JP2010033888A - Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery - Google Patents

Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery Download PDF

Info

Publication number
JP2010033888A
JP2010033888A JP2008194912A JP2008194912A JP2010033888A JP 2010033888 A JP2010033888 A JP 2010033888A JP 2008194912 A JP2008194912 A JP 2008194912A JP 2008194912 A JP2008194912 A JP 2008194912A JP 2010033888 A JP2010033888 A JP 2010033888A
Authority
JP
Japan
Prior art keywords
lead wire
electrolyte battery
nickel
nonaqueous electrolyte
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008194912A
Other languages
Japanese (ja)
Inventor
Keitaro Miyazawa
圭太郎 宮澤
Kosuke Tanaka
浩介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008194912A priority Critical patent/JP2010033888A/en
Publication of JP2010033888A publication Critical patent/JP2010033888A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead wire for a nonaqueous electrolyte battery, made of nickel having hydrofluoric acid-resistant characteristics better than inexpensive surface treatment; and to provide a nonaqueous electrolyte battery using the lead wire. <P>SOLUTION: The nonaqueous electrolyte battery where a positive electrode, a negative electrode, and nonaqueous electrolyte are housed in an enclosing body 3 made of a laminated film 4 including a metallic foil and its lead wire are provided. The lead wire 2 is made of nickel (including nickel plating), the surface of the lead wire pulled out by firmly enclosing in the enclosing body 3 is to be a passive layer 5, and an insulator 6 firmly enclosed in the enclosing body is provided on the surface of the passive layer 5. The passive layer 5 is to be zero or a plus potential in a natural electrical potential against 0.01 wt.% hydrofluoric acid, and the electrical potential is to be 0 V or more and 0.5 V or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、正極、負極および非水電解質(電解液)を積層フィルムからなる封入体に収納してなる非水電解質電池のリード線に関する。   The present invention relates to a lead wire for a non-aqueous electrolyte battery in which a positive electrode, a negative electrode, and a non-aqueous electrolyte (electrolytic solution) are housed in an encapsulant made of a laminated film.

電子機器の小型化と共に電源としての電池の小型化、軽量化が求められている。また、高エネルギー密度化、高エネルギー効率化に対する要求もあり、このような要求を満たすものとして、リチウムイオン電池などの非水電解質電池が知られている。非水電解質電池としては、正極、負極および電解液を、例えば、金属箔を含む積層フィルムからなる袋状の封入体に収納し、電極に接続したリード線を密封状態で外部に取り出す構造のものがある(例えば、特許文献1参照)。   Along with downsizing of electronic devices, downsizing and lightening of a battery as a power source are required. There are also demands for higher energy density and higher energy efficiency, and non-aqueous electrolyte batteries such as lithium-ion batteries are known to satisfy such demands. Non-aqueous electrolyte batteries have a structure in which a positive electrode, a negative electrode, and an electrolytic solution are housed in, for example, a bag-shaped enclosure made of a laminated film including a metal foil, and lead wires connected to the electrodes are taken out in a sealed state. (For example, refer to Patent Document 1).

金属箔を含む積層フィルムは、樹脂フィルムからなる内層フィルムと外層フィルムとの間に、少なくともアルミ、銅、ステンレス等の金属からなる金属箔をサンドイッチ状に貼り合わせた密封性の高い積層フィルムが用いられる。そして、例えば、矩形状に裁断された2枚の積層フィルムの内層フィルムの周辺同士を、ヒートシールで互いに融着密封して袋状の封入体とされる。正極または負極に接続されるリード線は、その取り出し部分が積層フィルムの金属箔に対して電気的短絡が生じないように絶縁体で覆われると共に、封入体の所定の縁部に封止されて密封状態で取り出される。   A laminated film including a metal foil is a highly sealed laminated film in which a metal foil made of at least aluminum, copper, stainless steel or the like is sandwiched between an inner layer film made of a resin film and an outer layer film. It is done. Then, for example, the periphery of the inner film of the two laminated films cut into a rectangular shape is fused and sealed together by heat sealing to form a bag-shaped enclosure. The lead wire connected to the positive electrode or the negative electrode is covered with an insulator so that an electrical short circuit does not occur with respect to the metal foil of the laminated film, and is sealed at a predetermined edge of the encapsulant Removed in a sealed state.

このリード線の取り出し部分の絶縁体は、例えば、特許文献1に開示のように、リード線金属を囲うようにして低融点の内側絶縁層とこれよりは融点が高く積層フィルムのヒートシールのヒートシール温度では溶融しない外側絶縁層の2層で形成される。この絶縁体は、リード線の取り出し部分に、予め内側絶縁層を加熱溶融して密封接着させた後、封入体の取り出し口に挟み込まれる。この後、積層フィルムの周辺のシール部分をヒートシールで封止するが、外側絶縁層は、このヒートシール時の温度では、溶融されない材料で形成されているため、リード線金属と積層フィルム内の金属箔とが電気的に短絡しないとされている。   For example, as disclosed in Patent Document 1, the insulator of the lead wire lead-out portion surrounds the lead wire metal with a low-melting-point inner insulating layer and a heat-sealing heat of a laminated film having a higher melting point. It is formed of two outer insulating layers that do not melt at the sealing temperature. This insulator is sandwiched in the outlet of the encapsulant after the inner insulating layer is heated and melted and sealed in advance at the lead wire extraction portion. After that, the sealing portion around the laminated film is sealed by heat sealing, but the outer insulating layer is formed of a material that is not melted at the temperature at the time of this heat sealing. The metal foil is not electrically short-circuited.

