JP6655734B1 - How to anesthetize seafood - Google Patents

How to anesthetize seafood Download PDF

Info

Publication number
JP6655734B1
JP6655734B1 JP2018558780A JP2018558780A JP6655734B1 JP 6655734 B1 JP6655734 B1 JP 6655734B1 JP 2018558780 A JP2018558780 A JP 2018558780A JP 2018558780 A JP2018558780 A JP 2018558780A JP 6655734 B1 JP6655734 B1 JP 6655734B1
Authority
JP
Japan
Prior art keywords
fish
anesthesia
water
seawater
salt concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018558780A
Other languages
Japanese (ja)
Other versions
JPWO2020026416A1 (en
Inventor
正勝 関山
正勝 関山
道生 大森
道生 大森
将介 渡邊
将介 渡邊
優喜博 吉田
優喜博 吉田
亮平 高橋
亮平 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Lease Kogyo Co Ltd
Original Assignee
Nikken Lease Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Lease Kogyo Co Ltd filed Critical Nikken Lease Kogyo Co Ltd
Application granted granted Critical
Publication of JP6655734B1 publication Critical patent/JP6655734B1/en
Publication of JPWO2020026416A1 publication Critical patent/JPWO2020026416A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/02Receptacles specially adapted for transporting live fish
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P23/00Anaesthetics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Anesthesiology (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

【課題】魚介類に対し、麻酔効果をより早期に発現させること。【解決手段】水に対し、麻酔対象に応じた塩分の濃度調整を行うとともに、さらに麻酔効果を奏する二酸化炭素濃度へ調整する工程によって麻酔水を製造する。塩分濃度の調整方法の一例としては、麻酔対象の体液の浸透圧に近づけるように調整する方法がある。【選択図】なしAn object of the present invention is to provide an anesthetic effect on fish and shellfish earlier. Kind Code: A1 Abstract: An anesthetic water is produced by a process of adjusting a salt concentration of water in accordance with an anesthesia target and further adjusting the concentration of carbon dioxide to an anesthetic effect. As an example of the method of adjusting the salt concentration, there is a method of adjusting the osmotic pressure so as to approach the osmotic pressure of the body fluid of the anesthetized subject. [Selection diagram] None

Description

本発明は、魚介類の活魚輸送や、養殖中の魚介類に対するワクチン接種、計量、歯切り、出荷前のカゴ収容などの為に魚介類を鎮静化させる際に、魚介類に対する麻酔効果を早期に発現可能な、魚介類の麻酔方法に関する。
The present invention provides an early effect of anesthesia on fish and shellfish when calming the fish and shellfish for live fish transport, vaccination of fish and shellfish during cultivation, weighing, gear cutting, and storing a basket before shipping. expressible relates to anesthesia how of fish and shellfish in.

出願人は、生きた魚介類を輸送(活魚輸送)するにあたり、所定の二酸化炭素濃度および酸素濃度を呈する麻酔水からなる麻酔槽で沈静化させた魚介類を、麻酔槽とは異なる環境とした維持水からなる維持槽で過密収容して、活魚の長距離輸送を可能とした技術として、以下の特許文献1に記載の発明を着想した。   In transporting live fish and shellfish (transportation of live fish), the applicant sets the fish and shellfish calmed down in an anesthesia tank composed of anesthesia water having a predetermined carbon dioxide concentration and oxygen concentration in an environment different from that of the anesthesia tank. The invention described in Patent Literature 1 below has been conceived as a technique that enables the live fish to be transported over a long distance by being housed in a maintenance tank made of maintenance water in an overcrowded manner.

特許第6236575号公報Japanese Patent No. 6236575

出願人は、上記技術の改良を図っていく中で、麻酔効果をより早期に発現させることを解決課題として見出した。   The Applicant has found that a solution to the problem is to make the anesthetic effect appear earlier in the course of improving the above technology.

