JP6644620B2 - Bleeding device, refrigerator provided with the same, and method of controlling bleeding device - Google Patents

Bleeding device, refrigerator provided with the same, and method of controlling bleeding device Download PDF

Info

Publication number
JP6644620B2
JP6644620B2 JP2016071997A JP2016071997A JP6644620B2 JP 6644620 B2 JP6644620 B2 JP 6644620B2 JP 2016071997 A JP2016071997 A JP 2016071997A JP 2016071997 A JP2016071997 A JP 2016071997A JP 6644620 B2 JP6644620 B2 JP 6644620B2
Authority
JP
Japan
Prior art keywords
tank
bleeding
pressure
air
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016071997A
Other languages
Japanese (ja)
Other versions
JP2017180994A (en
Inventor
良枝 栂野
良枝 栂野
和島 一喜
一喜 和島
直也 三吉
直也 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2016071997A priority Critical patent/JP6644620B2/en
Priority to PCT/JP2017/012826 priority patent/WO2017170649A1/en
Priority to CN201780013481.1A priority patent/CN108700355B/en
Priority to US16/078,800 priority patent/US20190056159A1/en
Publication of JP2017180994A publication Critical patent/JP2017180994A/en
Application granted granted Critical
Publication of JP6644620B2 publication Critical patent/JP6644620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/043Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/006Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、冷凍機に侵入した空気等の不凝縮ガスを抽気する抽気装置およびこれを備えた冷凍機ならびに抽気装置の制御方法に関するものである。   The present invention relates to an air extraction device for extracting non-condensable gas such as air that has entered a refrigerator, a refrigerator equipped with the air extraction device, and a method of controlling the air extraction device.

運転中の作動圧力が機内で一部負圧となる冷媒(いわゆる低圧冷媒)を用いる冷熱機器においては、負圧部から空気等の不凝縮ガスが機内に侵入し、圧縮機等を通った後の凝縮器に滞留する。凝縮器に不凝縮ガスが滞留すると凝縮器における冷媒の凝縮性能が阻害され、冷熱機器としての性能が低下する。このため、冷凍機から抽気を行い、不凝縮ガスを機外へ排出することにより、一定の性能を確保するようにしている。抽気によって、不凝縮ガスは冷媒ガスとともに抽気装置内に引込まれ、冷媒が冷却され凝縮することにより、不凝縮ガスが冷媒から分離され、排気ポンプ等で機外へ排出される(下記特許文献1及び2参照)。   In refrigeration equipment using a refrigerant whose operating pressure during operation is partially negative in the machine (so-called low-pressure refrigerant), non-condensable gas such as air enters the machine from the negative pressure section and passes through a compressor and the like. Stay in the condenser. When the non-condensable gas stays in the condenser, the condensation performance of the refrigerant in the condenser is hindered, and the performance as a refrigeration equipment is reduced. For this reason, constant performance is ensured by extracting air from the refrigerator and discharging non-condensable gas to the outside of the device. By the bleeding, the non-condensable gas is drawn into the bleeding device together with the refrigerant gas, and the refrigerant is cooled and condensed, whereby the non-condensable gas is separated from the refrigerant and discharged out of the machine by an exhaust pump or the like (see Patent Document 1 below). And 2).

特開2001−50618号公報JP 2001-50618 A 特開2006−38346号公報JP 2006-38346 A

しかし、抽気装置は、運転停止のタイミングを適切に行なわずに過剰に運転継続が行われると、冷凍機から冷媒を過剰に抽気してしまい冷凍機の能力を低下させてしまうおそれがある。   However, if the operation of the air extraction device is excessively continued without appropriately performing the operation stop timing, the refrigerant may be excessively bled from the refrigerator to reduce the performance of the refrigerator.

本発明は、このような事情に鑑みてなされたものであって、運転停止のタイミングを適切に判断して過剰な運転継続を防止できる抽気装置およびこれを備えた冷凍機ならびに抽気装置の制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a bleed device capable of appropriately determining the timing of operation stop and preventing excessive continuation of operation, a refrigerator including the same, and a control method of the bleed device. The purpose is to provide.

上記課題を解決するために、本発明の抽気装置およびこれを備えた冷凍機ならびに抽気装置の制御方法は以下の手段を採用する。
すなわち、本発明にかかる抽気装置は、冷凍機から冷媒と不凝縮ガスを含む混合ガスを抽気する抽気配管と、前記抽気配管から抽気された前記混合ガスを貯留する抽気タンクと、前記抽気タンク内を冷却して前記混合ガス中の冷媒を凝縮させる冷却器と、前記抽気タンク内の液冷媒を前記冷凍機へ排出する排液配管と、前記抽気タンク内の前記混合ガス中の不凝縮ガスを外部へ排出する排気配管と、前記排気配管から排出した排出不凝縮ガス量が、前記冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、当該抽気装置の動作を停止する制御部とを備えていることを特徴とする。
In order to solve the above-mentioned problems, a bleeding apparatus of the present invention, a refrigerator including the bleeding apparatus, and a method of controlling the bleeding apparatus employ the following means.
That is, the bleeding device according to the present invention includes: a bleeding pipe for bleeding a mixed gas containing a refrigerant and a non-condensable gas from a refrigerator; a bleeding tank for storing the mixed gas bleeding from the bleeding pipe; A condenser that cools and condenses the refrigerant in the mixed gas, a drain pipe that discharges the liquid refrigerant in the bleed tank to the refrigerator, and a non-condensable gas in the mixed gas in the bleed tank. An exhaust pipe that is discharged to the outside, and a control unit that stops the operation of the bleeding device when the amount of discharged non-condensable gas discharged from the exhaust pipe exceeds the amount of intruded non-condensable gas that has entered the refrigerator. It is characterized by having.

冷却器によって抽気タンク内を冷却すると、抽気タンク内の圧力が減少するので、冷凍機の冷媒系統(例えば凝縮器)との差圧が形成され、抽気配管を介して冷凍機から抽気タンクへと冷媒と不凝縮ガスを含む混合ガスが引き込まれる。抽気タンク内では、冷却器によって混合ガス中の冷媒が凝縮されて液冷媒となり抽気タンクの下方に蓄積される。一方、抽気タンク内に導かれた混合ガス中の不凝縮ガスは冷却器によって冷却されても凝縮されずにガスのまま抽気タンク内に滞留する。これにより、抽気タンク内で冷媒と不凝縮ガスが分離される。分離された不凝縮ガスは、排気配管を介して外部へと放出される。抽気タンク内に蓄積された液冷媒は、排液配管を介して冷凍機(例えば蒸発器)へと排出され、冷凍機にて再利用される。
排気配管から排出した排出不凝縮ガス量が、冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、抽気装置を停止することとしたので、運転停止のタイミングを適切に判断して抽気装置の過剰な運転継続を防止することができる。
When the inside of the bleeding tank is cooled by the cooler, the pressure in the bleeding tank decreases, so that a differential pressure with the refrigerant system (for example, a condenser) of the refrigerator is formed, and the bleeding tank is moved from the refrigerator to the bleeding tank through the bleeding pipe. A mixed gas containing a refrigerant and a non-condensable gas is drawn. In the bleed tank, the refrigerant in the mixed gas is condensed by the cooler to become a liquid refrigerant and is accumulated below the bleed tank. On the other hand, the non-condensable gas in the mixed gas introduced into the bleed tank remains in the bleed tank without being condensed even when cooled by the cooler. Thereby, the refrigerant and the non-condensable gas are separated in the extraction tank. The separated non-condensable gas is discharged to the outside via an exhaust pipe. The liquid refrigerant accumulated in the bleeding tank is discharged to a refrigerator (for example, an evaporator) via a drain pipe, and is reused in the refrigerator.
When the amount of non-condensable gas discharged from the exhaust pipe exceeds the amount of infiltration non-condensable gas that has entered the refrigerator, the bleed device is stopped. Excessive operation continuation can be prevented.

さらに、本発明の抽気装置では、前記制御部は、前記抽気タンク内の温度および圧力から得られた該抽気タンク内の不凝縮ガス密度と、前記排気配管からの排出ガス量とから、前記排出不凝縮ガス量を得ることを特徴とする。   Further, in the bleeding device of the present invention, the control unit is configured to control the discharge based on a non-condensable gas density in the bleed tank obtained from a temperature and a pressure in the bleed tank and a discharge gas amount from the exhaust pipe. It is characterized by obtaining the amount of non-condensable gas.