しかし、積層フィルムのシール部およびリード線取り出し部は、完全に覆われた形態とはならず、密封接着が不十分であると外部から水分が浸入する。電池内に水分が浸入すると、内部の電解液との反応によりフッ化水素酸が発生する。リード線金属としては、アルミ、ニッケル(ニッケルメッキを含む)、銅などが用いられるが、上記のフッ化水素酸による腐食を受けることになる。リード線金属は、絶縁体により表面を密封封止されているとしても、その表面は長期にわたって徐々に腐食され、絶縁体との密封形態が破壊され、液漏れがおこって電池として機能しなくなる。
特許3505905号公報
However, the sealing portion and the lead wire take-out portion of the laminated film are not completely covered, and moisture enters from the outside if the sealing adhesion is insufficient. When moisture enters the battery, hydrofluoric acid is generated by reaction with the internal electrolyte. As the lead metal, aluminum, nickel (including nickel plating), copper, or the like is used, but the lead metal is subject to corrosion by the hydrofluoric acid. Even if the surface of the lead metal is hermetically sealed with an insulator, the surface is gradually corroded over a long period of time, the sealed form with the insulator is destroyed, and liquid leakage occurs and the battery does not function.
Japanese Patent No. 3505905

リード線金属(タブ)としては、アルミ、ニッケル、銅などが用いられるが、このうち、ニッケルが最もフッ化水素酸により腐食されにくい。このため、例えば、リード線金属が銅で形成されている場合に、ニッケルメッキを施して使用(ニッケルメッキ銅という)されることがある。したがって、リード線金属に高純度のニッケル(ニッケルメッキを含む)を用いることで、耐久性を高めることは可能である。しかし、長期の使用でリード線金属の表面は、徐々に腐食されて不安定となり、密封形態が破壊される恐れがある。   As the lead metal (tab), aluminum, nickel, copper, or the like is used. Of these, nickel is most hardly corroded by hydrofluoric acid. For this reason, for example, when the lead wire metal is made of copper, it may be used after being plated with nickel (referred to as nickel-plated copper). Therefore, durability can be enhanced by using high-purity nickel (including nickel plating) for the lead wire metal. However, the surface of the lead wire metal is gradually corroded and becomes unstable with long-term use, and the sealed form may be destroyed.

本発明は、上述した実情に鑑みてなされたもので、安価な表面処理により耐フッ化水素酸性を備えるニッケル(ニッケルメッキを含む)からなる非水電解質電池用リード線と該リード線を用いた非水電解質電池を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and uses a lead wire for a non-aqueous electrolyte battery made of nickel (including nickel plating) having hydrogen fluoride acid resistance by an inexpensive surface treatment and the lead wire. An object is to provide a nonaqueous electrolyte battery.

本発明による非水電解質電池用リード線は、正極、負極および非水電解質を、金属箔を含む積層フィルムからなる封入体に収納してなる非水電解質電池用のリード線で、リード線はニッケル(ニッケルメッキを含む)からなり、封入体に封着されて取り出される部分のリード線表面が不動態層とされ、不動態層の表面に封入体に封着される絶縁体を備えていることを特徴とする。
前記の不動態層は、0.01重量%のフッ化水素酸に対する自然電位でゼロないしプラス電位とされ、該電位は0V以上0.5V以下であることが好ましい。
A lead wire for a non-aqueous electrolyte battery according to the present invention is a lead wire for a non-aqueous electrolyte battery in which a positive electrode, a negative electrode, and a non-aqueous electrolyte are housed in an enclosure made of a laminated film including a metal foil. The lead wire is nickel. (Including nickel plating), the lead wire surface of the portion sealed and taken out by the enclosure is a passive layer, and the insulator is sealed on the surface of the passive layer. It is characterized by.
The passive layer has a natural potential with respect to 0.01% by weight of hydrofluoric acid and is set to zero or positive potential, and the potential is preferably 0 V or more and 0.5 V or less.

本発明におけるニッケル(ニッケルメッキを含む)からなるリード線表面の不動態層は、湿度管理された酸化雰囲気中に曝すことにより、簡易かつ安価に形成することができる。そして、リード線表面に形成された不動態層により、耐フッ化水素酸性に優れたリード線の封止が得られ、液漏れのない安定した特性と長寿命の非水電解質電池を実現することが可能となる。   The passive layer on the surface of the lead wire made of nickel (including nickel plating) in the present invention can be easily and inexpensively formed by exposing it to an oxidizing atmosphere in which humidity is controlled. In addition, the passive layer formed on the surface of the lead wire provides a lead wire seal excellent in hydrogen fluoride acid resistance, and realizes a non-aqueous electrolyte battery with stable characteristics and long life without liquid leakage. Is possible.

