続される前記構造体によって、前記接続装置の組に適用される任意の数の負荷を、前記負荷バランシング構造体に沿って前記第1の支持体及び前記第2の支持体に分散する、条項A1に記載の装置。
A11
前記接続装置の組は、前記第1の支持体、前記第2の支持体、前記負荷バランシング構造体、及び前記ワークサーフェイスの間の空間が実質的にオープンに保たれるように、前記ワークサーフェイスの上に前記構造体の少なくとも一部分を保持する、条項A10に記載の装置。
A12
前記負荷バランシング構造体は:前記第1の支持体に関連する第1の端部;及び前記第2の支持体に関連する第2の端部を備える、条項A10に記載の装置。
A13
前記負荷バランシング構造体は、前記負荷バランシング構造体が前記支持体に関して少なくとも1次元の自由度を伴って移動可能であるように、前記支持体に移動可能に関連する、条項A1に記載の装置。
A14
前記支持体は、ベース構造体であって、前記負荷バランシング構造体が前記ベース構造体に移動可能に関連する、ベース構造体を備える、条項A1に記載の装置。
A15
少なくとも1次元の平行移動の自由度を伴って前記支持体の前記ベース構造体に関して前記負荷バランシング構造体を平行移動させるか、又は少なくとも回転の1次元の自由度を伴って前記支持体の前記ベース構造体に関して前記負荷バランシング構造体を回転させるうちの少なくとも1つを行うように構成される、動作システムを更に備える、条項A14に記載の装置。
A16
前記接続装置の組の中の接続装置は:少なくとも1次元の平行移動の自由度を伴って前記負荷バランシング構造体に関して前記接続装置を平行移動させるか、又は回転の少なくとも1次元の自由度を伴って前記負荷バランシング構造体に関して前記接続装置を回転させるうちの少なくとも1つを行うように構成される、動作システムを備える、条項A1に記載の装置。
A17
前記接続装置の組の中の接続装置は、前記制御ポイントの組の中の制御ポイントを生成するために、前記要素を使用して、接続ポイントにおいて前記構造体に接続するように構成され、前記要素は、締結装置、接続プレート、ブラケット、接続金具、又は接続要素のうちの少なくとも1つから選択される、条項A1に記載の装置。
A18
前記接続装置の組の中の接続装置は、前記接続装置が前記負荷バランシング構造体から取り除かれるか、又は別の接続装置と取り替えられるうちの少なくとも1つであり得るように、前記負荷バランシング構造体に対して取り外し可能に関連する、条項A1に記載の装置。
A19
前記構造体は、スパーアセンブリ、リブアセンブリ、翼のための外板、翼アセンブリ、胴体、及びフレームのうちの1つから選択される、条項A1に記載の装置。
A20
前記ワークサーフェイスは、プラットフォーム、グランド、工場の床、及び製造環境の床の表面のうちの1つから選択される、条項A1に記載の装置。
本発明の更なる側面が、以下に提供される。
B1
第1の支持体;第2の支持体;前記第1の支持体及び前記第2の支持体に関連する負荷バランシング構造体;及び接続装置の組が制御ポイントの組を生成するために構造体に接続するように構成され、かつ前記接続装置の組のうちの各々が前記制御ポイントの組の中の対応する制御ポイントの位置を独立して制御するように構成される、前記負荷バランシング構造体に関連する前記接続装置の組を備える、装置。
本発明の更なる側面が、以下に提供される。
C1
構造体に関しておおまかに位置決めされるように構成される任意の数の支持体;前記任意の数の支持体と関連する負荷バランシング構造体;及び接続装置の組が制御ポイントの組において構造体に精密に接続する、前記負荷バランシング構造体に関連する前記接続装置の組を備える、装置。
C2
前記任意の数の支持体が工場の床を横断して進むための操舵方向は、人間のオペレータ、前記任意の数の支持体に関連するコントローラ、又はシステムコントローラのうちの少なくとも1つによって提供される、条項C1に記載の装置。
C3
前記任意の数の支持体は、それ自身を操縦するように構成される、条項C2に記載の装置。
C4
前記任意の数の支持体の中の支持体は、ワークサーフェイスに関して前記支持体を移動させるように構成される操縦システムを備える、条項C1に記載の装置。
C5
前記支持体は、前記負荷バランシング構造体が関連する支持部材を備える、条項C4に記載の装置。
C6
前記支持部材に関して前記負荷バランシング構造体を移動させるように構成される動作システムであって、前記負荷バランシング構造体又は前記支持部材のうちの少なくとも1つと関連する、動作システムを更に備える、条項C5に記載の装置。
C7
前記接続装置の組は、ワークサーフェイスの上に前記構造体の少なくとも一部分を保持するように構成され、かつ前記接続装置の組のうちの各々は、前記負荷バランシング構造体に関して独立して移動可能である、条項C1に記載の装置。
C8
前記接続装置の組は、前記負荷バランシング構造体の長さに沿って間隔を空けて配置される複数の接続装置を含む、条項C1に記載の装置。
C9
前記負荷バランシング構造体は、前記接続装置の組に接続される前記構造体によって、前記接続装置の組に適用される任意の数の負荷を、前記負荷バランシング構造体に沿って前記支持体に分散する、条項C1に記載の装置。
C10
前記接続装置の組の中の接続装置を前記負荷バランシング構造体に関して移動させることは、複数の制御ポイントの中の対応する制御ポイントの位置を移動させる、条項C1に記載の装置。
C11
前記接続装置は、少なくとも1次元の自由度を伴って、前記負荷バランシング構造体に関して移動可能である、条項C10に記載の装置。
C12
前記負荷バランシング構造体は、前記負荷バランシング構造体が前記支持体に関して少なくとも1次元の自由度を伴って移動可能であるように、前記任意の数の支持体に移動可能に関連する、条項C1に記載の装置。
C13
前記任意の数の支持体の中の支持体は、ベース構造体であって、前記負荷バランシング構造体が移動可能に関連する、ベース構造体を備える、条項C1に記載の装置。
C14
少なくとも1次元の平行移動の自由度を伴って支持体のベース構造体に関して前記負荷バランシング構造体を平行移動させるか、又は回転の少なくとも1次元の自由度を伴って前記支持体の前記ベース構造体に関して前記負荷バランシング構造体を回転させるうちの少なくとも1つを行うように構成される、動作システムを更に備える、条項C1に記載の装置。
C15
前記接続装置の組の中の接続装置は:少なくとも1次元の平行移動の自由度を伴って前記負荷バランシング構造体に関して前記接続装置を平行移動させるか、又は回転の少なくとも1次元の自由度を伴って前記負荷バランシング構造体に関して前記接続装置を回転させるうちの少なくとも1つを行うように構成される、動作システムを備える、条項C1に記載の装置。
C16
前記接続装置の組の中の接続装置は、任意の数の要素の中の要素が、締結装置、接続プレート、ブラケット、接続金具、又は接続要素のうちの少なくとも1つを備える、前記任意の数の要素を使用して、前記構造体のための前記制御ポイントの組の中の制御ポイントに接続するように構成される、条項C1に記載の装置。
C17
前記要素は、前記負荷バランシング構造体に関して移動可能である、条項C16に記載の装置。
C18
前記接続装置の組の中の接続装置は:地球的座標システムに関して前記制御ポイントの組の中の制御ポイントの位置を変化させるために、前記負荷バランシング構造体に関して少なくとも1次元の自由度を伴って要素を移動させるように構成される、動作システムを備える、条項C1に記載の装置。
本発明の更なる側面が、以下に提供される。
D1
第1の動作システムを使用して構造体に関して任意の数の支持体を位置決めするために、ワークサーフェイスに関して前記任意の数の支持体を移動させること;第2の動作システムを使用して、前記構造体に関して負荷バランシング構造体を位置決めするために、前記任意の数の支持体に関連する前記負荷バランシング構造体を移動させること;及び第3の動作システムを使用して、前記構造体上の位置に関して要素を位置決めするために、前記負荷バランシング構造体に関連する前記要素を移動させることを含む、構造体を支持するための方法。
D2
前記任意の数の支持体を移動させることは:前記構造体に関して前記支持体をおおまかに位置決めするために、前記支持体に関連する操縦システムを使用して、前記ワークサーフェイスに関して前記任意の数の支持体の中の前記支持体のベース構造体を移動させることを含み、前記操縦システムは前記第1の動作システムである、条項D1に記載の方法。
D3
前記負荷バランシング構造体を移動させることは:前記構造体に関して前記負荷バランシング構造体に関連する接続装置の組を細かく位置決めするために、前記任意の数の支持体又は前記負荷バランシング構造体のうちの少なくとも1つに関連する動作システムを使用して、前記任意の数の支持体に関して前記負荷バランシング構造体を移動させることを含み、前記動作システムは前記第2の動作システムである、条項D1に記載の方法。
D4
前記負荷バランシング構造体に関連する前記要素を移動させることは:前記要素を前記構造体上の対応する制御ポイントに精密に接続するために、前記接続装置の前記動作システムを使用して、前記負荷バランシング構造体に関して前記負荷バランシング構造体に関連する前記接続装置の組の中の接続装置の前記要素を移動させることを含み、前記動作システムは前記第3の動作システムである、条項D3に記載の方法。