抽気タンク内に冷媒のみが存在する場合には、抽気タンク内の圧力と温度は飽和の関係となる。しかし、抽気タンク内に不凝縮ガスが含まれている場合には、含まれる不凝縮ガス密度に応じて不凝縮ガスの分圧分だけ抽気タンク圧力は高くなる。これを利用して、抽気タンク内の温度および圧力から不凝縮ガス密度を得ることとした。すなわち、抽気タンク内の温度から抽気タンク内の冷媒の分圧を得て、抽気タンク内の圧力から冷媒の分圧を引くことにより、不凝縮ガスの分圧が得られる。そして、不凝縮ガスの分圧から、理想気体の状態方程式を用いて不凝縮ガス密度を得ることができる。不凝縮ガス密度が得られれば、排気配管からの排出ガス量を用いて排出不凝縮ガス量を得ることができる。排出ガス量は、例えば、排気時の排気配管の差圧と排気時間から求めることができ、または、抽気タンクの内容積と排気前後の圧力差によって求めることができる。   When only the refrigerant is present in the bleed tank, the pressure and temperature in the bleed tank have a saturated relationship. However, when the non-condensable gas is contained in the bleeding tank, the bleeding tank pressure increases by the partial pressure of the non-condensable gas in accordance with the density of the non-condensable gas contained. By utilizing this, the density of the non-condensable gas was determined from the temperature and the pressure in the extraction tank. That is, by obtaining the partial pressure of the refrigerant in the extraction tank from the temperature in the extraction tank and subtracting the partial pressure of the refrigerant from the pressure in the extraction tank, the partial pressure of the non-condensable gas is obtained. Then, the density of the non-condensable gas can be obtained from the partial pressure of the non-condensable gas using the equation of state of the ideal gas. If the density of the non-condensable gas is obtained, the amount of the discharged non-condensable gas can be obtained using the amount of the exhaust gas from the exhaust pipe. The exhaust gas amount can be determined, for example, from the differential pressure of the exhaust pipe during exhaust and the exhaust time, or can be determined from the internal volume of the extraction tank and the pressure difference before and after exhaust.

さらに、本発明の抽気装置では、前記制御部は、前記冷凍機の冷媒系統内の圧力と冷凍機外の圧力との差圧に基づいて、前記侵入不凝縮ガス量を得ることを特徴とする。   Further, in the bleeding device of the present invention, the control unit obtains the amount of the infiltrating non-condensable gas based on a differential pressure between a pressure in a refrigerant system of the refrigerator and a pressure outside the refrigerator. .

冷凍機の冷媒系統内の圧力が冷凍機外の圧力よりも低くなった場合に、不凝縮ガスが冷凍機の冷媒系統内に侵入する。そこで、冷凍機の冷媒系統内の圧力と冷凍機外の圧力との差圧に基づいて、侵入不凝縮ガス量を得ることとした。   When the pressure in the refrigerant system of the refrigerator becomes lower than the pressure outside the refrigerator, the non-condensable gas enters the refrigerant system of the refrigerator. Then, based on the pressure difference between the pressure inside the refrigerant system of the refrigerator and the pressure outside the refrigerator, the amount of infiltration non-condensable gas is obtained.

さらに、本発明の抽気装置では、前記制御部は、予め設定された一定時間内における前記抽気タンク内の不凝縮ガスの分圧の上昇が設定値以下の場合に、当該抽気装置の動作を停止することを特徴とする。   Further, in the bleeding device of the present invention, the control unit stops the operation of the bleeding device when the increase in the partial pressure of the non-condensable gas in the bleeding tank within a predetermined time is equal to or less than a set value. It is characterized by doing.

抽気タンク内の不凝縮ガスの分圧の上昇が設定値以下であれば、抽気タンク内の不凝縮ガスは略排気されていると判断できるので、抽気装置を停止することとした。   If the increase in the partial pressure of the non-condensable gas in the bleed tank is equal to or less than the set value, it can be determined that the non-condensable gas in the bleed tank is substantially exhausted, so the bleed device is stopped.

また、本発明の冷凍機は、上記のいずれかに記載の抽気装置を備えていることを特徴とする。   Further, a refrigerator according to the present invention includes the air extraction device according to any one of the above.

上記のいずれかの抽気装置を備えているので、抽気装置の過剰な運転継続を防止できる冷凍機を提供することができる。   Since any one of the above-described air extraction devices is provided, it is possible to provide a refrigerator capable of preventing excessive operation continuation of the air extraction device.

また、本発明の抽気装置の制御方法は、冷凍機から冷媒と不凝縮ガスを含む混合ガスを抽気する抽気配管と、前記抽気配管から抽気された前記混合ガスを貯留する抽気タンクと、前記抽気タンク内を冷却して前記混合ガス中の冷媒を凝縮させる冷却器と、前記抽気タンク内の液冷媒を前記冷凍機へ排出する排液配管と、前記抽気タンク内の前記混合ガス中の不凝縮ガスを外部へ排出する排気配管とを備えた抽気装置の制御方法であって、前記排気配管から排出した排出不凝縮ガス量が、前記冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、当該抽気装置の動作を停止することを特徴とする。   In addition, the control method of the extraction device of the present invention includes an extraction pipe for extracting a mixed gas containing a refrigerant and a non-condensable gas from a refrigerator, an extraction tank for storing the mixed gas extracted from the extraction pipe, and an extraction tank. A cooler for cooling the inside of the tank to condense the refrigerant in the mixed gas, a drain pipe for discharging the liquid refrigerant in the bleeding tank to the refrigerator, and a non-condensation in the mixed gas in the bleeding tank An exhaust pipe that discharges gas to the outside, the method comprising: The operation of the bleeding device is stopped.

抽気装置の運転停止のタイミングを適切に判断することにより、抽気装置の過剰な運転継続を防止することができる。   By appropriately determining the timing of stopping the operation of the air extraction device, it is possible to prevent the operation of the air extraction device from continuing excessively.

本発明の一実施形態に係る抽気装置を用いた冷凍機を示した概略構成図である。It is a schematic structure figure showing the refrigerator using the bleeding device concerning one embodiment of the present invention. 図1の抽気装置周りを示した概略構成図である。It is the schematic block diagram which showed the periphery of the air extraction apparatus of FIG. 抽気装置の動作を示したフローチャートである。5 is a flowchart illustrating the operation of the air extraction device. 抽気装置の動作を示したフローチャートである。5 is a flowchart illustrating the operation of the air extraction device. 抽気装置の動作を示したフローチャートである。5 is a flowchart illustrating the operation of the air extraction device.

以下に、本発明の一実施形態について、図面を参照して説明する。
図1には、本発明の抽気装置を用いた冷凍機の概略構成が示されている。同図に示すように、冷凍機1は、ターボ冷凍機とされており、冷媒を圧縮するターボ式の圧縮機11と、圧縮機11によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器12と、凝縮器12からの液冷媒を膨張させる膨張弁13と、膨張弁13によって膨張させられた液冷媒を蒸発させる蒸発器14と、冷凍機1の冷媒系統内に侵入した空気(不凝縮ガス)を大気へ放出する抽気装置15と、冷凍機1が備える各部の制御を行う制御装置(制御部)16とを主な構成として備えている。
冷媒としては、例えばHFO−1233zd(E)といった低圧冷媒が用いられており、運転中には蒸発器等の低圧部が大気圧以下となる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a refrigerator using the extraction device of the present invention. As shown in FIG. 1, the refrigerator 1 is a turbo refrigerator, and includes a turbo compressor 11 for compressing a refrigerant and a condenser 12 for condensing a high-temperature and high-pressure gas refrigerant compressed by the compressor 11. An expansion valve 13 for expanding the liquid refrigerant from the condenser 12, an evaporator 14 for evaporating the liquid refrigerant expanded by the expansion valve 13, and air (non-condensable gas) that has entered the refrigerant system of the refrigerator 1. ) To the atmosphere, and a control device (control unit) 16 that controls each unit included in the refrigerator 1 as main components.
As the refrigerant, for example, a low-pressure refrigerant such as HFO-1233zd (E) is used, and a low-pressure portion such as an evaporator becomes lower than the atmospheric pressure during operation.

圧縮機11は、インバータモータ20により駆動される多段遠心圧縮機である。インバータモータ20は、制御装置16によってその出力が制御されている。   The compressor 11 is a multi-stage centrifugal compressor driven by the inverter motor 20. The output of the inverter motor 20 is controlled by the control device 16.

凝縮器12は、例えばシェルアンドチューブ型とされた熱交換器とされている。凝縮器12には、冷媒を冷却するための冷却水が内部を流通する冷却水用伝熱管12aが挿通されている。冷却水用伝熱管12aには、冷却水往き配管22aと冷却水戻り配管22bとが接続されている。冷却水往き配管22aを介して凝縮器12に導かれた冷却水は、冷却水戻り配管22bを介して図示しない冷却塔に導かれ外部へと排熱した後に、冷却水往き配管22aを介して再び凝縮器12へと導かれるようになっている。
冷却水往き配管22aには、冷却水を送水する冷却水ポンプ(図示せず)と、冷却水入口温度Tcinを計測する冷却水入口温度センサ23aとが設けられている。冷却水戻り配管22bには、冷却水出口温度Tcoutを計測する冷却水出口温度センサ23bと、冷却水流量F2を計測する冷却水流量センサ24とが設けられている。
凝縮器12には、凝縮器12内の凝縮圧力Pcを計測する凝縮器圧力センサ25が設けられている。
これらセンサ23a,23b,24,25の計測値は、制御装置16へと送信されるようになっている。
The condenser 12 is, for example, a shell-and-tube heat exchanger. The condenser 12 has a cooling water heat transfer tube 12a through which cooling water for cooling the refrigerant flows. A cooling water going pipe 22a and a cooling water returning pipe 22b are connected to the cooling water heat transfer pipe 12a. The cooling water guided to the condenser 12 via the cooling water outgoing pipe 22a is guided to a cooling tower (not shown) via a cooling water returning pipe 22b and exhausted to the outside. It is led to the condenser 12 again.
The cooling water delivery pipe 22a is provided with a cooling water pump (not shown) for supplying cooling water, and a cooling water inlet temperature sensor 23a for measuring a cooling water inlet temperature Tcin. The cooling water return pipe 22b is provided with a cooling water outlet temperature sensor 23b for measuring a cooling water outlet temperature Tcout and a cooling water flow sensor 24 for measuring a cooling water flow rate F2.
The condenser 12 is provided with a condenser pressure sensor 25 for measuring the condensation pressure Pc in the condenser 12.
The measured values of these sensors 23a, 23b, 24, 25 are transmitted to the control device 16.