図により本発明の実施の形態を説明する。図1は非水電解質電池の一例を説明する外観図、図2(A)は非水電解質電池の断面を示す図、図2(B)および図2(C)はリード線部分の構成を説明する図である。図中、1はリード線、2はリード線金属、3は封入体、3aはシール部、4は積層フィルム、4aは金属箔、5は不動態層、6は絶縁体、7は接着層、8は絶縁層、9は正極、9’は負極、10は隔膜、11、11’は電極導電体、12、12’は活性物質層を示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an external view illustrating an example of a nonaqueous electrolyte battery, FIG. 2A is a diagram illustrating a cross section of the nonaqueous electrolyte battery, and FIGS. 2B and 2C illustrate the configuration of a lead wire portion. It is a figure to do. In the figure, 1 is a lead wire, 2 is a lead wire metal, 3 is an encapsulant, 3a is a sealing part, 4 is a laminated film, 4a is a metal foil, 5 is a passive layer, 6 is an insulator, 7 is an adhesive layer, 8 is an insulating layer, 9 is a positive electrode, 9 'is a negative electrode, 10 is a diaphragm, 11, 11' are electrode conductors, and 12 and 12 'are active material layers.

本発明によるリード線(タブリードともいう)が適用される非水電解質電池は、例えば、図1に一例として示すように、一対のリード線金属2の取り出し部分を絶縁体6で覆って、封入体3のシール部3aから外部に取り出す薄形構造で形成される。封入体3は、周縁部のシール部3aをヒートシールによる熱融着で袋状としたものである。封入体3内には、正極、負極、隔膜等と非水の溶媒(例えば、有機溶媒)に電解質(例えばリチウム化合物)が溶解された非水電解液とを含む電気化学セルを、密封収納している。   A non-aqueous electrolyte battery to which a lead wire (also referred to as a tab lead) according to the present invention is applied is, for example, as shown as an example in FIG. 3 is formed in a thin structure that is taken out from the seal portion 3a. The encapsulant 3 is formed by forming a peripheral seal portion 3a into a bag shape by heat sealing by heat sealing. In the enclosure 3, an electrochemical cell including a positive electrode, a negative electrode, a diaphragm, and the like and a nonaqueous electrolytic solution in which an electrolyte (for example, a lithium compound) is dissolved in a nonaqueous solvent (for example, an organic solvent) is hermetically stored. ing.

リード線1は、厚さが0.05mm〜0.4mmで、外部への電気接続のためにシール部3aを経て導出される。リード線1のリード線金属2は、ニッケルまたはニッケルメッキされた銅からなり、少なくともその導出部分を絶縁体6で絶縁し、封入体3を形成する積層フィルム4の金属箔と電気的に接触しない構造とされる。リード線金属2は、少なくとも積層フィルム4と封着される表面に、酸化皮膜(酸化ニッケル)による化学的に安定な不動態層5が形成され、その外面に絶縁体6を密封接着し、絶縁体6の外面に積層フィルム4を封着している。   The lead wire 1 has a thickness of 0.05 mm to 0.4 mm, and is led out through the seal portion 3a for electrical connection to the outside. The lead wire metal 2 of the lead wire 1 is made of nickel or nickel-plated copper, and at least a lead-out portion thereof is insulated with an insulator 6 and is not in electrical contact with the metal foil of the laminated film 4 forming the encapsulant 3. Structured. The lead wire metal 2 has a chemically stable passive layer 5 formed of an oxide film (nickel oxide) at least on the surface to be sealed with the laminated film 4, and an insulator 6 is hermetically bonded to the outer surface thereof for insulation. The laminated film 4 is sealed on the outer surface of the body 6.

図2(A)は、本発明による非水電解質電池の概略を示し、図1で示した封入体3のシール部3aの一部から、リード線金属2を絶縁体6で覆って外部に取り出す構造を示している。封入体3は、樹脂フィルム内に金属箔4aを有する積層フィルム4で形成される。積層フィルム4は、例えば、内層フィルムと外層フィルムとの間にアルミ、銅、ステンレス等の金属等の金属箔4aをサンドイッチ状に貼り合わせて形成され、封入体3内に収納される非水電解質(電解液)に対する密封性を高めている。   FIG. 2A shows an outline of the nonaqueous electrolyte battery according to the present invention. The lead wire metal 2 is covered with an insulator 6 and taken out from a part of the seal portion 3a of the enclosure 3 shown in FIG. The structure is shown. The enclosure 3 is formed of a laminated film 4 having a metal foil 4a in a resin film. The laminated film 4 is formed, for example, by laminating a metal foil 4a such as aluminum, copper, stainless steel or the like in a sandwich shape between the inner layer film and the outer layer film, and is accommodated in the enclosure 3 The sealing property against (electrolyte) is improved.

