JP6654368B2 - Exterior materials for power storage devices - Google Patents

Exterior materials for power storage devices Download PDF

Info

Publication number
JP6654368B2
JP6654368B2 JP2015138349A JP2015138349A JP6654368B2 JP 6654368 B2 JP6654368 B2 JP 6654368B2 JP 2015138349 A JP2015138349 A JP 2015138349A JP 2015138349 A JP2015138349 A JP 2015138349A JP 6654368 B2 JP6654368 B2 JP 6654368B2
Authority
JP
Japan
Prior art keywords
adhesive
conductive
layer
resin layer
exterior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015138349A
Other languages
Japanese (ja)
Other versions
JP2017021976A (en
Inventor
広治 南谷
広治 南谷
賢史 池田
賢史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Packaging Co Ltd
Original Assignee
Showa Denko Packaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko Packaging Co Ltd filed Critical Showa Denko Packaging Co Ltd
Priority to JP2015138349A priority Critical patent/JP6654368B2/en
Publication of JP2017021976A publication Critical patent/JP2017021976A/en
Application granted granted Critical
Publication of JP6654368B2 publication Critical patent/JP6654368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Description

本発明は、蓄電デバイスの外装体用材料として用いられるラミネート外装材およびその関連技術に関する。   The present invention relates to a laminate exterior material used as a material for an exterior body of a power storage device and a related technique thereof.

なお、本明細書において、「アルミニウム」の語は、AlおよびAl合金を含む意味で用い、「銅」の語は、CuおよびCu合金を含む意味で用い、「ニッケル」の語は、NiおよびNi合金を含む意味で用い、「チタン」の語は、TiおよびTi合金を含む意味で用いている。また、本明細書において、「金属」の語は、単体の金属および合金を含む意味で用いる。   In this specification, the term “aluminum” is used to mean Al and an Al alloy, the term “copper” is used to mean Cu and a Cu alloy, and the term “nickel” is Ni and The term "titanium" is used to include Ti and Ti alloys. In this specification, the term “metal” is used to include a single metal and an alloy.

ハイブリッド自動車や電気自動車の電池、家庭用または工業用の定置用蓄電池に使用されるリチウムイオン二次電池やリチウムポリマー二次電池は小型化、軽量化に伴い、従来使用されていた金属製の外装に代えて、金属箔の両面に樹脂フィルムを接着剤で貼り合わせたラミネート外装材が用いられることが多くなっている(特許文献1参照)。   Lithium ion secondary batteries and lithium polymer secondary batteries used in hybrid and electric vehicle batteries, home or industrial stationary storage batteries have been downsized and lightened. Instead, a laminate exterior material in which a resin film is bonded to both surfaces of a metal foil with an adhesive is often used (see Patent Document 1).

特許文献1に記載されたラミネートケースは、ケース内側の樹脂フィルム層を切り欠いて金属箔を露出させて電極接続部を形成し、ケース外側の樹脂フィルム層を切り欠いて金属箔を露出させて電極端子を形成したものである。   The laminate case described in Patent Literature 1 cuts out a resin film layer inside the case to expose a metal foil to form an electrode connection portion, and cuts out a resin film layer outside the case to expose a metal foil. An electrode terminal is formed.

特開2013−161674号公報JP 2013-161675 A

ラミネート外装材の樹脂層を切り欠いて金属箔を露出させて導通を得るには、絶縁体である樹脂フィルムを完全に取り除いた上に、金属箔と樹脂フィルムとの間の接着剤も絶縁体であるから除去しなければならない。しかし、接着剤は金属箔に粘着しているので除去に手間がかかり、取り残せばデバイスの電気抵抗が大きくなる。   To obtain electrical continuity by exposing the metal foil by cutting out the resin layer of the laminate exterior material, completely remove the resin film that is the insulator, and also remove the adhesive between the metal foil and the resin film. It must be removed. However, since the adhesive is stuck to the metal foil, it takes time to remove the adhesive, and if left behind, the electrical resistance of the device increases.

本発明は、樹脂層の除去によって確実に電気の導通が得られる蓄電デバイス用の外装材、およびこの外装材を用いた蓄電デバイスの提供を目的とする。   An object of the present invention is to provide a packaging material for a power storage device in which electrical conduction can be reliably obtained by removing a resin layer, and a power storage device using the packaging material.

即ち、本発明は下記[1]〜[6]に記載の構成を有する。   That is, the present invention has the configurations described in the following [1] to [6].

[1]金属箔の一方の面に第一接着剤層を介して耐熱性樹脂層が貼り合わせされ、他方の面に第二接着剤層を介して熱可塑性樹脂層が貼り合わされた蓄電デバイス用外装材において、
前記第一接着剤層および第二接着剤層のうちの少なくとも一方が導電性接着剤からなる特徴とする蓄電デバイス用外装材。
[1] For a power storage device in which a heat-resistant resin layer is bonded to one surface of a metal foil via a first adhesive layer, and a thermoplastic resin layer is bonded to the other surface via a second adhesive layer. In exterior materials,
An exterior material for an electric storage device, wherein at least one of the first adhesive layer and the second adhesive layer is made of a conductive adhesive.

[2]前記導電性接着剤はベース接着剤と平均粒径2μm以下の導電材粒子とを含む接着剤組成物からなる前項1に記載の蓄電デバイス用外装材。   [2] The exterior material for an electric storage device according to the above item 1, wherein the conductive adhesive comprises an adhesive composition including a base adhesive and conductive material particles having an average particle size of 2 μm or less.

[3]前記導電性接着剤で貼り合わされた樹脂層側の面において、樹脂層の一部が除去されてて金属箔に導通する導電部を有する前項1または2に記載の蓄電デバイス用外装材。   [3] The exterior material for an electric storage device according to the above [1] or [2], wherein a part of the resin layer is removed and a conductive part that is electrically connected to a metal foil is provided on a surface of the resin layer side bonded with the conductive adhesive. .

[4]金属箔の一方の面に耐熱性樹脂層が貼り合わされ、他方の面に熱可塑性樹脂層が貼り合わされた2つの外装材が、熱可塑性樹脂層同士が向かい合って融着した熱封止部に囲まれることによって電池要素室が形成された外装体と、
前記外装体の電池要素室に収容され、正極要素、負極要素、およびこれらの間に配置されるセパレーターとを有する電池要素とを備え、
前記外装体を構成する2つの外装材のうちの少なくとも一方が前項3に記載された蓄電デバイス用外装材からなり、外装材の導電部に正極要素および負極要素のうちの少なくとも一方が導通していることを特徴とする蓄電デバイス。
[4] Heat sealing in which two exterior materials in which a heat-resistant resin layer is bonded to one surface of a metal foil and a thermoplastic resin layer is bonded to the other surface are fused with the thermoplastic resin layers facing each other. An exterior body in which a battery element chamber is formed by being surrounded by
A battery element having a positive electrode element, a negative electrode element, and a separator disposed therebetween, which is housed in the battery element chamber of the outer package,
At least one of the two exterior materials constituting the exterior body is made of the exterior material for an electric storage device described in the item 3 above, and at least one of the positive electrode element and the negative electrode element is electrically connected to the conductive portion of the exterior material. An electricity storage device characterized by the following.

[5]前記正極要素および負極要素がセパレーターを介して積層された正極箔および負極箔である前項4に記載の蓄電デバイス。   [5] The electricity storage device according to the above item 4, wherein the positive electrode element and the negative electrode element are a positive electrode foil and a negative electrode foil laminated via a separator.

[6]前記正極要素および負極要素が外装材の金属箔に積層された正極活物質層および負極活物質層である前項4に記載の蓄電デバイス。   [6] The power storage device according to the above item 4, wherein the positive electrode element and the negative electrode element are a positive electrode active material layer and a negative electrode active material layer laminated on a metal foil of an exterior material.