膨張弁13は、電動式とされており、制御装置16によって開度が設定されるようになっている。   The expansion valve 13 is of an electric type, and the opening thereof is set by the control device 16.

蒸発器14は、例えばシェルアンドチューブ型とされた熱交換器とされている。蒸発器14には、冷媒と熱交換する冷水が内部を流通する冷水用伝熱管14aが挿通されている。冷水用伝熱管14aには、冷水往き配管32aと冷水戻り配管32bとが接続されている。冷水往き配管32aを介して蒸発器14に導かれた冷水は、定格温度(例えば7℃)まで冷却され、冷水戻り配管32bを介して図示しない外部負荷に導かれて冷熱を供給した後に、冷水往き配管32aを介して再び蒸発器14へと導かれるようになっている。
冷水往き配管32aには、冷水を送水する冷水ポンプ(図示せず)と、冷水入口温度Tinを計測する冷水入口温度センサ33aとが設けられている。冷水戻り配管32bには、冷水出口温度Toutを計測する冷水出口温度センサ33bと、冷水流量F1を計測する冷水流量センサ34とが設けられている。
蒸発器14には、蒸発器14内の蒸発圧力Peを計測する蒸発器圧力センサ35が設けられている。
これらセンサ33a,33b,34,35の計測値は、制御装置16へと送信されるようになっている。
The evaporator 14 is, for example, a shell-and-tube heat exchanger. The evaporator 14 has a cold water heat transfer tube 14a through which cold water that exchanges heat with the refrigerant flows. The cold water heat transfer pipe 14a is connected to a cold water outgoing pipe 32a and a cold water return pipe 32b. The chilled water guided to the evaporator 14 through the chilled water outgoing pipe 32a is cooled to a rated temperature (for example, 7 ° C.), supplied to an external load (not shown) through the chilled water return pipe 32b, and supplied with chilled water. The evaporator 14 is again guided to the evaporator 14 via the outgoing pipe 32a.
The cold water outgoing pipe 32a is provided with a cold water pump (not shown) for supplying cold water and a cold water inlet temperature sensor 33a for measuring a cold water inlet temperature Tin. The chilled water return pipe 32b is provided with a chilled water outlet temperature sensor 33b for measuring a chilled water outlet temperature Tout and a chilled water flow sensor 34 for measuring a chilled water flow rate F1.
The evaporator 14 is provided with an evaporator pressure sensor 35 for measuring the evaporating pressure Pe in the evaporator 14.
The measurement values of these sensors 33a, 33b, 34, 35 are transmitted to the control device 16.

凝縮器12と蒸発器14との間には、抽気装置15が設けられている。抽気装置15には、凝縮器12から冷媒と不凝縮ガス(空気)を含む混合ガスを導く抽気配管17が接続されている。抽気配管17には、混合ガスの流通および遮断を制御するための抽気電磁弁(抽気弁)18が設けられている。この抽気電磁弁18の開閉は、制御装置16によって制御される。
抽気装置15には、抽気装置15内で凝縮させた液冷媒を蒸発器14へ排出する排液配管19が接続されている。排液配管19には、液冷媒の流通および遮断を制御するための排液電磁弁(排液弁)21が設けられている。この排液電磁弁21の開閉は、制御装置16によって制御される。
A bleed device 15 is provided between the condenser 12 and the evaporator 14. The bleed device 15 is connected to a bleed pipe 17 that guides a mixed gas containing a refrigerant and a non-condensable gas (air) from the condenser 12. The bleeding pipe 17 is provided with a bleeding solenoid valve (bleeding valve) 18 for controlling the flow and cutoff of the mixed gas. The opening and closing of the bleed solenoid valve 18 is controlled by the control device 16.
A drain pipe 19 for discharging the liquid refrigerant condensed in the extraction device 15 to the evaporator 14 is connected to the extraction device 15. The drainage pipe 19 is provided with a drainage electromagnetic valve (drainage valve) 21 for controlling the flow and shutoff of the liquid refrigerant. The opening and closing of the drain electromagnetic valve 21 is controlled by the control device 16.

図2には、抽気装置15周りの構成が示されている。抽気装置15は、抽気配管17から導かれた冷媒と不凝縮ガスを含む混合ガスを貯留する抽気タンク40を備えている。抽気タンク40には、抽気タンク40内を冷却する冷却器42と、抽気タンク40内を加熱するヒータ44とが設けられている。   FIG. 2 shows a configuration around the extraction device 15. The bleeding device 15 includes a bleeding tank 40 that stores a mixed gas containing a refrigerant and an uncondensable gas introduced from the bleeding pipe 17. The bleeding tank 40 is provided with a cooler 42 for cooling the inside of the bleeding tank 40 and a heater 44 for heating the inside of the bleeding tank 40.

冷却器42は、ペルチェ素子を備えており、ペルチェ素子によって冷却された冷却伝熱面42aが抽気タンク40内に露出するように設けられている。冷却伝熱面42aは、抽気タンク40の上下方向に沿って設けられている。冷却器42のペルチェ素子には、図示しない給電部が接続されている。制御装置16によって給電部に流す電流を制御することで、冷却器42の起動及び停止が切り替えられるようになっている。また、冷却器42のペルチェ素子には、冷却伝熱面42aにて吸熱した熱を外部へ放出する放熱部(図示せず)が設けられている。放熱部には、冷却水を通水させる水冷装置が設けられており、一定温度にて放熱されるようになっている。なお、放熱部は、水冷装置を備えない空冷式としても良い。   The cooler 42 has a Peltier element, and is provided so that the cooling heat transfer surface 42 a cooled by the Peltier element is exposed in the bleeding tank 40. The cooling heat transfer surface 42 a is provided along the vertical direction of the bleeding tank 40. A power supply unit (not shown) is connected to the Peltier element of the cooler 42. By controlling the current flowing to the power supply unit by the control device 16, the start and stop of the cooler 42 can be switched. The Peltier element of the cooler 42 is provided with a heat radiating portion (not shown) for releasing the heat absorbed by the cooling heat transfer surface 42a to the outside. The heat radiating unit is provided with a water cooling device that allows cooling water to flow, and radiates heat at a constant temperature. Note that the heat radiating section may be an air-cooled type without a water cooling device.

ヒータ44は、例えば電気式ヒータとされており、抽気タンク40の底部に取り付けられている。制御装置16によってヒータ44の起動及び停止が制御されるようになっている。   The heater 44 is, for example, an electric heater, and is attached to the bottom of the bleeding tank 40. The start and stop of the heater 44 are controlled by the control device 16.

抽気タンク40には、抽気タンク40内の圧力Ptを検出する抽気タンク用圧力センサ46と、抽気タンク40内の温度Ttを検出する抽気タンク用温度センサ48とが設けられている。これらセンサ46,48の計測値は、制御装置16へと送信されるようになっている。
抽気タンク40の上部には、抽気タンク40内のガス(主として不凝縮ガス)を排出する排気配管50が接続されている。排気配管50には、ガスの流通および遮断を制御するための排気電磁弁(排気弁)52が設けられている。この排気電磁弁52の開閉は、制御装置16によって制御される。
The bleeding tank 40 is provided with a bleeding tank pressure sensor 46 for detecting the pressure Pt in the bleeding tank 40 and a bleeding tank temperature sensor 48 for detecting the temperature Tt in the bleeding tank 40. The measurement values of these sensors 46 and 48 are transmitted to the control device 16.
An exhaust pipe 50 for discharging gas (mainly non-condensable gas) in the bleed tank 40 is connected to an upper portion of the bleed tank 40. The exhaust pipe 50 is provided with an exhaust solenoid valve (exhaust valve) 52 for controlling gas flow and shutoff. The opening and closing of the exhaust electromagnetic valve 52 is controlled by the control device 16.

制御装置16は、各センサから受信した測定値や上位システムから送られてくる負荷率などに基づいて圧縮機11の回転数などを制御する機能や、抽気装置15の制御機能などを有している。   The control device 16 has a function of controlling the number of revolutions of the compressor 11 and the like based on a measurement value received from each sensor and a load factor sent from a higher system, a control function of the bleed device 15, and the like. I have.

制御装置16は、例えば、図示しないCPU(中央演算装置)、RAM(Random Access Memory)等のメモリ、及びコンピュータ読み取り可能な記録媒体等かを備えている。後述の各種機能を実現するための一連の処理の過程は、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。   The control device 16 includes, for example, a CPU (Central Processing Unit) (not shown), a memory such as a RAM (Random Access Memory), and a computer-readable recording medium. A series of processes for realizing various functions described below are recorded in a recording medium or the like in the form of a program, and the CPU reads the program into a RAM or the like to execute information processing and arithmetic processing. Thereby, various functions described below are realized.