D5
前記負荷バランシング構造体に関連する前記要素を移動させることは:前記要素によって生成される制御ポイントを精密に位置決めするために、前記接続装置の前記動作システムを使用して、前記負荷バランシング構造体に関して前記負荷バランシング構造体に関連する前記接続装置の組の中の接続装置の前記要素を移動させることを含み、前記制御ポイントは前記要素が前記構造体に接続する構造体上の位置であり、前記動作システムは前記第3の動作システムである、条項D3に記載の方法。
D6
前記負荷バランシング構造体に関連する前記要素を移動させることは:計測システムから受信した計測データによって提供されるフィードバック制御に基づいて、前記要素を精密に位置決めするために、前記接続装置の前記動作システムを使用して、前記負荷バランシング構造体に関して前記負荷バランシング構造体に関連する前記接続装置の組の中の接続装置の前記要素を移動させることを含み、前記動作システムは前記第3の動作システムである、条項D3に記載の方法。
D7
前記負荷バランシング構造体に関して前記負荷バランシング構造体に関連する接続装置の組を移動させることを更に含む、条項D1に記載の方法。
D8
前記構造体に関して前記任意の数の支持体を位置決めするために、工場の床を横断するように前記任意の数の支持体を操縦することを更に含む、条項D1に記載の方法。
D9
前記任意の数の支持体に対して操舵方向を提供することを更に含む、条項D8に記載の方法。
D10
前記操舵方向は、人間のオペレータ、前記任意の数の支持体に関連するコントローラ、又はシステムコントローラのうちの少なくとも1つによって提供される、条項D9に記載の装置。
本発明の更なる側面が、以下に提供される。
E1
第1の動作システムを使用して構造体に関して支持体をおおまかに位置決めするために、ワークサーフェイス上に前記支持体を移動させること;第2の動作システムを使用して、前記支持体に関して負荷バランシング構造体に関連する接続装置を細かく位置決めするために、前記支持体に関連する前記負荷バランシング構造体を移動させること;及び第3の動作システムを使用して、前記構造体上の位置において要素を精密に位置決めするために、前記負荷バランシング構造体に関して前記接続装置の前記要素を移動させることを含む、構造体を支持するための方法。
E2
制御ポイントを生成するために前記位置において前記構造体に前記要素を接続することを更に含む、条項E1に記載の方法。
E3
前記制御ポイントを精密に位置決めするために、前記負荷バランシング構造体に関して前記接続装置の前記要素を移動させるか、前記負荷バランシング構造体に関して前記接続装置を移動させるか、前記支持体に関して前記負荷バランシング構造体を移動させるか、又は前記ワークサーフェイスに関して前記支持体を移動させるうちの少なくとも1つを行うことを更に含む、条項E2に記載の方法。
E4
前記制御ポイントを精密に位置決めするために、前記負荷バランシング構造体に関して前記接続装置の前記要素を移動させるか、前記負荷バランシング構造体に関して前記接続装置を移動させるか、前記支持体に関して前記負荷バランシング構造体を移動させるか、又は前記ワークサーフェイスに関して前記支持体を移動させるうちの少なくとも1つを行うことは、計測システムから受信した計測データに基づいて前記制御ポイントを精密に位置決めするために、前記負荷バランシング構造体に関して前記接続装置の前記要素を移動させるか、前記負荷バランシング構造体に関して前記接続装置を移動させるか、前記支持体に関して前記負荷バランシング構造体を移動させるか、又は前記ワークサーフェイスに関して前記支持体を移動させるうちの少なくとも1つを行うことを含む、条項E3に記載の方法。
100 製造環境
101 製品
102 翼
104 航空機
105 製造工程
106 柔軟な製造システム
107 アセンブリ工程
110 複数の装置
111 任意の数の支持体
112 支持システム
113 複数の支持体
114 操縦可能支持システム
115 ワークサーフェイス
116 構造体
117 複数の操縦可能支持体
120 任意の数の段階
121 スパーアセンブリ
122 リブアセンブリ
123 外板
124 翼アセンブリ
126 複数のワークセル
128 支持体
129 ベース構造体
130 支持部材
131 操縦システム
132 接続装置
133 接続ポイント
134 任意の数の要素
135 制御ポイント
136 動作システム
137 位置
138 負荷バランシング構造体
139 地球的座標システム
140 接続装置の組
141 複数の制御ポイント
142 制御ポイントの組
143 接続装置
144 任意の数の負荷
145 ベース
146 要素
147 接続ポイント
148 動作システム
149 制御ポイント
150 第1の支持体
151 位置
152 第2の支持体
153 接続ポイントの組
154 第1の端部
156 第2の端部
157 基準座標システム
160 動作システム
161 複数の接続ポイント
162 計測システム
163 複数の接続装置
164 複数のターゲットシステム
165 複数の送信機
167 操舵方向
170 高性能スプレッダービーム
191 第1の自動ガイドビークル
192 第2の自動ガイドビークル
193 運搬できるアセンブリ治具
194 計測データ
195 複数の自動ガイドビークル
196 複数のセンサシステム
197 位置
199 工場の床
200 負荷バランシング構造体
201 ビーム
202 接続装置
204 接続装置
205 ビームの長さ
206 y-軸
208 ベース
210 要素
211 接続金具
212 動作システム
213 x-軸
214 z-軸
215 z-軸の周りの矢印
216 ベース
217 要素
218 動作システム
219 接続金具
220 第1の端部
222 第2の端部
224 第1の接続金具
226 第2の接続金具
300 第1のレールシステム
302 第2のレールシステム
304 第3のレールシステム
306 回転可能装置
308 部材
310 部材
312 部材
314 部材
600 第1の支持体
601 第1の操縦可能支持体
602 第2の支持体
603 第2の操縦可能支持体
604 ベース構造体
606 支持部材
607 操縦システム
608 ベース構造体
610 支持部材
611 操縦システム
612 動作システム
614 動作システム
616 接続装置
618 接続装置
620 ターゲットシステム
622 ターゲットシステム
624 ターゲットシステム
626 ターゲットシステム
628 計測システム
630 オープンスペース
800 支持体
801 操縦可能支持体
802 ベース構造体
804 支持部材
805 操縦システム
806 z-軸
807 レールシステム
808 接続装置
809 z-軸の周りの矢印
810 ベース
811 動作システム
812 要素
813 x-軸
814 動作システム
815 y-軸
817 負荷バランシング構造体
818 接続装置
820 接続装置
822 レールシステム
824 レールシステム
825 動作システム
826 レールシステム
828 レールシステム
829 動作システム
830 部材
832 部材
1000 製造環境
1002 ワークサーフェイス
1004 操縦可能支持システム
1006 複数の支持体
1008 翼アセンブリ
1010 支持体
1012 支持体
1014 支持体
1016 支持体
1018 ビーム
1020 接続装置の組
1021 制御ポイント
1022 複数の制御ポイント
1023 z-軸
1024 x-軸
1025 部分
1026 y-軸
1028 z-軸の周りの矢印
1030 計測システム
1032 複数の送信機
1034 複数のターゲットシステム
1100 接続装置
1102 接続装置
1104 接続装置
1106 接続装置
1108 制御ポイント
1110 制御ポイント
1112 制御ポイント
1114 制御ポイント
1120 オープンスペース
1200 作動
1202 作動
1204 作動
1206 作動
1300 作動
1302 作動
1304 作動
1306 作動
1308 作動
1310 作動
1312 作動
1400 航空機の製造及び保守方法
1402 仕様及び設計
1404 材料の調達
1408 システムインテグレーション
1410 認可及び納品
1412 運航
1414 整備及び保守
1500 航空機
1502 機体
1504 複数のシステム
1506 内装
1508 推進システム
1510 電気システム
1512 油圧システム
1514 環境システム

Claims (18)

  1. z軸に沿って位置合わせされる垂直なレールを含む垂直な支持部材を含む、ワークサーフェイス(115)上に位置決めされる支持体(128)、
    前記垂直な支持部材を介して、前記支持体(128)に結合される負荷バランシング構造体(138)、及び
    前記負荷バランシング構造体(138)に関連する接続装置の組(140)であって、