上記課題を解決すべくなされた本願発明は、魚介類の麻酔方法であって、前記魚介類がマダイである場合に、海水、淡水および海水と淡水との混合水のうち何れかに対し、塩分濃度を2.0〜3.0%に調整する作業と、二酸化炭素の溶解作業とを、順番を問わずまたは同時に行って、pHを6.0〜6.5に調整した麻酔水の中に、前記魚介類を投入する工程を少なくとも含むことを特徴とするものである。
また、本願発明は、魚介類の麻酔方法であって、魚介類の麻酔方法であって、前記魚介類がニジマスである場合に、海水、淡水および海水と淡水との混合水のうち何れかに対し、塩分濃度を0.5〜3.3%に調整する作業と、二酸化炭素の溶解作業とを、順番を問わずまたは同時に行って、pHを5.0〜5.5に調整した麻酔水の中に、前記魚介類を投入する工程を少なくとも含むことを特徴とするものである。
また、本願発明は、前記pHの調整が、海水、淡水および海水と淡水との混合水のうち何れかに対する炭酸水化によって行ってもよい。
また、本願発明は、前記炭酸水化を、カーボネータによる二酸化炭素の加圧溶解によって行ってもよい。
また、本願発明は、活魚運搬コンテナへの収容前の魚介類への鎮静化に用いることができる。
また、本願発明は、活魚運搬コンテナへの収容前の魚介類への鎮静化に用いた前記麻酔水を、活魚運搬コンテナに収容中の魚介類の運搬時の沈静化維持にも用いることができる。
また、本願発明は、養殖中の魚介類への鎮静化に用いることができる。
The present invention made in order to solve the above problems is a method of anesthesia of fish and shellfish, wherein when the fish and shellfish are red sea bream, salt water is used for any of seawater, freshwater and a mixed water of seawater and freshwater. The operation of adjusting the concentration to 2.0 to 3.0% and the operation of dissolving carbon dioxide are performed in any order or at the same time, and into an anesthetic water whose pH is adjusted to 6.0 to 6.5. And a step of introducing the fish and shellfish.
Further, the present invention is a method of anesthesia of fish and shellfish, and a method of anesthesia of fish and shellfish, wherein when the fish and shellfish is rainbow trout, any one of seawater, freshwater and mixed water of seawater and freshwater is used. On the other hand, the operation of adjusting the salt concentration to 0.5 to 3.3% and the operation of dissolving carbon dioxide are performed in any order or at the same time, and the pH of the anesthetic water is adjusted to 5.0 to 5.5. Wherein at least a step of introducing the fish and shellfish is included.
In the present invention, the pH may be adjusted by carbonation of any of seawater, freshwater, and a mixture of seawater and freshwater.
In the present invention, the carbonation may be performed by dissolving carbon dioxide under pressure using a carbonator.
Further, the present invention can be used for sedation of fish and shellfish before storage in a live fish transport container.
In addition, the present invention can also be used for maintaining the calming during transportation of the fish and shellfish contained in the live fish transport container, using the anesthetized water used for calming the fish and shellfish before being stored in the live fish transport container. .
Further, the present invention can be used for sedation of fish and shellfish during culturing.

本発明によれば、魚介類に対する麻酔効果を早期に発現することが可能となり、各種作業の効率化に寄与する。
例えば、活魚輸送前の沈静化用途として本発明を用いた場合には、港などに常置してある麻酔槽での麻酔時間を短縮できるため、輸送対象となる維持槽への魚介類の移し変えをすぐに実行できる。また、麻酔槽では次の魚介類の麻酔作業に移ることができるため、時間あたりの輸送量の増加に寄与する。また、養殖中の魚介類のワクチン接種前の沈静化用途として本発明を用いた場合には、麻酔の発現までの時間を短縮することで、ワクチンの接種のために一度陸揚げした魚介類の負担を軽くすることができる。
ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to express the anesthetic effect with respect to fish and shellfish at an early stage, and contributes to the efficiency of various operations.
For example, when the present invention is used for calming before transporting live fish, the time of anesthesia in an anesthesia tank permanently installed in a port or the like can be shortened, so that the fish and shellfish are transferred to a maintenance tank to be transported. Can be executed immediately. In the anesthesia tank, the fish and shellfish can be moved to the next anesthesia operation, thereby contributing to an increase in the amount of transportation per hour. In addition, when the present invention is used for calming fish and shellfish during vaccination before vaccination, the time until the onset of anesthesia is shortened, so that the burden of seafood once landed for vaccination is reduced. Can be lightened.

以下、本発明の実施例について説明する。   Hereinafter, examples of the present invention will be described.

<1>麻酔対象の魚介類
本発明において、麻酔対象とする魚介類には全ての水産物(魚類、貝類、甲殻類、軟体動物など)が含まれる。
また、海水で生息可能な魚介類を海水魚、淡水で生息可能な魚介類を淡水魚と定義する。
<1> Fish and shellfish to be anesthetized In the present invention, fish and shellfish to be anesthetized include all marine products (fish, shellfish, crustaceans, mollusks, etc.).
In addition, seafood that can live in seawater is defined as seawater fish, and seafood that can live in freshwater is defined as freshwater fish.

<2>麻酔水
本発明において、麻酔水は、水に対し、麻酔対象の魚介類に応じて、麻酔効果を奏する二酸化炭素濃度を有しつつ、さらに、塩分濃度を所定の値に調整することを特徴とする。麻酔水の塩分濃度の設定基準については、後述する実験例およびまとめの欄で説明する。
<2> Anesthetic Water In the present invention, anesthetic water has a carbon dioxide concentration that exerts an anesthetic effect with respect to water according to the fish and shellfish to be anesthetized, and further adjusts the salt concentration to a predetermined value. It is characterized by. The criterion for setting the salt concentration of the anesthetic water will be described later in Experimental Examples and Summary.

<3>麻酔水の製造手順
以下、麻酔水の製造手順は、大別して、塩分濃度の調整工程と二酸化炭素濃度の調整工程とに分かれる。これらの工程の順番は特段限定せず、同時に行っても良い。各調整方法について以下説明する。
<3> Procedure for producing anesthetic water Hereinafter, the procedure for producing anesthetic water is roughly divided into a salt concentration adjusting step and a carbon dioxide concentration adjusting step. The order of these steps is not particularly limited, and they may be performed simultaneously. Each adjustment method will be described below.

(1)塩分濃度の調整方法
麻酔水の塩分濃度を調整する方法は、例えば以下の方法がある。
(a)海水と、淡水(「真水」をも含む。以下同様。)と、を混合して、所定の塩分濃度に調整する方法。
(b)淡水に塩分を混合して所定の塩分濃度に調整する方法。
(c)その他、水の塩分濃度を調整するための公知の方法。
(1) Adjustment method of salt concentration The method of adjusting the salt concentration of anesthetic water includes, for example, the following method.
(A) A method in which seawater and fresh water (including “fresh water”; the same applies hereinafter) are mixed to adjust to a predetermined salt concentration.
(B) A method in which salt is mixed with fresh water to adjust to a predetermined salt concentration.
(C) Other known methods for adjusting the salt concentration of water.