上述した冷凍機1は、低圧冷媒を用いているので、運転中に負圧部から不凝縮ガスである空気が冷凍機1内に侵入する。負圧部としては、主として蒸発器等の冷凍サイクル時に相対的に低圧となる領域が挙げられるが、冬期には凝縮器12も負圧となり得る。冷凍機1内に侵入した空気は、主に、凝縮器12内に蓄積されることになる。抽気装置15は、凝縮器12内に蓄積された空気を所定の間隔で運転させて冷凍機1内の空気を外部へと排出する。   Since the refrigerator 1 described above uses a low-pressure refrigerant, air, which is an uncondensable gas, enters the refrigerator 1 from the negative pressure portion during operation. As the negative pressure portion, a region where the pressure becomes relatively low mainly during a refrigeration cycle of an evaporator or the like can be given, but in winter, the condenser 12 can also have a negative pressure. The air that has entered the refrigerator 1 is mainly accumulated in the condenser 12. The air extraction device 15 operates the air accumulated in the condenser 12 at predetermined intervals to discharge the air in the refrigerator 1 to the outside.

次に、図3〜図5を用いて、抽気装置15の動作について説明する。
表1には、以下に説明する各ステップにおけるペルチェ素子、各電磁弁等の動作状態がまとめられている。下表において、○印はONまたは開を示し、●印はOFFまたは閉を示す。

Figure 0006644620
Next, the operation of the bleeding device 15 will be described with reference to FIGS.
Table 1 summarizes the operation states of the Peltier element, each solenoid valve, and the like in each step described below. In the table below, a mark indicates ON or open, and a mark indicates OFF or closed.
Figure 0006644620

冷凍機1の運転中で、不凝縮ガスである空気の冷凍機1内への侵入量が所定値未満の場合には、抽気装置15は停止状態とされる(ステップS1)。このとき、冷却器42のペルチェ素子はOFFとされ、抽気電磁弁18及び排気電磁弁52は閉とされ、排液電磁弁21は開とされ、ヒータ44はOFFとされている。   During the operation of the refrigerator 1, if the amount of air that is the non-condensable gas has entered the refrigerator 1 is less than a predetermined value, the air extraction device 15 is stopped (step S1). At this time, the Peltier element of the cooler 42 is turned off, the bleed solenoid valve 18 and the exhaust solenoid valve 52 are closed, the drain solenoid valve 21 is open, and the heater 44 is off.

ステップS2では、冷凍機1の冷媒系統内に侵入する空気量の計算を以下のように行う。制御装置16は、凝縮器圧力センサ25から凝縮圧力Pcと、蒸発器圧力センサ35から蒸発圧力Peとを取得し、凝縮器12と蒸発器14における大気圧との差圧の計算を下式のように行う。
差圧(凝縮器)=大気圧―凝縮圧力Pc ・・・(1)
差圧(蒸発器)=大気圧−蒸発圧力Pe ・・・(2)
そして、式(1)及び式(2)に基づき、空気侵入量(瞬時値)を下式のように算出する。
空気侵入量(瞬時値)=f(差圧) ・・・(3)
すなわち、空気侵入量(瞬時値)は差圧の関数(例えば差圧の1/2乗の関数)とされ、凝縮器12における空気侵入量と蒸発器14における空気侵入量との和とする。
そして、冷凍機1の冷媒系統に侵入した空気量(積算値)は、空気侵入量(瞬時値)を時間で積分した値として算出される。
空気侵入量(積算値)=Σ空気侵入量(瞬時値) ・・・(4)
In step S2, the calculation of the amount of air entering the refrigerant system of the refrigerator 1 is performed as follows. The control device 16 acquires the condensing pressure Pc from the condenser pressure sensor 25 and the evaporating pressure Pe from the evaporator pressure sensor 35, and calculates the differential pressure between the atmospheric pressure in the condenser 12 and the evaporator 14 according to the following equation. Do so.
Differential pressure (condenser) = Atmospheric pressure-Condensing pressure Pc (1)
Differential pressure (evaporator) = atmospheric pressure−evaporation pressure Pe (2)
Then, based on Expressions (1) and (2), the air intrusion amount (instantaneous value) is calculated as in the following expression.
Air penetration (instantaneous value) = f (differential pressure) (3)
That is, the amount of air intrusion (instantaneous value) is a function of the differential pressure (for example, a function of the square of the differential pressure), and is the sum of the amount of air intrusion in the condenser 12 and the amount of air intrusion in the evaporator 14.
The amount of air (integrated value) that has entered the refrigerant system of the refrigerator 1 is calculated as a value obtained by integrating the amount of air that has entered (instantaneous value) with time.
Air penetration (integrated value) = Σ air penetration (instantaneous value) (4)

上記のように算出した空気侵入量(積算値)が、予め決められた設定値を超えると(ステップS3)、抽気装置15の起動準備が行われる(ステップS4)。具体的には、冷却器42のペルチェ素子をONとし、排液電磁弁21を閉とする。これにより、抽気タンク40内は閉空間となり、ペルチェ素子による冷却によって冷却伝熱面42aから吸熱が行われる。冷却伝熱面42aからの吸熱によって、抽気タンク40内の温度が低下するとともに、抽気タンク40内の圧力も低下する。
凝縮器圧力センサ25によって得られた凝縮圧力Pcから抽気タンク用圧力センサ46によって得られた抽気タンク圧力Ptを引いた値が設定値を超えた場合に(ステップS5)、抽気電磁弁18を開とする(ステップS6)。
When the air intrusion amount (integrated value) calculated as described above exceeds a predetermined set value (step S3), preparation for starting the air extraction device 15 is performed (step S4). Specifically, the Peltier element of the cooler 42 is turned on, and the drain electromagnetic valve 21 is closed. Thereby, the inside of the bleeding tank 40 becomes a closed space, and heat is absorbed from the cooling heat transfer surface 42a by cooling by the Peltier element. Due to the heat absorption from the cooling heat transfer surface 42a, the temperature in the bleeding tank 40 decreases and the pressure in the bleeding tank 40 also decreases.
When the value obtained by subtracting the bleed tank pressure Pt obtained by the bleed tank pressure sensor 46 from the condensed pressure Pc obtained by the condenser pressure sensor 25 exceeds the set value (step S5), the bleed solenoid valve 18 is opened. (Step S6).

抽気電磁弁18を開とすることによって、凝縮器12と抽気タンク40との差圧に応じて、凝縮器12から抽気配管17を介して冷媒と空気を含む混合ガスが抽気タンク40内へと流れ込む。抽気タンク40内では、冷却伝熱面42aからの冷却によって、冷媒が凝縮温度以下まで冷却されて液化される。一方、不凝縮ガスである空気は、冷却伝熱面42aからの冷却によっても凝縮されずにガス状態のまま抽気タンク40内に滞留する。
以下に説明するように、2通りの方法で、抽気タンク40内で凝縮されて抽気タンク40の下方に蓄積された液冷媒の液位を検知する。
By opening the bleed solenoid valve 18, a mixed gas containing refrigerant and air flows from the condenser 12 through the bleed pipe 17 into the bleed tank 40 in accordance with the pressure difference between the condenser 12 and the bleed tank 40. Flow in. In the bleeding tank 40, the refrigerant is cooled down to a condensation temperature or lower and liquefied by cooling from the cooling heat transfer surface 42a. On the other hand, the air that is the non-condensable gas stays in the extraction tank 40 in a gas state without being condensed even by cooling from the cooling heat transfer surface 42a.
As will be described below, the liquid level of the liquid refrigerant condensed in the bleeding tank 40 and accumulated below the bleeding tank 40 is detected by two methods.

[圧力変化による液位検知(ステップS7)]
ステップS7に示すように、凝縮器圧力センサ25によって得られた凝縮圧力Pcから抽気タンク用圧力センサ46によって得られた抽気タンク圧力Ptを引いた値が設定値を超えた場合に、抽気タンク40内における液冷媒の液位が上昇したと判断する。この設定値は、予め試験等によって決定されている。
[Liquid level detection by pressure change (step S7)]
As shown in step S7, when the value obtained by subtracting the bleed tank pressure Pt obtained by the bleed tank pressure sensor 46 from the condensing pressure Pc obtained by the condenser pressure sensor 25 exceeds the set value, the bleed tank 40 It is determined that the liquid level of the liquid refrigerant inside has risen. This set value is determined in advance by a test or the like.

