JP6343156B2 - Compression refrigerator - Google Patents

Compression refrigerator Download PDF

Info

Publication number
JP6343156B2
JP6343156B2 JP2014035085A JP2014035085A JP6343156B2 JP 6343156 B2 JP6343156 B2 JP 6343156B2 JP 2014035085 A JP2014035085 A JP 2014035085A JP 2014035085 A JP2014035085 A JP 2014035085A JP 6343156 B2 JP6343156 B2 JP 6343156B2
Authority
JP
Japan
Prior art keywords
extraction tank
refrigerant
pressure
adsorber
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014035085A
Other languages
Japanese (ja)
Other versions
JP2015161421A (en
Inventor
内村 知行
知行 内村
Original Assignee
荏原冷熱システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原冷熱システム株式会社 filed Critical 荏原冷熱システム株式会社
Priority to JP2014035085A priority Critical patent/JP6343156B2/en
Priority to CN201510076569.0A priority patent/CN104864645B/en
Publication of JP2015161421A publication Critical patent/JP2015161421A/en
Application granted granted Critical
Publication of JP6343156B2 publication Critical patent/JP6343156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/043Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for compression type systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、圧縮式冷凍機に係り、特に低圧冷媒を使用した、抽気装置を有する圧縮式冷凍機に関するものである。   The present invention relates to a compression refrigerator, and more particularly, to a compression refrigerator having an extraction device using a low-pressure refrigerant.

圧縮式の冷凍機は、大きく低圧冷媒の冷凍機と高圧冷媒の冷凍機に分けることができる。このうち、低圧冷媒の冷凍機は、冷媒の圧力が低いため、法的な規制も少なく、設計の自由度が高いため、分割搬入、現地組立などが容易であるという利点がある。また、冷凍機の冷媒の漏洩量は、理論上、機内圧力の(1/2)乗に比例するため、冷媒の漏洩量が少なくなるという利点もある。その反面、低圧冷媒の冷凍機においては、主として蒸発器の圧力が大気圧以下となることが多く、外気が機内に漏入することがあるため、抽気装置を設け、漏入した空気を機外に排出できるようにしておく必要がある。   Compression refrigerators can be broadly divided into low-pressure refrigerant refrigerators and high-pressure refrigerant refrigerators. Among these, low-pressure refrigerant refrigerators have the advantage that the pressure of the refrigerant is low, there are few legal regulations, and the degree of freedom in design is high, so that it is easy to divide and carry in the field. Further, since the refrigerant leakage amount of the refrigerator is theoretically proportional to the (1/2) th power of the in-machine pressure, there is an advantage that the refrigerant leakage amount is reduced. On the other hand, in low-pressure refrigerant refrigerators, the evaporator pressure is often below atmospheric pressure, and outside air may leak into the machine. It is necessary to be able to discharge it.