(2)二酸化炭素濃度の調整方法
(a)所定の塩分濃度に調整した水を炭酸水化する。
水の炭酸水化にはカーボネータを用いることができる。
カーボネータは、水に対し二酸化炭素を加圧溶解することで炭酸水とすることが可能な装置であり、飲食店のドリンクサーバーなどで飲料用炭酸水を製造する装置として広く使用されている。
なお、飲料用のカーボネータは、炭酸水化する水として、塩分濃度の高い水を想定していないため、そのまま使用とすると装置を構成する金属部品に腐食が生じ得るため、これらの部品を耐腐食性に優れる部品に交換するなどの対策を施す必要がある。
(b)塩分濃度を調整する前の海水または真水の一方または両方を炭酸水化する。
水層内に投入する前の海水または真水の一方または両方をカーボネータなどの公知の方法で炭酸水化する。
カーボネータの詳細は、前述したとおりである。
(2) Method of adjusting carbon dioxide concentration (a) Water adjusted to a predetermined salt concentration is carbonated.
For carbonation of water, a carbonator can be used.
The carbonator is a device that can convert carbonated water into water by pressurizing and dissolving carbon dioxide in water, and is widely used as a device for producing carbonated water for drinking in a drink server of a restaurant or the like.
Since carbonated water for beverages does not assume water with a high salt concentration as water to be carbonated, if it is used as it is, corrosion may occur in metal parts constituting the apparatus. It is necessary to take countermeasures such as replacing the parts with excellent properties.
(B) One or both of seawater and freshwater before adjusting the salt concentration are carbonated.
One or both of seawater and fresh water before being introduced into the water layer is carbonated by a known method such as a carbonator.
The details of the carbonator are as described above.

(3)その他の調整方法
海水に対し、市販の炭酸水を混合して、塩分濃度と二酸化炭素濃度を同時に調整してもよい。なお海水と炭酸水の混合のみで所定の塩分濃度および二酸化炭素濃度への調整が難しい場合には、前述した各種の調整方法を組み合わせてもよい。
(3) Other Adjustment Methods Commercially available carbonated water may be mixed with seawater to simultaneously adjust the salt concentration and the carbon dioxide concentration. If it is difficult to adjust the salt concentration and the carbon dioxide concentration to a predetermined value only by mixing seawater and carbonated water, the above-described various adjustment methods may be combined.

<4>実験1:海水魚(マダイ)の場合
(1)初期実験
水槽内の塩分濃度および二酸化炭素濃度を所定の値に調整した麻酔水を有する麻酔槽にマダイを投入し、麻酔が発現するまでの時間と、発現後通常海水に戻してからマダイが覚醒するまでの時間および死亡の有無についての初期実験を行った。
通常の海水は、概ねpHは8.3、塩分濃度は3.3%である。
死亡の有無については、通常の海水水槽に移して、翌日生存しているか否かで判断を行った。
初期実験の結果を表に示す。
<4> Experiment 1: In the case of saltwater fish (red sea bream) (1) Initial experiment The red sea bream is put into an anesthesia tank having an anesthesia water in which the salt concentration and the carbon dioxide concentration in the aquarium are adjusted to predetermined values, and anesthesia is developed. An initial experiment was conducted to determine the time until the red sea bream was awakened after returning to normal seawater and the presence or absence of death.
Normal seawater generally has a pH of 8.3 and a salinity of 3.3%.
The presence or absence of death was judged based on whether or not they were alive in the next day after being transferred to a normal seawater tank.
The results of the initial experiment are shown in the table.

[表1]

Figure 0006655734
※死亡の有無の欄の○は生存を示し、×は死亡を示す。以下同様。[Table 1]
Figure 0006655734
* In the column of the presence or absence of death, ○ indicates survival, and X indicates death. The same applies hereinafter.