    前記負荷バランシング構造体(138)は前記接続装置の組(140)に印加される負荷を分散させるよう構成されており、
    要素(146)を介して、制御ポイントの組(142)を生成するために構造体(116)に接続するように構成され、かつ前記接続装置の組(140)の各々の装置が前記制御ポイントの組(142)の中の対応する制御ポイント(149)の位置(151)を独立して制御するように構成される、接続装置の組(140)
    を備える、装置であって、
    前記要素(146)のうちの各々の要素は、前記z軸が前記ワークサーフェイス(115)により形成される平面に対して実質的に垂直に位置合わせするように、前記負荷バランシング構造体に対して、x軸及び前記z軸の各軸に沿って移動し、かつ前記z軸周りに回転するように構成される、装置。
  2. 前記支持体(128)は、前記ワークサーフェイス(115)に関して前記支持体(128)を移動させるように構成される操縦システム(131)を備える、請求項1に記載の装置。
  3. 前記垂直な支持部材に関して前記負荷バランシング構造体(138)を移動させるように構成される、動作システム(160)を更に備える、請求項に記載の装置。
  4. 前記接続装置の組(140)は、前記ワークサーフェイス(115)の上に前記構造体(116)の少なくとも一部分を保持するように構成され、かつ前記接続装置の組(140)のうちの前記各々は、前記負荷バランシング構造体(138)に関して独立して移動可能である、請求項1に記載の装置。
  5. 前記接続装置の組(140)は、前記負荷バランシング構造体(138、200)の長さ(205)に沿って間隔を空けて配置される複数の接続装置を含む、請求項1に記載の装置。
  6. 前記負荷バランシング構造体(138)は、前記接続装置の組(140)に接続される前記構造体(116)によって、前記接続装置の組(140)に適用される任意の数の負荷(144)を、前記負荷バランシング構造体(138)に沿って前記支持体(128)に分散する、請求項1に記載の装置。
  7. 前記接続装置の組(140)の中の接続装置(143)を前記負荷バランシング構造体(138)に関して移動させることは、複数の制御ポイント(141)の中の対応する制御ポイント(149)の位置(151)を移動させる、請求項1に記載の装置。
  8. 前記支持体(128)は、第1の支持体(150)であって、
    第2の支持体(152)を更に備え、前記負荷バランシング構造体(138)は前記第1の支持体(150)及び前記第2の支持体(152)の両方と関連し、かつ前記負荷バランシング構造体(138)は、前記接続装置の組(140)に接続される前記構造体(116)によって、前記接続装置の組(140)に適用される任意の数の負荷(144)を、前記負荷バランシング構造体(138)に沿って前記第1の支持体(150)及び前記第2の支持体(152)に分散する、請求項1に記載の装置。
  9. 前記負荷バランシング構造体(138)は、前記負荷バランシング構造体(138)が前記支持体(128)に関して少なくとも1次元の自由度を伴って移動可能であるように、前記支持体(128)に移動可能に関連する、請求項1に記載の装置。
  10. 前記接続装置の組(140)の中の接続装置(143)は、
    少なくとも1次元の平行移動の自由度を伴って前記負荷バランシング構造体(138)に関して前記接続装置(143)を平行移動させるか、又は回転の少なくとも1次元の自由度を伴って前記負荷バランシング構造体(138)に関して前記接続装置(143)を回転させるうちの少なくとも1つを行うように構成される、動作システム(148)を更に備える、請求項1に記載の装置。
  11. 前記接続装置の組(140)の中の接続装置(143)であって、
    前記構造体(116)のための前記制御ポイントの組(142)の中の制御ポイント(149)を生成するために、要素(146)を使用して、接続ポイント(147)において前記構造体(116)に接続するように構成される、接続装置(143)をさらに含み、
    前記要素(146)は、締結装置、接続プレート、ブラケット、接続金具、又は接続要素のうちの少なくとも1つから選択される、請求項1に記載の装置。
  12. 負荷バランシング構造体(138)を、
    z軸に沿って垂直に位置合わせされた第1のレールを含む第1の支持体、
    前記z軸に沿って垂直に位置合わせされた第2のレールを含む第2の支持体、及び
    前記第1及び第2の支持体との間に配置される接続装置に、接続すること、
    第1の動作システムを使用して、前記第1及び第2の支持体をワークサーフェイス(115)に関して位置決めすること、
    前記第1及び第2のレールを含む第2の動作システムを使用して、前記負荷バランシング構造体(138)を移動させ、前記第1のレールと前記負荷バランシング構造体(138)に接続された接続装置を移動させることにより、前記構造体(116)に関して前記負荷バランシング構造体(138)を位置決めすること、
    第3の動作システムを使用して、前記接続装置と前記負荷バランシング構造体(138)に関連する要素(146)を移動させ、前記構造体(116)上の位置(151)に関して前記要素(146)を位置決めすること、並びに
    前記負荷バランシング構造体(138)に沿って、前記第1及び第2の支持体に負荷を分散させること、
    を含む、構造体(116)を支持するための方法であって、
    前記要素(146)は、前記z軸が前記ワークサーフェイス(115)により形成される平面に対して実質的に垂直に位置合わせするように、前記負荷バランシング構造体(138)に対して、x軸、y軸及び前記z軸のいずれにも移動し、かつ、前記z軸周りに回転するように構成される、方法。
  13. 前記第1の動作システムを使用して、前記第1の支持体(128)のベース構造体を移動させ、前記ワークサーフェイス(115)に関して前記第1の支持体(111)を位置決めすることを含む、請求項12に記載の方法。
  14. 前記任意の数の支持体(111)又は前記負荷バランシング構造体(138)のうちの少なくとも1つに結合する前記第2の動作システムを使用して、前記第1の支持体に関して前記負荷バランシング構造体(138)を移動させ、前記構造体(116)に関して前記負荷バランシング構造体(138)に結合する接続装置の組(140)を位置決めすることを含む、請求項12に記載の方法。
  15. 前記第3の動作システムを使用して、前記x軸、前記y軸及び前記z軸に沿って前記要素(146)を移動させることを含む、請求項14に記載の方法。
  16. 前記第3の動作システムを使用して、前記負荷バランシング構造体(138)に関して前記要素(146)を移動させ、前記制御ポイント(149)を位置決めすることを含む、請求項14に記載の方法。
  17. 前記第3の動作システムを使用して、前記負荷バランシング構造体(138)に関して前記要素(146)を移動させ、
    計測システム(162)から受信した計測データ(194)によって提供されるフィードバック制御に基づいて、前記要素(146)を位置決めし、
    前記制御ポイント(149)を位置決めすることを含む、請求項14に記載の方法。
  18. 前記負荷バランシング構造体(138)に関して、前記負荷バランシング構造体(138)に関連する接続装置の組(140)を移動させることを更に含む、請求項12に記載の方法。
JP2015052833A 2014-04-30 2015-03-17 翼アセンブリを支持するための装置、システム、及び方法 Active JP6659227B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461986773P 2014-04-30 2014-04-30
US61/986,773 2014-04-30
US14/558,834 US10017277B2 (en) 2014-04-30 2014-12-03 Apparatus, system, and method for supporting a wing assembly
US14/558,834 2014-12-03

Publications (2)

Publication Number Publication Date
JP2015212136A JP2015212136A (ja) 2015-11-26
JP6659227B2 true JP6659227B2 (ja) 2020-03-04

Family

ID=52021006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015052833A Active JP6659227B2 (ja) 2014-04-30 2015-03-17 翼アセンブリを支持するための装置、システム、及び方法

Country Status (7)

Country Link
US (2) US10017277B2 (ja)
EP (1) EP2947016A3 (ja)
JP (1) JP6659227B2 (ja)
KR (1) KR102352518B1 (ja)