冷却伝熱面42aは、抽気タンク40内で高さ方向に向けて設置されている(図2参照)ので、抽気タンク40の下方に蓄積された液冷媒の液位が上昇すると、冷却伝熱面42aが液冷媒で下方から液没することになる。冷却伝熱面42aが液冷媒によって液没すると、ガスを冷却する伝熱面積が減少するため、凝縮能力が低下する。凝縮能力が低下すると、抽気タンク40内の圧力Ptが上昇して、凝縮器12の凝縮圧力Pcとの差圧が小さくなる。このように、抽気タンク40内を冷却すると抽気タンク40内の圧力が低下するが、抽気タンク40内での冷媒の凝縮が進むと、抽気タンク40に液冷媒が蓄積されて冷却伝熱面42aを液冷媒が覆うことにより、抽気タンク40内の圧力Ptが上昇するという減少が生じる。そこで、抽気タンク用圧力センサ46で抽気タンク40内の圧力Ptを計測し、計測値が下降した後に上昇して所定値以上となり凝縮圧力Pcとの差圧が設定値を超えたことを捉えて、抽気タンク40内の液冷媒の液位の上昇を検知する。
上記のように抽気タンク40内の液冷媒の液位の上昇を検知したら、ステップS10へと進み、排液を行う。
Since the cooling heat transfer surface 42a is installed in the bleed tank 40 in the height direction (see FIG. 2), when the liquid level of the liquid refrigerant accumulated below the bleed tank 40 rises, the cooling heat transfer surface 42a is cooled. The surface 42a is submerged in liquid refrigerant from below. When the cooling heat transfer surface 42a is submerged by the liquid refrigerant, the heat transfer area for cooling the gas is reduced, so that the condensing ability is reduced. When the condensing capacity decreases, the pressure Pt in the bleeding tank 40 increases, and the pressure difference between the condensing pressure Pc of the condenser 12 and the condensing pressure Pc decreases. As described above, when the inside of the bleeding tank 40 is cooled, the pressure in the bleeding tank 40 decreases. However, as the refrigerant condenses in the bleeding tank 40, the liquid refrigerant is accumulated in the bleeding tank 40 and the cooling heat transfer surface 42a Is covered by the liquid refrigerant, the pressure Pt in the bleeding tank 40 increases and the pressure Pt decreases. Therefore, the pressure Pt in the bleeding tank 40 is measured by the bleeding tank pressure sensor 46, and it is determined that the measured value decreases and then increases to a predetermined value or more, and that the differential pressure from the condensing pressure Pc exceeds the set value. Then, the rise of the liquid level of the liquid refrigerant in the bleeding tank 40 is detected.
When the rise in the liquid level of the liquid refrigerant in the bleeding tank 40 is detected as described above, the process proceeds to step S10, and the liquid is discharged.

[計算による液位検知(ステップS8及びS9)]
計算による液冷媒の液位検知では、ステップS8に示すように、冷媒凝縮量の計算を行う。
先ず、冷媒凝縮量(瞬時値)を算出するために、抽気タンク40内の温度を得る。具体的には、抽気タンク用温度センサ48によって抽気タンク温度Ttを得る。抽気タンク用温度センサ48を用いない場合には、抽気タンク用圧力センサ46によって得られる抽気タンク圧力Ptから抽気タンク温度を計算してもよい。具体的には、抽気タンク圧力Ptから得られる飽和温度を抽気タンク温度とする。
[Liquid level detection by calculation (Steps S8 and S9)]
In the detection of the liquid level of the liquid refrigerant by calculation, as shown in step S8, the refrigerant condensation amount is calculated.
First, in order to calculate the refrigerant condensation amount (instantaneous value), the temperature in the bleed tank 40 is obtained. Specifically, the bleeding tank temperature Tt is obtained by the bleeding tank temperature sensor 48. When the temperature sensor 48 for the extraction tank is not used, the temperature of the extraction tank may be calculated from the extraction tank pressure Pt obtained by the pressure sensor 46 for the extraction tank. Specifically, the saturation temperature obtained from the bleed tank pressure Pt is defined as the bleed tank temperature.

そして、冷却器42の冷却能力と、冷媒の凝縮潜熱から冷媒凝縮量(瞬時値)を得る。
冷却器42で用いるペルチェ素子の冷却能力は、吸熱側温度と放熱温度との差、ペルチェ素子に流れる電流で決まる。放熱温度(冷却水温度または外気温度)、ペルチェ素子に流れる電流を一定とすると、吸熱側温度(≒抽気タンク内温度Tt)の関数として冷却能力Qp_W[W]が下式のように算出される。
Qp_W=f(Tt) ・・・(5)
冷媒の凝縮潜熱Q_LH[kJ/kg]は、飽和温度(飽和圧力)におけるガスエンタルピと液エンタルピとの差であるため、下式のように冷媒ごとに抽気タンク内温度Ttの関数として定義される。
Q_LH=f(Tt) ・・・(6)
上記の通り得られた冷却能力Qp_Wと凝縮潜熱Q_LHとによって、冷媒凝縮量(瞬時値)G_in_ref[kg/h]が以下の通り算出される。
G_in_ref=Qp_W/Q_LH×3600/103 ・・・(7)
上式(7)にて得られた冷媒凝縮量(瞬時値)を時間で積分することによって、冷媒凝縮量(積算値)が得られる。
冷媒凝縮量(積算値)=Σ冷媒凝縮量(瞬時値) ・・・(8)
Then, the refrigerant condensation amount (instantaneous value) is obtained from the cooling capacity of the cooler 42 and the latent heat of condensation of the refrigerant.
The cooling capacity of the Peltier element used in the cooler 42 is determined by the difference between the heat absorption side temperature and the heat radiation temperature and the current flowing through the Peltier element. Assuming that the heat radiation temperature (cooling water temperature or outside air temperature) and the current flowing through the Peltier element are constant, the cooling capacity Qp_W [W] is calculated as a function of the heat absorption side temperature (≒ extraction tank internal temperature Tt) as follows. .
Qp_W = f (Tt) (5)
Since the condensation latent heat Q_LH [kJ / kg] of the refrigerant is the difference between the gas enthalpy and the liquid enthalpy at the saturation temperature (saturation pressure), it is defined as a function of the temperature Tt in the bleed tank for each refrigerant as in the following equation. .
Q_LH = f (Tt) (6)
Based on the cooling capacity Qp_W and the latent heat of condensation Q_LH obtained as described above, the refrigerant condensation amount (instantaneous value) G_in_ref [kg / h] is calculated as follows.
G_in_ref = Qp_W / Q_LH × 3600/10 3 (7)
By integrating the refrigerant condensed amount (instantaneous value) obtained by the above equation (7) with time, the refrigerant condensed amount (integrated value) is obtained.
Refrigerant condensed amount (integrated value) = ΣRefrigerant condensed amount (instantaneous value) (8)

そして、冷媒凝縮量(積算値)が設定値を超えると(ステップS9)、抽気タンク40内の液冷媒の液位が上昇したと判断し、ステップS10へと進み、排液を行う。   When the refrigerant condensed amount (integrated value) exceeds the set value (step S9), it is determined that the liquid level of the liquid refrigerant in the bleeding tank 40 has increased, and the process proceeds to step S10 to perform drainage.

ステップS10では、排液電磁弁21を開として、抽気タンク40内の液冷媒の排出を行う。抽気タンク40内の液冷媒は、排液配管19を通り、蒸発器14へと導かれる。   In step S10, the liquid discharge electromagnetic valve 21 is opened, and the liquid refrigerant in the bleed tank 40 is discharged. The liquid refrigerant in the bleed tank 40 is guided to the evaporator 14 through the drain pipe 19.

ステップS10にて排液電磁弁21を開としてから一定時間経過した後に、排液電磁弁21を閉じ、排液を終了する(ステップS11)。この一定時間は、冷凍機1設置前の試験等によって予め設定しておく。   After a certain period of time has passed since the electromagnetic valve 21 was opened in step S10, the electromagnetic valve 21 was closed, and the drainage was terminated (step S11). This fixed time is set in advance by a test before installing the refrigerator 1 or the like.

次に、抽気タンク40内に蓄積された不凝縮ガスである空気を、排気配管50を介して外部(大気)へ排出するか否かの判断を、以下の2通りの方法で検出することによって行う。
[圧力変化による検出(ステップS12)]
ステップS10にて抽気タンク40から液冷媒を排出すると、冷却器42の冷却伝熱面42aの液没が解消されて冷却能力が回復するので、抽気タンク40内の圧力は降下することになる。しかし、抽気タンク40内に不凝縮ガスである空気が所定量以上滞留していると、空気が冷却伝熱面42aを覆い伝熱性能が阻害されることになる。したがって、液冷媒の排液後に抽気タンク40内の圧力が所定値以下まで下がらない場合には、抽気タンク40内に空気が所定量以上滞留していると判断することができる。そこで、ステップS12にて、凝縮器圧力センサ25によって得られた凝縮圧力Pcから抽気タンク用圧力センサ46によって得られた抽気タンク圧力Ptを引いた差分値が設定値を超えたままの場合、すなわち、抽気タンク圧力Ptが所定値以下に下がらない場合に、抽気タンク40内に空気が所定量以上滞留していると判断する。
抽気タンク40内に空気が所定量以上滞留していると判断した場合には、ステップS15に進み、排気の準備を行う。
Next, the determination as to whether or not to discharge the air, which is the non-condensable gas stored in the bleeding tank 40, to the outside (atmosphere) via the exhaust pipe 50 is performed by detecting the following two methods. Do.
[Detection by Pressure Change (Step S12)]
When the liquid refrigerant is discharged from the bleed tank 40 in step S10, the immersion of the cooling heat transfer surface 42a of the cooler 42 is eliminated and the cooling capacity is restored, so that the pressure in the bleed tank 40 decreases. However, if air, which is an uncondensable gas, stays in the bleeding tank 40 for a predetermined amount or more, the air covers the cooling heat transfer surface 42a and the heat transfer performance is impaired. Therefore, if the pressure in the bleed tank 40 does not drop below the predetermined value after the liquid refrigerant is drained, it can be determined that the air remains in the bleed tank 40 for a predetermined amount or more. Therefore, in step S12, when the difference value obtained by subtracting the bleeding tank pressure Pt obtained by the bleeding tank pressure sensor 46 from the condensing pressure Pc obtained by the condenser pressure sensor 25 remains above the set value, that is, If the extraction tank pressure Pt does not drop below the predetermined value, it is determined that air is remaining in the extraction tank 40 for a predetermined amount or more.
If it is determined that the air remains in the bleeding tank 40 for a predetermined amount or more, the process proceeds to step S15 to prepare for exhaust.