図3は、抽気装置として冷却式の抽気タンク(Purge Tank)を使用する従来例を示す模式図である。図3に示すように、圧縮式冷凍機は、冷媒を圧縮する圧縮機1と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器2と、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器3と、前記凝縮した冷媒を減圧して膨張させる膨張弁4とを、冷媒配管5によって連結して構成されている。また、冷凍機は抽気装置として冷却式の抽気タンク6を備えている。抽気タンク6内には冷却器7とフロート弁8が設けられており、冷却器7にはオリフィス9を介して凝縮器2から冷媒液が供給され、供給された冷媒液は冷却器7内で気化し、抽気タンク内を冷却した後に蒸発器3に戻される。このときの気化熱で、抽気タンク6内の温度は蒸発器3とほぼ同等に冷却されている。抽気タンク6の気相部は、オリフィス(減圧手段)10を介して凝縮器2内の不凝縮性ガスの回収口11に接続されており、凝縮器2内の不凝縮性ガスを含んだ冷媒ガスが抽気タンク6に導かれ、冷媒ガスは冷却器7により冷却されて冷媒液となるが、不凝縮性ガスは凝縮しないために抽気タンク6内に気体の状態で貯留される。なお、冷媒液はフロート弁8を介して蒸発器3に戻される。   FIG. 3 is a schematic diagram showing a conventional example in which a cooling type extraction tank (Purge Tank) is used as an extraction device. As shown in FIG. 3, the compression refrigerator includes a compressor 1 that compresses a refrigerant, a condenser 2 that cools and compresses the compressed refrigerant gas with a cooling fluid, and removes heat from the fluid to be cooled. The evaporator 3 that evaporates and exhibits the refrigeration effect and the expansion valve 4 that decompresses and expands the condensed refrigerant are connected by a refrigerant pipe 5. The refrigerator includes a cooling type extraction tank 6 as an extraction device. In the extraction tank 6, a cooler 7 and a float valve 8 are provided. The cooler 7 is supplied with refrigerant liquid from the condenser 2 through the orifice 9, and the supplied refrigerant liquid is stored in the cooler 7. After evaporating and cooling the inside of the extraction tank, it is returned to the evaporator 3. Due to the heat of vaporization at this time, the temperature in the extraction tank 6 is cooled substantially equal to that of the evaporator 3. A gas phase portion of the extraction tank 6 is connected to a non-condensable gas recovery port 11 in the condenser 2 via an orifice (decompression unit) 10, and a refrigerant containing the non-condensable gas in the condenser 2. The gas is guided to the extraction tank 6 and the refrigerant gas is cooled by the cooler 7 to become a refrigerant liquid, but the noncondensable gas is not condensed and is stored in the extraction tank 6 in a gaseous state. The refrigerant liquid is returned to the evaporator 3 via the float valve 8.

ここで、抽気タンク6の圧力は、不凝縮性ガスがない場合は蒸発器3の圧力とほぼ等しい。しかし、不凝縮性ガスが徐々に蓄積されるにしたがって、不凝縮性ガスの分圧分上昇する。すなわち、(抽気タンク内の圧力)≒(蒸発器の圧力)+(不凝縮性ガスの圧力)と考えてよい。抽気タンク6の圧力が、凝縮器2の内圧と等しくなると、不凝縮性ガスを含んだ冷媒ガスが抽気タンク6に移動しなくなるため、その前に抽気タンク6内の不凝縮性ガスを排出する必要がある。   Here, the pressure of the extraction tank 6 is substantially equal to the pressure of the evaporator 3 when there is no non-condensable gas. However, as the non-condensable gas is gradually accumulated, the partial pressure of the non-condensable gas increases. That is, (pressure in the extraction tank) ≈ (pressure of the evaporator) + (pressure of the non-condensable gas) may be considered. When the pressure of the extraction tank 6 becomes equal to the internal pressure of the condenser 2, the refrigerant gas containing the non-condensable gas does not move to the extraction tank 6, and thus the non-condensable gas in the extraction tank 6 is discharged before that. There is a need.

ここで、凝縮器2の圧力が大気圧よりも十分に高く、抽気タンク6の圧力が大気圧よりも十分に高い状態で不凝縮性ガスを排出すればよい。この場合、抽気タンク6に抽気弁を設け、凝縮器2と抽気タンク6との圧力差が規定以下となった場合に抽気弁を開くだけで排出できる。特に、夏季にしか運転しない冷凍機であり、冷媒の種類によっては(たとえばHFC−245faなどでは)、このような条件に合致する場合もある。しかし、近年は年間を通して運転する冷凍機も多く、確実に不凝縮性ガスを排出するために、図3に示すように、真空ポンプ12を使用して不凝縮性ガスを真空排気することが多い。なお、真空ポンプ12の排気ラインには、開閉弁13が設けられている。   Here, the noncondensable gas may be discharged in a state where the pressure of the condenser 2 is sufficiently higher than the atmospheric pressure and the pressure of the extraction tank 6 is sufficiently higher than the atmospheric pressure. In this case, a bleed valve can be provided in the bleed tank 6, and when the pressure difference between the condenser 2 and the bleed tank 6 becomes less than a specified value, the bleed can be discharged simply by opening the bleed valve. In particular, it is a refrigerator that operates only in the summer, and depending on the type of refrigerant (for example, HFC-245fa, etc.), this condition may be met. However, in recent years, many refrigerators are operated throughout the year, and in order to reliably discharge noncondensable gas, the noncondensable gas is often evacuated using a vacuum pump 12 as shown in FIG. . An open / close valve 13 is provided in the exhaust line of the vacuum pump 12.

