JP2014039514A - Seafood anesthetization method and apparatus - Google Patents

Seafood anesthetization method and apparatus Download PDF

Info

Publication number
JP2014039514A
JP2014039514A JP2012184628A JP2012184628A JP2014039514A JP 2014039514 A JP2014039514 A JP 2014039514A JP 2012184628 A JP2012184628 A JP 2012184628A JP 2012184628 A JP2012184628 A JP 2012184628A JP 2014039514 A JP2014039514 A JP 2014039514A
Authority
JP
Japan
Prior art keywords
oxygen
anesthesia
seafood
carbon dioxide
fish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012184628A
Other languages
Japanese (ja)
Other versions
JP2014039514A5 (en
Inventor
Kenji Kukino
憲司 久木野
Mutsuko Kukino
睦子 久木野
Tomiko Asakura
富子 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARINE BIOTECHNOLOGY KK
Original Assignee
MARINE BIOTECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARINE BIOTECHNOLOGY KK filed Critical MARINE BIOTECHNOLOGY KK
Priority to JP2012184628A priority Critical patent/JP2014039514A/en
Publication of JP2014039514A publication Critical patent/JP2014039514A/en
Publication of JP2014039514A5 publication Critical patent/JP2014039514A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for anesthetizing a seafood safely for a long time and practically simple under an environment containing dissolved carbon dioxide.SOLUTION: By bringing oxygen air bubbles containing gaseous oxygen into contact with the surfaces of the gill-epithelial cell membrane of a seafood, a partial pressure difference of [gaseous oxygen partial pressure]-[oxygen gas partial pressure in capillary vessels of gills] exceeding [partial pressure of oxygen dissolved in water]-[partial pressure of oxygen dissolved in capillary vessels of gills], so that the quantity of oxygen to be taken into the gill sheet capillary vessels is prominently increased. As a result, the respiratory failure, which might occur under a voluntary breathing movement suppressed by an anesthetization, is avoided so that a long-term carbon-dioxide anesthetization can be performed under a water temperature (about 20°C), at which the seafood is usually handled.

Description

本発明は、溶存二酸化炭素を含む水中において魚介類に長時間の麻酔を施す方法および装置に関する。 The present invention relates to a method and apparatus for performing long-term anesthesia of fish and shellfish in water containing dissolved carbon dioxide.

従来、魚の養殖現場などでは、疾病予防のためのワクチン接種、トラフグの噛み合い防止のための歯切りなどの場面において、魚体の損傷及び消耗を防止するために作業中の魚の鎮静化の必要から麻酔薬が使用されている。現在、食品添加物の一種であるオイゲノール(4−アリル−2−メトキシフェノール)を主成分とする麻酔薬が動物用医薬品として承認を受けて販売されており(商品名:FA100)、魚の麻酔薬に使用されている。しかし、養殖現場などで用いた場合、使用済み麻酔液はそのまま海洋や河川に投棄されるため環境保全の観点から好ましくない。また、食の安全に対する消費者の関心の高まりにともなって養殖魚の体内に残留するおそれのある麻酔剤の使用が敬遠されるようになってきたこと、また農林水産省の指導などにより水揚げ前の7日間は使用禁止となったことなどもあり、使用できる場面は狭まってきている。 Conventionally, in fish farming sites, anesthesia is necessary due to the need for sedation of fish during work in order to prevent damage and consumption of fish bodies in situations such as vaccination for disease prevention and gear cutting to prevent biting of trough puffers. Drugs are being used. Currently, an anesthetic mainly composed of eugenol (4-allyl-2-methoxyphenol), which is a kind of food additive, has been approved as a veterinary drug (trade name: FA100), and is an anesthetic for fish. Is used. However, when used at a farm site or the like, the used anesthetic solution is discarded as it is into the ocean or river, which is not preferable from the viewpoint of environmental conservation. In addition, with the increasing consumer interest in food safety, the use of narcotics that may remain in cultured fish has been shunned, and prior to landing due to guidance from the Ministry of Agriculture, Forestry and Fisheries The use of the device has been restricted for seven days, and the usable scenes are narrowing.

麻酔薬を用いない魚の麻酔方法としては、水中に溶存させた二酸化炭素による短時間麻酔技術が従来から知られており、最近では、炭酸水素ナトリウムとコハク酸と固形化促進剤を主原料とし、食品添加物として公認されている原料のみで作った固形状炭酸ガス発泡剤からなる魚類用の麻酔剤が開発されている(特許文献1参照)。また、特許文献2には、魚の冷温処理と併用して炭酸ガス分圧を55〜95mmHgに調節した水槽中で活魚を長時間麻酔状態に維持する技術が開示されている。さらに、特許文献3には、活イカを氷温状態の低温状態に保管運搬するための氷温海水冷却装置が開示されている。 As a method of anesthesia for fish without using an anesthetic, a short-term anesthesia technique using carbon dioxide dissolved in water has been known, and recently, sodium bicarbonate, succinic acid and a solidification accelerator are the main raw materials. An anesthetic agent for fish made of a solid carbon dioxide foaming agent made only from a raw material certified as a food additive has been developed (see Patent Document 1). Patent Document 2 discloses a technique for maintaining an active fish in an anesthesia state for a long time in a water tank in which the partial pressure of carbon dioxide gas is adjusted to 55 to 95 mmHg in combination with the cold and hot treatment of fish. Further, Patent Document 3 discloses an ice temperature seawater cooling device for storing and transporting live squid in a low temperature state of an ice temperature state.

長時間麻酔方法に関しては、活魚輸送への適用など広い用途への応用が水産関係者から期待されつつも、従来の長時間麻酔方法においては全て活魚車の水温を下げる方法を基本にしており、冷却水槽を備えた活魚車による活魚輸送方法は特殊車両設備の費用負担と魚種別低温生理特性の不確実性による運送中の斃死の危険性を避けられないことから、実用的な麻酔方法として幅広く活用できないとの問題点がある。 With regard to long-term anesthesia methods, fisheries officials are expected to apply to a wide range of uses such as live fish transportation, but conventional long-term anesthesia methods are all based on a method of lowering the temperature of a live fish cart, The live fish transportation method using a live fish tank equipped with a cooling water tank is widely used as a practical anesthesia method because the cost of special vehicle equipment and the risk of drowning during transportation due to the uncertainty of the low temperature physiological characteristics of each fish cannot be avoided. There is a problem that it cannot be used.