また、封入体3の積層フィルム4は、例えば、3〜5層の積層体からなり、その最内層フィルムは、電解液で溶解されずシール部分から電解液が漏出するのを防止するものとして、例えば、酸変性ポリオレフィン(例:無水マレイン酸変性低密度ポリエチレン)で形成される。最外層フィルムは、厚さが0.05mm〜0.2mmで、内側の金属箔4aを外傷から保護するのにポリエチレンテレフタレート(略称PET)等で形成されている。   In addition, the laminated film 4 of the encapsulant 3 is composed of, for example, a laminated body of 3 to 5 layers, and the innermost layer film is not dissolved by the electrolytic solution and prevents the electrolytic solution from leaking from the seal portion. For example, it is formed of an acid-modified polyolefin (eg, maleic anhydride-modified low density polyethylene). The outermost layer film has a thickness of 0.05 mm to 0.2 mm, and is formed of polyethylene terephthalate (abbreviated as PET) or the like to protect the inner metal foil 4a from damage.

封入体3内に収容される非水電解質としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、テトラヒドロドフランなどの有機溶媒に、LiClO、LiBF、LiPF、LiAsF等を溶解させた非水電解質や、リチウムイオン伝導性の固体電解質などが用いられる。 Examples of the non-aqueous electrolyte accommodated in the enclosure 3 include organic solvents such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, and tetrahydrodofuran, LiClO 4 , LiBF 4 , and LiPF 6. A nonaqueous electrolyte in which LiAsF 6 or the like is dissolved, a lithium ion conductive solid electrolyte, or the like is used.

電極は、隔膜10を挟んで対峙する正極9と負極9’からなり、集電体と呼ばれる金属箔又はエキスパンドメタル等の金属基材上に活性物質層12,12’を形成した構造を有している。正極9および負極9’は、電極導電体11上に還元酸化物粉末とカーボン粉末と結着剤のバインダーとからなる活性物質層12,12’を形成して構成される。正極9と負極9’との間に配される隔膜10は、電気的絶縁性を保持し、且つ、イオン伝導性を保持するポリオレフィン系の多孔膜で形成される。   The electrode is composed of a positive electrode 9 and a negative electrode 9 'facing each other with a diaphragm 10 interposed therebetween, and has a structure in which active substance layers 12, 12' are formed on a metal base material such as a metal foil or expanded metal called a current collector. ing. The positive electrode 9 and the negative electrode 9 ′ are configured by forming active material layers 12 and 12 ′ composed of a reduced oxide powder, a carbon powder, and a binder of a binder on an electrode conductor 11. The diaphragm 10 disposed between the positive electrode 9 and the negative electrode 9 ′ is formed of a polyolefin-based porous film that maintains electrical insulation and ion conductivity.

正極9および負極9’は、電極導電体11,11’から一体に形成されている接続片を、スポット溶接や超音波溶接等によりリード線金属2に接続される。正極9に接続されるリード線金属2は、正の高電位となるので電解液との接触により溶解が生じないように、電極導電体11と同じ金属、例えば純アルミ、或いはこれらの合金で形成されているのが好ましい。負極9’に接続されるリード線金属2は、過充電でリチウムが析出し過放電で電位が高くなることから、リチウムに腐食されにくく、リチウムと合金が形成されにくく、且つ、溶解されにくい電極導電体11’と同じ銅又はニッケル或いはこれらの合金で形成されているのが好ましい。   The positive electrode 9 and the negative electrode 9 ′ are connected to the lead wire metal 2 by spot welding, ultrasonic welding or the like by connecting pieces integrally formed from the electrode conductors 11 and 11 ′. Since the lead wire metal 2 connected to the positive electrode 9 has a positive high potential, it is formed of the same metal as the electrode conductor 11, for example, pure aluminum, or an alloy thereof so as not to be dissolved by contact with the electrolytic solution. It is preferable. The lead metal 2 connected to the negative electrode 9 'is an electrode that is liable to be corroded by lithium, hardly formed of an alloy with lithium, and difficult to be dissolved because lithium is deposited by overcharging and the potential becomes high by overdischarging. It is preferable that the conductor 11 ′ is formed of the same copper, nickel, or an alloy thereof.

図2(B)および(C)に示すように、リード線金属2の取り出し部分を覆って積層フィルム4の金属箔4aとの電気的絶縁を行なう絶縁体6は、接着層7と絶縁層8の2層で形成するのが好ましい。そして、接着層7は、比較的溶融温度が低い樹脂材料で形成され、リード線金属2の表面に形成された後述する複合皮膜層5に融着して絶縁層8を密封接着させる。この接着層7には、例えば、熱可塑性ポリオレフィン樹脂、好ましくは低密度ポリエチレン或いは酸変性低密度ポリエチレンまたは酸変性ポリプロピレン(例:厚み40μm、融点110℃)が用いられ、リード線金属2上の不動態層5に熱融着される。   As shown in FIGS. 2B and 2C, the insulator 6 that covers the lead wire metal 2 extraction portion and electrically insulates from the metal foil 4 a of the laminated film 4 includes an adhesive layer 7 and an insulating layer 8. The two layers are preferably formed. Then, the adhesive layer 7 is formed of a resin material having a relatively low melting temperature, and is fused to a composite film layer 5 described later formed on the surface of the lead wire metal 2 to hermetically bond the insulating layer 8. For example, thermoplastic polyolefin resin, preferably low-density polyethylene, acid-modified low-density polyethylene or acid-modified polypropylene (eg, thickness 40 μm, melting point 110 ° C.) is used for the adhesive layer 7, It is heat-sealed to the dynamic layer 5.