上記[1]に記載された蓄電デバイス用外装材は、金属箔と耐熱性樹脂層との間の第一接着剤層、および金属箔と熱可塑性樹脂層との間の第二接着剤層のうちの少なくとも一方が導電性接着剤であるから、樹脂層を除去することにより金属箔に導通する導電部を形成することができる。また、接着剤層は導電性であるから接着剤層を除去することなく導電部を形成することができる。また、除去しなかった接着剤層は導電部における金属箔の保護層となる。   The exterior material for an electricity storage device according to the above [1], wherein the first adhesive layer between the metal foil and the heat-resistant resin layer, and the second adhesive layer between the metal foil and the thermoplastic resin layer. Since at least one of them is a conductive adhesive, a conductive portion that is conductive to the metal foil can be formed by removing the resin layer. Further, since the adhesive layer is conductive, a conductive portion can be formed without removing the adhesive layer. The adhesive layer not removed becomes a protective layer for the metal foil in the conductive portion.

上記[2]に記載の蓄電デバイス用外装材は、導電材粒子が平均粒径2μm以下の微粒子であるからベース接着剤中に均一に分散されて良好な導体となし得る。   In the case of the exterior material for an electric storage device according to the above [2], the conductive material particles are fine particles having an average particle diameter of 2 μm or less, so that the conductive material particles can be uniformly dispersed in the base adhesive to form a good conductor.

上記[3]に記載の蓄電デバイス用外装材は、樹脂層を除去した導電部を電池要素との導通部またはデバイス外部における電気の取り出し口として用いることができる。   In the exterior material for a power storage device according to the above [3], the conductive portion from which the resin layer has been removed can be used as a conductive portion with a battery element or an outlet for electricity outside the device.

上記[4]に記載の蓄電デバイスは、外装体を構成する外装材の導電部を、電池要素の正極要素または負極要素との接続部、あるいはデバイスの電気取り出し口として利用できる。   In the electricity storage device according to the above [4], the conductive portion of the exterior material forming the exterior body can be used as a connection portion between the battery element and the positive electrode element or the negative electrode element, or an electrical outlet of the device.

上記[5]に記載の蓄電デバイスによれば、正極要素および負極要素がセパレーターを介して積層された正極箔および負極箔で構成されたデバイスにおいて上記効果を奏することができる。   According to the electricity storage device described in the above [5], the above effect can be exerted in a device including a positive electrode foil and a negative electrode foil in which a positive electrode element and a negative electrode element are laminated with a separator interposed therebetween.

上記[6]に記載の蓄電デバイスによれば、正極要素および負極要素が外装材の金属箔に積層された正極活物質層および負極活物質層で構成されたデバイスにおいて上記効果を奏することができる。   According to the electricity storage device described in the above [6], the above-described effect can be exerted in a device including a positive electrode active material layer and a negative electrode active material layer in which a positive electrode element and a negative electrode element are laminated on a metal foil of an exterior material. .

本発明の蓄電デバイス用外装材の一実施形態の断面図である。It is sectional drawing of one Embodiment of the exterior | packing material for electric storage devices of this invention. 本発明の蓄電デバイス用外装材の他の実施形態の断面図である。It is sectional drawing of other embodiment of the exterior | packing material for electric storage devices of this invention. 本発明の蓄電デバイス用外装材のさらに他の実施形態の断面図である。It is sectional drawing of other embodiment of the exterior | packing material for electric storage devices of this invention. 本発明の蓄電デバイス用外装材のさらに他の実施形態の断面図である。It is sectional drawing of other embodiment of the exterior | packing material for electric storage devices of this invention. 本発明の蓄電デバイスの一実施形態を示す断面図である。FIG. 2 is a cross-sectional view illustrating one embodiment of the power storage device of the present invention. 本発明の蓄電デバイスの他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the electric storage device of this invention.

図1〜図4に本発明にかかる蓄電デバイス用外装材を示し、図5および図6に図2の外装材を用いて外装体を形成した蓄電デバイスを示す。   FIGS. 1 to 4 show an external storage material for an electric storage device according to the present invention, and FIGS. 5 and 6 show electric storage devices in which an external body is formed using the external material shown in FIG.

以下の説明において同一の符号は同一物を示すものとして重複する説明を省略する。
[蓄電デバイス用外装材]
図1に示す蓄電デバイス用外装材1aは、金属箔2の一方の面に第一接着剤層3を介して耐熱性樹脂層4が積層され、他方の面に第二接着剤層5を介して熱可塑性樹脂層6が積層されたラミネート材である。
In the following description, the same reference numerals denote the same items, and redundant description will be omitted.
[Exterior materials for power storage devices]
1 has a heat-resistant resin layer 4 laminated on one surface of a metal foil 2 via a first adhesive layer 3 and a second adhesive layer 5 on the other surface. This is a laminated material in which the thermoplastic resin layer 6 is laminated.

前記外装材1aは、図2の導電部8,9を有する外装材7,7a、7bに加工し、図5および図6に参照される蓄電デバイス40、41の外装体50、70の材料として使用される。   The exterior material 1a is processed into exterior materials 7, 7a and 7b having the conductive portions 8 and 9 of FIG. 2, and is used as a material of the exterior bodies 50 and 70 of the power storage devices 40 and 41 shown in FIGS. used.

蓄電デバイス40,41において、外装材7,7a、7bの熱可塑性樹脂層6側の導電部9は電池要素60、80と導通し、耐熱性樹脂層4側の導電部8は電気の取り出し口となる。   In the power storage devices 40 and 41, the conductive portions 9 on the thermoplastic resin layer 6 side of the exterior materials 7, 7a and 7b are electrically connected to the battery elements 60 and 80, and the conductive portions 8 on the heat resistant resin layer 4 side are electricity outlets. Becomes

本発明において、前記第一接着剤層3および第二接着剤層5のうちの少なくとも一方は後述の導電性接着剤からなる。
[導電部を有する外装材およびその製造方法]
図2に示す外装材7、7a、7bは、第一接着剤層3および第二接着剤層5が導電性接着剤からなり、耐熱性樹脂層4側の面において耐熱性樹脂層4の一部が除去されて第一接着剤層3が露出する導電部8を有し、熱可塑性樹脂層6側の面において熱可塑性樹脂層6および第二接着剤層5の一部が除去されて金属箔層2が露出する導電部9を有する。図2は金属箔2が第一接着剤層3に覆われた導電部8と第二接着剤層5が除去されて金属箔2が露出する導電部9を例示しているが、導電性接着剤であるから金属箔2上の接着剤層の有無にかかわらず金属箔2に導通する導電部となし得る。本発明の外装材は耐熱性樹脂層4側と熱可塑性樹脂層6側とで同一形態の導電部が形成されていても異なる形態の導電部が形成されていてもよい。
In the present invention, at least one of the first adhesive layer 3 and the second adhesive layer 5 is made of a conductive adhesive described later.
[Exterior material having conductive portion and method for producing the same]
The exterior members 7, 7 a, and 7 b shown in FIG. 2 have a configuration in which the first adhesive layer 3 and the second adhesive layer 5 are made of a conductive adhesive, and the heat-resistant resin layer 4 has a surface facing the heat-resistant resin layer 4. A conductive portion 8 from which the first adhesive layer 3 is exposed by removing the portion, and a portion of the thermoplastic resin layer 6 and the second adhesive layer 5 is removed on the surface on the thermoplastic resin layer 6 side to remove the metal. There is a conductive portion 9 where the foil layer 2 is exposed. FIG. 2 illustrates a conductive portion 8 in which the metal foil 2 is covered with the first adhesive layer 3 and a conductive portion 9 in which the second adhesive layer 5 is removed and the metal foil 2 is exposed. Since it is an agent, it can be formed as a conductive portion that is electrically connected to the metal foil 2 regardless of the presence or absence of the adhesive layer on the metal foil 2. In the exterior material of the present invention, a conductive part of the same form may be formed on the heat-resistant resin layer 4 side and a conductive part of a different form may be formed on the thermoplastic resin layer 6 side.

図1の外装材1aの作製方法、およびこの外装材1aから導電部を有する外装材7、7a、7bを作製方法する方法は以下のとおりである。   The method for producing the packaging material 1a in FIG. 1 and the method for producing the packaging materials 7, 7a, and 7b having a conductive portion from the packaging material 1a are as follows.

金属箔2の一方の面に第一接着剤層3として導電性接着剤を用いて耐熱性樹脂層4を貼り合わせ、他方の面に第二接着剤層5として導電性接着剤を用いて熱可塑性樹脂層6を貼り合わせる。貼り合わせ方法は限定されず、ドライラミネート法等の周知の方法で適宜貼り合わせて図1の外装材1aを作製する。   A heat-resistant resin layer 4 is attached to one surface of the metal foil 2 using a conductive adhesive as the first adhesive layer 3, and the other surface is heated using a conductive adhesive as the second adhesive layer 5. The plastic resin layer 6 is bonded. The bonding method is not limited, and the bonding material is appropriately bonded by a known method such as a dry lamination method to produce the exterior material 1a in FIG.