CN (2) CN105035350B (ja)
BR (1) BR102015008464B1 (ja)
CA (1) CA2882485C (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272793B2 (en) * 2013-06-25 2016-03-01 The Boeing Company Modular stanchion system
US9266623B2 (en) * 2013-06-25 2016-02-23 The Boeing Company Modular stanchion system
US9745081B2 (en) * 2013-07-12 2017-08-29 The Boeing Company Apparatus and method for moving a structure in a manufacturing environment
US9874628B2 (en) * 2013-11-12 2018-01-23 The Boeing Company Dual hidden point bars
FR3017112B1 (fr) * 2014-02-03 2017-09-29 Snecma Structure de transport et de hissage pour turbomachine
US10427254B2 (en) 2014-04-30 2019-10-01 The Boeing Company Flexible manufacturing for aircraft structures
US10017277B2 (en) 2014-04-30 2018-07-10 The Boeing Company Apparatus, system, and method for supporting a wing assembly
US10525524B2 (en) * 2014-07-09 2020-01-07 The Boeing Company Dual-interface coupler
ES2683277T3 (es) * 2014-08-06 2018-09-25 C.M.S. S.P.A. Sistema para soportar una pieza a trabajar
AU2016303369B2 (en) * 2015-08-05 2020-10-08 Bae Systems Plc Aircraft part assembly
US10857585B2 (en) * 2016-05-26 2020-12-08 Daido Steel Co., Ltd. Transfer device of multistage forging press machine
CN106736508A (zh) * 2016-11-29 2017-05-31 湖北三江航天红阳机电有限公司 一种折叠尾翼的铆接装配装置及方法
CN107323684B (zh) * 2017-06-06 2019-06-25 浙江大学 一种飞机机翼数字化装配系统
US10532828B2 (en) * 2017-06-30 2020-01-14 The Boeing Company Apparatus, systems, and methods for automated part installation
CN109420898A (zh) * 2017-08-25 2019-03-05 贵州风雷航空军械有限责任公司 一种火箭发射器前整流罩的装配装置
CA3076675A1 (en) * 2017-11-06 2019-05-09 Crown Equipment Corporation Industrial vehicle layover system
CN108516102B (zh) * 2018-04-28 2023-09-26 中电科芜湖钻石飞机制造有限公司 柔性通用飞机支撑工装
FR3089209B1 (fr) * 2018-12-04 2020-12-18 Airbus Operations Sas CHARIOT DE TRANSPORT ET DE MISE EN ReFeRENCE POUR DES AILES D’UN AERONEF
CN109877746B (zh) * 2019-04-03 2023-06-23 西安飞机工业(集团)有限责任公司 一种集约式前缘工装及其装配方法
US11868143B2 (en) 2019-04-25 2024-01-09 Aerovironment, Inc. Methods of climb and glide operations of a high altitude long endurance aircraft
JP7472168B2 (ja) 2019-04-25 2024-04-22 エアロバイロメント,インコーポレイテッド オフセンターパラシュート飛行終了システム(fts)
US11414210B2 (en) * 2019-04-25 2022-08-16 Aerovironment, Inc. Ground support equipment for a high altitude long endurance aircraft
US10793400B1 (en) * 2019-12-23 2020-10-06 Altec Industries, Inc. Mecanum wheel pole grapple assembly
KR102349758B1 (ko) * 2020-03-04 2022-01-12 한국항공우주산업 주식회사 프레임에 지지부와 커버부를 동시에 설치할 수 있는 치공구
CN112407201B (zh) * 2020-11-17 2021-10-29 清华大学深圳国际研究生院 一种位姿调整工装
JP2022081428A (ja) * 2020-11-18 2022-05-31 ザ・ボーイング・カンパニー 組み立てライン製造及び航空機の翼の組み立て
JP2022081433A (ja) * 2020-11-18 2022-05-31 ザ・ボーイング・カンパニー 組み立てライン製造及び航空機の翼の組み立て
CN113247299B (zh) * 2021-07-16 2021-09-28 成都飞机工业(集团)有限责任公司 一种用于飞机快速装配的翼身精加工系统及方法
CN113714757B (zh) * 2021-08-20 2023-06-23 西安飞机工业(集团)有限责任公司 一种翼肋与梁结构装配的定位靠尺及定位方法

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006650A (en) 1973-12-17 1977-02-08 Inventors Engineering, Inc. Indexing control for rotatable part on a machine tool
DE2614654C2 (de) 1976-04-05 1982-12-09 Kraftwerk Union AG, 4330 Mülheim Transport- und Montagegerät für Schraubenspannvorrichtungen
US4108566A (en) 1977-07-18 1978-08-22 Jones Everett E Mechanized contour-following drill machine
GB2095215A (en) 1981-03-25 1982-09-29 Hassy Horticultural Dev Ltd Crop handling system and method
FR2519576B1 (fr) 1982-01-11 1985-11-29 Int Robotic Engineerin Robot a pattes grimpeur
US4477216A (en) 1982-01-26 1984-10-16 The Ohio Broach & Machine Company Infeed shuttle table for vertical broach
US4483080A (en) 1982-03-25 1984-11-20 Tek Precision Co., Ltd. Alignment detection system
US4445588A (en) 1982-06-04 1984-05-01 Adna Ag Guidable bogie truck for mobile cranes
DE3480271D1 (en) 1984-02-13 1989-11-30 Boeing Co Automatic traversing drilling unit and method of using
EP0192857B1 (en) 1985-02-27 1990-02-14 Ford New Holland N.V. Bale accumulator
US4781517A (en) 1986-02-03 1988-11-01 Clay-Mill Technical Systems, Inc. Robotic automobile assembly