(a)麻酔の発現時間について
pHが7の場合、塩分濃度を海水の通常時(3.3%)から下げていっても、麻酔の発現には至らなかった。
pHが6.5の場合、塩分濃度が海水の通常時(3.3%)の状態から麻酔効果は発現されているものの、塩分濃度を下げることで麻酔の発現時間の短縮効果が発揮されている。特に、塩分濃度が2.0%、2.5%では顕著な時間短縮が見受けられる。
pHが6の場合、塩分濃度が海水の通常時(3.3%)の状態から麻酔効果は発現されており、pHが6.5の場合よりも発現時間は短縮されている。また、さらに塩分濃度を下げることで、一部のケースに発現時間の短縮効果が発揮されている。なお、塩分濃度が1.5%の場合に発現時間の短縮効果が発揮できない場合が見受けられたため、この結果がノイズにあたるか否かを、後述する追加実験で追加検証する。
pHが5.5の場合、塩分濃度を問わず、麻酔効果は3分以内に発現されており、塩分濃度を海水の通常時から下げることで発現時間の短縮に繋がる相関関係については本実験では把握できなかった。この点も、後述する追加実験で追加検証する。
pHが5の場合、一部の塩分濃度で魚の死亡に至ったケースが見受けられ、塩分濃度を海水の通常時から下げることで発現時間の短縮に繋がる相関関係は明確に把握できなかった。この点も、後述する追加実験で追加検証する。
(A) Onset time of anesthesia When the pH was 7, even if the salt concentration was lowered from the normal state of seawater (3.3%), the onset of anesthesia did not occur.
When the pH is 6.5, the anesthesia effect is exhibited from the state where the salt concentration is normal (3.3%) in seawater, but the effect of shortening the onset time of anesthesia is exhibited by lowering the salt concentration. I have. In particular, when the salt concentration is 2.0% or 2.5%, a remarkable time reduction is observed.
When the pH is 6, the anesthetic effect is exhibited from the state when the salt concentration is normal (3.3%) in seawater, and the onset time is shorter than when the pH is 6.5. Further, the effect of shortening the onset time is exhibited in some cases by further reducing the salt concentration. In some cases, when the salt concentration was 1.5%, the effect of shortening the expression time could not be exhibited, and it was additionally verified by an additional experiment described later whether this result corresponds to noise.
In the case of pH 5.5, the anesthetic effect was manifested within 3 minutes regardless of the salt concentration, and in this experiment, it was determined that lowering the salt concentration from the normal state of seawater leads to a shorter onset time. I couldn't figure out. This point will be additionally verified in an additional experiment described later.
In the case where the pH was 5, there were cases where fish died at some salt concentrations, and it was not possible to clearly understand the correlation leading to shortening of the expression time by lowering the salt concentration from the normal state of seawater. This point will be additionally verified in an additional experiment described later.

(b)覚醒時間、死亡の有無について
比較的好ましい麻酔効果が得られた、pH5.5,6.0,6.5の場合、通常海水に戻した魚は、その後2分から7分程度の間に覚醒し、翌日も死亡することなく生存していることがわかった。
pHが5.0の場合、覚醒に至ったマダイも、その後死亡したケースが散見された。
(B) Awakening time and presence / absence of death In the case of pH 5.5, 6.0 and 6.5 where relatively favorable anesthesia effect was obtained, fish returned to normal seawater were then treated for about 2 to 7 minutes. He was awakened and found to be alive without dying the next day.
When the pH was 5.0, some red sea bream also awakened and subsequently died.

(2)追加実験
上記の初期実験の結果を踏まえ、pHが5.5,6.0,6.5のケースでサンプル数を増やして平均値をとった追加実験を行った。
追加実験の結果を表2に示す。
[表2]

Figure 0006655734
(2) Additional experiment Based on the results of the initial experiment described above, an additional experiment was performed in which the number of samples was increased and the average value was obtained in cases where the pH was 5.5, 6.0, and 6.5.
Table 2 shows the results of the additional experiment.
[Table 2]
Figure 0006655734

上記の追加実験によっても、初期実験で得られた推測が裏付けられる結果となった。
なお、pH5.5の場合で、塩分濃度が3.3%の実験結果のみ、麻酔効果の発現が52秒で発現したものが見受けられるが、同pH値で異なる塩分濃度の結果と比較して極端な数値であるため、サンプルの魚の体調などの外部要因も影響を与えているものと考えられる。
The additional experiments described above also supported the assumptions made in the initial experiments.
In addition, in the case of pH 5.5, only an experiment result in which the salt concentration was 3.3% and the expression of the anesthesia effect appeared in 52 seconds, but compared with the result of the different salt concentration at the same pH value. Because of the extreme values, it is considered that external factors such as the physical condition of the sample fish also have an effect.

上記の追加実験の結果から、麻酔水の塩分濃度を、通常海水の塩分濃度よりも下げる方向に調整することで、概ね麻酔効果の発現までの時間の短縮化に繋がることがわかった。また、覚醒時間も短縮傾向にあることがわかった。   From the results of the above additional experiments, it was found that adjusting the salt concentration of the anesthetic water to be lower than the salt concentration of the normal seawater generally leads to shortening of the time until the anesthetic effect appears. In addition, it was found that the awakening time also tends to be shortened.

<5>実験2:淡水魚(ニジマス)の場合 <5> Experiment 2: Freshwater fish (rainbow trout)

(1)初期実験
水槽内の塩分濃度および二酸化炭素濃度を所定の値に調整した麻酔水を有する麻酔槽にニジマスを投入し、麻酔が発現するまでの時間と、発現後通常海水に戻してからニジマスが覚醒するまでの時間および死亡の有無についての初期実験を行った。
通常の淡水は、概ねpHは7、塩分濃度は0%である。
死亡の有無については、通常の淡水水槽に移して、翌日生存しているか否かで判断を行った。
初期実験の結果を表3に示す。
(1) Initial experiment The rainbow trout was put into an anesthesia tank having an anesthesia water in which the salt concentration and the carbon dioxide concentration in the water tank were adjusted to predetermined values, and the time until the onset of anesthesia and after returning to normal seawater after onset. Initial experiments were performed on the time until rainbow trout awakened and whether or not it died.
Normal fresh water generally has a pH of 7 and a salt concentration of 0%.
The presence or absence of death was judged by whether or not the animals were transferred to a normal freshwater tank and survived the next day.
Table 3 shows the results of the initial experiment.