絶縁層8は、封入体3のヒートシール温度では溶融しない樹脂材料で形成され、封入体3に融着してリード線金属2を密封状態で引き出す。この絶縁層8には、例えば、架橋ポリオレフィン樹脂、好ましくは架橋された低密度ポリエチレン・架橋されたポリプロピレン或いはエチレン−ビニルアルコール重合体(例:エチレン比率44%、厚み100μm、融点165℃)が用いられる。封入体3の最内層フィルムが酸変性低密度ポリエチレンで形成されている場合、シール部3aは110℃程度でヒートシールされるが、このヒートシール温度では絶縁層8は溶融されず、リード線金属2の取り出し部分において、積層フィルム4の金属箔4aとの電気的絶縁を確保することができる。   The insulating layer 8 is formed of a resin material that does not melt at the heat seal temperature of the encapsulant 3 and is fused to the encapsulant 3 to draw out the lead wire metal 2 in a sealed state. For this insulating layer 8, for example, a cross-linked polyolefin resin, preferably a cross-linked low density polyethylene, a cross-linked polypropylene or an ethylene-vinyl alcohol polymer (eg, ethylene ratio 44%, thickness 100 μm, melting point 165 ° C.) is used. It is done. When the innermost layer film of the encapsulant 3 is formed of acid-modified low-density polyethylene, the seal portion 3a is heat-sealed at about 110 ° C., but the insulating layer 8 is not melted at this heat-sealing temperature, and the lead wire metal The electrical insulation between the laminated film 4 and the metal foil 4a can be ensured at the two take-out portions.

上述する構成で、封入体3のシール部3aおよびリード線金属2の取り出し部を完全に密封接着することにより、良好な特性と長寿命を維持することが可能となる。しかし、これらの密封接着が不十分であると、外部から水分が浸入し、内部の電解液との反応によりフッ化水素酸が発生する。リード線金属2としては、一般にアルミ、ニッケル(ニッケルメッキを含む)、銅などが用いられるが、フッ化水素酸による腐食を受けることになる。これらの金属のうちで、ニッケル(ニッケルメッキを含む)は、他の金属と比べて耐フッ化水素酸性があるとされている。しかし、その表面は長期にわたって徐々にフッ化水素酸により腐食され、絶縁体6との密封形態が破壊され、液漏れの原因となると共に特性が低下する。   With the configuration described above, it is possible to maintain good characteristics and a long life by completely sealing and adhering the sealing portion 3a of the enclosure 3 and the lead-out metal 2 takeout portion. However, if these hermetic adhesions are insufficient, moisture enters from the outside, and hydrofluoric acid is generated by reaction with the electrolyte inside. Generally, aluminum, nickel (including nickel plating), copper, or the like is used as the lead wire metal 2 but is subject to corrosion by hydrofluoric acid. Among these metals, nickel (including nickel plating) is said to have acid resistance to hydrogen fluoride compared to other metals. However, the surface is gradually corroded by hydrofluoric acid over a long period of time, and the sealed form with the insulator 6 is destroyed, causing liquid leakage and deteriorating characteristics.

本発明においては、ニッケル金属(ニッケルメッキされた金属を含む)からなるリード線金属2がフッ化水素酸による腐食されるのを防止するために、リード線金属2の表面を酸化ニッケルの不動態層5で処理している。酸化ニッケルの不動態層は、ニッケル金属を大気中あるいは酸化雰囲気中に放置することにより形成される。この場合、ニッケル金属を管理された湿度環境に曝すことにより、所定厚さの不動態層5とすることができる。なお、金属の不動態とは、通常は電気化学的に卑(腐食されやすい)なレベルにある金属が、電気化学的に貴な金属の挙動(腐食されにくい)に近づく場合をいう。   In the present invention, in order to prevent the lead wire metal 2 made of nickel metal (including nickel-plated metal) from being corroded by hydrofluoric acid, the surface of the lead wire metal 2 is passivated with nickel oxide. Processing at layer 5. The passive layer of nickel oxide is formed by leaving nickel metal in the air or in an oxidizing atmosphere. In this case, the passive layer 5 having a predetermined thickness can be obtained by exposing the nickel metal to a controlled humidity environment. In addition, the metal passivation refers to a case where a metal that is normally at an electrochemically low level (easily corroded) approaches the behavior of an electrochemically noble metal (not easily corroded).

また、不動態層5の膜厚レベルは、自然電位を測定することにより判定することができる。自然電位とは、ある環境の下で金属がもつエネルギーの値を言い、金属表面が酸化により不動態膜(酸化膜)が生成されるとプラス電位となり、また、不動態膜が厚いほど電位差は大きくなる。一方、金属表面が露出したり腐食が生じるとマイナス電位となり、腐食の進行状態を判定することができる。   The film thickness level of the passive layer 5 can be determined by measuring the natural potential. The natural potential is the energy value of a metal under a certain environment. When a passive film (oxide film) is generated by oxidation of the metal surface, it becomes a positive potential. Also, the thicker the passive film, the more the potential difference is. growing. On the other hand, when the metal surface is exposed or corrosion occurs, the potential becomes negative, and the progress of corrosion can be determined.