FR2625459B1 (fr) 1987-12-31 1990-06-15 Aerospatiale Mobile autonome du type robot pour le transport d'un outil a vitesse constante
US4885836A (en) 1988-04-19 1989-12-12 Imta Riveting process and apparatus
US4850763A (en) 1988-10-03 1989-07-25 The Boeing Company Tool track for use on aircraft
US4995146A (en) * 1988-10-26 1991-02-26 The Boeing Company Assembly jig and method for making wing spars
US5022542A (en) 1988-12-09 1991-06-11 Harnischfeger Corporation Crane leg connection
CA2032182C (en) 1989-12-20 1996-05-14 Katuo Kotake Method of and apparatus for assembling exterior parts of a motorcar
US5216819A (en) 1990-12-21 1993-06-08 The Boeing Company Method of detecting long and short rivets
US5203855A (en) 1990-12-21 1993-04-20 The Boeing Company Method of mist lubrication, chip vacuum and coil cooling
US5263236A (en) 1990-12-21 1993-11-23 The Boeing Company Drill quill bearing assembly
US5213454A (en) 1990-12-21 1993-05-25 The Boeing Company Apparatus for chip vacuum, mist lubrication and coil cooling
US5231747A (en) 1990-12-21 1993-08-03 The Boeing Company Drill/rivet device
US5259104A (en) 1990-12-21 1993-11-09 The Boeing Company Rivet recovery method
US5210935A (en) 1990-12-21 1993-05-18 The Boeing Company Curved rivet feed chute
US5231754A (en) 1990-12-21 1993-08-03 The Boeing Company Rivet brake and staging tube
JPH05131382A (ja) 1991-11-11 1993-05-28 Takeshi Yanagisawa 歩行ロボツト
US5524180A (en) 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5407415A (en) 1993-01-21 1995-04-18 The Boeing Company Automated composite trim workstation
US5390128A (en) 1993-04-12 1995-02-14 Cargill Detroit Corporation Robotic processing and inspection system
US5326201A (en) 1993-06-25 1994-07-05 National Broach & Machine Company Loader/unloader for blind broaching
US5526203A (en) 1993-08-02 1996-06-11 Seagate Technology, Inc. HDA air baffle
US5468099A (en) 1993-08-11 1995-11-21 Vought Aircraft Company Seam tracking drilling machine
US5419268A (en) 1993-10-19 1995-05-30 The Charles Stark Draper Laboratories, Inc. Method and apparatus for assembling garments
US5910894A (en) 1994-01-11 1999-06-08 Sensor Adaptive Machines, Inc. Sensor based assembly tooling improvements
GB9405001D0 (en) 1994-03-15 1994-04-27 British Aerospace Rigging of aircraft wing flaps
US5575607A (en) 1994-11-02 1996-11-19 United Technologies Corporation Jet engine transport vehicle lift system and a build cell
JP3640087B2 (ja) 1994-11-29 2005-04-20 豊田工機株式会社 工作機械
US5646870A (en) 1995-02-13 1997-07-08 Advanced Micro Devices, Inc. Method for setting and adjusting process parameters to maintain acceptable critical dimensions across each die of mass-produced semiconductor wafers
US5920394A (en) 1995-09-01 1999-07-06 Research Corporation Technologies, Inc. Optical coordinate measuring machine
US5761064A (en) 1995-10-06 1998-06-02 Advanced Micro Devices, Inc. Defect management system for productivity and yield improvement
US5709026A (en) 1995-12-22 1998-01-20 Micro Contacts, Inc. Apparatus for metal stamping insertion into a mold cavity
US5822877A (en) 1996-06-20 1998-10-20 Brown & Sharpe Manufacturing Company Multi-probe system for dimensional metrology
US6098260A (en) 1996-12-13 2000-08-08 Mcdonnell Douglas Corporation Rivet fastening system for radial fuselage joints
US5848859A (en) 1997-01-08 1998-12-15 The Boeing Company Self normalizing drill head
GB2329138A (en) 1997-09-10 1999-03-17 Geodetic Technology Internatio Airframe manufacturing
US6210084B1 (en) 1997-11-26 2001-04-03 The Boeing Company Pressure foot assembly for clamping a joint
US6230382B1 (en) 1998-05-11 2001-05-15 Vought Aircraft Industries, Inc. System and method for assembling an aircraft
US6317954B1 (en) 1998-05-11 2001-11-20 Vought Aircraft Industries, Inc. System and method for aligning aircraft coordinate systems
US6430796B1 (en) * 2000-05-03 2002-08-13 The Boeing Company Apparatus for performing automated manufacturing operations on panel-shaped workpieces
AU2001255120A1 (en) 2000-05-31 2001-12-24 Morphic Technologies Aktiebolag (Publ) Method, impact machine, and equipment included in an impact machine