前記外装材1aに対し、導電部8を形成する部分の耐熱性樹脂層4、および導電部9を形成する部分の熱可塑性樹脂層6を除去する。除去方法は限定されず、レーザーを照射して焼き切る方法を例示できる。導電部8,9の形成に際しては、絶縁材である耐熱性樹脂層4および熱可塑性樹脂層6を除去すれば良く、第一接着剤層3および第二接着剤層5は導電性接着剤であるから除去しても除去しなくてもまた取り残しがあっても導電部8、9を形成することができる。また、第一接着剤層3および第二接着剤層5が絶縁性接着剤であれば、接着剤層まで完全に取り除く必要があって除去作業に手間がかかるが、導電性接着剤を用いることで第一接着剤層3および第二接着剤層5の除去の程度に関係なく導電部8、9を形成できるので、絶縁性接着剤で貼り合わせた外装材よりも容易に導電部8,9を形成できる。しかも、接着剤層に深く切り込まなくても導電部8,9を形成できるので金属箔2を傷つけるおそれもない。   The heat-resistant resin layer 4 where the conductive portion 8 is formed and the thermoplastic resin layer 6 where the conductive portion 9 is formed are removed from the exterior material 1a. The removal method is not limited, and a method of burning off by irradiating a laser can be exemplified. When forming the conductive portions 8 and 9, the heat-resistant resin layer 4 and the thermoplastic resin layer 6 which are insulating materials may be removed, and the first adhesive layer 3 and the second adhesive layer 5 are made of a conductive adhesive. The conductive portions 8 and 9 can be formed regardless of whether or not the conductive portions 8 and 9 are removed. Further, if the first adhesive layer 3 and the second adhesive layer 5 are insulating adhesives, it is necessary to completely remove the adhesive layers, and the removal work is troublesome. Since the conductive portions 8 and 9 can be formed regardless of the degree of removal of the first adhesive layer 3 and the second adhesive layer 5, the conductive portions 8 and 9 can be formed more easily than the exterior material bonded with an insulating adhesive. Can be formed. Moreover, since the conductive portions 8 and 9 can be formed without cutting deep into the adhesive layer, there is no risk of damaging the metal foil 2.

また、前記第一接着剤層3は金属箔2よりも樹脂同士である耐熱性樹脂層4と接着力が強い。同様に、第二接着剤層5は金属箔2よりも熱可塑性樹種層6との接着力が強い。上述したように、導電性接着剤を取り残すことに不都合はないが、接着剤層と強く接着した耐熱性樹脂層4および熱可塑性樹脂層6を取り残さないように確実に除去するには手間がかかる。   Further, the first adhesive layer 3 has a stronger adhesive strength to the heat-resistant resin layer 4 which is a resin than the metal foil 2. Similarly, the second adhesive layer 5 has a stronger adhesive force with the thermoplastic seed layer 6 than the metal foil 2. As described above, it is not inconvenient to leave the conductive adhesive, but it takes time and effort to surely remove the heat-resistant resin layer 4 and the thermoplastic resin layer 6 that are strongly bonded to the adhesive layer so as not to be left. .

このような樹脂層除去の手間を軽減する方法として、外装材の作製の段階で接着剤層および樹脂層に対して接着力の弱い離型紙を導電部8,9形成予定部に挟んでおく方法がある。具体的には、図3に示す外装材1bのように、第一接着剤層3上の所定位置に離型紙10を貼り付け、その後耐熱性樹脂層4を貼り合わせる。同様に、第二接着剤層5上の所定位置に離型紙10を貼り付け、その後熱可塑性樹脂層6を貼り合わせる。そして、導電部8,9形成予定部上の耐熱性樹脂層4および熱可塑性樹脂層6を切除する。前記離型紙10は第一接着剤層3および耐熱性樹脂層4の両方に対して接着力が弱いので、耐熱性樹脂層4を容易に除去でき、また耐熱性樹脂層4と離型紙10の両方を簡単に除去することができる。第一接着剤層3は除去されないが、導電性接着剤であるから導電部8として使用することに何ら不都合はなく、第一接着剤層3は導電部8における金属箔2の保護層として機能する。前記離型紙10を用いることで第一接着剤層3の厚みを減じることなく確実に残すことができるので、導電部8に安定した保護機能を与えることができる。また、離型紙10が絶縁材の場合は除去する必要があるが、黒鉛や金属のような導電性シートの場合は除去せずに導電部の表面材として残すこともできる。熱可塑性樹脂層6側の導電部9についても同様である。   As a method of reducing the trouble of removing the resin layer, a method of sandwiching release paper having a weak adhesive force with respect to the adhesive layer and the resin layer between the portions where the conductive portions 8 and 9 are to be formed at the stage of manufacturing the exterior material. There is. Specifically, as in the case of the exterior material 1b shown in FIG. 3, the release paper 10 is attached to a predetermined position on the first adhesive layer 3, and then the heat-resistant resin layer 4 is attached. Similarly, release paper 10 is attached at a predetermined position on second adhesive layer 5, and then thermoplastic resin layer 6 is attached. Then, the heat-resistant resin layer 4 and the thermoplastic resin layer 6 on the portions where the conductive portions 8 and 9 are to be formed are cut off. Since the release paper 10 has a weak adhesive force to both the first adhesive layer 3 and the heat-resistant resin layer 4, the heat-resistant resin layer 4 can be easily removed. Both can be easily removed. Although the first adhesive layer 3 is not removed, the first adhesive layer 3 functions as a protective layer of the metal foil 2 in the conductive portion 8 because it is a conductive adhesive and there is no problem in using it as the conductive portion 8. I do. By using the release paper 10, the thickness of the first adhesive layer 3 can be reliably left without being reduced, so that the conductive portion 8 can be provided with a stable protection function. Further, when the release paper 10 is an insulating material, it is necessary to remove it. However, when the release paper 10 is a conductive sheet such as graphite or metal, it can be left as a surface material of the conductive portion without being removed. The same applies to the conductive portion 9 on the thermoplastic resin layer 6 side.

さらに、図4に示す外装材1cからでも導電部を形成することができる。前記外装材1cは、第一接着剤層3の一部に接着剤が塗布されていない第一接着剤未塗布部3aが形成され、第二接着剤層5の一部に接着剤が塗布されていない第二接着剤未塗布部5aが形成されている。前記第一接着剤未塗布部3aおよび第二接着剤未塗布部5aは導電部8,9の形成予定部である。前記第一接着剤未塗布部3a上の耐熱性樹脂層4および第二接着剤未塗布部5a上の熱可塑性樹脂層8を切除することにより導電部8,9を形成することができる。この方法で形成した導電部8、9は金属箔2が露出している。   Further, the conductive portion can be formed also from the exterior material 1c shown in FIG. In the exterior material 1c, a first adhesive non-applied portion 3a where no adhesive is applied is formed on a part of the first adhesive layer 3, and an adhesive is applied on a part of the second adhesive layer 5. The second adhesive non-applied portion 5a is formed. The first adhesive non-applied portion 3a and the second adhesive non-applied portion 5a are portions where conductive portions 8 and 9 are to be formed. The conductive portions 8 and 9 can be formed by cutting off the heat-resistant resin layer 4 on the first adhesive-uncoated portion 3a and the thermoplastic resin layer 8 on the second adhesive-uncoated portion 5a. In the conductive portions 8 and 9 formed by this method, the metal foil 2 is exposed.

第一接着剤未塗布部3aおよび第二接着剤未塗布部5aは接着剤の塗布工程で形成するが、塗布工程で接着剤のにじみや塗布位置のわずかなずれが生じて導電部8、9の形成予定部に接着剤がはみ出したとしても、導電性接着剤を用いれば導電部8、9の導電性を低下させることはない。絶縁性接着剤であれば導電部8、9の形成予定領域内への侵入を厳しく規制する必要があり厳格な工程管理が求められるが、導電性接着剤を用いることで厳しい工程管理条件を緩和することができる。   The first adhesive non-applied portion 3a and the second adhesive non-applied portion 5a are formed in the adhesive application step, but the adhesive section bleeds or a slight shift of the application position occurs in the application step, so that the conductive sections 8, 9 are formed. Even if the adhesive protrudes into the portion where the is to be formed, if the conductive adhesive is used, the conductivity of the conductive portions 8 and 9 will not be reduced. In the case of an insulative adhesive, it is necessary to strictly control the intrusion of the conductive portions 8 and 9 into the formation planned area, and strict process control is required. However, the use of the conductive adhesive eases strict process control conditions. can do.