本発明は、非水電解質電池のニッケル金属からなるリード線部分に酸化生成される不動態層を積極的に活用するもので、不動態層を所定の自然電位以上となるように調整することにより、耐フッ化水素酸性を高めるようにしたものである。これにより、従来のクロムメート処理やチタニア処理、あるいは、ノンクロムのポリアクリル酸を含む樹脂成分と金属塩とを含む処理液の塗布により複合皮膜層を形成したリード線と同程度の耐フッ化水素酸性を備えた非水電解質電池を実現することができる。しかも、単にリード線金属の表面を酸化させるという簡単な処理で、安価に製造することができる。   The present invention actively utilizes a passive layer that is oxidized and formed on a lead wire portion made of nickel metal of a non-aqueous electrolyte battery, and by adjusting the passive layer to a predetermined natural potential or higher. The acid resistance to hydrogen fluoride is increased. As a result, hydrogen fluoride resistance equivalent to that of a lead wire in which a composite coating layer is formed by applying a conventional chromate treatment, titania treatment, or treatment solution containing a resin component containing a non-chromic polyacrylic acid and a metal salt. A nonaqueous electrolyte battery having acidity can be realized. Moreover, it can be manufactured at a low cost by a simple process of simply oxidizing the surface of the lead wire metal.

図3は、本発明による実施例1〜4とその比較例1,2を示す図である。リード線金属は、ニッケル箔(厚さ0.1mm程度)を、湿度を異ならせた管理環境に置いて、酸化ニッケルからなる不動態層の状態(厚さ)を調整し、各例の自然電位が異なるようにした。   FIG. 3 is a diagram showing Examples 1 to 4 and Comparative Examples 1 and 2 according to the present invention. The lead wire metal is nickel foil (thickness of about 0.1 mm) placed in a controlled environment with different humidity, and the state (thickness) of the passive layer made of nickel oxide is adjusted. Was made different.

実施例1は、0.01重量%のフッ化水素酸に対する自然電位が+0.5V(フッ化水素酸に入れた瞬間の電位)となるように調整、実施例2は、0.01重量%のフッ化水素酸に対する自然電位が+0.3Vとなるように調整、実施例3は、0.01重量%のフッ化水素酸に対する自然電位が+0.1Vとなるように調整、実施例4は、0.01重量%のフッ化水素酸に対する自然電位が+0.0Vとなるように調整した。また、比較例1は、0.01重量%のフッ化水素酸に対する自然電位が−0.1Vとなるように調整、比較例2は、0.01重量%のフッ化水素酸に対する自然電位が−0.2Vとなるように調整した。   Example 1 was adjusted so that the natural potential with respect to 0.01% by weight of hydrofluoric acid was +0.5 V (potential at the moment when it was put in hydrofluoric acid), and Example 2 was adjusted to 0.01% by weight. Example 3 was adjusted so that the natural potential with respect to hydrofluoric acid was +0.3 V, Example 3 was adjusted so that the natural potential with respect to 0.01% by weight of hydrofluoric acid was +0.1 V, and Example 4 was The natural potential with respect to 0.01% by weight of hydrofluoric acid was adjusted to + 0.0V. Comparative Example 1 was adjusted so that the natural potential with respect to 0.01% by weight of hydrofluoric acid was −0.1 V, and Comparative Example 2 had a natural potential with respect to 0.01% by weight of hydrofluoric acid. It adjusted so that it might become -0.2V.

次いで、表面の不動態層5の自然電位が上述のように調整されたニッケル箔を、5mm幅の帯状に切断し、一定間隔で図2で説明した絶縁体6を熱融着(180℃×10秒位)して、評価用のリード線とした。絶縁体6は、内側の熱可塑性ポリプロピレン樹脂からなる接着層7と、外側の架橋ポリプロピレン樹脂からなる絶縁層8の2層で形成した。この評価用のリード線を、電解液(エチレンカーボネート:ジエチルカーボネート:ジメチルカーボネート=1:1:1の液に、6フッ化リン酸リチウム塩を1mol添加)に浸漬し、大気下で60℃の恒温槽に4週間保管し、絶縁体6のリード線金属2(ニッケル箔)からの剥離状態を、目視により確認した。   Next, the nickel foil in which the natural potential of the surface passive layer 5 is adjusted as described above is cut into a strip having a width of 5 mm, and the insulator 6 described with reference to FIG. The lead wire for evaluation was used for about 10 seconds. The insulator 6 was formed of two layers, an adhesive layer 7 made of an inner thermoplastic polypropylene resin and an insulating layer 8 made of an outer crosslinked polypropylene resin. The lead wire for evaluation was immersed in an electrolytic solution (ethylene carbonate: diethyl carbonate: dimethyl carbonate = 1: 1: 1, 1 mol of lithium hexafluorophosphate added), and 60 ° C. in the atmosphere. It stored for 4 weeks in the thermostat, and the peeling state from the lead wire metal 2 (nickel foil) of the insulator 6 was confirmed visually.