SE520158C2 (sv) 2000-12-11 2003-06-03 Morphic Technologies Ab Slagmaskin innefattande fjädrande matris
EP1223002B1 (de) * 2001-01-16 2004-04-14 Airbus Deutschland GmbH Halteeinrichtung zum Halten von grossformatigen Bauteilen
US6614872B2 (en) 2001-01-26 2003-09-02 General Electric Company Method and apparatus for localized digital radiographic inspection
US6514018B2 (en) 2001-03-22 2003-02-04 The Boeing Company Pneumatic drilling end effector
US6636581B2 (en) 2001-08-31 2003-10-21 Michael R. Sorenson Inspection system and method
US6708075B2 (en) 2001-11-16 2004-03-16 Advanced Micro Devices Method and apparatus for utilizing integrated metrology data as feed-forward data
US6843328B2 (en) 2001-12-10 2005-01-18 The Boeing Company Flexible track drilling machine
US6856842B2 (en) 2002-02-05 2005-02-15 General Electric Company Method and system for creating a tooling master model for manufacturing parts
US20040039465A1 (en) 2002-08-23 2004-02-26 Boyer Larry Paul Modular tooling approach to major structural repair
US6779272B2 (en) 2002-08-30 2004-08-24 The Boeing Company Single piece flow based wing assembly system
US6926094B2 (en) 2003-06-25 2005-08-09 The Boeing Company Apparatus for manufacturing operations using non-contact position sensing
US7273333B2 (en) 2003-06-25 2007-09-25 The Boeing Company Methods and apparatus for counterbalance-assisted manufacturing operations
EP1648664A1 (en) 2003-07-18 2006-04-26 Fanuc Robotics America, Inc. Handling large, heavy workpieces using gantry robots with two robot arms
US7249943B2 (en) 2003-08-01 2007-07-31 Alliant Techsystems Inc. Apparatus for forming composite stiffeners and reinforcing structures
US6949057B2 (en) 2003-09-02 2005-09-27 The Boeing Company Multi-function end effector
US7406758B2 (en) 2003-09-05 2008-08-05 The Boeing Company Apparatus and methods for manufacturing operations
US6981452B2 (en) 2004-02-06 2006-01-03 Herzog Contracting Corp. Method and apparatus for unloading ribbon rails from rail cars
US7194326B2 (en) 2004-02-06 2007-03-20 The Boeing Company Methods and systems for large-scale airframe assembly
FR2865954B1 (fr) 2004-02-10 2006-06-23 Airbus France Procede et dispositif d'usinage par fenetrage de panneaux minces non-developpables
DE102004018309B4 (de) 2004-04-13 2009-01-02 Maschinenfabrik Spaichingen Gmbh Vorrichtung zum Stanzen und Schweißen oder Kleben von Werkstücken
US6961626B1 (en) 2004-05-28 2005-11-01 Applied Materials, Inc Dynamic offset and feedback threshold
US7461711B2 (en) 2004-11-24 2008-12-09 The Boeing Company Superconducting crawler system for a production line
US7624488B2 (en) 2004-12-07 2009-12-01 The Boeing Company One-piece barrel assembly cart
US8029710B2 (en) 2006-11-03 2011-10-04 University Of Southern California Gantry robotics system and related material transport for contour crafting
CA2497249A1 (en) 2005-02-14 2006-08-14 Brian Mcluckie Saddle for a gantry robot and a gantry robot including the same
US7851504B2 (en) 2005-03-16 2010-12-14 Allergan, Inc. Enhanced bimatoprost ophthalmic solution
US7464997B2 (en) 2005-08-02 2008-12-16 Raytheon Company Load bearing crawler assembly
US7377733B2 (en) 2005-08-15 2008-05-27 The Boeing Company Universal apparatus for the inspection, transportation, and storage of large shell structures
US7695876B2 (en) 2005-08-31 2010-04-13 Brion Technologies, Inc. Method for identifying and using process window signature patterns for lithography process control
US8782878B2 (en) 2005-09-28 2014-07-22 Nikon Metrology Nv Fastener automation system
US7398586B2 (en) * 2005-11-01 2008-07-15 The Boeing Company Methods and systems for manufacturing a family of aircraft wings and other composite structures
ES2325433B1 (es) 2006-07-31 2010-06-21 Airbus Operations, S.L. Robot trepador equipado con una unidad de trabajo, y equipo de gobierno de tales robots trepadores.
US8051547B2 (en) 2006-12-29 2011-11-08 The Boeing Company Robot-deployed assembly tool
US7756321B2 (en) * 2007-02-28 2010-07-13 The Boeing Company Method for fitting part assemblies