本発明の外装材の製造方法は上述した方法に限定されない。また、金属箔に対して耐熱性樹脂層と熱可塑性樹脂層とを同じ方法で貼り合わせることにも限定されない。例えば、一方の樹脂層を接着剤層に離型紙を貼り付ける方法で貼り合わせ、他方の樹脂層を接着剤未塗布部を有する接着剤層を形成する方法で貼り合わせることもできる。また、本発明の外装材は、第一接着剤層および第二接着剤層のうちの少なくとも一方が導電性接着剤からなることが要件である。さらに、樹脂層を除去する前の外装材(図1、3、4参照)および樹脂層を除去して導電部を形成した外装材(図2参照)の両方が本発明の外装材に該当する。
[外装材の構成材料]
外装材の金属箔2は、蓄電デバイスの正極または負極、あるいは正極または負極に繋がる導体として機能する。
The method for manufacturing the exterior material of the present invention is not limited to the above-described method. Further, the method is not limited to bonding the heat-resistant resin layer and the thermoplastic resin layer to the metal foil by the same method. For example, one resin layer may be bonded to the adhesive layer by a method of bonding release paper, and the other resin layer may be bonded to the adhesive layer by a method of forming an adhesive layer having an uncoated portion. Further, the exterior material of the present invention requires that at least one of the first adhesive layer and the second adhesive layer is made of a conductive adhesive. Further, both the exterior material before removing the resin layer (see FIGS. 1, 3, and 4) and the exterior material (see FIG. 2) in which the conductive layer is formed by removing the resin layer correspond to the exterior material of the present invention. .
[Construction material of exterior material]
The metal foil 2 of the exterior material functions as a positive electrode or a negative electrode of the power storage device, or as a conductor connected to the positive electrode or the negative electrode.

前記金属箔2が正極または正極用導体である場合の好ましい材料は軟質のアルミニウム箔であり、厚さは7〜150μmが好ましい。成形性やコストの点で特に30〜80μmの軟質アルミニウム箔が好ましい。一方、前記金属箔2が負極または負極用導体である場合の好ましい材料は、軟質または硬質のアルミニウム箔、ステンレス箔、ニッケル箔、銅箔、チタン箔である。これらの箔の好ましい厚さは7〜150μmであり、耐衝撃性や曲げ耐性、コストの点で15〜100μmが好ましい。   When the metal foil 2 is a positive electrode or a conductor for a positive electrode, a preferable material is a soft aluminum foil, and a thickness of 7 to 150 μm is preferable. A soft aluminum foil having a thickness of 30 to 80 μm is particularly preferable in terms of moldability and cost. On the other hand, when the metal foil 2 is a negative electrode or a negative electrode conductor, a preferable material is a soft or hard aluminum foil, a stainless steel foil, a nickel foil, a copper foil, or a titanium foil. The preferred thickness of these foils is 7 to 150 μm, and preferably 15 to 100 μm in terms of impact resistance, bending resistance and cost.

また、前記金属箔2はメッキ処理箔やクラッド箔も用いることができる。例えば、第二金属箔21にとして、銅にニッケルメッキを施したメッキ処理箔や、ステンレスとニッケルのクラッド箔を用いることができる。   Further, the metal foil 2 may be a plating foil or a clad foil. For example, as the second metal foil 21, a plated foil obtained by plating nickel on copper or a clad foil of stainless steel and nickel can be used.

さらに、前記金属箔層2に化成皮膜が形成されているのが好ましい。前記化成皮膜は、金属箔の表面に化成処理を施すことによって形成される皮膜であり、このような化成処理が施されていることによって、内容物(電解質等)による金属箔表面の腐食を十分に防止できるし、電気の取出し窓となる露出部でも、デバイスを作製する際電解質が付着しても変色や劣化することがなく、大気中の水分などによる腐食の影響も低減できる。化成処理層自体の導電性はほとんどないが、塗膜厚が極めて少ないので通電抵抗もほとんどない。例えば、次のような処理を行うことによって、金属箔に化成処理を施す。即ち、脱脂処理を行った金属箔の表面に、
1)リン酸と、
クロム酸と、
フッ化物の金属塩およびフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
2)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂およびフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸およびクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
3)リン酸と、
アクリル系樹脂、キトサン誘導体樹脂およびフェノール系樹脂からなる群より選ばれる少なくとも1種の樹脂と、
クロム酸およびクロム(III)塩からなる群より選ばれる少なくとも1種の化合物と、
フッ化物の金属塩およびフッ化物の非金属塩からなる群より選ばれる少なくとも1種の化合物と、を含む混合物の水溶液
上記1)〜3)のうちのいずれかの水溶液を金属箔の表面に塗工した後、乾燥することにより、化成処理を施す。
Further, it is preferable that a chemical conversion film is formed on the metal foil layer 2. The chemical conversion film is a film formed by performing a chemical conversion treatment on the surface of the metal foil. By performing such a chemical conversion treatment, corrosion of the metal foil surface due to contents (electrolyte or the like) is sufficiently prevented. In addition, the exposed portion serving as a window for taking out electricity can be prevented from discoloring or deteriorating even if an electrolyte adheres during device fabrication, and the influence of corrosion due to moisture in the atmosphere can be reduced. Although the chemical conversion treatment layer itself has little conductivity, the thickness of the coating film is extremely small, so that there is almost no electric current resistance. For example, a chemical conversion treatment is performed on the metal foil by performing the following treatment. That is, on the surface of the metal foil subjected to the degreasing treatment,
1) phosphoric acid,
Chromic acid and
An aqueous solution of a mixture containing at least one compound selected from the group consisting of a metal salt of fluoride and a nonmetal salt of fluoride; 2) phosphoric acid;
An acrylic resin, at least one resin selected from the group consisting of a chitosan derivative resin and a phenolic resin,
An aqueous solution of a mixture containing at least one compound selected from the group consisting of chromic acid and a chromium (III) salt; 3) phosphoric acid;
An acrylic resin, at least one resin selected from the group consisting of a chitosan derivative resin and a phenolic resin,
At least one compound selected from the group consisting of chromic acid and chromium (III) salts,
An aqueous solution of a mixture containing at least one compound selected from the group consisting of a metal salt of fluoride and a non-metal salt of fluoride, and applying an aqueous solution of any of the above 1) to 3) to the surface of the metal foil After working, a chemical conversion treatment is performed by drying.

前記化成皮膜は、クロム付着量(片面当たり)として0.1mg/m〜50mg/mが好ましく、特に2mg/m〜20mg/mが好ましい。 The conversion coating, chromium coating weight preferably is 0.1mg / m 2 ~50mg / m 2 as a (per one surface), in particular 2mg / m 2 ~20mg / m 2 preferred.

前記耐熱性樹脂層4を構成する耐熱性樹脂としては、外装材をヒートシールする際のヒートシール温度で溶融しない耐熱性樹脂を用いる。前記耐熱性樹脂としては、熱可塑性樹脂層6を構成する熱可塑性樹脂の融点より10℃以上高い融点を有する耐熱性樹脂を用いるのが好ましく、熱可塑性樹脂の融点より20℃以上高い融点を有する耐熱性樹脂を用いるのが特に好ましい。例えば、ポリエステルフィルムやポリアミドフィルムの他、ポリエチレンナフタレートフィルム、ポリブチレンナフタレートフィルム、ポリカーボネートフィルム等の延伸フィルムが好ましい。また、厚さは9〜50μmの範囲が好ましい。   As the heat-resistant resin constituting the heat-resistant resin layer 4, a heat-resistant resin that does not melt at a heat sealing temperature at the time of heat-sealing the exterior material is used. As the heat-resistant resin, it is preferable to use a heat-resistant resin having a melting point higher by 10 ° C. or more than the melting point of the thermoplastic resin constituting the thermoplastic resin layer 6, and having a melting point higher by 20 ° C. or more than the melting point of the thermoplastic resin. It is particularly preferable to use a heat-resistant resin. For example, in addition to a polyester film and a polyamide film, a stretched film such as a polyethylene naphthalate film, a polybutylene naphthalate film, and a polycarbonate film is preferable. The thickness is preferably in the range of 9 to 50 μm.