[表3]

Figure 0006655734
(a)麻酔の発現時間について
pHが7の場合、全てのケースで、麻酔の発現には至らなかった。
pHが6.5の場合、塩分濃度を3.0%、3.3%に上げたケースのみで麻酔の発現に至った。よって、淡水の塩分濃度と麻酔効果の発現に相関性が見受けられる。
pHが6,5.5,5の場合、塩分濃度を淡水の通常時(0%)から上げた場合、少なくとも淡水の通常時と比較して麻酔の発現時間の短縮効果が発揮されている。[Table 3]
Figure 0006655734
(A) Onset time of anesthesia When the pH was 7, in all cases, onset of anesthesia did not occur.
When the pH was 6.5, anesthesia occurred only in the case where the salt concentration was increased to 3.0% or 3.3%. Therefore, there is a correlation between the salt concentration of fresh water and the manifestation of the anesthetic effect.
When the pH is 6, 5.5, 5, and when the salt concentration is increased from the normal state (0%) of fresh water, at least the effect of shortening the onset time of anesthesia is exhibited as compared with the normal state of fresh water.

(b)覚醒時間、死亡の有無について
比較的好ましい麻酔効果が得られた、pHが6,5.5,5の場合、通常淡水に戻した魚は、その後2分から10分程度の間に覚醒し、翌日も死亡することなく生存していることがわかった。
なお、塩分濃度が0%の場合は機器のトラブルにより死亡の有無を確認できなかったことから、後述する追加実験で追加検証する。
(B) Awakening time and presence or absence of death A relatively favorable anesthetic effect was obtained. When the pH was 6,5.5,5, the fish that had been returned to normal freshwater awakened within about 2 to 10 minutes thereafter. He found that he survived the next day without dying.
In the case where the salt concentration is 0%, it was not possible to confirm the presence or absence of death due to a trouble in the device, and therefore, additional verification will be made in an additional experiment described later.

(2)追加実験
上記の初期実験の結果を踏まえ、pHが6,5.5,5のケースでサンプル数を増やして平均値をとった追加実験を行った。
追加実験の結果を表4に示す。
[表4]

Figure 0006655734
(2) Additional experiment Based on the results of the above-mentioned initial experiment, an additional experiment was performed in which the number of samples was increased and the average value was obtained in cases where the pH was 6, 5.5 and 5.
Table 4 shows the results of the additional experiments.
[Table 4]
Figure 0006655734

pHが6,5.5,5のケースにおいて、塩分濃度を上げていくことで、少なくとも淡水の通常時と比較して麻酔の発現時間の短縮効果が発揮されている。
また、覚醒時間も極端に長期化するケースは存在せず、死亡した例も生じなかった。
In the case where the pH is 6, 5.5, and 5, the effect of shortening the onset time of anesthesia is exhibited by increasing the salt concentration at least as compared with a normal state of fresh water.
In addition, there was no case where the awakening time was extremely prolonged, and no cases of death occurred.

<6>実験3:甲殻類(ワタリガニ)の場合
水槽内の塩分濃度および二酸化炭素濃度を所定の値に調整した麻酔水を有する麻酔槽にワタリガニを投入し、麻酔が発現するまでの時間と、発現後通常海水に戻してからワタリガニが覚醒するまでの時間および死亡の有無について実験を行った。実験結果を表5に示す。
[表5]

Figure 0006655734
<6> Experiment 3: In the case of crustaceans (Crab crabs) The time until the blue crab is introduced into an anesthesia tank having an anesthesia water in which the salt concentration and the carbon dioxide concentration in the aquarium are adjusted to predetermined values, and an anesthesia is developed, Experiments were conducted on the time from the return to normal seawater after the onset to the awakening of the blue crab and the presence or absence of death. Table 5 shows the experimental results.
[Table 5]
Figure 0006655734

pHが5.5,5のケースにおいて、塩分濃度を上げていくことで、少なくとも淡水の通常時と比較して麻酔の発現時間の短縮効果が発揮されている。
また、覚醒時間も極端に長期化するケースは存在せず、死亡した例も生じなかった。
In the case where the pH is 5.5 or 5, increasing the salt concentration has at least the effect of shortening the onset time of anesthesia as compared with the normal state of fresh water.
In addition, there was no case where the awakening time was extremely prolonged, and no cases of death occurred.

<7>まとめ
以上の実験1〜実験3の結果から、麻酔水の塩分濃度が、麻酔対象の体液の浸透圧に近づくほど、麻酔効果が発現するまでの時間が短縮化される、との推測に至った。その詳細について以下に説明する。
<7> Conclusion From the results of Experiments 1 to 3, it is presumed that as the salt concentration of the anesthetic water approaches the osmotic pressure of the body fluid of the anesthetized subject, the time required for the anesthetic effect to appear is reduced. Reached. The details will be described below.

(1)海水魚(マダイ)の場合
実験1で麻酔対象としたマダイの体液の浸透圧は、通常0.8〜0.9%程度である。
海水と同等の塩分濃度(3.3%)から、マダイの体液の浸透圧に近づくように塩分濃度を低下させていくことで、麻酔水の吸収度合いの速度が増し、麻酔の早期発現に至ったものと推測される。
(1) In case of saltwater fish (red sea bream) The osmotic pressure of body fluid of red sea bream, which was anesthetized in Experiment 1, is usually about 0.8 to 0.9%.
By decreasing the salt concentration from the salt concentration equivalent to seawater (3.3%) so as to approach the osmotic pressure of the body fluid of red sea bream, the rate of absorption of the anesthetic water increases, leading to early onset of anesthesia. It is presumed that it was.