JP5001762B2 (ja) 2007-09-13 2012-08-15 三菱重工業株式会社 姿勢制御方法および姿勢制御装置
US8005563B2 (en) 2007-10-26 2011-08-23 The Boeing Company System for assembling aircraft
US7614154B2 (en) 2007-10-26 2009-11-10 The Boeing Company System and method for locating components of a structure
US8322700B2 (en) * 2007-11-30 2012-12-04 Flow International Corporation Flexible header system for machining workpieces
US8025277B2 (en) * 2008-02-06 2011-09-27 GM Global Technology Operations LLC Reconfigurable end-of-arm tool for robotic arm
US7922272B2 (en) 2008-04-11 2011-04-12 The Boeing Company Method for application and accurate positioning of graphics on a surface
ES2357489B1 (es) * 2008-05-19 2012-03-05 Airbus Operations, S.L. Procedimiento y útil de montaje de cajones de torsión para uso aeron�?utico.
US7963578B2 (en) 2008-05-30 2011-06-21 GM Global Technology Operations LLC Integrated vacuum gripper with internal releasable magnet and method of using same
FR2934966B1 (fr) 2008-08-12 2010-09-17 Airbus France Systeme de percage et procede
DE102008041190B4 (de) 2008-08-13 2013-10-31 Airbus Operations Gmbh Verfahren zur Positionierung von Stringern auf einer Flugzeughaut sowie eine Einrichtung zur Durchführung dieses Verfahrens
CN100565406C (zh) * 2008-09-19 2009-12-02 浙江大学 一种基于四个定位器的飞机部件位姿调整系统及方法
US20100180711A1 (en) 2009-01-19 2010-07-22 Comau, Inc. Robotic end effector system and method
US20100217437A1 (en) 2009-02-24 2010-08-26 Branko Sarh Autonomous robotic assembly system
JP5112361B2 (ja) * 2009-02-27 2013-01-09 三菱重工業株式会社 航空機構造体製造装置
US8666546B2 (en) 2009-07-10 2014-03-04 The Boeing Company Autonomous robotic platform
US8539658B2 (en) 2009-08-31 2013-09-24 The Boeing Company Autonomous carrier for continuously moving wing assembly line
US8434414B2 (en) 2009-09-09 2013-05-07 Rimrock Automation, Inc. Multi-directional mobile robotic cell
FR2952579B1 (fr) 2009-11-17 2013-05-17 Airbus Operations Sas Machine pour le drapage de pieces composites cylindriques
US8347746B2 (en) 2010-01-19 2013-01-08 The Boeing Company Crawling automated scanner for non-destructive inspection of aerospace structural elements
US9643313B2 (en) 2010-01-19 2017-05-09 The Boeing Company Apparatus for automated maintenance of aircraft structural elements
US9676497B2 (en) 2010-01-21 2017-06-13 The Boeing Company High rate pulsing wing assembly line
US8661684B1 (en) * 2010-01-21 2014-03-04 The Boeing Company High rate pulsing wing assembly line
WO2011112307A1 (en) 2010-03-12 2011-09-15 Mobius Imaging, Llc Drive system for imaging device
KR100999191B1 (ko) 2010-06-24 2010-12-07 주영근 개량 자전거
US8763953B2 (en) 2010-07-14 2014-07-01 The Boeing Company Aircraft flap actuator assembly
US8695190B2 (en) 2010-07-19 2014-04-15 The Boeing Company Electromagnetic crawler assembly system
CN102001451B (zh) * 2010-11-12 2013-05-29 浙江大学 基于四个数控定位器、调姿平台和移动托架的飞机部件调姿、对接系统及方法
KR101219400B1 (ko) * 2010-12-01 2013-01-11 기아자동차주식회사 다차종 공용 펜더 장착 지그 장치
US8573070B2 (en) 2011-02-22 2013-11-05 The Boeing Company Force and normality sensing for end effector clamp
US9032602B2 (en) 2011-07-15 2015-05-19 The Boeing Company Methods and systems for in-process quality control during drill-fill assembly
US8930042B2 (en) 2011-07-15 2015-01-06 The Boeing Company Mobilized sensor network for structural health monitoring
KR101294073B1 (ko) * 2011-10-14 2013-08-07 현대자동차주식회사 차량용 도어 힌지 장착장치
KR101326816B1 (ko) * 2011-12-07 2013-11-11 현대자동차주식회사 차체 조립 시스템
US8833169B2 (en) 2011-12-09 2014-09-16 General Electric Company System and method for inspection of a part with dual multi-axis robotic devices
US9090357B2 (en) 2011-12-15 2015-07-28 The Boeing Company Method of assembling panelized aircraft fuselages
US9014836B2 (en) 2011-12-15 2015-04-21 The Boeing Company Autonomous carrier system for moving aircraft structures
GB2523024B8 (en) 2012-02-01 2016-04-20 Bae Systems Plc Countersinking a hole by using digital models
ITTO20120111A1 (it) 2012-02-09 2013-08-10 Alenia Aermacchi Spa Sistema automatico per la giunzione di porzioni di un telaio e metodo associato.