二酸化炭素は陸生生物にも水生生物にも麻酔効果を持つことが古くから知られており、何らの有害物質も生体内に残さないという点で食品素材となる生物に対する麻酔方法としては理想的な麻酔方法ともいえる。しかし、水生生物に対して麻酔ガスとして用いた場合、ごく短時間の内に呼吸不全による頓死を引き起こすことから、疾病予防のためのワクチン接種や噛み合い防止のためのトラフグの歯切りなど限られた用途に用いる短時間麻酔方法だと考えられてきた(例えば、非特許文献1を参照)。一方で、魚介類の流通に関わる者の一般的な認識として、魚介類への酸素供給は溶存酸素(DO)が飽和ないしそれに近い状態が保持されていることで十分であり、麻酔下においてさえ飽和溶存酸素下にあれば酸素欠乏はないと信じられている。しかしながら、この認識は誤りであり、二酸化炭素による魚介類の長時間麻酔が今日まで成功していないのはこの誤った認識に起因している。 Carbon dioxide has long been known to have an anesthetic effect on both terrestrial and aquatic organisms, and is ideal as an anesthesia method for organisms that are food materials in that they do not leave any harmful substances in the body. It can be said that it is an anesthesia method. However, when it is used as an anesthetic gas for aquatic organisms, it causes death due to respiratory failure within a very short time, so there are limited vaccinations for disease prevention and trough puffing to prevent biting. It has been considered that this is a short-term anesthesia method used for applications (see, for example, Non-Patent Document 1). On the other hand, as a general recognition of those involved in the distribution of seafood, it is sufficient for oxygen supply to seafood that the dissolved oxygen (DO) is saturated or kept close to it, even under anesthesia. It is believed that there is no oxygen deficiency under saturated dissolved oxygen. However, this recognition is wrong, and it is due to this erroneous recognition that long-term anesthesia of seafood with carbon dioxide has not been successful to date.

魚介類を取り扱う水温(20℃前後)下において二酸化炭素による麻酔を魚介類(鰓呼吸をする水生生物)に施す場合、麻酔により低下した鰓呼吸器運動のために、[水中溶存酸素分圧]−[鰓の毛細血管内溶存酸素分圧]間で行われる酸素の拡散移動速度は減少し、鰓薄板毛細血管に摂取される酸素量は低下する。その程度によっては、仮に魚介類の個体が飽和溶存酸素の水中に置かれていた場合であっても、鰓から吸収される酸素量が個体の酸素需要量を満たすことができない状態に陥ることが推論される。実際の魚介類の二酸化炭素麻酔の事例においても、エアレーションを行いながらの飽和溶存酸素水中における魚介類に二酸化炭素を用いて麻酔を施した場合も分単位のごく短時間で全個体が呼吸を停止して例外なく頓死するという事実はこの推論の正しさを証明している。そうすると、二酸化炭素麻酔下における魚介類の呼吸不全を防止するためには、個体の酸素需要自体を引き下げるか、あるいは飽和溶存酸素水を超える酸素環境を実現するかの何れかの方法しかないことになる。 When anesthesia with carbon dioxide is given to seafood (aquatic organisms that respire) under the water temperature (around 20 ° C) at which the seafood is handled, [partial dissolved oxygen partial pressure] -[Oxygen partial pressure of dissolved oxygen in the salmon capillaries] The oxygen diffusion and movement speed is reduced, and the amount of oxygen ingested by the coral lamina is reduced. Depending on the degree, even if fish and shellfish individuals are placed in saturated dissolved oxygen water, the amount of oxygen absorbed from the salmon may not be able to meet the individual oxygen demand. Inferred. Even in the case of carbon dioxide anesthesia for actual seafood, all individuals stop breathing in a very short time, even when anesthesia is performed with carbon dioxide on fish and shellfish in saturated dissolved oxygen water while performing aeration. The fact that they die without exception proves the correctness of this reasoning. Then, in order to prevent the respiratory failure of fish and shellfish under carbon dioxide anesthesia, there is only one method of lowering the individual oxygen demand itself or realizing an oxygen environment exceeding the saturated dissolved oxygen water. Become.

個体の酸素需要自体を引き下げる方法として、人工冬眠誘導方法(特許文献4)あるいは低温下における寒冷炭酸ガス麻酔方法(非特許文献2)、さらには麻酔装置を使ったより精密な低温麻酔方法(特許文献2)などがある。しかし、これらの低温麻酔方法は魚介類を頓死させることなく低温下(5℃以下)に馴化させるにはまる一日の時間を要すること、また、環境水ごと温度を低下させるには大がかりな装置と多くの電力消費が避けられないことから、麻酔方法としての実用的用途はごく限られる。 Artificial hibernation induction method (Patent Document 4) or cold carbon dioxide anesthesia method at low temperature (Non-Patent Document 2), and more precise low-temperature anesthesia method using anesthesia apparatus (Patent Document 4) 2). However, these low-temperature anesthesia methods require a whole day of time to acclimate fish and shellfish to a low temperature (5 ° C or lower) without dying, and a large-scale device to lower the temperature together with environmental water. Since much power consumption is unavoidable, practical use as an anesthesia method is very limited.

一方、通常の魚介類を取り扱う水温(20℃前後)下において二酸化炭素による麻酔を魚介類に施す場合には、たとえ十分な濃度の溶存酸素を含む麻酔用炭酸水を予め製造してから一定濃度の溶存炭酸ガスおよび溶存酸素を含む新鮮な麻酔用炭酸水を常時麻酔用水槽に供給する装置(特許文献2)を用いたとしても、最長で20分間程度の短時間麻酔が可能となるだけである。麻酔下においては、飽和溶存酸素の水中にあっても鰓から吸収される酸素量は魚介類の個体の酸素需要量を満たすことができないため、分単位のごく短時間で魚介類は呼吸不全を起こし、例外なく頓死する。 On the other hand, when anesthesia with carbon dioxide is given to seafood under water temperature (around 20 ° C.) for handling normal fish and shellfish, a certain concentration of carbonated water for anesthesia containing a sufficient concentration of dissolved oxygen is produced in advance. Even if a device (Patent Document 2) that constantly supplies fresh anesthetic carbonated water containing dissolved carbon dioxide gas and dissolved oxygen to an anesthesia water tank is used, only a short period of anesthesia of up to about 20 minutes is possible. is there. Under anesthesia, even in saturated dissolved oxygen water, the amount of oxygen absorbed from the sea bream cannot meet the oxygen demand of fish and shellfish individuals, so fish and shellfish can develop respiratory failure in a matter of minutes. Wake up and die without exception.