特開2000−292033号公報JP 2000-292033 A

しかしながら、図3に示すような真空ポンプを用いて不凝縮性ガスを排出する従来の方式では、真空ポンプは一般に高価であるため、装置コストが上昇する要因となっている。また、抽気タンクは大気圧以上となることもあるため、抽気ポンプとして使用できる真空ポンプには制限が有り、逆圧を防止するための自動弁や運転制御が必要となることが多い。したがって、凝縮器の圧力が低くても、抽気タンク内の不凝縮性ガスを真空ポンプを使わずに排出できる方法が望まれる。
また、不凝縮性ガスの排出時には冷媒ガスが同時に排出されるため、冷媒を機外に排出しないための吸着器(Absorber)を設ける場合がある。したがって、吸着器を設けた場合でも、問題なく不凝縮性ガスを排出できることが求められる。
However, in the conventional system in which non-condensable gas is discharged using a vacuum pump as shown in FIG. 3, the vacuum pump is generally expensive, which increases the cost of the apparatus. In addition, since the bleed tank may become atmospheric pressure or higher, there are limitations on the vacuum pump that can be used as the bleed pump, and automatic valves and operation control for preventing back pressure are often required. Therefore, there is a demand for a method that can discharge the noncondensable gas in the extraction tank without using a vacuum pump even when the pressure of the condenser is low.
Further, since the refrigerant gas is simultaneously discharged when the non-condensable gas is discharged, an adsorber (Absorber) for preventing the refrigerant from being discharged outside the apparatus may be provided. Therefore, even when an adsorber is provided, it is required that non-condensable gas can be discharged without problems.

本発明は、上述の事情に鑑みなされたもので、真空ポンプを用いずに抽気タンク内の不凝縮性ガスを排出することができ、また吸着器を設けた場合でも抽気タンク内の不凝縮性ガスを支障なく排出できる圧縮式冷凍機を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can discharge the non-condensable gas in the extraction tank without using a vacuum pump. Further, even when an adsorber is provided, the non-condensation in the extraction tank is provided. An object of the present invention is to provide a compression refrigerator that can discharge gas without any problem.

上述した課題を解決するための本発明の一態様は、蒸発器、凝縮器および圧縮機を備え、蒸発器での圧力が大気圧以下となる場合がある冷媒を用いる圧縮式冷凍機において、前記凝縮器に接続され、凝縮器から不凝縮性ガスを含む冷媒ガスを抽気する抽気タンクと、前記抽気タンクの内部に設けられ、前記凝縮器から供給された冷媒液を気化させて前記抽気タンク内を冷却する冷却器と、前記抽気タンク内を加熱して抽気タンクの内圧を上昇させるための加熱手段とを備え、前記加熱手段は、前記凝縮器から前記冷却器に液冷媒を供給する配管に設置された制御弁であることを特徴とする。 One aspect of the present invention for solving the above-described problem is a compression refrigerator that includes an evaporator, a condenser, and a compressor, and uses a refrigerant in which the pressure in the evaporator may be equal to or lower than atmospheric pressure. An extraction tank that is connected to the condenser and extracts the refrigerant gas containing the non-condensable gas from the condenser; and the inside of the extraction tank that is provided inside the extraction tank and vaporizes the refrigerant liquid supplied from the condenser And a heating means for heating the inside of the extraction tank to increase the internal pressure of the extraction tank, and the heating means is provided in a pipe for supplying liquid refrigerant from the condenser to the cooler. It is an installed control valve .