DE102012003690A1 (de) 2012-02-23 2013-08-29 Kuka Roboter Gmbh Mobiler Roboter
CN103303491B (zh) * 2012-03-09 2016-03-30 陕西飞机工业(集团)有限公司 一种飞机大部件对接的工艺装备及其对接方法
US9299118B1 (en) 2012-04-18 2016-03-29 The Boeing Company Method and apparatus for inspecting countersinks using composite images from different light sources
CN102765489B (zh) * 2012-08-02 2014-06-18 西北工业大学 机身壁板对合柔性定位方法及其装置
EP2727843B1 (en) 2012-10-30 2020-07-01 The Boeing Company Apparatus for automated maintenance of aircraft structural elements
US10065280B2 (en) 2012-10-30 2018-09-04 The Boeing Company Multifunction legs for autonomous crawling assembly equipment
US20140277717A1 (en) 2013-03-15 2014-09-18 Par Systems, Inc. Multi-axis configurable fixture
US9334066B2 (en) 2013-04-12 2016-05-10 The Boeing Company Apparatus for automated rastering of an end effector over an airfoil-shaped body
DE102013006506A1 (de) 2013-04-16 2014-10-16 Brötje-Automation GmbH Bearbeitungsanlage für Flugzeugstrukturbauteile
US9111979B2 (en) 2013-05-16 2015-08-18 Kevin P Fairbairn System and method for real time positioning of a substrate in a vacuum processing system
US9925629B2 (en) 2013-05-29 2018-03-27 The Boeing Company Modular and reconfigurable support system
CN103274055B (zh) * 2013-06-14 2015-06-10 沈阳飞机工业(集团)有限公司 基于室内gps的飞机大部件无应力装配系统及其应用
US9266623B2 (en) 2013-06-25 2016-02-23 The Boeing Company Modular stanchion system
US9272793B2 (en) 2013-06-25 2016-03-01 The Boeing Company Modular stanchion system
US9352435B2 (en) 2013-06-28 2016-05-31 The Boeing Company Magnet sensing hole driller and method therefor
US9745081B2 (en) 2013-07-12 2017-08-29 The Boeing Company Apparatus and method for moving a structure in a manufacturing environment
CN203512057U (zh) * 2013-08-18 2014-04-02 中航沈飞民用飞机有限责任公司 用于大部件工位转移的工装结构
GB2509229A (en) 2013-11-19 2014-06-25 Rolls Royce Plc Gas turbine engine fan stand with hinged rotating frame
US9266624B2 (en) 2014-02-25 2016-02-23 The Boeing Company Systems and methods for movement of objects
US9452500B2 (en) 2014-03-24 2016-09-27 The Boeing Company System and method for assembly manufacturing
US9708079B2 (en) 2014-04-30 2017-07-18 The Boeing Company Mobile automated overhead assembly tool for aircraft structures
US10427254B2 (en) 2014-04-30 2019-10-01 The Boeing Company Flexible manufacturing for aircraft structures
US9776330B2 (en) 2014-04-30 2017-10-03 The Boeing Company Crawler robot and supporting platform
US9486917B2 (en) 2014-04-30 2016-11-08 The Boeing Company Mobile automated assembly tool for aircraft structures
US10000298B2 (en) 2014-04-30 2018-06-19 The Boeing Company Metrology system for positioning assemblies
US10118714B2 (en) 2014-04-30 2018-11-06 The Boeing Company System and method for positioning an automated assembly tool relative to a structure
US10017277B2 (en) 2014-04-30 2018-07-10 The Boeing Company Apparatus, system, and method for supporting a wing assembly
US9616503B2 (en) 2014-09-10 2017-04-11 The Boeing Company Apparatuses and methods for processing a confined area of a workpiece

Also Published As

Publication number Publication date
KR102352518B1 (ko) 2022-01-18
US10017277B2 (en) 2018-07-10
EP2947016A3 (en) 2016-05-11
CN105035350A (zh) 2015-11-11
US20180354654A1 (en) 2018-12-13
KR20150125551A (ko) 2015-11-09
CN105035350B (zh) 2019-05-03
JP2015212136A (ja) 2015-11-26
BR102015008464A2 (pt) 2015-12-01
EP2947016A2 (en) 2015-11-25
CN109987246A (zh) 2019-07-09
CA2882485A1 (en) 2015-10-30
BR102015008464B1 (pt) 2022-04-05
CA2882485C (en) 2019-04-02
US10442555B2 (en) 2019-10-15
US20150314892A1 (en) 2015-11-05
CN109987246B (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
JP6659227B2 (ja) 翼アセンブリを支持するための装置、システム、及び方法
US11364581B2 (en) Flexible manufacturing system for aircraft structures
US10501209B2 (en) Metrology system for positioning assemblies
EP3076255B1 (en) Automated dynamic manufacturing systems and related methods
US9014836B2 (en) Autonomous carrier system for moving aircraft structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200206

R150 Certificate of patent or registration of utility model

Ref document number: 6659227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250