特許第4831409号公報Japanese Patent No. 4831409 特許第4951736号公報Japanese Patent No. 4951736 韓国特許第10−0531728号公報Korean Patent No. 10-0531728 特許第4332206号Patent No. 4332206 竹田達右ら著、「二酸化炭素麻酔の活魚輸送への応用可能性の検討」、日本水産学会誌、49(5)、1983年、p.725−731Takeda Tatsuo et al., “Examination of applicability of carbon dioxide anesthesia to live fish transport”, Journal of the Japanese Fisheries Society, 49 (5), 1983, p. 725-731 満田久輝ら著、「寒冷炭酸ガス麻酔の活魚輸送への応用」、凍結及び乾燥研究会会誌、37、1991年、p.54−60Hisadatsu Mitsuda et al., “Application of cold carbon dioxide anesthesia to live fish transport”, Journal of Freezing and Drying Research Society, 37, 1991, p. 54-60

本発明は、従来の麻酔方法における前述した課題を解決すべくなされたものであり、溶存二酸化炭素を含む環境下において安全かつ実用的な簡便さをもって魚介類に長時間の麻酔を施す方法および装置を提供するものである。 The present invention has been made to solve the above-described problems in conventional anesthesia methods, and a method and apparatus for performing long-term anesthesia on fish and shellfish with a safe and practical convenience in an environment containing dissolved carbon dioxide. Is to provide.

本発明における麻酔の原理は次のとおりである。通常水温(20℃前後)下において魚介類に対して二酸化炭素による長時間麻酔を実現するためには、飽和溶存酸素水を超える高酸素環境を魚介類に提供しなければならない。二酸化炭素麻酔により低下した呼吸運動は、鰓部における[水中溶存酸素分圧]−[鰓の毛細血管内溶存酸素分圧]の分圧差による酸素拡散を減少させ、鰓薄板毛細血管に摂取される酸素量が低下することで低酸素血症を引き起こして頓死を招く。これを防ぐには鰓部における酸素拡散を顕著に増加させる方法が必要であり、そのための新たな方法として、気体酸素を含む酸素気泡によって酸素供給を行う方法を考案した。すなわち、酸素気泡を鰓部に接触させることで、[水中溶存酸素分圧]−[鰓の毛細血管内溶存酸素分圧]の分圧差を超えた[気体酸素分圧]−[鰓の毛細血管内溶存酸素分圧]の分圧差を生み出し、鰓薄板毛細血管に摂取される酸素量を顕著に増加させる方法である。 The principle of anesthesia in the present invention is as follows. In order to realize long-term anesthesia with carbon dioxide for fish and shellfish under normal water temperature (around 20 ° C.), the fish and shellfish must be provided with a high oxygen environment exceeding saturated dissolved oxygen water. Respiratory motion reduced by carbon dioxide anesthesia reduces oxygen diffusion due to the partial pressure difference between [partial dissolved oxygen partial pressure in water]-[partial dissolved oxygen partial pressure in the vagina] and is ingested by the thin plate capillaries Lowering the amount of oxygen causes hypoxemia and leads to death. In order to prevent this, a method of remarkably increasing the oxygen diffusion in the buttocks is necessary, and as a new method for that purpose, a method of supplying oxygen by oxygen bubbles containing gaseous oxygen has been devised. That is, by bringing oxygen bubbles into contact with the buttocks, [gaseous oxygen partial pressure] exceeding the partial pressure difference of [water partial dissolved oxygen partial pressure] − [split capillary partial dissolved oxygen partial pressure] − [spider capillaries This is a method of generating a partial pressure difference of [internal dissolved oxygen partial pressure] and remarkably increasing the amount of oxygen ingested into the thin plate capillary.

本発明の第一の態様は、対象となる魚介類に対して麻酔効果を奏する二酸化炭素濃度を水中に生成する工程と、水中に酸素を含む酸素気泡を供給する工程を含む、魚介類の麻酔方法である。 The first aspect of the present invention includes an anesthesia for fish and seafood, including a step of generating in water a carbon dioxide concentration that exerts an anesthetic effect on the target fish and shellfish, and a step of supplying oxygen bubbles containing oxygen in the water. Is the method.

酸素気泡は魚介類の鰓に接触させるように供給するのが好ましく、さらには、魚介類の鰓上皮細胞膜表面に接触させるように供給するのが望ましい。 The oxygen bubbles are preferably supplied so as to be in contact with the sea bream salmon, and more preferably are supplied so as to be in contact with the surface of the sea bream epithelial cell membrane.

酸素気泡の粒径の最頻値が300nm以下であることが好ましく、さらには、酸素気泡を4000万個/ml以上の密度で供給することが望ましい。 It is preferable that the mode value of the particle diameter of oxygen bubbles is 300 nm or less, and it is further desirable to supply oxygen bubbles at a density of 40 million / ml or more.

本発明の第二の態様は、対象となる魚介類を収容する水槽と、前記水槽内に二酸化炭素を供給する手段と、前記水槽内に酸素を含む酸素気泡を供給する手段を備えた、魚介類の麻酔装置である。 According to a second aspect of the present invention, there is provided a fish tank comprising a water tank containing the target fish and shellfish, a means for supplying carbon dioxide into the water tank, and a means for supplying oxygen bubbles containing oxygen into the water tank. A kind of anesthesia device.

本発明において、魚介類とは、魚類の他に、頭足類および甲殻類等の鰓呼吸によって酸素を摂取する遊泳性を持った水生生物を含む概念である。 In the present invention, the seafood is a concept including aquatic organisms having a swimming property that ingests oxygen by respiration such as cephalopods and crustaceans in addition to fishes.

本発明によれば、水中に二酸化炭素を溶解させて対象となる魚介類に対して麻酔効果を有する濃度の溶存二酸化炭素を供給するとともに、麻酔下では飽和溶存酸素環境でも個体の酸素需要を満たせない問題を解決する方法として、酸素を含む酸素気泡を供給することによって、通常水温(20℃前後)下で魚介類を頓死させることなく安全に麻酔を施すことができる。 According to the present invention, carbon dioxide is dissolved in water to supply dissolved carbon dioxide having an anesthetic effect to the target fish and shellfish, and under anesthesia, an individual's oxygen demand can be satisfied even in a saturated dissolved oxygen environment. As a method for solving this problem, by supplying oxygen bubbles containing oxygen, it is possible to safely give anesthesia without killing fish and shellfish under normal water temperature (around 20 ° C.).