この結果、図3に示すように、不動態層の自然電位がプラス電位(酸化ニッケル皮膜層あり)の実施例1〜4については、4週間経過後も絶縁体の剥離発生が全く無く、良好な結果を示した。なお、自然電位が+0.5Vを超えると酸化ニッケル皮膜が厚くなって他のニッケル金属と超音波接合することが難しくなった。また、接合できた場合も接合部での電気抵抗が大きく、電気導体として使用するには好ましくなかった。
これに対し、不動態層の自然電位が+0.0V未満のマイナス電位(ニッケル金属が露出ないしは腐食状態)の比較例1,2は、3日目で剥離が生じ、2週間後には全てのリード線で剥離が生じていた。これは、ニッケル金属からなるリード線金属に何の処理も行なわずに絶縁体を密封接着するだけでは、耐フッ化水素酸性として不十分であることを明示している。
As a result, as shown in FIG. 3, in Examples 1 to 4 in which the natural potential of the passive layer was a positive potential (with a nickel oxide film layer), there was no occurrence of peeling of the insulator even after 4 weeks had passed. Showed a good result. When the natural potential exceeded +0.5 V, the nickel oxide film became thick and it was difficult to ultrasonically bond with other nickel metal. In addition, even if it can be joined, the electrical resistance at the joint is large, which is not preferable for use as an electrical conductor.
On the other hand, in Comparative Examples 1 and 2 in which the passive layer has a natural potential of less than +0.0 V (nickel metal is exposed or corroded), peeling occurred on the third day and all leads were observed after two weeks. There was peeling at the wire. This clearly shows that it is not sufficient as acid resistance to hydrofluoric acid to simply seal and bond the insulator without performing any treatment on the lead metal made of nickel metal.

本発明による非水電解質電池の一例を示す外観図である。It is an external view which shows an example of the nonaqueous electrolyte battery by this invention. 本発明による非水電解質電池およびリード線の構成を説明する図である。It is a figure explaining the structure of the nonaqueous electrolyte battery and lead wire by this invention. 本発明による実施例と比較例を説明する図である。It is a figure explaining the Example and comparative example by this invention.

符号の説明Explanation of symbols

1…リード線、2…リード線金属、3…封入体、3a…シール部、4…積層フィルム、4a…金属箔、5…不動態層、6…絶縁体、7…接着層、8…絶縁層、9…正極、9’…負極、10…隔膜、11,11’…電極導電体、12,12’…活性物質層。 DESCRIPTION OF SYMBOLS 1 ... Lead wire, 2 ... Lead wire metal, 3 ... Enclosure, 3a ... Seal part, 4 ... Laminated film, 4a ... Metal foil, 5 ... Passive layer, 6 ... Insulator, 7 ... Adhesive layer, 8 ... Insulation Layer, 9 ... positive electrode, 9 '... negative electrode, 10 ... diaphragm, 11, 11' ... electrode conductor, 12, 12 '... active substance layer.

Claims (4)

正極、負極および非水電解質を、金属箔を含む積層フィルムからなる封入体に収納してなる非水電解質電池用のリード線であって、
前記リード線はニッケル又はニッケルメッキされてなり、前記封入体に封着されて取り出される部分のリード線表面が不動態層とされ、前記不動態層の表面に前記封入体に封着される絶縁体を備えていることを特徴とする非水電解質電池用リード線。
A lead wire for a non-aqueous electrolyte battery in which a positive electrode, a negative electrode, and a non-aqueous electrolyte are housed in an enclosure made of a laminated film including a metal foil,
The lead wire is nickel or nickel-plated, the lead wire surface of the portion sealed and taken out by the enclosure is a passive layer, and the insulation is sealed to the enclosure on the surface of the passive layer A lead wire for a non-aqueous electrolyte battery comprising a body.
前記不動態層は、0.01重量%のフッ化水素酸に対する自然電位で、ゼロないしプラス電位とされていることを特徴とする請求項1に記載の非水電解質電池用リード線。   2. The lead wire for a non-aqueous electrolyte battery according to claim 1, wherein the passive layer has a natural potential with respect to 0.01 wt% hydrofluoric acid and is set to zero or a positive potential. 3. 前記自然電位が、0V以上0.5V以下であることを特徴とする請求項2に記載の非水電解質電池用リード線。   The lead wire for a nonaqueous electrolyte battery according to claim 2, wherein the natural potential is 0 V or more and 0.5 V or less. 正極、負極および非水電解質が、金属箔を含む積層フィルムからなる封入体に収納され、前記正極および負極に接続されるリード線が前記封入体に封着されて取り出される非水電解質電池であって、
前記リード線は、ニッケル又はニッケルメッキされてなり、前記封入体に封着されて取り出される部分のリード線表面が不動態層とされ、前記不動態層の表面に前記封入体に封着される絶縁体を備えていることを特徴とする非水電解質電池。
A non-aqueous electrolyte battery in which a positive electrode, a negative electrode, and a non-aqueous electrolyte are housed in an enclosure made of a laminated film including a metal foil, and lead wires connected to the positive electrode and the negative electrode are sealed in the enclosure and taken out. And
The lead wire is nickel or nickel-plated, and a portion of the lead wire sealed and taken out by the encapsulant is used as a passive layer, and is sealed to the encapsulant on the surface of the passive layer. A nonaqueous electrolyte battery comprising an insulator.
JP2008194912A 2008-07-29 2008-07-29 Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery Pending JP2010033888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194912A JP2010033888A (en) 2008-07-29 2008-07-29 Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194912A JP2010033888A (en) 2008-07-29 2008-07-29 Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2010033888A true JP2010033888A (en) 2010-02-12