[計算による検出(ステップS13及びS14)]
ステップS13では、計算によって抽気タンク40内の空気の滞留量である抽気タンク内空気量(積算値)を得る。具体的には、上述したステップS2にて算出した空気侵入量(積算値)に基づいて算出する。そして、抽気タンク内空気量(積算値)が設定値を超えた場合(ステップS14)には、抽気タンク40内に空気が所定量以上滞留していると判断し、ステップS15に進み、排気の準備を行う。
[Detection by Calculation (Steps S13 and S14)]
In step S13, the air amount (integrated value) in the bleeding tank, which is the amount of air retained in the bleeding tank 40, is obtained by calculation. Specifically, it is calculated based on the air intrusion amount (integrated value) calculated in step S2 described above. When the amount of air in the bleed tank (integrated value) exceeds the set value (step S14), it is determined that air has stayed in the bleed tank 40 for a predetermined amount or more, and the process proceeds to step S15, where the exhaust gas is discharged. Get ready.

ステップS15では、抽気タンク40内のガスの排気準備を行う。具体的には、冷却器42のペルチェ素子をOFFとし、抽気電磁弁18を閉とし、ヒータ44をONとする。これにより、抽気タンク40内が密閉された上で内部の温度が上昇するので、抽気タンク40内の圧力が上昇する。そして、抽気タンク用圧力センサ46から得られた抽気タンク圧力Ptが上昇し、大気圧に対して所定値αだけ高い設定値(大気圧+α)を超えた場合(ステップS16)に、ステップS17に進み、排気開始を行う。   In step S15, preparation for exhausting the gas in the bleeding tank 40 is performed. Specifically, the Peltier element of the cooler 42 is turned off, the bleed solenoid valve 18 is closed, and the heater 44 is turned on. Thereby, the inside of the bleeding tank 40 is sealed and the temperature inside rises, so that the pressure in the bleeding tank 40 rises. If the bleed tank pressure Pt obtained from the bleed tank pressure sensor 46 increases and exceeds a set value (atmospheric pressure + α) higher than the atmospheric pressure by a predetermined value α (step S16), the process proceeds to step S17. Proceed and start exhausting.

ステップS17では、排気電磁弁52を開とし、ヒータ44をOFFとする。これにより、排気配管50を介して抽気タンク40内の空気を主成分とするガスが外部(大気)へと放出される。このときにヒータ44をOFFとしているのは、抽気タンク40内に残存している冷媒を必要以上に外部へと放出しないためである。   In step S17, the exhaust electromagnetic valve 52 is opened, and the heater 44 is turned off. As a result, the gas mainly containing air in the bleeding tank 40 is discharged to the outside (atmosphere) through the exhaust pipe 50. The reason why the heater 44 is turned off at this time is that the refrigerant remaining in the bleeding tank 40 is not released to the outside more than necessary.

そして、抽気タンク40内の圧力が大気圧に対して所定値βだけ高い設定値(大気圧+β)を下回った場合(ステップS18)に、ステップS19へと進む。この設定値を大気圧よりも所定値βだけ高い圧力としたのは、大気圧を下回るまで排気電磁弁52を開としておくと、大気が逆流して抽気タンク40内に導かれてしまうのを防止するためである。
ステップS19では、排気電磁弁52を閉として、排気を終了させる。
When the pressure in the bleeding tank 40 falls below a set value (atmospheric pressure + β) higher than the atmospheric pressure by a predetermined value β (step S18), the process proceeds to step S19. The reason for setting this set value to a pressure higher than the atmospheric pressure by the predetermined value β is that if the exhaust solenoid valve 52 is opened until the pressure falls below the atmospheric pressure, the air flows backward and is guided into the extraction tank 40. This is to prevent it.
In step S19, the exhaust electromagnetic valve 52 is closed to end the exhaust.

次に、ステップS20以降へ進み、抽気装置15の停止の判断を行う。
ステップS20では、排気配管50を介して外部(大気)へと排出した空気の総量である排出空気量(積算値)を算出する。具体的には以下の通りである。
先ず、抽気タンク40内の空気密度ρ_t_air[kg/m]を得るために、抽気タンク40内の冷媒飽和圧力Pt_ref[MPa(abs)]を算出する。抽気タンク40内の冷媒飽和圧力Pt_refは、抽気タンク40内の温度Tt相当の飽和圧力とする。飽和圧力と飽和温度との関係式は、冷媒ごとに飽和温度の関数として下式の通り定義できる。
Pt_ref=f(Tt) ・・・(9)
そうすると、抽気タンク40内の空気分圧Pt_air[MPa(abs)]は、抽気タンク圧力Pt(全圧)を用いて、下式のように算出できる。
Pt_air=Pt−Pt_ref ・・・(10)
したがって、抽気タンク40内の空気質量w_t_air[kg]は、理想気体の状態方程式から、下式の通りとなる。
w_t_air=Pt_air×Vt×M_air/(R×Tt) ・・・(11)
ここで、Vtは抽気タンク40の容積[m]、M_airは空気の分子量[kg/mol]、Rはガス定数、Ttは抽気タンク40内の温度[K]である。
よって、抽気タンク40内の空気密度ρ_t_airは、下式の通りとなる。
ρ_t_air=w_t_air/Vt ・・・(12)
Next, the process proceeds to step S20 and thereafter, and it is determined that the air extraction device 15 is stopped.
In step S20, the exhaust air amount (integrated value), which is the total amount of air exhausted to the outside (atmosphere) via the exhaust pipe 50, is calculated. Specifically, it is as follows.
First, in order to obtain the air density ρ_t_air [kg / m 3 ] in the bleed tank 40, the refrigerant saturation pressure Pt_ref [MPa (abs)] in the bleed tank 40 is calculated. The refrigerant saturation pressure Pt_ref in the bleed tank 40 is a saturated pressure corresponding to the temperature Tt in the bleed tank 40. The relational expression between the saturation pressure and the saturation temperature can be defined as the following expression as a function of the saturation temperature for each refrigerant.
Pt_ref = f (Tt) (9)
Then, the air partial pressure Pt_air [MPa (abs)] in the bleed tank 40 can be calculated using the bleed tank pressure Pt (total pressure) as in the following equation.
Pt_air = Pt-Pt_ref (10)
Therefore, the air mass w_t_air [kg] in the bleeding tank 40 is expressed by the following equation from the ideal gas state equation.
w_t_air = Pt_air × Vt × M_air / (R × Tt) (11)
Here, Vt is the volume [m 3 ] of the extraction tank 40, M_air is the molecular weight of air [kg / mol], R is the gas constant, and Tt is the temperature [K] in the extraction tank 40.
Therefore, the air density ρ_t_air in the bleeding tank 40 is as follows.
ρ_t_air = w_t_air / Vt (12)

以上のように抽気タンク40内の空気密度ρ_t_airが得られたら、排出空気量w_ex_air[kg]を算出する。
排出ガス体積V_ex[m]は、抽気タンク40内の圧力Ptと大気圧Paとの差圧と、ステップS17において排気電磁弁52を開としていた時間Time_ex[sec]から推定する。
V_ex=f(Pt−Pa,Time_ex) ・・・(13)
なお、排出ガス体積V_exは、上式(13)に代えて、抽気タンク40の容積Vtと、排気前後の圧力差から求めても良い。
上式で得られた排出ガス体積V_exと抽気タンク40内の空気密度ρ_t_airを用いて、排出空気量w_ex_airを下式のように算出する。
w_ex_air=V_ex×ρ_t_air ・・・(14)
As described above, when the air density ρ_t_air in the bleeding tank 40 is obtained, the exhaust air amount w_ex_air [kg] is calculated.
The exhaust gas volume V_ex [m 3 ] is estimated from the differential pressure between the pressure Pt in the bleeding tank 40 and the atmospheric pressure Pa, and the time Time_ex [sec] during which the exhaust electromagnetic valve 52 was opened in step S17.
V_ex = f (Pt-Pa, Time_ex) (13)
Note that the exhaust gas volume V_ex may be obtained from the volume Vt of the bleed tank 40 and the pressure difference between before and after the exhaust, instead of the above equation (13).
Using the exhaust gas volume V_ex obtained by the above equation and the air density ρ_t_air in the bleeding tank 40, the exhaust air amount w_ex_air is calculated as in the following equation.
w_ex_air = V_ex × ρ_t_air (14)

上式(14)で得られた排出空気量w_ex_airは、1回の排気あたりの値であるから、複数回の排気を行った場合には、排出空気量w_ex_airに対して排気回数nを乗じて得られた値が排出空気量(積算値)となる。
排出空気量(積算値)=w_ex_air×n ・・・(15)
このように排出空気量(積算値)が得られると、ステップS21へ進む。
Since the exhaust air amount w_ex_air obtained by the above equation (14) is a value per one exhaust, when a plurality of exhausts are performed, the exhaust air amount w_ex_air is multiplied by the number of exhausts n. The obtained value is the discharged air amount (integrated value).
Discharged air amount (integrated value) = w_ex_air × n (15)
When the discharged air amount (integrated value) is obtained as described above, the process proceeds to step S21.