前記熱可塑性樹脂層6としては、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマーからなる群より選ばれた少なくとも1種の熱可塑性樹脂からなる未延伸フィルムが好ましく、厚さは20〜80μmの範囲が好ましい。   The thermoplastic resin layer 6 is preferably an unstretched film made of at least one thermoplastic resin selected from the group consisting of polyethylene, polypropylene, olefin-based copolymers, acid-modified products thereof, and ionomers. Is preferably in the range of 20 to 80 μm.

前記導電性接着剤は、例えばベース接着剤と導電材とを含む接着剤組成物からなる。耐熱性樹脂層4を貼り合わせる第一接着剤層3用の接着剤組成物において、好ましいベース接着剤はポリエステルポリウレタン系接着剤、ポリエーテルポリウレタン系接着剤であり、好ましい導電材としてカーボンブラック、カーボンナノチューブ(CNT)、グラファイト等のカーボン粉末、金、銀、銅等の金属粉末、ポリアセチレン、ポリアリニン等の樹脂粉末である。一方、熱可塑性樹脂層6を貼り合わせる第二接着剤層5用の接着剤組成物において、好ましいベース接着剤は2液硬化型オレフィン系接着剤、アクリル樹脂系接着剤、エチレン−酢酸ビニル樹脂系接着剤、エポキシ樹脂系接着剤であり、好ましい導電材はカーボンブラック、カーボンナノチューブ(CNT)、グラファイト等のカーボン粉末である。   The conductive adhesive is made of, for example, an adhesive composition including a base adhesive and a conductive material. In the adhesive composition for the first adhesive layer 3 to which the heat-resistant resin layer 4 is attached, preferred base adhesives are polyester polyurethane-based adhesives and polyether polyurethane-based adhesives, and preferred conductive materials include carbon black and carbon. Carbon powders such as nanotubes (CNT) and graphite; metal powders such as gold, silver, and copper; and resin powders such as polyacetylene and polyarynin. On the other hand, in the adhesive composition for the second adhesive layer 5 to which the thermoplastic resin layer 6 is bonded, preferred base adhesives are two-component curable olefin adhesives, acrylic resin adhesives, and ethylene-vinyl acetate resin adhesives. An adhesive and an epoxy resin adhesive are preferable, and a preferable conductive material is carbon powder such as carbon black, carbon nanotube (CNT), and graphite.

前記接着剤組成物は、接着剤層による電気抵抗の上昇を可及的に抑制して良好な導体を形成するために、導電材がベース接着剤中に均一に分散していることが好ましい。このため、導電材は平均粒径が2μm以下の微粒子を用いることが好ましく、特に平均粒径が0.01〜0.5μmの微粒子が好ましい。接着剤層は接着力が得られる限り薄いことが好ましいが、導電材の粒径が大きくなると接着剤層が過度に厚くなるので、前記の範囲の粒径が好ましい。接着剤組成物中の導電材含有量は1〜20質量%が好ましく、使用する導電材に応じて適宜設定する。導電部を形成しない面では金属箔と樹脂層の貼り合わせにそれぞれのベース接着剤を用いる。   In the adhesive composition, it is preferable that a conductive material is uniformly dispersed in the base adhesive in order to suppress a rise in electric resistance due to the adhesive layer as much as possible and form a good conductor. For this reason, it is preferable to use fine particles having an average particle diameter of 2 μm or less, particularly fine particles having an average particle diameter of 0.01 to 0.5 μm. The adhesive layer is preferably thin as long as the adhesive strength can be obtained, but if the particle size of the conductive material is large, the adhesive layer becomes excessively thick. Therefore, the particle size in the above range is preferable. The content of the conductive material in the adhesive composition is preferably from 1 to 20% by mass, and is appropriately set according to the conductive material used. On the surface where the conductive portion is not formed, the respective base adhesives are used for bonding the metal foil and the resin layer.

なお、前記接着剤組成物には、接着性および導電性を阻害しない限り他成分の添加が許容される。前記導電材含有量は接着剤が固化した状態における含有量であり、粘度調整用の溶媒等の揮発成分は含まれない。
[蓄電デバイス]
図5および図6に2種類の蓄電デバイス40、41を示す。これらの蓄電デバイス40、41の外装体50,70は、前記外装材7または熱可塑性樹脂層6側の導電部9を拡大した外装材7、7a、7bを用い、熱可塑性樹脂層6同士を向かい合わせることにより電池要素室57、71を形成し、この電池要素室57、71の周囲を熱封止することにより作製されている。これらの蓄電デバイス40,41は、外装材7、7a、7bの導電部8,9を電池要素との接続部およびデバイスの電気取り出し口として利用している。
In addition, other components are allowed to be added to the adhesive composition as long as the adhesion and the conductivity are not impaired. The conductive material content is a content in a state where the adhesive is solidified, and does not include volatile components such as a viscosity adjusting solvent.
[Power storage device]
5 and 6 show two types of power storage devices 40 and 41. FIG. The exterior bodies 50 and 70 of the power storage devices 40 and 41 are formed by using the exterior material 7 or the exterior materials 7, 7 a and 7 b in which the conductive portion 9 on the thermoplastic resin layer 6 side is enlarged. The battery element chambers 57 and 71 are formed by facing each other, and the periphery of the battery element chambers 57 and 71 is thermally sealed. These power storage devices 40 and 41 use the conductive portions 8 and 9 of the exterior members 7 and 7a and 7b as connection portions with battery elements and electrical outlets of the devices.

なお、図5および図6において、外装材7、7a、7bは第一接着剤層3および第二接着剤層5の図示を省略し、金属箔2、耐熱性樹脂層4および熱可塑性樹脂層6のみを図示している。
〈第1の蓄電デバイス〉
図5に示すように、蓄電デバイス40の外装体50は、平面視角形の凹部52とこの凹部52の開口縁から外方に延びるフランジ53を有する本体51と、前記本体51のフランジ53の外回り寸法と同寸の蓋板55とを組み合わせて作製されたものである。前記凹部52は電池要素60を収納する電池要素室57を形成している。
In FIGS. 5 and 6, the exterior members 7, 7a, and 7b do not show the first adhesive layer 3 and the second adhesive layer 5, and the metal foil 2, the heat-resistant resin layer 4, and the thermoplastic resin layer Only 6 is shown.
<First power storage device>
As shown in FIG. 5, an exterior body 50 of the power storage device 40 includes a main body 51 having a concave portion 52 having a rectangular shape in plan view, a flange 53 extending outward from an opening edge of the concave portion 52, and an outer periphery of the flange 53 of the main body 51. It is manufactured by combining a lid plate 55 having the same size as the size. The concave part 52 forms a battery element chamber 57 for housing the battery element 60.

前記外装体50の本体51は、図2に示す金属箔層2の両面に導電部8,9を有するフラットシートの外装材7に対し、張り出し成形、絞り成形等の塑性変形加工を施して凹部52を形成し、凹部52の周囲の未変形部分をフランジ53の外回り寸法にトリミングしたものである。一方、前記蓋板55は、金属箔層2の両面に導電部8,9を有するフラットシートの外装材7を所要寸法に裁断したものである。前記本体51の凹部52の底面において、負極導電部54が設けられ、蓋板55に正極導電部56が設けられている。前記正極導電部56および負極導電部54はラミネート外装材7の導電部8,9によって形成されている。   The body 51 of the exterior body 50 is formed by subjecting a flat sheet exterior material 7 having conductive portions 8 and 9 on both surfaces of the metal foil layer 2 shown in FIG. 52 is formed, and an undeformed portion around the concave portion 52 is trimmed to the outer circumference of the flange 53. On the other hand, the cover plate 55 is obtained by cutting a flat sheet exterior material 7 having conductive portions 8 and 9 on both surfaces of the metal foil layer 2 into required dimensions. A negative electrode conductive portion 54 is provided on the bottom surface of the concave portion 52 of the main body 51, and a positive electrode conductive portion 56 is provided on the cover plate 55. The positive electrode conductive portion 56 and the negative electrode conductive portion 54 are formed by the conductive portions 8 and 9 of the laminate exterior material 7.