本発明の実施に係る麻酔方法の概要について説明する。魚介類の種毎に存在する適正麻酔深度(ヒトの全身麻酔における麻酔第3期第1相から第2相に相当する麻酔深度=視床、皮質下核、脊髄の麻痺)を誘導維持するのに適した濃度の二酸化炭素を持続的にかつ正確に個体の鰓部分に供給するために、水槽全体に任意の二酸化炭素を通気溶解させて麻酔の誘導維持に適した濃度に調整する。同時に、魚介類の個体の酸素需要量を超える酸素を供給するために気泡として気体酸素を個体の鰓部分に直接接触するように水流によって持続的に供給する。酸素気泡が接した鰓部分では、[気体酸素分圧]−[鰓の毛細血管内溶存酸素分圧]間の分圧差で酸素の拡散移動が行われるため、この部分から鰓薄板毛細血管に摂取される酸素量は飛躍的に増加する。鰓薄板毛細血管に摂取される酸素量は、鰓上皮細胞の膜表面に接する酸素気泡の径、気泡内圧、気泡数に依存した拡散係数に従って、より小さな気泡がより多く鰓上皮細胞の膜表面に接することで鰓薄板毛細血管に摂取される酸素量は増加することになり、この方法により二酸化炭素麻酔下において個体の酸素需要を上回る高酸素濃度環境を実現することが理論的に可能である。 The outline | summary of the anesthesia method based on implementation of this invention is demonstrated. To induce and maintain the appropriate depth of anesthesia existing for each species of seafood (anesthesia depth corresponding to the first to second phases of anesthesia in human general anesthesia = thalamus, subcortical nucleus, spinal cord paralysis) In order to supply a suitable concentration of carbon dioxide continuously and accurately to the heel part of the individual, arbitrary carbon dioxide is dissolved in the entire water tank by aeration to adjust it to a concentration suitable for the induction and maintenance of anesthesia. At the same time, in order to supply oxygen exceeding the oxygen demand of the individual fish and shellfish, gaseous oxygen is continuously supplied as water bubbles so as to come into direct contact with the coral part of the individual. In the heel part in contact with oxygen bubbles, oxygen is diffused and transferred by the partial pressure difference between [Gaseous oxygen partial pressure]-[Partial dissolved oxygen partial pressure in the cocoon capillary]. The amount of oxygen produced increases dramatically.酸 素 The amount of oxygen ingested into thin-walled capillaries depends on the diffusion coefficient depending on the diameter, pressure, and number of bubbles in contact with the epithelial cell membrane surface. The amount of oxygen ingested by the thin plate capillaries by contact increases, and it is theoretically possible to realize a high oxygen concentration environment exceeding the oxygen demand of the individual under carbon dioxide anesthesia by this method.

次に、麻酔下において魚介類の酸素需要量を満たすことを可能とする環境酸素濃度について説明する。空気の酸素濃度はおよそ21%(大気組成=体積百分率は、窒素78%、酸素21%、アルゴン0.93%、二酸化炭素約0.03%)であり、肺呼吸を行っている陸上動物はこの酸素濃度下で個体の酸素需要に見合う酸素を補給している。ヒトや家畜などの陸上動物を麻酔する際には、麻酔の合併症としての呼吸不全を回避するために酸素吸入を施すが、この時の酸素濃度はおよそ40%〜80%の範囲で調整される。すなわち、健常時に呼吸するおよそ2〜4倍の酸素供給を行なうことで麻酔によって抑制された自発呼吸運動下において発生する合併症としての呼吸不全を回避している。麻酔で抑制された呼吸中枢により自発呼吸運動が低下して低酸素血症を引き起こし、全身の末梢において酸素濃度が低下することで合併症としての呼吸不全を惹起するが、これを防ぐために肺に吸入される酸素濃度を2〜4倍にして[肺胞内酸素分圧]−[肺胞の毛細血管内酸素分圧]の分圧差を高め、肺胞の毛細血管内に摂取される酸素量を上げることで機能低下した肺呼吸運動を補完している。肺呼吸を行っている陸上動物に見られる現象、すなわち、麻酔下においては通常の生存環境よりも数倍の酸素供給が必要であるということが魚介類においても該当することが当然に推定されるが、そうであるならば、海水に生息する魚類及び頭足類に長時間の麻酔を施すことは困難である。なぜならば海洋表層の酸素濃度は殆どの調査地点において6〜7.5mg/Lの範囲(飽和酸素濃度の85〜100%)であり、魚介類は溶存酸素がほぼ飽和した水中に生存しているからである。いかなる方法によっても溶存酸素100%の状態の水に対して、その溶存酸素濃度を数倍に引き上げることは不可能である。そのため、通常魚介類を取り扱う水温(20℃前後)下において二酸化炭素による麻酔を施すと分単位のごく短い時間内に麻酔で抑制された呼吸運動によって低酸素血症を引き起こし、呼吸不全となって頓死するのである。これを防ぐためには、通常生存環境の少なくとも数倍以上の酸素濃度環境を麻酔下の魚介類に提供することが必要になる。 Next, the environmental oxygen concentration that makes it possible to satisfy the oxygen demand of seafood under anesthesia will be described. The oxygen concentration of air is approximately 21% (atmospheric composition = volume percentage is 78% nitrogen, 21% oxygen, 0.93% argon, and about 0.03% carbon dioxide). Under this oxygen concentration, oxygen is replenished to meet the individual oxygen demand. When anesthetizing terrestrial animals such as humans and domestic animals, oxygen inhalation is given to avoid respiratory failure as a complication of anesthesia, but the oxygen concentration at this time is adjusted in the range of approximately 40% to 80%. The That is, respiratory failure as a complication that occurs under spontaneous breathing movement suppressed by anesthesia is avoided by supplying oxygen about 2 to 4 times that breathes in a normal state. Anesthesia-suppressed respiratory center reduces spontaneous respiratory movement and causes hypoxemia, and oxygen concentration decreases in the periphery of the whole body, causing respiratory failure as a complication. Increase the partial pressure difference of [alveolar oxygen partial pressure]-[alveolar capillary partial pressure] by increasing the inhaled oxygen concentration by 2 to 4 times, and the amount of oxygen taken into the alveolar capillaries Compensates for pulmonary respiratory movements that have declined in function. Naturally, it is presumed that this phenomenon is also applicable to fish and shellfish, which is a phenomenon observed in land animals performing pulmonary breathing, that is, under anesthesia, oxygen supply is required several times that of the normal living environment. However, if so, it is difficult to provide long-term anesthesia for fish and cephalopods that inhabit seawater. This is because the ocean surface oxygen concentration is in the range of 6 to 7.5 mg / L at most survey points (85 to 100% of the saturated oxygen concentration), and the fish and shellfish live in water that is almost saturated with dissolved oxygen. Because. It is impossible to raise the concentration of dissolved oxygen several times with respect to water in a state of 100% dissolved oxygen by any method. Therefore, when anesthesia with carbon dioxide is performed under the water temperature (around 20 ° C) that normally handles seafood, hypoxemia is caused by respiratory movement suppressed by anesthesia within a very short period of minutes, resulting in respiratory failure. They die suddenly. In order to prevent this, it is necessary to provide an anesthesia fish and shellfish with an oxygen concentration environment that is at least several times higher than the normal living environment.