ステップS21では、排出空気量(積算値)がステップS2で得られた侵入空気量(積算値)を超えたか否かを判断する。
排出空気量(積算値)が侵入空気量(積算値)を超えた場合は、十分に排気が行われたとして、ステップS23へと進み、抽気装置15の停止を行う。
In step S21, it is determined whether or not the discharged air amount (integrated value) has exceeded the intruded air amount (integrated value) obtained in step S2.
If the discharged air amount (integrated value) exceeds the intruded air amount (integrated value), it is determined that the air has been sufficiently exhausted, the process proceeds to step S23, and the extraction device 15 is stopped.

一方で、排出空気量(積算値)が侵入空気量(積算値)を超えていない場合は、ステップS4へ戻り、上述した抽気、排液及び排気を繰り返す。
また、排出空気量(積算値)が侵入空気量(積算値)を超えなかった場合であっても、ステップS22に示すように、予め設定された一定時間内の抽気タンク40内の空気分圧Pt_air(式(10)参照)の上昇が設定値以下の場合には、ステップS23へと進み、抽気装置15の停止を行う。このステップS22は、何らかの理由で、排出空気量(積算値)や侵入空気量(積算値)の計算が不正確であった場合であっても、抽気タンク40内の空気分圧の上昇が設定値以下であれば、抽気タンク40内の空気は略排気されていると判断できるからである。
On the other hand, if the discharged air amount (integrated value) does not exceed the intruded air amount (integrated value), the process returns to step S4, and the above-described bleeding, draining, and discharging are repeated.
Further, even when the discharged air amount (integrated value) does not exceed the intruded air amount (integrated value), as shown in step S22, the air partial pressure in the bleeding tank 40 within a predetermined time period is set. If the rise of Pt_air (see equation (10)) is equal to or less than the set value, the process proceeds to step S23, and the extraction device 15 is stopped. In this step S22, even if the calculation of the discharged air amount (integrated value) or the intruded air amount (integrated value) is inaccurate for some reason, the increase of the air partial pressure in the extraction tank 40 is set. If the value is equal to or less than the value, it can be determined that the air in the bleeding tank 40 is substantially exhausted.

抽気装置15の停止を行うステップS23では、排液電磁弁21を開とする。これにより、抽気タンク40内を蒸発器14に連通させる。これは、抽気タンク40内が外気温度の影響によって圧力上昇することを防止するためである。   In step S23 for stopping the air extraction device 15, the drainage electromagnetic valve 21 is opened. Thereby, the inside of the bleeding tank 40 is communicated with the evaporator 14. This is to prevent the pressure inside the bleeding tank 40 from rising due to the influence of the outside air temperature.

以上の通り、本実施形態によれば、以下の作用効果を奏する。
ステップS20及びS21にて説明したように、排気配管50から排出した排出空気量(積算値)が、冷凍機1内に侵入した侵入空気量(積算値)を超えた場合に、抽気装置15を停止することとしたので、運転停止のタイミングを適切に判断して抽気装置15の過剰な運転継続を防止することができる。
As described above, according to the present embodiment, the following operation and effect can be obtained.
As described in steps S20 and S21, when the amount of exhaust air (integrated value) discharged from the exhaust pipe 50 exceeds the amount of intruded air (integrated value) that has entered the refrigerator 1, the air extraction device 15 is activated. Since the operation is stopped, it is possible to appropriately determine the timing of the operation stop and prevent the bleeding device 15 from continuing excessively.

抽気タンク40内に冷媒のみが存在する場合には、抽気タンク40内の圧力Ptと温度Ttは飽和の関係となる。しかし、抽気タンク40内に空気が含まれている場合には、含まれる空気密度に応じて空気の分圧分だけ抽気タンク圧力Ptは高くなる。これを利用して、抽気タンク40内の温度Ttおよび圧力Ptから空気密度を得ることとした(式(9)〜式(12)参照)。このように、抽気タンク40の温度Tt及び圧力Ptを得るだけで、演算により空気密度を得ることができ、ひいては排出空気量を得ることができる。   When only the refrigerant exists in the bleed tank 40, the pressure Pt and the temperature Tt in the bleed tank 40 have a saturation relationship. However, when air is contained in the bleeding tank 40, the bleeding tank pressure Pt is increased by the partial pressure of air according to the contained air density. By utilizing this, the air density is obtained from the temperature Tt and the pressure Pt in the bleeding tank 40 (see equations (9) to (12)). As described above, by simply obtaining the temperature Tt and the pressure Pt of the bleeding tank 40, the air density can be obtained by calculation, and the amount of exhaust air can be obtained by calculation.

ステップS22にて説明したように、何らかの理由で、排出空気量(積算値)や侵入空気量(積算値)の計算が不正確であった場合を考慮して、ステップS21にて排出空気量(積算値)が侵入空気量(積算値)を超えなかった場合であっても、抽気タンク40内の空気分圧の上昇が設定値以下であれば、抽気タンク40内の空気は略排気されていると判断し、抽気装置を停止することとした。これにより、抽気装置15の過剰な運転継続を防止することができる。   As described in step S22, in consideration of the case where the calculation of the discharged air amount (integrated value) or the intruded air amount (integrated value) is inaccurate for some reason, the discharged air amount (integrated value) is determined in step S21. Even if the integrated value) does not exceed the intruded air amount (integrated value), if the increase in the air partial pressure in the extraction tank 40 is equal to or less than the set value, the air in the extraction tank 40 is substantially exhausted. Therefore, it was decided to stop the bleeding device. This can prevent the bleed device 15 from continuing excessively.

なお、図1に示した冷凍機1の構成は一例であり、この構成に限定されない。例えば、水冷式の凝縮器12に代えて空気熱交換器を配置し、外気と冷媒との間で熱交換を行うような構成としてもよい。また、冷凍機1は冷却機能のみを有する場合に限定されず、例えば、ヒートポンプ機能のみ、或いは、冷却機能及びヒートポンプ機能の両方を有しているものであってもよい。   Note that the configuration of the refrigerator 1 shown in FIG. 1 is an example, and is not limited to this configuration. For example, an air heat exchanger may be provided in place of the water-cooled condenser 12 so as to exchange heat between the outside air and the refrigerant. Further, the refrigerator 1 is not limited to the case having only the cooling function, and may be, for example, a refrigerator having only the heat pump function, or having both the cooling function and the heat pump function.

また、冷却器42に用いる冷却デバイスとしてペルチェ素子を用いることとしたが、本発明はこれに限定されるものではなく、抽気タンク40内を冷媒の凝縮温度以下に冷却できるものであれば、他の冷却装置であっても良い。   Further, a Peltier element is used as a cooling device used for the cooler 42. However, the present invention is not limited to this, and any other device can be used as long as the inside of the bleeding tank 40 can be cooled below the condensation temperature of the refrigerant. Cooling device.

また、ヒータ44としては、電気式ヒータを用いることとしたが、本発明はこれに限定されるものではなく、抽気タンク40内を加熱できるものであれば、高温冷媒が流れる伝熱管を用いたヒータなど他の形式のヒータであっても良い。   Further, although an electric heater is used as the heater 44, the present invention is not limited to this, and a heat transfer tube through which a high-temperature refrigerant flows is used as long as it can heat the inside of the bleeding tank 40. Other types of heaters such as heaters may be used.

1 冷凍機
11 圧縮機
12 凝縮器
13 膨張弁
14 蒸発器
15 抽気装置
16 制御装置(制御部)
17 抽気配管
18 抽気電磁弁(抽気弁)
19 排液配管
20 インバータモータ
21 排液電磁弁(排液弁)
22a 冷却水往き配管
22b 冷却水戻り配管
23a 冷却水入口温度センサ
23b 冷却水出口温度センサ
24 冷却水流量センサ
25 凝縮器圧力センサ
32a 冷水往き配管
32b 冷水戻り配管
33a 冷水入口温度センサ
33b 冷水出口温度センサ
34 冷水流量センサ
35 蒸発器圧力センサ
40 抽気タンク
42 冷却器
44 ヒータ
46 抽気タンク用圧力センサ
48 抽気タンク用温度センサ
50 排気配管
52 排気電磁弁(排気弁)
DESCRIPTION OF SYMBOLS 1 Refrigerator 11 Compressor 12 Condenser 13 Expansion valve 14 Evaporator 15 Extraction device 16 Control device (control part)
17 Bleed piping 18 Bleed solenoid valve (Bleed valve)
19 Drainage pipe 20 Inverter motor 21 Drainage solenoid valve (Drainage valve)
22a Cooling water going pipe 22b Cooling water returning pipe 23a Cooling water inlet temperature sensor 23b Cooling water outlet temperature sensor 24 Cooling water flow sensor 25 Condenser pressure sensor 32a Cold water going pipe 32b Cold water returning pipe 33a Cold water inlet temperature sensor 33b Cold water outlet temperature sensor 34 Cold water flow sensor 35 Evaporator pressure sensor 40 Extraction tank 42 Cooler 44 Heater 46 Extraction tank pressure sensor 48 Extraction tank temperature sensor 50 Exhaust pipe 52 Exhaust solenoid valve (exhaust valve)