Family

ID=41738121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194912A Pending JP2010033888A (en) 2008-07-29 2008-07-29 Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2010033888A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181300A (en) * 2010-03-01 2011-09-15 Sumitomo Electric Ind Ltd Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same
WO2012014737A1 (en) * 2010-07-27 2012-02-02 住友電気工業株式会社 Electrical component, nonaqueous-electrolyte cell, and lead wire and sealable container both for use therein
WO2012053556A1 (en) * 2010-10-20 2012-04-26 三洋電機株式会社 Non-aqueous electrolyte secondary cell
WO2012121051A1 (en) * 2011-03-04 2012-09-13 住友電気工業株式会社 Electrical component, nonaqueous electrolyte battery, and lead wire and sealing container each used in electrical component or nonaqueous electrolyte battery
JP2018125249A (en) * 2017-02-03 2018-08-09 岩崎電気株式会社 lamp

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181300A (en) * 2010-03-01 2011-09-15 Sumitomo Electric Ind Ltd Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same
WO2012014737A1 (en) * 2010-07-27 2012-02-02 住友電気工業株式会社 Electrical component, nonaqueous-electrolyte cell, and lead wire and sealable container both for use therein
JP2012028237A (en) * 2010-07-27 2012-02-09 Sumitomo Electric Ind Ltd Electric component, nonaqueous electrolyte battery, and lead wire used for them, and sealing container
US8859138B2 (en) 2010-07-27 2014-10-14 Sumitomo Electric Industries, Ltd. Electrical part, nonaqueous electrolyte cell, and lead wire and sealable container which are used therein
WO2012053556A1 (en) * 2010-10-20 2012-04-26 三洋電機株式会社 Non-aqueous electrolyte secondary cell
WO2012121051A1 (en) * 2011-03-04 2012-09-13 住友電気工業株式会社 Electrical component, nonaqueous electrolyte battery, and lead wire and sealing container each used in electrical component or nonaqueous electrolyte battery
JP2012186007A (en) * 2011-03-04 2012-09-27 Sumitomo Electric Ind Ltd Electrical part, nonaqueous electrolyte battery, and lead wire and sealing container therefor
KR101427541B1 (en) 2011-03-04 2014-08-07 스미토모 덴키 고교 가부시키가이샤 Electrical component, nonaqueous electrolyte battery, and lead wire and sealing container each used in electrical component or nonaqueous electrolyte battery
US9585276B2 (en) 2011-03-04 2017-02-28 Sumitomo Electric Industries, Ltd. Electrical part, nonaqueous electrolyte cell, and lead wire and sealable container for use therein
JP2018125249A (en) * 2017-02-03 2018-08-09 岩崎電気株式会社 lamp

Similar Documents

Publication Publication Date Title
JP4784236B2 (en) Non-aqueous electrolyte battery lead wire and non-aqueous electrolyte battery
US7749652B2 (en) Lead and nonaqueous electrolyte battery including same
JP4961673B2 (en) Method for producing tab lead for non-aqueous electrolyte battery
JP5186529B2 (en) Lithium secondary battery
JPH09288996A (en) Nonaqueous electrolyte battery
JP5457040B2 (en) Electrochemical device and manufacturing method thereof
TWI389373B (en) Lead member,process for producing the same and non-aqueous electrolyte accumulation device
WO1997040540A1 (en) Non-aqueous electrolyte cell
JP3505905B2 (en) Non-aqueous electrolyte battery
JPWO2005086258A1 (en) Film-covered electrical device and current collector covering member for film-covered electrical device
JP2010003696A (en) Electrode tab, and lithium secondary battery including it
JP5282070B2 (en) Secondary battery
JP2011181300A (en) Lead member for nonaqueous electrolyte power storage device and method of manufacturing the same
JP2010033888A (en) Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2003346779A (en) Non-aqueous secondary battery
JP2007005101A (en) Nonaqueous electrolyte battery and lead wire for nonaqueous electrolyte battery
JP6881108B2 (en) Rechargeable battery manufacturing method and rechargeable battery
JP3911849B2 (en) Non-aqueous electrolyte battery
JP2009181899A (en) Laminated battery
JP3379417B2 (en) Enclosure bag for non-aqueous electrolyte batteries
JP4138172B2 (en) Electrochemical device and manufacturing method thereof
JPH11250873A (en) Nonaqueous electrolyte secondary battery
US20200161712A1 (en) Cable-Type Battery
JP2013239398A (en) Lead terminal for power storage device, and nonaqueous electrolyte power storage device equipped with the same
JP3562129B2 (en) Encapsulation bags and lead wires for non-aqueous electrolyte batteries