(2)淡水魚(ニジマス)の場合
実験2で麻酔対象としたニジマスの体液の浸透圧は、通常0.8%程度であるところ、実験結果では塩分濃度を通常時の浸透圧の値以上に上昇させていくことで麻酔の早期発現に至っており、一見すると体液の浸透圧に近づけることと、麻酔の早期発現との因果関係が存在しないように思われた。
しかし、淡水魚は、以下の理由から、体液の浸透圧が通常の0.8%程度から上昇している状態になり、その結果、淡水よりも濃い塩分濃度としたときに、結果的に淡水魚の体液の浸透圧が近づく結果となって、体表面からの麻酔水の取り込みが急速になって、麻酔の早期発現に至ったものと推測される。
(2) In case of freshwater fish (rainbow trout) The osmotic pressure of the body fluid of the rainbow trout anesthetized in Experiment 2 is usually about 0.8%, but the experimental results show that the salt concentration increases to a value higher than the normal osmotic pressure. This led to the early onset of anesthesia. At first glance, it seemed that there was no causal relationship between approaching the osmotic pressure of body fluids and early onset of anesthesia.
However, freshwater fish have a state in which the osmotic pressure of body fluid has increased from about 0.8% for the following reasons. As a result, when the salt concentration is higher than that of freshwater, the freshwater fish It is presumed that the osmotic pressure of the bodily fluids approached, and the uptake of anesthetic water from the body surface became rapid, leading to early onset of anesthesia.

[理由]
(a)淡水魚は、海水魚と異なり、そもそも塩分の存在する海水に触れることも無い為、体液の浸透圧調整機能が海水魚ほど優れていない。
(b)また、淡水魚は、口から水を取り込むという機能がほとんどなく、体表面から水を取り込んでいる。すなわち、淡水魚は通常塩分をほとんど含まない水を体から取り込んでいることになる。
(c)そのため、塩分濃度の高い水の環境下におかれると、浸透圧の関係から淡水魚の体からの水の吸収は行われず、他方では尿が多量に出ることから、淡水魚の体内の血液中のNa濃度が高くなると考えられる。
(d)その結果、淡水魚の体内の血中濃度が高まり、体液の浸透圧も0.8%程度から上昇する方向へと遷移する結果となったものと思われる。
[Reason]
(A) Unlike seawater fish, freshwater fish do not come into contact with seawater containing salt in the first place, and therefore have less excellent osmotic pressure adjusting function for body fluids than seawater fish.
(B) Also, freshwater fish have almost no function of taking in water from the mouth, and take in water from the body surface. That is, freshwater fish usually take in water that contains little salt from the body.
(C) Therefore, when placed in an environment of water having a high salt concentration, water is not absorbed from the body of the freshwater fish because of the osmotic pressure, and a large amount of urine is produced on the other hand. It is considered that the concentration of Na in the solution increases.
(D) As a result, it is considered that the blood concentration in the body of the freshwater fish increased, and the osmotic pressure of the bodily fluid transitioned from about 0.8% to a rising direction.

(3)甲殻類(ワタリガニ)の場合
実験3で麻酔対象としたワタリガニは、体液の浸透圧の調節機能を持たないと考えられている。
つまり、麻酔前の塩分濃度が3.3%の通常海水にいたワタリガニは、体液の浸透圧も3.3%となっている。この為、麻酔水を低塩分にしても、麻酔は体の浸透圧の濃度とかけ離れて、麻酔は掛かりにくくなる。逆に、麻酔前にいた海水と同じ濃度に近づけると、体液の浸透圧に近づくため早く麻酔に掛かりやすくなるものと思われる。
(3) In the case of crustaceans (blue crab) The blue crab used as an anesthetized subject in Experiment 3 is considered to have no function of regulating the osmotic pressure of body fluid.
In other words, the blue crab that was in normal seawater with a salt concentration of 3.3% before anesthesia has an osmotic pressure of body fluid of 3.3%. For this reason, even if the anesthesia water has a low salt content, the anesthesia is far from the osmotic pressure of the body, and the anesthesia is hard to be applied. Conversely, if the concentration approaches the same as seawater before anesthesia, the osmotic pressure of the body fluid will be approached, so it will be easier for anesthesia to be performed quickly.

なお、上記した塩分濃度の調整に、麻酔対象の体液の浸透圧を基準とする方法はあくまで一例であり、麻酔対象が海水で生息する魚介類である場合には、単純に塩分濃度を通常の海水よりも低い濃度に調整する方法や、麻酔対象が淡水で生息する魚介類である場合には、単純に塩分濃度を通常の淡水よりも高い濃度に調整するように設定する方法なども、魚種に応じて適宜採用することができる。   In addition, the above-mentioned method of adjusting the salt concentration, the method based on the osmotic pressure of the body fluid of the anesthetized subject is merely an example. Methods of adjusting the concentration to lower than that of seawater or, if the anesthesia target is seafood that lives in freshwater, simply setting the salt concentration to a higher concentration than normal freshwater, etc. It can be appropriately adopted depending on the species.

<8>麻酔水の使用方法
次に、本発明に係る麻酔水の使用例について説明する。
<8> Method of Using Anesthetic Water Next, an example of using anesthetic water according to the present invention will be described.