次に、魚介類に高い酸素濃度環境を与えるための酸素気泡の径と密度について説明する。水中に存在する気泡は、その径により浮力の大きさが決まり、水中を上昇する速度に反映される。水中における気泡の上昇速度は液物性に依存するが、水中では直径100μmほどでレイノルズ数Reがほぼ1になる。さらに、Re<1では球形気泡界面の流動状態により個体球として振る舞うことから、Stokes式がよく適応する。また、蒸留水や水道水を用いた実験の測定結果もStokes式による計算値とほぼ一致することが知られている。そのため、水中における気泡の上昇速度は下表のように計算される。すなわち、径が1μm以下の気泡(ナノバブル)は、時間単位で考えれば、浮上することなく位置が保持されている。そのため、麻酔下で移動できない魚介類の個体に安定的した濃度で持続的に酸素気泡を供給するためには浮力を持たない粒径1μm以下の気泡が適している。 Next, the diameter and density of oxygen bubbles for giving a high oxygen concentration environment to fish and shellfish will be described. The size of buoyancy is determined by the diameter of the bubbles present in the water, and is reflected in the speed of rising in the water. The rising speed of bubbles in water depends on the liquid properties, but in water, the Reynolds number Re is almost 1 at a diameter of about 100 μm. Furthermore, since Re <1 behaves as a solid sphere depending on the flow state of the spherical bubble interface, the Stokes formula is well adapted. Moreover, it is known that the measurement result of the experiment using distilled water and tap water also substantially corresponds with the calculated value by the Stokes formula. Therefore, the rising speed of bubbles in water is calculated as shown in the table below. In other words, bubbles (nanobubbles) having a diameter of 1 μm or less are maintained in position without floating when considered in time units. Therefore, in order to continuously supply oxygen bubbles at a stable concentration to fish and shellfish individuals that cannot move under anesthesia, bubbles having a particle size of 1 μm or less without buoyancy are suitable.

Figure 2014039514
Figure 2014039514

酸素気泡が接した鰓部分では、[気体酸素分圧]−[鰓の毛細血管内溶存酸素分圧]間の分圧差で酸素の拡散移動が行われる。鰓薄板毛細血管に摂取される酸素量は、鰓上皮細胞の膜表面に接する酸素気泡の径(気泡内圧力)と数に依存した拡散係数にしたがって変化し、より小さな気泡がより多く鰓上皮細胞の膜表面に接することで鰓薄板毛細血管に摂取される酸素量は増加する。水中の気泡径と気泡内圧力の関係はYoung−Laplaceの式で表せ、その関係は「ΔP=4σ/d」で与えられる。この時、水の表面張力σ=72.8mN/m(20℃)、気泡周囲の圧力は1atmとすると、以下のようになる。 In the heel portion in contact with the oxygen bubbles, oxygen is diffused and transferred by a partial pressure difference between [gaseous oxygen partial pressure] − [dissolved oxygen partial pressure in the vascular capillary]. The amount of oxygen ingested into the thin plate capillaries changes according to the diffusion coefficient depending on the diameter (pressure inside the bubble) and the number of oxygen bubbles in contact with the membrane surface of the epithelial cells. The amount of oxygen ingested by the thin-walled capillaries increases by contacting the membrane surface. The relationship between the bubble diameter in water and the pressure in the bubble can be expressed by the Young-Laplace equation, and the relationship is given by “ΔP = 4σ / d”. At this time, assuming that the surface tension of water σ = 72.8 mN / m (20 ° C.) and the pressure around the bubble is 1 atm, the following is obtained.

Figure 2014039514
Figure 2014039514

すなわち、酸素の拡散速度を上げて、鰓薄板毛細血管に摂取される酸素量は増加させるために[気体酸素分圧]−[鰓の毛細血管内溶存酸素分圧]間の分圧差を大きくするためには、酸素気泡径は小さいほど幾何級数的に効率がよくなる。現実的には鰓上皮細胞の膜表面に接することが可能な酸素気泡数にはある程度の限界があることから、[気体酸素分圧]−[鰓の毛細血管内溶存酸素分圧]間の分圧差が10倍以上となる粒径300nm以下の酸素気泡が鰓薄板毛細血管に摂取される酸素総量を高めるために顕著な効果を発揮するものと考えられる。 That is, in order to increase the oxygen diffusion rate and increase the amount of oxygen ingested by the thin plate capillaries, the partial pressure difference between [gaseous oxygen partial pressure] − [dissolved oxygen partial pressure in salmon capillaries] is increased. For this purpose, the smaller the oxygen bubble diameter, the more efficient the geometric series. Actually, there is a certain limit to the number of oxygen bubbles that can contact the membrane surface of the epithelial cells, so the fraction between [gaseous oxygen partial pressure] and [partial oxygen dissolved oxygen partial pressure] It is considered that oxygen bubbles having a particle size of 300 nm or less with a pressure difference of 10 times or more exert a remarkable effect in order to increase the total amount of oxygen taken into the thin plate capillaries.