前記電池要素60は正極箔61と負極箔62とがセパレータ63を介して積層されてなり、電池要素室57内において、正極箔61の端部が正極導電部56の内側の導電部9に接合され、負極箔62の端部が負極導電部54の内側の導電部9に接続されている。前記正極箔61および負極箔62は本発明における正極要素および負極要素に対応する。   In the battery element 60, a positive electrode foil 61 and a negative electrode foil 62 are laminated via a separator 63, and an end of the positive electrode foil 61 is joined to the conductive part 9 inside the positive electrode conductive part 56 in the battery element chamber 57. The end of the negative electrode foil 62 is connected to the conductive portion 9 inside the negative electrode conductive portion 54. The positive electrode foil 61 and the negative electrode foil 62 correspond to a positive electrode element and a negative electrode element in the present invention.

前記蓄電デバイス40は、電池要素60の正極箔61および負極箔62をそれぞれの導電部56、54を接合した後に、電池要素60を本体51の凹部52に収納して蓋板55を被せ、電解質注入口を残して本体51のフランジ53と蓋板55との接触部の熱可塑性樹脂層6同士をヒートシールし、電解質注入後に電解質入口をヒートシールすることによって外装体50を封止したものである。   The power storage device 40 is configured such that after the positive electrode foil 61 and the negative electrode foil 62 of the battery element 60 are joined to the respective conductive portions 56 and 54, the battery element 60 is housed in the concave portion 52 of the main body 51, covered with the cover plate 55, The exterior body 50 is sealed by heat-sealing the thermoplastic resin layers 6 at the contact portion between the flange 53 of the main body 51 and the cover plate 55 while leaving the injection port, and heat-sealing the electrolyte inlet after injecting the electrolyte. is there.

前記蓄電デバイス40は、正極導電部56の外側の導電部8および負極導電部54の外側の導電部8が電気の取り出し口となる。
〈第2の蓄電デバイス〉
図6に示すように、蓄電デバイス41は、外装体70がフラットな2枚の外装材7a、7bによって構成されているとともに、外装材7a、7bの金属箔2を電極として利用する薄型デバイスである。前記外装材7a、7bは熱可塑性樹脂層6側の導電部9が耐熱性樹脂層4側の導電部8よりも面積が大きいことを除いて図2の外装材7と同一構成である。
In the power storage device 40, the conductive portion 8 outside the positive electrode conductive portion 56 and the conductive portion 8 outside the negative electrode conductive portion 54 serve as outlets for electricity.
<Second power storage device>
As shown in FIG. 6, the power storage device 41 is a thin device in which the exterior body 70 is formed of two flat exterior materials 7a and 7b, and the metal foil 2 of the exterior materials 7a and 7b is used as an electrode. is there. The exterior members 7a and 7b have the same configuration as the exterior member 7 of FIG. 2 except that the conductive portion 9 on the thermoplastic resin layer 6 side has a larger area than the conductive portion 8 on the heat resistant resin layer 4 side.

前記蓄電デバイス41は、一方の外装材7aの導電部9に正極活物質層81を積層し、他方の外装材7bの導電部9に負極活物質層82を積層し、2つの外装材7a、7bをセパレータ63を介して重ね、電解質とともに導電部9の周囲を熱封止することにより形成されている。   The power storage device 41 has a structure in which the positive electrode active material layer 81 is laminated on the conductive portion 9 of one of the package members 7a, and the negative electrode active material layer 82 is laminated on the conductive portion 9 of the other package member 7b. 7b are stacked with a separator 63 interposed therebetween, and the periphery of the conductive portion 9 is thermally sealed together with the electrolyte.

前記蓄電デバイス41において、正極活物質層81を有する外装材7aの金属箔2が正極であり導電部8が電気取り出し口であり、負極活物質層82を有する外装材7bの金属箔2が負極であり導電部8が電気取り出し口である。また、正極活物質層81および負極活物質層82が本発明における正極要素および負極要素に対応し、正極活物質層81、負極活物質層82およびセパレータ63が電極要素80である。前記電極要素80が存在する空間が電池要素室71である。   In the power storage device 41, the metal foil 2 of the exterior material 7 a having the positive electrode active material layer 81 is a positive electrode, the conductive part 8 is an electricity outlet, and the metal foil 2 of the exterior material 7 b having the negative electrode active material layer 82 is a negative electrode. And the conductive part 8 is an electric outlet. The positive electrode active material layer 81 and the negative electrode active material layer 82 correspond to the positive electrode element and the negative electrode element in the present invention, and the positive electrode active material layer 81, the negative electrode active material layer 82, and the separator 63 are the electrode element 80. The space where the electrode element 80 exists is the battery element chamber 71.

また、前記蓄電デバイス41は、外装材の貼り合わせの工程で極活物層を形成することもできる。例えば、金属箔2の所要位置に正極または負極の極活物質層を塗布して乾燥させ、極活物質層の表面をマスキング用シートで覆った状態で第二接着剤層5を形成して熱可塑性樹脂層6を貼り合わせる。その後、熱可塑性樹脂層6および第二接着剤層5をマスキング用シートとともに除去する。この方法においても、導電性接着剤を用いることにより、接着剤のにじみ等による抵抗値の増大を抑制する効果があり、導電性接着剤による効果を享受できる。   Further, in the power storage device 41, the pole active material layer can be formed in the step of attaching the exterior material. For example, a positive electrode or negative electrode active material layer is applied to a desired position of the metal foil 2 and dried, and the second adhesive layer 5 is formed in a state where the surface of the positive active material layer is covered with a masking sheet. The plastic resin layer 6 is bonded. Thereafter, the thermoplastic resin layer 6 and the second adhesive layer 5 are removed together with the masking sheet. Also in this method, the use of the conductive adhesive has an effect of suppressing an increase in resistance value due to bleeding of the adhesive, and the effect of the conductive adhesive can be enjoyed.

本発明において、蓄電デバイスの外装体外面における導電部(電気の取り出し口)は金属箔を挟んで熱可塑性樹脂層側の導電部の対称位置に形成することにも限定されないし、耐熱性樹脂層の面側に形成することにも限定されない。例えば、熱封止部の外側に一方の外装材を延長して熱可塑性樹脂層を露出させれば、熱可塑性樹脂層側の面に外装体外面の導電部を形成することができる。電池要素との導通部およびデバイス外部との導通部の両方を熱可塑性樹脂層側の面に形成することがあり、かかる外装材も本発明の技術的範囲に含まれる。従って、蓄電デバイスの外装材は少なくとも熱可塑性樹脂層側に導電部を有し、耐熱性樹脂層側の導電部の有無は外装体の形態によって異なる。また、第一接着剤層および第二接着剤層のうちの少なくとも一方が導電性接着剤からなる外装材は本発明の技術的範囲に含まれる。一方の樹脂層の貼り合わせに接着剤の影響の少ない方法を採用すれば、他方の樹脂層の貼り合わせのみに導電性接着剤を使用すれば相応の効果を得ることができるためである。接着剤の影響の少ない貼り合わせ方法とは、例えば図4の外装材1cに参照される、接着剤未塗布部を有する接着剤層を形成して貼り合わせる方法である。   In the present invention, the conductive portion (outlet for electricity) on the outer surface of the exterior body of the power storage device is not limited to being formed at a symmetrical position of the conductive portion on the thermoplastic resin layer side with the metal foil interposed therebetween, and the heat-resistant resin layer It is not limited to forming on the side of the surface. For example, if one of the exterior members is extended outside the heat sealing portion to expose the thermoplastic resin layer, the conductive portion on the outer surface of the exterior body can be formed on the surface on the thermoplastic resin layer side. Both the conductive part to the battery element and the conductive part to the outside of the device may be formed on the surface on the thermoplastic resin layer side, and such an exterior material is also included in the technical scope of the present invention. Therefore, the exterior material of the power storage device has a conductive part at least on the thermoplastic resin layer side, and the presence or absence of the conductive part on the heat resistant resin layer side differs depending on the form of the exterior body. Further, a packaging material in which at least one of the first adhesive layer and the second adhesive layer is made of a conductive adhesive is included in the technical scope of the present invention. This is because, if a method with less influence of the adhesive is used for bonding one resin layer, a corresponding effect can be obtained if a conductive adhesive is used only for bonding the other resin layer. The bonding method with little influence of the adhesive is a method of forming and bonding an adhesive layer having an adhesive non-applied portion, which is referred to, for example, as the exterior material 1c in FIG.