本発明によれば、抽気タンク内に不凝縮性ガスがない場合、抽気タンク内の圧力は蒸発器の圧力とほぼ等しくなる。したがって、抽気タンクと凝縮器との間に圧力差ができ、不凝縮性ガスを含んだ冷媒ガスが抽気タンクに導かれる。抽気タンクに導かれた冷媒ガスのうち、冷媒成分は冷却器により冷却されて冷媒液となるが、不凝縮性ガスは液体にならず、気体の状態で抽気タンク内に滞留する。抽気タンク内の圧力は、不凝縮性ガスが蓄積されるにしたがって上昇し、抽気タンク内の圧力と、凝縮器の圧力との圧力差が規定値以下となった場合、回収から排出へと切り替えられる。不凝縮性ガスを排出しようとする場合、加熱手段により抽気タンクを加熱して、抽気タンク内の冷媒液を加熱し、抽気タンクの内圧を上昇させることで、真空ポンプが無くても不凝縮性ガスを排出できる。   According to the present invention, when there is no non-condensable gas in the extraction tank, the pressure in the extraction tank becomes substantially equal to the pressure of the evaporator. Therefore, a pressure difference is generated between the extraction tank and the condenser, and the refrigerant gas containing the non-condensable gas is guided to the extraction tank. Of the refrigerant gas guided to the extraction tank, the refrigerant component is cooled by the cooler to become a refrigerant liquid, but the non-condensable gas does not become a liquid but stays in the extraction tank in a gaseous state. The pressure in the extraction tank rises as non-condensable gas accumulates, and when the pressure difference between the pressure in the extraction tank and the pressure of the condenser is less than the specified value, switch from recovery to discharge. It is done. When trying to discharge non-condensable gas, the extraction tank is heated by heating means, the refrigerant liquid in the extraction tank is heated, and the internal pressure of the extraction tank is increased, so that the non-condensable gas can be obtained even without a vacuum pump. Gas can be discharged.

発明の好ましい態様は、前記制御弁を閉じることにより、外気により前記抽気タンクを加熱することを特徴とする。
本発明によれば、凝縮器から冷却器に液冷媒を供給する配管に設置された制御弁を閉じることにより、外気により抽気タンクを加熱することができ、抽気タンクの内圧を上昇させることができる。
In a preferred aspect of the present invention, the extraction tank is heated by outside air by closing the control valve.
According to the present invention, by closing a control valve installed in a pipe that supplies liquid refrigerant from a condenser to a cooler, the extraction tank can be heated by outside air, and the internal pressure of the extraction tank can be increased. .

本発明の好ましい態様は、前記制御弁は、液冷媒の圧力を減圧する減圧手段を兼ねることを特徴とする。
本発明によれば、凝縮器から供給される液冷媒が減圧手段を兼ねる制御弁を通ることにより、減圧された後に冷却器に供給され、冷却器において冷媒液が気化する際の気圧熱により抽気タンク内が冷却される。
In a preferred aspect of the present invention, the control valve also serves as a pressure reducing means for reducing the pressure of the liquid refrigerant.
According to the present invention, the liquid refrigerant supplied from the condenser is supplied to the cooler after being decompressed by passing through the control valve that also serves as the decompression means, and is extracted by the atmospheric pressure heat when the refrigerant liquid is vaporized in the cooler. The tank is cooled.

本発明の実施形態によれば、前記加熱手段とは別に、前記抽気タンクにヒーターを設置する。
上記実施形態によれば、ヒーターにより抽気タンク内を加熱することにより、抽気タンクの内圧を上昇させることができる。
According to an embodiment of the present invention, a heater is installed in the extraction tank separately from the heating means .
According to the embodiment , the internal pressure of the extraction tank can be increased by heating the inside of the extraction tank with the heater.