(1)活魚輸送での使用例
活魚輸送を行う場合には、麻酔を行うための水槽(麻酔槽)は港に常置した状態とし、この麻酔槽内の水を、水槽内に投入する魚介類の種類にあわせて水層内の水を所定の塩分濃度および二酸化炭素濃度に調整した麻酔水としてから、魚介類を投入して麻酔作業を行う。
麻酔効果が発現して沈静化した魚介類を麻酔槽から取り出して、運搬用の水槽(維持槽)に移し変えて、沈静化を維持しながらトラックなどで港から運び出す。
(1) Example of transporting live fish When transporting live fish, the tank for anesthesia (anesthesia tank) should be kept at the port, and the water in the anesthesia tank should be put into the tank. After the water in the aqueous layer is adjusted to a predetermined salt concentration and carbon dioxide concentration according to the type of water, anesthesia is performed by feeding fish and shellfish.
The fish and shellfish that have calmed down due to the effect of anesthesia are taken out of the anesthesia tank, transferred to a water tank (maintenance tank) for transportation, and transported out of the port by truck or the like while maintaining calm down.

なお、運搬時に魚介類の沈静化を維持するために、維持槽の中の水についても、所定の塩分濃度または二酸化炭素濃度へと調整を行う必要がある場合には、本発明に係る麻酔水を維持槽内の水として使用しても良い。   In addition, in order to maintain the calming of the fish and shellfish during transportation, if it is necessary to adjust the water in the maintenance tank to a predetermined salt concentration or carbon dioxide concentration, the anesthetic water according to the present invention is used. May be used as water in the maintenance tank.

(2)養殖現場での適用例
養殖現場において、養殖対象の稚魚などにワクチン接種を行う場合には、養殖現場の水域からポンプなどで水とともに汲み上げて陸揚げした稚魚を、稚魚の種類に合わせて所定の塩分濃度および二酸化炭素濃度に調整した麻酔水を投入してある水槽の中に放す。
その後所定時間経過し、沈静化された稚魚にワクチン接種を行い、再度養殖現場の水域へと戻し、麻酔からの覚醒を促す。
本発明によれば、養殖現場からポンプで汲み上げた稚魚を早期に沈静化してワクチン接種を行うことができる。
稚魚の計量や、歯切り、出荷前のカゴ収容などを行う場合も同様である。
(2) Application example at aquaculture sites In aquaculture sites, when vaccination is performed on larvae to be cultivated, the larvae that have been pumped together with water from the aquaculture site's water area and landed according to the type of larvae. Release into an aquarium in which anesthesia water adjusted to a predetermined salt concentration and carbon dioxide concentration is charged.
After a lapse of a predetermined time, the calmed fry is vaccinated and returned to the water area at the farming site again to wake up from anesthesia.
ADVANTAGE OF THE INVENTION According to this invention, the larvae pumped from the aquaculture site can be calmed down early, and vaccination can be performed.
The same applies to the case where the fry is weighed, the teeth are cut, and the basket is stored before shipping.

Claims (7)

魚介類の麻酔方法であって、
前記魚介類がマダイである場合に、
海水、淡水および海水と淡水との混合水のうち何れかに対し、塩分濃度を2.0〜3.0%に調整する作業と、二酸化炭素の溶解作業とを、順番を問わずまたは同時に行って、pHを6.0〜6.5に調整した麻酔水の中に、前記魚介類を投入する工程を少なくとも含むことを特徴とする、
魚介類の麻酔方法。
A method of anesthesia of seafood,
When the seafood is red sea bream,
In any of seawater, freshwater, and mixed water of seawater and freshwater, the operation of adjusting the salt concentration to 2.0 to 3.0% and the operation of dissolving carbon dioxide are performed in any order or simultaneously. Wherein at least a step of introducing the fish and shellfish into anesthetic water whose pH has been adjusted to 6.0 to 6.5 ,
How to anesthetize seafood.
魚介類の麻酔方法であって、
前記魚介類がニジマスである場合に、
海水、淡水および海水と淡水との混合水のうち何れかに対し、塩分濃度を0.5〜3.3%に調整する作業と、二酸化炭素の溶解作業とを、順番を問わずまたは同時に行って、pHを5.0〜5.5に調整した麻酔水の中に、前記魚介類を投入する工程を少なくとも含むことを特徴とする、
魚介類の麻酔方法。
A method of anesthesia of seafood,
When the seafood is rainbow trout,
In any of seawater, freshwater, and mixed water of seawater and freshwater, the operation of adjusting the salt concentration to 0.5 to 3.3% and the operation of dissolving carbon dioxide are performed in any order or simultaneously. Wherein the method comprises at least a step of introducing the fish and shellfish into an anesthetic water having a pH adjusted to 5.0 to 5.5 ,
How to anesthetize seafood.
前記pHの調整が、海水、淡水および海水と淡水との混合水のうち何れかに対する炭酸水化によって行われることを特徴とする、
請求項1または2に記載の魚介類の麻酔方法。
The adjustment of the pH is performed by carbonation of any of seawater, freshwater, and mixed water of seawater and freshwater,
The method of anesthesia for fish and shellfish according to claim 1 or 2.
前記炭酸水化が、カーボネータによる二酸化炭素の加圧溶解によって行われることを特徴とする、
請求項3に記載の魚介類の麻酔方法。
The carbonation is performed by pressurized dissolution of carbon dioxide by a carbonator,
The method for anesthetizing fish and shellfish according to claim 3.
活魚運搬コンテナへの収容前の魚介類への鎮静化に用いる、
請求項1乃至4のうち何れか1項に記載の魚介類の麻酔方法。
Used for sedation of seafood before storage in live fish transport containers,
The method of anesthesia for fish and shellfish according to any one of claims 1 to 4.
活魚運搬コンテナへの収容前の魚介類への鎮静化に用いた前記麻酔水を、活魚運搬コンテナに収容中の魚介類の運搬時の沈静化維持にも用いることを特徴とする、
請求項5に記載の魚介類の麻酔方法。
The anesthesia water used for sedation to the fish and shells before being accommodated in the live fish transport container, characterized in that it is also used to maintain the calmness during transport of the fish and shells being accommodated in the live fish transport container,
The method for anesthetizing fish and shellfish according to claim 5.
養殖中の魚介類への鎮静化に用いる、
請求項1乃至6のうち何れか1項に記載の魚介類の麻酔方法。
Used for sedation to seafood during aquaculture,
The method of anesthesia for fish and shellfish according to any one of claims 1 to 6.
JP2018558780A 2018-08-02 2018-08-02 How to anesthetize seafood Active JP6655734B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029071 WO2020026416A1 (en) 2018-08-02 2018-08-02 Method for anesthetizing fish and method for producing anesthetic liquid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019183718A Division JP2020018320A (en) 2019-10-04 2019-10-04 Anesthetization method of fish and shellfish, and production method of anesthetic water