さらに、蓄電デバイスは外装体を構成する2つの外装材のうちの少なくとも一方が本発明の外装材で構成されていれば本発明の技術的範囲に含まれる。例えば、図5の蓄電デバイス40の外装体50の蓋体55を導電部8,9を持たない外装材に変更し、電池要素60の正極箔61にタブリードを接続して外装体外に引き出すように変更した場合も本発明に含まれる。   Further, the power storage device is included in the technical scope of the present invention as long as at least one of the two outer materials constituting the outer body is made of the outer material of the present invention. For example, the cover 55 of the exterior body 50 of the power storage device 40 in FIG. 5 is changed to an exterior material having no conductive portions 8 and 9, and a tab lead is connected to the positive electrode foil 61 of the battery element 60 so as to be drawn out of the exterior body. Modifications are also included in the present invention.

各例の試験材として、金属箔と熱可塑性樹脂層とを異なる接着剤で貼り合わせた3層材を作製した。金属箔および熱可塑性樹脂層は各例共通あり、金属箔は厚さ40μmの軟質アルミニウム箔(JIS H4160 A8079H)、熱可塑性樹脂層は厚さ40μmの未延伸ポリプロピレンフィルムを使用した。
(実施例1)
ベース接着剤である二液硬化型酸変性ポリプロピレン系接着剤に導電材として平均粒径2μmの黒鉛微粉を添加して均一に分散させて導電性の接着剤組成物を調製した。前記接着剤組成物中の導電材含有量は20質量%である。
As a test material of each example, a three-layer material in which a metal foil and a thermoplastic resin layer were bonded with different adhesives was prepared. The metal foil and the thermoplastic resin layer were common to each example. The metal foil used was a soft aluminum foil (JIS H4160 A8079H) having a thickness of 40 μm, and the thermoplastic resin layer used was an unstretched polypropylene film having a thickness of 40 μm.
(Example 1)
A conductive adhesive composition was prepared by adding graphite fine powder having an average particle size of 2 μm as a conductive material to a two-part curable acid-modified polypropylene-based adhesive as a base adhesive and uniformly dispersing the same. The conductive material content in the adhesive composition is 20% by mass.

金属箔の一方の面に、前記接着剤組成物を塗布して100℃で乾燥させた。乾燥させた接着剤層の表面に、20mm×20mmのシリコーン系の剥離剤をコーティングした離型紙を貼り付け、熱可塑性樹脂層を重ねて圧着し、40℃のエージング炉で3日間養生して試験材を作製した。養生後の接着剤層の厚さは2μmであった。
(実施例2)
接着剤組成物の導電材を平均粒径0.03μmのアセチレンブラックに変更し、含有量を1質量%に変更したことを除き、実施例1と同じ方法で試験材を作製した。
(実施例3)
接着剤組成物の導電材を平均粒径1μmの黒鉛微粉に変更し、含有量を7質量%に変更したことを除き、実施例1と同じ方法で試験材を作製した。
(実施例4)
接着剤組成物の導電材を平均粒径0.1μmのカーボンブラックに変更し、含有量を3質量%に変更したことを除き、実施例1と同じ方法で試験材を作製した。
(比較例)
接着剤としてベース接着剤のみを用いたことを除き、実施例1と同じ方法で試験材を作製した。
(参考例)
接着剤はベース接着剤のみを使用し、金属箔の一方の面に20mm×20mmの接着剤未塗布部を形成しつつ接着剤を塗布し、熱可塑性樹脂層を貼り合わせた。塗布した接着剤の乾燥条件および熱可塑性樹脂層を貼り合わせた後の養生条件は実施例1と同じである。
The adhesive composition was applied to one surface of a metal foil and dried at 100 ° C. A release paper coated with a 20 mm × 20 mm silicone-based release agent is attached to the surface of the dried adhesive layer, a thermoplastic resin layer is laminated and pressed, and cured for 3 days in an aging furnace at 40 ° C. for testing. Materials were produced. The thickness of the adhesive layer after curing was 2 μm.
(Example 2)
A test material was prepared in the same manner as in Example 1 except that the conductive material of the adhesive composition was changed to acetylene black having an average particle size of 0.03 μm, and the content was changed to 1% by mass.
(Example 3)
A test material was prepared in the same manner as in Example 1 except that the conductive material of the adhesive composition was changed to graphite fine powder having an average particle size of 1 μm, and the content was changed to 7% by mass.
(Example 4)
A test material was prepared in the same manner as in Example 1, except that the conductive material of the adhesive composition was changed to carbon black having an average particle size of 0.1 μm, and the content was changed to 3% by mass.
(Comparative example)
A test material was produced in the same manner as in Example 1, except that only the base adhesive was used as the adhesive.
(Reference example)
As the adhesive, only the base adhesive was used. The adhesive was applied while forming an adhesive-uncoated portion of 20 mm × 20 mm on one surface of the metal foil, and the thermoplastic resin layer was bonded. The drying conditions of the applied adhesive and the curing conditions after bonding the thermoplastic resin layer are the same as in Example 1.

実施例1〜4および比較例の試験材に対し、熱可塑性樹脂層における黒鉛シートの周縁の対応箇所にレーザーを照射して熱可塑性樹脂層を切断し、離型紙とともに熱可塑性樹脂層を除去し、接着剤層を露出させて20mm×20mmの導電部を形成した。   For the test materials of Examples 1 to 4 and Comparative Example, the thermoplastic resin layer was cut by irradiating a laser to a corresponding portion of the periphery of the graphite sheet in the thermoplastic resin layer, and the thermoplastic resin layer was removed together with the release paper. Then, the adhesive layer was exposed to form a conductive portion of 20 mm × 20 mm.

また、参考例の試験材に対しては、熱可塑性樹脂層における接着剤未塗布部の周縁の対応箇所にレーザーを照射して熱可塑性樹脂層を切断して除去し、金属箔を露出させて20mm×20mmの導電部を形成した。   In addition, for the test material of the reference example, the thermoplastic resin layer is cut and removed by irradiating a laser to a corresponding portion of the periphery of the adhesive uncoated portion in the thermoplastic resin layer, and the metal foil is exposed. A conductive part of 20 mm × 20 mm was formed.

導電部を形成した各試験材について、熱可塑性樹脂層の除去によって形成した導電部と金属箔の他方の面との間の電気抵抗値を測定した。即ち、実施例1〜4および比較例は金属箔と接着剤層の積層部の抵抗値を測定し、参考例は金属箔単独の抵抗値を測定した。表1に測定結果を示す。   For each test material on which the conductive portion was formed, the electrical resistance between the conductive portion formed by removing the thermoplastic resin layer and the other surface of the metal foil was measured. That is, in Examples 1 to 4 and Comparative Example, the resistance value of the laminated portion of the metal foil and the adhesive layer was measured, and in Reference Example, the resistance value of the metal foil alone was measured. Table 1 shows the measurement results.

Figure 0006654368
Figure 0006654368

表1に示したとおり、実施例1〜4の試験材は導電性接着剤で熱可塑性樹脂層を貼り合わせたことで接着剤層を除去しなくても、金属箔単独の参考例に対して抵抗値の増加はわずかであることがわかる。また、比較例の試験材は厚さ2μmの接着剤層でも抵抗値が増大し、導電部になり得ないことを示している。   As shown in Table 1, the test materials of Examples 1 to 4 were prepared by laminating a thermoplastic resin layer with a conductive adhesive, without removing the adhesive layer. It can be seen that the increase in the resistance value is slight. Also, the test material of the comparative example shows that the resistance value increases even with an adhesive layer having a thickness of 2 μm, and it cannot be a conductive part.

上記実施例は蓄電用デバイス用外装材の熱可塑性樹脂層側の面に形成した導電部であるが、耐熱性樹脂層側の面に形成する導電部においても同様の結果が得られる。   In the above embodiment, the conductive part is formed on the surface of the exterior material for a power storage device on the thermoplastic resin layer side, but the same result can be obtained with the conductive part formed on the surface of the heat resistant resin layer side.