次に、本発明の作用効果を確認するために行った実施例について説明する。
《実施例1:水温20℃で魚介類に二酸化炭素麻酔を行った時の麻酔限界時間の確認》
通常魚介類を取り扱う水温(20℃前後)下で魚介類に二酸化炭素麻酔を行うと飽和溶存酸素かにおいてもごく短時間内で頓死することが知られている。麻酔の限界時間を実験により確認する。実験に供した魚介類の種類と個体数は表3に示した。実験用700L水槽内の水温は20℃に調整し、通常のエアポンプとエアストーンを用いて水槽内海水の溶存酸素(DO)を飽和状態に保った。飽和溶存酸素下において二酸化炭素を水中に通気させて毎分増加量0.5%の速度で溶存二酸化炭素の濃度を上げ、魚介類に麻酔が掛かるまで濃度を高めた。遊泳行動が無く鰓部分の呼吸運動を除いた体動が停止した状態をモニタカメラで確認した時点を麻酔開始と評価した。その後、麻酔が掛かった二酸化炭素濃度よりも若干高い濃度に維持して麻酔を継続した。5分毎に鰓部分の活動が停止した個体を引き上げて頓死を確認した。その結果、全ての個体は麻酔後30分以内で頓死に到り、その経過は表4に示した通りである。なお、水中の二酸化炭素濃度は東亜ディーケーケー社製CGP−31型炭酸ガス濃度計で測定し、v/v%にて表記した。
Next, examples carried out for confirming the effects of the present invention will be described.
<< Example 1: Confirmation of anesthesia limit time when carbon dioxide anesthesia was performed on fish and shellfish at a water temperature of 20 ° C >>
It is known that when seafood is anesthetized with carbon dioxide under the water temperature (around 20 ° C.) for handling normal seafood, it will die in a very short time even with saturated dissolved oxygen. The limit time for anesthesia is confirmed by experiment. Table 3 shows the types and number of fish and shellfish used in the experiment. The water temperature in the experimental 700 L water tank was adjusted to 20 ° C., and the dissolved oxygen (DO) of the seawater in the water tank was kept saturated using a normal air pump and air stone. Under saturated dissolved oxygen, carbon dioxide was bubbled into water to increase the concentration of dissolved carbon dioxide at a rate of 0.5% increase per minute, and the concentration was increased until fish and shellfish were anesthetized. The time point when the body movement except the respiration movement of the buttocks and the body movement stopped was confirmed with a monitor camera was evaluated as the start of anesthesia. Thereafter, the anesthesia was continued while maintaining a slightly higher concentration than the carbon dioxide concentration under anesthesia. Every 5 minutes, the individuals whose phlegm activity stopped were pulled up and confirmed to die. As a result, all individuals died within 30 minutes after anesthesia, and the progress is as shown in Table 4. In addition, the carbon dioxide concentration in water was measured with a CGP-31 type carbon dioxide concentration meter manufactured by Toa DKK Corporation and expressed in v / v%.

Figure 2014039514
Figure 2014039514

Figure 2014039514
Figure 2014039514

《実施例2:魚介類に麻酔効果が現れる二酸化炭素濃度の確認》
実験に供した魚介類の種類と個体数は表6に示した。実験用700L水槽内の水温は20℃に調整し、酸素気泡発生装置(ナック社製FormestCT)によって水槽に表5に示した粒径分布の酸素気泡を持続的に供給するとともに、二酸化炭素を水中に通気させて毎分増加量0.5%の速度で溶存二酸化炭素の濃度を上げ、魚介類に麻酔が掛かるまで濃度を高めた。遊泳行動が無く鰓部分の呼吸運動を除いた体動が停止した状態をモニタカメラで確認した時点を麻酔開始と評価した。その後、麻酔が掛かった二酸化炭素濃度よりも若干高い濃度に達したところで二酸化炭素の供給を止め、その直後からエアレーションによって二酸化炭素を水槽から追い出し、減少量1%/30minの速度で徐々に二酸化炭素濃度を下げて魚介類を麻酔から覚醒させた。その結果、実験に供した全ての魚介類は正常に覚醒し、覚醒後6時間時点の肉眼的所見においても何らかの異常が観察される個体を認めることはなかった。すなわち、広範な魚介類に対して通常魚介類を取り扱う水温(20℃前後)下での長時間二酸化炭素麻酔が可能であることが明らかになり、その経過は表7に示した通りである。なお、アオリイカについては麻酔初期の興奮状態が引き金となって3匹中1匹がスミを吐いたことから一旦実験を中断し、換水した後、引き続き同一個体を用いて行った再実験結果を示している。イカ類に麻酔する場合には麻酔初期に現れる軽度の興奮状態が引き金となって起こすと思われるスミを吐く反応を完全に抑えるために、麻酔誘導期の興奮が少なくする二酸化炭素濃度上昇方法を探索する必要があると考えられる。
<< Example 2: Confirmation of carbon dioxide concentration at which anesthetic effect appears in seafood >>
Table 6 shows the types and number of fish and shellfish used in the experiment. The water temperature in the experimental 700 L water tank is adjusted to 20 ° C., and oxygen bubbles having the particle size distribution shown in Table 5 are continuously supplied to the water tank by an oxygen bubble generator (Formac CT manufactured by NAC), and carbon dioxide is The concentration of dissolved carbon dioxide was increased at a rate of 0.5% increase per minute and increased until the seafood was anesthetized. The time point when the body movement except the respiration movement of the buttocks and the body movement stopped was confirmed with a monitor camera was evaluated as the start of anesthesia. Thereafter, the supply of carbon dioxide was stopped when the concentration reached a level slightly higher than the concentration of carbon dioxide subjected to anesthesia, and immediately after that, the carbon dioxide was expelled from the water tank by aeration, and gradually the carbon dioxide was gradually reduced at a rate of 1% / 30 min. The concentration was lowered to awaken the seafood from anesthesia. As a result, all fish and shellfish used in the experiment were awakened normally, and no individual was observed to have any abnormality in macroscopic findings at 6 hours after awakening. That is, it becomes clear that long-term carbon dioxide anesthesia can be performed for a wide range of seafood under water temperature (around 20 ° C.) for handling normal seafood, and the course is as shown in Table 7. As for squid, the excitement state at the initial stage of anesthesia triggered one of the three animals, and the experiment was temporarily stopped. ing. When anesthetizing squids, a method of increasing carbon dioxide concentration that reduces excitement during the anesthesia-inducing phase is necessary to completely suppress the reaction of spitting smears that may be triggered by the mild excitement that appears in the early anesthesia. It is considered necessary to search.