本発明の好ましい態様は、前記凝縮器から不凝縮性ガスを含む冷媒ガスを前記抽気タンクに抽気する配管に逆止弁を設けたことを特徴とする。
本発明によれば、逆止弁により、不凝縮性ガスを含む冷媒ガスが抽気タンクから凝縮器に逆流することを防止できる。
In a preferred aspect of the present invention, a check valve is provided in a pipe for extracting refrigerant gas containing non-condensable gas from the condenser to the extraction tank.
According to the present invention, the check valve can prevent refrigerant gas containing non-condensable gas from flowing backward from the extraction tank to the condenser.

本発明の好ましい態様は、前記抽気タンクに、抽気タンクの内圧が上昇した場合に開いて不凝縮性ガスを機外に排出するリリーフ弁を設けたことを特徴とする。
本発明によれば、抽気タンクにはリリーフ弁が設けられており、抽気タンク内の圧力が一定以上(冷媒により異なるが、HFC−245faの場合は0.16〜0.20MPa程度が好適である。)に上昇すると、抽気タンクの内部の不凝縮性ガスを機外に排出するようになっている。
In a preferred aspect of the present invention, the bleed tank is provided with a relief valve that opens to discharge non-condensable gas to the outside when the internal pressure of the bleed tank increases.
According to the present invention, the extraction tank is provided with a relief valve, and the pressure in the extraction tank is more than a certain value (varies depending on the refrigerant, but in the case of HFC-245fa, about 0.16 to 0.20 MPa is suitable. )), The non-condensable gas inside the extraction tank is discharged out of the machine.

本発明の好ましい態様は、冷媒を吸着する機能を有する吸着器を前記抽気タンクに連通させて設け、前記抽気タンクから不凝縮性ガスを含む冷媒ガスを前記吸着器に導いて冷媒を吸着可能にしたことを特徴とする。
本発明によれば、抽気タンク内の圧力が吸着器の内圧を越えると、不凝縮性ガスを含んだ冷媒ガスが吸着器へと流れる。吸着器内には活性炭等が充填されており、流れ込んだガス中の冷媒を吸着することができる。
In a preferred aspect of the present invention, an adsorber having a function of adsorbing refrigerant is provided in communication with the extraction tank, and refrigerant gas containing non-condensable gas is introduced from the extraction tank to the adsorber so that the refrigerant can be adsorbed. It is characterized by that.
According to the present invention, when the pressure in the extraction tank exceeds the internal pressure of the adsorber, the refrigerant gas containing noncondensable gas flows to the adsorber. The adsorber is filled with activated carbon or the like, so that the refrigerant in the gas that has flowed in can be adsorbed.

本発明の好ましい態様は、前記吸着器に、吸着器の内圧が上昇した場合に開いて不凝縮性ガスを機外に排出するリリーフ弁を設けたことを特徴とする。
本発明によれば、吸着器に吸着されなかった不凝縮性ガスは吸着器内に残留し、徐々に吸着器内の圧力を上昇させるが、吸着器の内圧がリリーフ弁の設定値を上回ると、リリーフ弁を介して不凝縮性ガスが外部へ排出される。
In a preferred aspect of the present invention, the adsorber is provided with a relief valve that opens to discharge non-condensable gas to the outside when the internal pressure of the adsorber increases.
According to the present invention, the non-condensable gas that has not been adsorbed in the adsorber remains in the adsorber and gradually increases the pressure in the adsorber, but when the internal pressure of the adsorber exceeds the set value of the relief valve The noncondensable gas is discharged to the outside through the relief valve.

本発明の好ましい態様は、前記抽気タンクから不凝縮性ガスを含む冷媒ガスを前記吸着器に導く配管に逆止弁を設けたことを特徴とする。
本発明によれば、逆止弁により、不凝縮性ガスを含む冷媒ガスが吸着器から抽気タンクに逆流することを防止できる。
In a preferred aspect of the present invention, a check valve is provided in a pipe that guides refrigerant gas containing non-condensable gas from the extraction tank to the adsorber.
According to the present invention, the check valve can prevent refrigerant gas containing non-condensable gas from flowing back from the adsorber to the extraction tank.