また、参考例は導電材を含有しない接着剤を用いた例であるが、実施例1〜4の結果と合わせると、導電性接着剤を用いることにより、接着剤の転写時に接着剤未塗布部の位置ずれや接着剤のにじみが生じても抵抗値の増加は極わずかにすぎないと見なすことができる。   Although the reference example is an example using an adhesive containing no conductive material, when combined with the results of Examples 1 to 4, the use of the conductive adhesive makes it possible to use an adhesive-uncoated portion when transferring the adhesive. It can be considered that the increase in the resistance value is very small even if the position shift or the bleeding of the adhesive occurs.

本発明は小型化、軽量化された蓄電デバイスの外装体材料として好適に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as an outer package material of a power storage device that is reduced in size and weight.

1a、1b、1c、7、7a、7b…蓄電デバイス用外装材
2…金属箔
3…第一接着剤層
3a、5a…接着剤未塗布部
4…耐熱性樹脂層
5…第二接着剤
6…熱可塑性樹脂層
8、9…導電部
10…離型紙
40、41…蓄電デバイス
50、70…外装体
57、71…電池要素室
60、80…電池要素
61…正極箔(正極要素)
62…負極(負極要素)
63…セパレーター
81…正極活物質層(正極要素)
82…負極活物質層(負極要素)
1a, 1b, 1c, 7, 7a, 7b: exterior material for power storage device 2: metal foil 3: first adhesive layer 3a, 5a: adhesive-uncoated portion 4: heat-resistant resin layer 5: second adhesive 6 ... thermoplastic resin layers 8, 9 ... conductive part 10 ... release paper 40, 41 ... electricity storage devices 50, 70 ... exterior bodies 57, 71 ... battery element chambers 60, 80 ... battery elements 61 ... positive electrode foil (positive element)
62 ... negative electrode (negative electrode element)
63: separator 81: positive electrode active material layer (positive electrode element)
82 ... Negative electrode active material layer (negative electrode element)

Claims (5)

金属箔の一方の面に第一接着剤層を介して耐熱性樹脂層が貼り合わせされ、他方の面に第二接着剤層を介して熱可塑性樹脂層が貼り合わされた蓄電デバイス用外装材において、
前記第一接着剤層および第二接着剤層のうちの少なくとも一方が導電性接着剤からなり、
前記導電性接着剤で貼り合わされた樹脂層側の面において、樹脂層の一部が除去されてて金属箔に導通する導電部を有することを特徴とする蓄電デバイス用外装材。
A heat-resistant resin layer is bonded to one surface of a metal foil via a first adhesive layer, and a thermoplastic resin layer is bonded to the other surface via a second adhesive layer. ,
Ri Do from at least one electrically conductive adhesive of the first adhesive layer and second adhesive layer,
An exterior material for a power storage device, comprising: a conductive portion that is partially removed from a resin layer and is electrically connected to a metal foil on a surface on a resin layer side bonded with the conductive adhesive.
前記導電性接着剤はベース接着剤と平均粒径2μm以下の導電材粒子とを含む接着剤組成物からなる請求項1に記載の蓄電デバイス用外装材。   The exterior material for an electric storage device according to claim 1, wherein the conductive adhesive comprises an adhesive composition including a base adhesive and conductive material particles having an average particle size of 2 µm or less. 金属箔の一方の面に耐熱性樹脂層が貼り合わされ、他方の面に熱可塑性樹脂層が貼り合わされた2つの外装材が、熱可塑性樹脂層同士が向かい合って融着した熱封止部に囲まれることによって電池要素室が形成された外装体と、
前記外装体の電池要素室に収容され、正極要素、負極要素、およびこれらの間に配置されるセパレーターとを有する電池要素とを備え、
前記外装体を構成する2つの外装材のうちの少なくとも一方が請求項1または2に記載された蓄電デバイス用外装材からなり、外装材の導電部に正極要素および負極要素のうちの少なくとも一方が導通していることを特徴とする蓄電デバイス。
Two exterior materials in which a heat-resistant resin layer is bonded to one surface of the metal foil and a thermoplastic resin layer is bonded to the other surface are surrounded by a heat-sealed portion where the thermoplastic resin layers face each other and are fused together. An exterior body in which the battery element chamber is formed by
A battery element having a positive electrode element, a negative electrode element, and a separator disposed therebetween, which is housed in the battery element chamber of the outer package,
At least one of the two exterior materials constituting the exterior body is made of the exterior material for a power storage device according to claim 1 or 2 , and at least one of a positive electrode element and a negative electrode element is provided on a conductive portion of the exterior material. An electricity storage device characterized by being conductive.
前記正極要素および負極要素がセパレーターを介して積層された正極箔および負極箔である請求項に記載の蓄電デバイス。 The power storage device according to claim 3 , wherein the positive electrode element and the negative electrode element are a positive electrode foil and a negative electrode foil laminated with a separator interposed therebetween. 前記正極要素および負極要素が外装材の金属箔に積層された正極活物質層および負極活物質層である請求項に記載の蓄電デバイス。 The power storage device according to claim 3 , wherein the positive electrode element and the negative electrode element are a positive electrode active material layer and a negative electrode active material layer laminated on a metal foil of an exterior material.
JP2015138349A 2015-07-10 2015-07-10 Exterior materials for power storage devices Active JP6654368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015138349A JP6654368B2 (en) 2015-07-10 2015-07-10 Exterior materials for power storage devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015138349A JP6654368B2 (en) 2015-07-10 2015-07-10 Exterior materials for power storage devices

Publications (2)

Publication Number Publication Date
JP2017021976A JP2017021976A (en) 2017-01-26
JP6654368B2 true JP6654368B2 (en) 2020-02-26

Family

ID=57889864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015138349A Active JP6654368B2 (en) 2015-07-10 2015-07-10 Exterior materials for power storage devices

Country Status (1)

Country Link
JP (1) JP6654368B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3591729A1 (en) * 2018-07-03 2020-01-08 Renata AG A multilayer packaging structure for a thin film battery and a method for manufacturing of such a structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4270599B2 (en) * 1998-04-02 2009-06-03 大日本印刷株式会社 Thin battery
JP2004031272A (en) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd Electrode stack type battery
JP2005276486A (en) * 2004-03-23 2005-10-06 Nissan Motor Co Ltd Laminated battery, battery pack, and vehicle
JP5556128B2 (en) * 2009-10-30 2014-07-23 ソニー株式会社 Non-aqueous electrolyte battery
JP2013004563A (en) * 2011-06-13 2013-01-07 Aisin Seiki Co Ltd Power storage device, manufacturing method therefor and power storage module

Also Published As

Publication number Publication date
JP2017021976A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6629514B2 (en) Manufacturing method of laminate exterior material
TWI728961B (en) Exterior body for power storage device
JP5457040B2 (en) Electrochemical device and manufacturing method thereof
KR101896922B1 (en) Covering material for battery and lithum-ion rechargeable battery
JP2008511959A (en) Secondary battery using a high-strength battery case
WO2017056906A1 (en) Power storage device
JP2010170979A (en) Positive electrode tab lead, negative electrode tab lead, and battery
JP2010245000A (en) Electrochemical device
JP2014026980A (en) Electrochemical device
JP6654368B2 (en) Exterior materials for power storage devices
KR20170022900A (en) Laminate exterior storage device
JP2010033888A (en) Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery
TWI700177B (en) Laminated exterior material
WO2013051579A1 (en) Terminal lead
JP2014035811A (en) Terminal lead
CN209016111U (en) Lead member
JP2017069120A (en) Lead member and power storage device
US20160028052A1 (en) Methods of attaching two layers together using a rivet formed of sealing material and articles of manufacture made thereby
JP6697227B2 (en) Power storage device
JP6632831B2 (en) Power storage device
JP2019140059A (en) Power storage device exterior material and power storage device
JP6832477B2 (en) Laminated battery and manufacturing method of laminated battery
WO2024053312A1 (en) Power storage device
JP6380200B2 (en) Manufacturing method of secondary battery
JP2019029276A (en) Lead member and nonaqueous electrolyte power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200130

R150 Certificate of patent or registration of utility model

Ref document number: 6654368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250