Figure 2014039514
Figure 2014039514

Figure 2014039514
Figure 2014039514

Figure 2014039514
Figure 2014039514

《実施例3:二酸化炭素による長時間麻酔の実証実験》
実験には重さ約450gのイサキ5匹を用いた。実験用700L水槽内の水温は20℃に調整し、酸素気泡発生装置(ナック社製FormestCT)によって水槽に表5に示した粒径分布の酸素気泡を持続的に供給するとともに、二酸化炭素を水中に通気させて溶存二酸化炭素の濃度を5%にまで上げてイサキに麻酔を施した。溶存二酸化炭素の濃度が5%に達した時点で、全ての個体は遊泳行動が無く鰓部分の呼吸運動を除いた体動が停止した状態であることをモニタカメラで確認した。その後、5.0〜4.5%の範囲に二酸化炭素濃度を維持して20時間の麻酔を実施した。麻酔後、エアレーションによって二酸化炭素を水槽から追い出し、1%/30minの速度で徐々に二酸化炭素濃度を下げて魚介類を麻酔から覚醒させた。二酸化炭素濃度が十分低下した2〜3時間に実験に供した全ての個体は正常に覚醒し、覚醒24時間後の所見でも異常な個体を認めることはなかった。すなわち、溶存二酸化炭素とナノサイズ酸素バブルの同時供給により、通常取扱水温(20℃前後)下において安全かつ長時間の麻酔を魚介類に施すことができることが実証され、その経過は表8に示した通りである。
<< Example 3: Demonstration experiment of long-term anesthesia with carbon dioxide >>
In the experiment, five Isaki animals weighing approximately 450 g were used. The water temperature in the experimental 700 L water tank is adjusted to 20 ° C., and oxygen bubbles having the particle size distribution shown in Table 5 are continuously supplied to the water tank by an oxygen bubble generator (Formac CT manufactured by NAC), and carbon dioxide is Was ventilated to raise the concentration of dissolved carbon dioxide to 5% and anesthetize Isaki. When the concentration of dissolved carbon dioxide reached 5%, it was confirmed with a monitor camera that all the individuals had no swimming behavior and the body movement except for the respiratory movement of the heel portion was stopped. Thereafter, anesthesia was performed for 20 hours while maintaining the carbon dioxide concentration in the range of 5.0 to 4.5%. After anesthesia, carbon dioxide was expelled from the water tank by aeration, and the seafood was awakened from anesthesia by gradually decreasing the carbon dioxide concentration at a rate of 1% / 30 min. All individuals subjected to the experiment for 2 to 3 hours when the carbon dioxide concentration was sufficiently lowered were awakened normally, and no abnormal individuals were observed even after 24 hours of awakening. That is, it has been demonstrated that the simultaneous supply of dissolved carbon dioxide and nano-sized oxygen bubbles enables safe and long-term anesthesia to fish and shellfish under normal handling water temperature (around 20 ° C.). That's right.

Figure 2014039514
Figure 2014039514

本発明によれば、麻酔によって鎮静化させた魚介類の長時間・長距離輸送を行うことが可能となる。麻酔によって鎮静化させた魚介類は生理・代謝活性が低下しているため、水質悪化を抑制することができ、限られた水槽内における積載率を向上させることができる。魚介類に対して安全な長時間麻酔を施した後、再び元の覚醒状態にもどして活魚として泳ぎ回ることを可能にした新たな麻酔技術によって、陸路、空路、海路、いずれの輸送手段においても、従来不可能とされた遠距離まで生かしたまま魚介類を運ぶことが可能となる。また、魚の養殖現場などでは、疾病予防のためのワクチン接種、トラフグの噛み合い防止のための歯切りなど様々な場面で、魚体の損傷及び消耗を防止するための魚の鎮静化に使用することができる。 According to the present invention, it is possible to transport fish and shellfish that have been sedated by anesthesia for a long time and over a long distance. Fish and shellfish that have been sedated by anesthesia have reduced physiological and metabolic activities, so that deterioration of water quality can be suppressed and the loading rate in a limited aquarium can be improved. After a safe long-term anesthesia for seafood, the new anesthesia technology that made it possible to return to the original awake state and swim around as a live fish can be used on land, air, sea, or any other means of transportation. This makes it possible to carry fish and shellfish while keeping them alive for long distances that were previously impossible. Also, in fish farming sites, etc., it can be used for sedation of fish to prevent damage and consumption of fish in various situations such as vaccination for disease prevention and gear cutting to prevent biting of trough fish. .

Claims (6)

対象となる魚介類に対して麻酔効果を奏する二酸化炭素濃度を水中に生成する工程と、
前記水中に酸素を含む酸素気泡を供給する工程を含む、
魚介類の麻酔方法。
Producing a carbon dioxide concentration in the water that exerts an anesthetic effect on the target seafood;
Supplying oxygen bubbles containing oxygen into the water,
Anesthesia method for seafood.
前記酸素気泡を前記魚介類の鰓に接触させるように供給する工程を含む、
請求項1に記載の魚介類の麻酔方法。
Supplying the oxygen bubbles in contact with the seafood salmon,
The method for anesthetizing fish and shellfish according to claim 1.
前記酸素気泡を前記魚介類の鰓上皮細胞膜表面に接触させるように供給する工程を含む、
請求項2に記載の魚介類の麻酔方法。
Supplying the oxygen bubbles in contact with the surface of the sea urchin epithelial cell membrane,
The method for anesthetizing fish and shellfish according to claim 2.
前記酸素気泡の粒径の最頻値が300nm以下である、
請求項1乃至3の何れかに記載の魚介類の麻酔方法。
The mode of the particle size of the oxygen bubbles is 300 nm or less,
The method for anesthetizing fish and shellfish according to any one of claims 1 to 3.
前記酸素気泡を4000万個/ml以上の密度で供給する、
請求項1乃至4の何れかに記載の魚介類の麻酔方法。
Supplying the oxygen bubbles at a density of 40 million / ml or more,
The method for anesthetizing fish and shellfish according to any one of claims 1 to 4.
請求項1乃至5の何れかに記載の方法を実施するための装置であって、
対象となる魚介類を収容する水槽と、
前記水槽内に二酸化炭素を供給する手段と、
前記水槽内に酸素を含む酸素気泡を供給する手段を備えた、
魚介類の麻酔装置。
An apparatus for carrying out the method according to any one of claims 1 to 5,
An aquarium containing the target seafood,
Means for supplying carbon dioxide into the aquarium;
Means for supplying oxygen bubbles containing oxygen into the water tank;
Seafood anesthesia device.
JP2012184628A 2012-08-23 2012-08-23 Seafood anesthetization method and apparatus Pending JP2014039514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184628A JP2014039514A (en) 2012-08-23 2012-08-23 Seafood anesthetization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184628A JP2014039514A (en) 2012-08-23 2012-08-23 Seafood anesthetization method and apparatus