Publications (2)

Publication Number Publication Date
JP6655734B1 true JP6655734B1 (en) 2020-02-26
JPWO2020026416A1 JPWO2020026416A1 (en) 2020-08-06

Family

ID=69231530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018558780A Active JP6655734B1 (en) 2018-08-02 2018-08-02 How to anesthetize seafood

Country Status (2)

Country Link
JP (1) JP6655734B1 (en)
WO (1) WO2020026416A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112931320A (en) * 2021-04-14 2021-06-11 通威股份有限公司 Perch fry pond-passing-without-water separation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144646B2 (en) * 1991-03-04 2001-03-12 善昭 長浦 Methods and containers for hibernation
JP4951736B2 (en) * 2006-08-30 2012-06-13 林兼産業株式会社 Fish anesthesia equipment
JP2014039514A (en) * 2012-08-23 2014-03-06 Marine Biotechnology:Kk Seafood anesthetization method and apparatus
JP2016198096A (en) * 2015-04-13 2016-12-01 株式会社テックコーポレーション Seafood processor, seafood processing method, frozen seafood, and reviving method of frozen seafood

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112931320A (en) * 2021-04-14 2021-06-11 通威股份有限公司 Perch fry pond-passing-without-water separation method

Also Published As

Publication number Publication date
WO2020026416A1 (en) 2020-02-06
JPWO2020026416A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
Fivelstad et al. Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts at constant pH in bicarbonate rich freshwater
Sandodden et al. Transport stress in Atlantic salmon (Salmo salar L.): anaesthesia and recovery
King Fish transport in the aquaculture sector: An overview of the road transport of Atlantic salmon in Tasmania
JP4951736B2 (en) Fish anesthesia equipment
JP6655734B1 (en) How to anesthetize seafood
Colt et al. Impact of aeration and alkalinity on the water quality and product quality of transported tilapia—a simulation study
Ben-Asher et al. Proof of concept of a new technology for prolonged high-density live shellfish transportation: Brown crab as a case study
Rodrigues et al. Acute responses of juvenile cobia Rachycentron canadum (Linnaeus 1766) to acid stress
Johnson et al. Causes and controls of freshwater drum mortality during transportation
Bart et al. Effects of incubation water hardness and salinity on egg hatch and fry survival of N ile tilapia O reochromis niloticus (L innaeus)
JP2020018320A (en) Anesthetization method of fish and shellfish, and production method of anesthetic water
Marchetti The toxicity of nonyl phenol ethoxylate to the developmental stages of the rainbow trout, Salmo gairdnerii Richardson
Moran et al. Low stress response exhibited by juvenile yellowtail kingfish (Seriola lalandi Valenciennes) exposed to hypercapnic conditions associated with transportation
JP5438194B2 (en) How to raise, store or transport tuna underage fish
JPS5813336A (en) Transportation of live fish
JP2010046037A (en) Breeding aquarium for plankton such as larva of eel, and method for feeding plankton
JP2007259766A (en) Method for storing or transporting live fishes and shellfishes
Farrell et al. Toward improved public confidence in farmed fish: a Canadian perspective on fish welfare during marine transport
Sáez-Royuela et al. Possibilities of artificial incubation of signal crayfish (Pacifastacus leniusculus Dana) eggs at high densities and reduced flow rate using formaldehyde as antifungal treatment
Weirich et al. Effects of environmental sodium chloride on percent hatch, yolk utilization, and survival of channel catfish fry
CN104488828A (en) Method for increasing hatching rate of artemia cysts after shelling
Keleştemur Effects of hypoxic stress on electrolyte levels of blood in juvenile rainbow trout (Oncorhynchus mykiss)
WO2017123096A1 (en) Method and device for removing parasites and microorganisms from anadromous fish
TWM592649U (en) Underwater oxygen dissolution control device
JP5276359B2 (en) Fish landing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181108

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181108

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6655734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250