Claims (6)

冷凍機から冷媒と不凝縮ガスを含む混合ガスを抽気する抽気配管と、
前記抽気配管から抽気された前記混合ガスを貯留する抽気タンクと、
前記抽気タンク内を冷却して前記混合ガス中の冷媒を凝縮させる冷却器と、
前記抽気タンク内の液冷媒を前記冷凍機へ排出する排液配管と、
前記抽気タンク内の前記混合ガス中の不凝縮ガスを外部へ排出する排気配管と、
前記排気配管から排出した排出不凝縮ガス量が、前記冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、当該抽気装置の動作を停止する制御部と、
を備えていることを特徴とする抽気装置。
An extraction pipe for extracting a mixed gas containing a refrigerant and a non-condensable gas from the refrigerator;
An extraction tank that stores the mixed gas extracted from the extraction pipe,
A cooler that cools the bleeding tank and condenses the refrigerant in the mixed gas,
A drain pipe for discharging the liquid refrigerant in the bleeding tank to the refrigerator,
An exhaust pipe for discharging non-condensable gas in the mixed gas in the bleeding tank to the outside,
A control unit that stops the operation of the bleeding device when the amount of discharged non-condensable gas discharged from the exhaust pipe exceeds the amount of intruded non-condensable gas that has entered the refrigerator.
A bleeding device comprising:
前記制御部は、前記抽気タンク内の温度および圧力から得られた該抽気タンク内の不凝縮ガス密度と、前記排気配管からの排出ガス量とから、前記排出不凝縮ガス量を得ることを特徴とする請求項1に記載の抽気装置。   The controller is configured to obtain the discharged non-condensable gas amount from a non-condensable gas density in the bleed tank obtained from a temperature and a pressure in the bleed tank and a discharge gas amount from the exhaust pipe. The bleed device according to claim 1, wherein 前記制御部は、前記冷凍機の冷媒系統内の圧力と冷凍機外の圧力との差圧に基づいて、前記侵入不凝縮ガス量を得ることを特徴とする請求項1又は2に記載の抽気装置。   3. The bleed air according to claim 1, wherein the control unit obtains the amount of the infiltrating non-condensable gas based on a differential pressure between a pressure inside a refrigerant system of the refrigerator and a pressure outside the refrigerator. 4. apparatus. 前記制御部は、予め設定された一定時間内における前記抽気タンク内の不凝縮ガスの分圧の上昇が設定値以下の場合に、当該抽気装置の動作を停止することを特徴とする請求項1から3のいずれかに記載の抽気装置。   2. The controller according to claim 1, wherein the controller stops the operation of the bleeding device when a rise in the partial pressure of the non-condensable gas in the bleeding tank within a predetermined time period is equal to or less than a set value. 3. The bleed device according to any one of claims 1 to 3. 請求項1から4のいずれかに記載の抽気装置を備えていることを特徴とする冷凍機。   A refrigerator comprising the bleed device according to any one of claims 1 to 4. 冷凍機から冷媒と不凝縮ガスを含む混合ガスを抽気する抽気配管と、
前記抽気配管から抽気された前記混合ガスを貯留する抽気タンクと、
前記抽気タンク内を冷却して前記混合ガス中の冷媒を凝縮させる冷却器と、
前記抽気タンク内の液冷媒を前記冷凍機へ排出する排液配管と、
前記抽気タンク内の前記混合ガス中の不凝縮ガスを外部へ排出する排気配管と、
を備えた抽気装置の制御方法であって、
前記排気配管から排出した排出不凝縮ガス量が、前記冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、当該抽気装置の動作を停止することを特徴とする抽気装置の制御方法。
An extraction pipe for extracting a mixed gas containing a refrigerant and a non-condensable gas from the refrigerator;
An extraction tank that stores the mixed gas extracted from the extraction pipe,
A cooler that cools the bleeding tank and condenses the refrigerant in the mixed gas,
A drain pipe for discharging the liquid refrigerant in the bleeding tank to the refrigerator,
An exhaust pipe for discharging non-condensable gas in the mixed gas in the bleeding tank to the outside,
A method of controlling a bleeding apparatus comprising:
A method for controlling a bleed device, wherein the operation of the bleed device is stopped when the amount of non-condensable gas discharged from the exhaust pipe exceeds the amount of non-condensable gas that has entered the refrigerator.
JP2016071997A 2016-03-31 2016-03-31 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device Active JP6644620B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016071997A JP6644620B2 (en) 2016-03-31 2016-03-31 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device
PCT/JP2017/012826 WO2017170649A1 (en) 2016-03-31 2017-03-29 Purging device, refrigerator equipped with same, and method for controlling purging device
CN201780013481.1A CN108700355B (en) 2016-03-31 2017-03-29 Air extraction device, refrigerator provided with same, and control method for air extraction device
US16/078,800 US20190056159A1 (en) 2016-03-31 2017-03-29 Purging device, chiller equipped with same, and method for controlling purging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016071997A JP6644620B2 (en) 2016-03-31 2016-03-31 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device

Publications (2)

Publication Number Publication Date
JP2017180994A JP2017180994A (en) 2017-10-05
JP6644620B2 true JP6644620B2 (en) 2020-02-12

Family

ID=59964878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016071997A Active JP6644620B2 (en) 2016-03-31 2016-03-31 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device

Country Status (4)

Country Link
US (1) US20190056159A1 (en)
JP (1) JP6644620B2 (en)
CN (1) CN108700355B (en)
WO (1) WO2017170649A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6644619B2 (en) * 2016-03-31 2020-02-12 三菱重工サーマルシステムズ株式会社 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device
JP6971776B2 (en) * 2017-10-25 2021-11-24 三菱重工サーマルシステムズ株式会社 Bleed air control device and control method
US10760838B2 (en) * 2017-12-20 2020-09-01 Lennox Industries Inc. Method and apparatus for refrigerant detector calibration confirmation
EP3591316A1 (en) 2018-07-06 2020-01-08 Danfoss A/S Apparatus for removing non-condensable gases from a refrigerant
CN110345672B (en) * 2019-07-16 2021-03-12 珠海格力电器股份有限公司 Non-condensable gas purification device, refrigeration system and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303907A (en) * 1996-05-15 1997-11-28 Hitachi Ltd Absorption freezer
JP2000292033A (en) * 1999-04-01 2000-10-20 Ebara Corp Purging unit for refrigerator
JP2002372348A (en) * 2001-06-18 2002-12-26 Mitsubishi Heavy Ind Ltd Absorption refrigerating unit
US20130283832A1 (en) * 2012-04-30 2013-10-31 Trane International Inc. Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
US9194620B2 (en) * 2012-05-11 2015-11-24 Service Solutions U.S. Llc Methods and systems for reducing refrigerant loss during air purge
JP6343156B2 (en) * 2014-02-26 2018-06-13 荏原冷熱システム株式会社 Compression refrigerator
JP6392052B2 (en) * 2014-09-25 2018-09-19 三菱重工サーマルシステムズ株式会社 Control device and control method for extraction device
JP6644619B2 (en) * 2016-03-31 2020-02-12 三菱重工サーマルシステムズ株式会社 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device

Also Published As

Publication number Publication date
US20190056159A1 (en) 2019-02-21
CN108700355B (en) 2020-09-11
JP2017180994A (en) 2017-10-05
CN108700355A (en) 2018-10-23
WO2017170649A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6644620B2 (en) Bleeding device, refrigerator provided with the same, and method of controlling bleeding device
CN108474601B (en) Vapor compression type refrigerator and control method thereof
JP6749392B2 (en) Method of controlling vapor compression system in flooded condition
JP6644619B2 (en) Bleeding device, refrigerator provided with the same, and method of controlling bleeding device
JP2018531360A6 (en) Method for controlling a vapor compression system in flooded conditions
TWI558962B (en) Constant temperature liquid circulation device and its operation method
JP6607558B2 (en) Refrigerator and control method thereof
CN105556220A (en) Refrigeration circuit with heat recovery module
JP2022084918A (en) Activation and deactivation of purge unit of vapor compression system based at least in part on conditions within condenser of vapor compression system
US11674695B2 (en) Hot water supply apparatus
JP3840914B2 (en) Heat pump bath water supply system
JP2010012427A (en) Compressed-air dehumidifier
US20140373559A1 (en) Refrigeration apparatus and method for detecting whether different refrigerant has been charged into the same
JP6286735B2 (en) Compressed air dehumidifier
JP2002022300A (en) Refrigeration apparatus
JP6159411B2 (en) Refrigerant system, control system for refrigerant system, and control method for refrigerant system
JP6763742B2 (en) Bleed air control device, bleed air system, refrigerator, and drainage control method
JP2008116184A (en) Refrigerating cycle device
JP3800342B2 (en) Refrigerant natural circulation cooling system
JP2011141046A (en) Heat pump device and heat pump water heater with the same
CN210602371U (en) Liquid return processing device of compressor and air conditioner
JP2010012426A (en) Compressed-air dehumidifier
WO2016150664A1 (en) A method for controlling compressor capacity in a vapour compression system
KR101372265B1 (en) Heat system of using cycle heat-pump

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170621

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200108

R150 Certificate of patent or registration of utility model

Ref document number: 6644620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150