Publications (2)

Publication Number Publication Date
JP2014039514A true JP2014039514A (en) 2014-03-06
JP2014039514A5 JP2014039514A5 (en) 2014-04-17

Family

ID=50392372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184628A Pending JP2014039514A (en) 2012-08-23 2012-08-23 Seafood anesthetization method and apparatus

Country Status (1)

Country Link
JP (1) JP2014039514A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122021A1 (en) * 2014-02-17 2015-08-20 マリンバイオテクノロジー株式会社 Method and device for anesthetizing fish
FR3035298A1 (en) * 2015-04-22 2016-10-28 Air Liquide France Ind PROCESS FOR ANESTHESIATING FISH WITH CARBON DIOXIDE
JP6236575B1 (en) * 2017-06-15 2017-11-22 日建リース工業株式会社 Anesthesia maintenance system for seafood, anesthesia maintenance method and transport method
WO2020026416A1 (en) * 2018-08-02 2020-02-06 日建リース工業株式会社 Method for anesthetizing fish and method for producing anesthetic liquid
WO2020161801A1 (en) * 2019-02-05 2020-08-13 憲司 久木野 Method and device for carrying out extended-period deep sedation/anesthesia of fish and shellfish using nitrous oxide, and for awakening said fish and shellfish

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122021A1 (en) * 2014-02-17 2015-08-20 マリンバイオテクノロジー株式会社 Method and device for anesthetizing fish
FR3035298A1 (en) * 2015-04-22 2016-10-28 Air Liquide France Ind PROCESS FOR ANESTHESIATING FISH WITH CARBON DIOXIDE
JP6236575B1 (en) * 2017-06-15 2017-11-22 日建リース工業株式会社 Anesthesia maintenance system for seafood, anesthesia maintenance method and transport method
WO2018229940A1 (en) * 2017-06-15 2018-12-20 日建リース工業株式会社 Method for managing fishes and shellfishes, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method and transportation method
KR20200008025A (en) * 2017-06-15 2020-01-22 닛켄 리스 고교 가부시키가이샤 How to manage fish, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method and transportation method
AU2017418814B2 (en) * 2017-06-15 2020-03-05 Nikken Lease Kogyo Co., Ltd. Method for managing fishes and shellfishes, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method and transportation method
US10772306B2 (en) 2017-06-15 2020-09-15 Nikken Lease Kogyo Co., Ltd. System and method maintaining fish and shellfish in anesthetic state, and method of transporting fish and shellfish maintained in anesthetic state
KR102165759B1 (en) 2017-06-15 2020-10-14 닛켄 리스 고교 가부시키가이샤 How to manage fish and shellfish, anesthesia maintenance device, anesthesia maintenance system, anesthesia maintenance method and transport method
WO2020026416A1 (en) * 2018-08-02 2020-02-06 日建リース工業株式会社 Method for anesthetizing fish and method for producing anesthetic liquid
WO2020161801A1 (en) * 2019-02-05 2020-08-13 憲司 久木野 Method and device for carrying out extended-period deep sedation/anesthesia of fish and shellfish using nitrous oxide, and for awakening said fish and shellfish

Similar Documents

Publication Publication Date Title
JP5897133B2 (en) Method and apparatus for anesthesia of seafood
Fivelstad et al. Effects of carbon dioxide on Atlantic salmon (Salmo salar L.) smolts at constant pH in bicarbonate rich freshwater
King Fish transport in the aquaculture sector: An overview of the road transport of Atlantic salmon in Tasmania
Neiffer et al. Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs
JP2014039514A (en) Seafood anesthetization method and apparatus
JP4951736B2 (en) Fish anesthesia equipment
Espmark et al. Development of gas bubble disease in juvenile Atlantic salmon exposed to water supersaturated with oxygen
Kugino et al. Long-duration carbon dioxide anesthesia of fish using ultra fine (nano-scale) bubbles
Malan The evolution of mammalian hibernation: lessons from comparative acid-base physiology
Smith Capture and transportation of elasmobranchs, with emphasis on the grey nurse shark (Carcharias taurus)
Kastelein et al. Seasonal Changes in Food Consumption, Respiration Rate, and Body Condition of a Male Harbor Porpoise (Phocoena phocoena).
Czopek Skin and lung capillaries in European common newts
CN108419723A (en) A kind of carbon dioxide narcosis method of seawater grouper
Prince et al. Sodium bicarbonate and acetic acid: an effective anesthetic for field use
Aguilar et al. Aerial ventilatory responses of the mudskipper, Periophthalmodon schlosseri, to altered aerial and aquatic respiratory gas concentrations
AL-Taee et al. Biochemical and behavioral responses in carp fish exposed to tricaine methane sulfonate (MS-222) as anesthetic drug under transport conditions
JPH01144916A (en) Transportation of living fish by anesthetization with cold carbon dioxide
KR20140057355A (en) Fish anesthetic and method
Tan et al. The influence of hypothermia hibernation combined with CO2 anesthesia on life and storage quality of large yellow croaker (Pseudosciaena crocea)
Musa et al. The effects of oxygen saturation and carbon dioxide concentration on the growth and feed conversion of aquaculture fish
WO2020161801A1 (en) Method and device for carrying out extended-period deep sedation/anesthesia of fish and shellfish using nitrous oxide, and for awakening said fish and shellfish
FR3035298A1 (en) PROCESS FOR ANESTHESIATING FISH WITH CARBON DIOXIDE
TWM592649U (en) Underwater oxygen dissolution control device
Robinson et al. Diving behavior and physiology of the leatherback turtle
JPH10165039A (en) Method for preserving live fish and transporting method using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140122