本発明は、以下に列挙する効果を奏する。
(1)真空ポンプを用いずに抽気タンク内の不凝縮性ガスを排出することができる。
(2)不凝縮性ガスの排出時に冷媒を機外に排出しないための吸着器を設けた場合でも、支障なく不凝縮性ガスを排出することができる。
The present invention has the following effects.
(1) The noncondensable gas in the extraction tank can be discharged without using a vacuum pump.
(2) Even when an adsorber for preventing the refrigerant from being discharged outside the apparatus when discharging the non-condensable gas, the non-condensable gas can be discharged without any trouble.

図1は、本発明に係る圧縮式冷凍機の第1の実施形態を示す模式図である。FIG. 1 is a schematic view showing a first embodiment of a compression refrigerator according to the present invention. 図2は、本発明に係る圧縮式冷凍機の第2の実施形態を示す模式図である。FIG. 2 is a schematic view showing a second embodiment of the compression refrigerator according to the present invention. 図3は、抽気装置として冷却式の抽気タンクを使用する従来例を示す模式図である。FIG. 3 is a schematic diagram showing a conventional example in which a cooling-type extraction tank is used as the extraction device.

以下、本発明に係る圧縮式冷凍機の実施形態を図1および図2を参照して説明する。図1および図2において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。
図1は、本発明に係る圧縮式冷凍機の第1の実施形態を示す模式図である。本発明の圧縮式冷凍機は、HFC−245fa,R−123等の低圧冷媒を用いる。図1に示すように、圧縮式冷凍機は、冷媒を圧縮する圧縮機1と、圧縮された冷媒ガスを冷却流体で冷却して凝縮させる凝縮器2と、被冷却流体から熱を奪って冷媒が蒸発し冷凍効果を発揮する蒸発器3と、前記凝縮した冷媒を減圧して膨張させる膨張弁4とを、冷媒配管5によって連結して構成されている。
Hereinafter, an embodiment of a compression refrigerator according to the present invention will be described with reference to FIGS. 1 and 2. 1 and 2, the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
FIG. 1 is a schematic view showing a first embodiment of a compression refrigerator according to the present invention. The compression refrigerator of the present invention uses a low-pressure refrigerant such as HFC-245fa and R-123. As shown in FIG. 1, the compression refrigerator includes a compressor 1 that compresses a refrigerant, a condenser 2 that cools and compresses the compressed refrigerant gas with a cooling fluid, and a refrigerant that takes heat from the fluid to be cooled. The evaporator 3 that evaporates and exhibits the refrigeration effect and the expansion valve 4 that decompresses and expands the condensed refrigerant are connected by a refrigerant pipe 5.

本実施形態は冷却式の抽気タンク6を用いる圧縮式冷凍機であり、抽気タンク6内には冷却器7とフロート弁8が設けられている。抽気タンク6内の冷却器7には凝縮器2から制御弁21を介して冷媒液が供給されている。制御弁21は減圧手段をかねており、制御弁21を通って減圧された冷媒液の気化熱により抽気タンク6内が冷却されるようになっている。気化した冷媒ガスは蒸発器3に戻される。制御弁21を閉とすることにより外気により抽気タンク6が加熱され、内圧を上昇させることができる。したがって、該制御弁21は本発明の加熱手段を構成する。   The present embodiment is a compression type refrigerator using a cooling type extraction tank 6, and a cooling unit 7 and a float valve 8 are provided in the extraction tank 6. Refrigerant liquid is supplied to the cooler 7 in the extraction tank 6 from the condenser 2 via the control valve 21. The control valve 21 also serves as a decompression unit, and the inside of the extraction tank 6 is cooled by the heat of vaporization of the refrigerant liquid decompressed through the control valve 21. The evaporated refrigerant gas is returned to the evaporator 3. By closing the control valve 21, the extraction tank 6 is heated by the outside air, and the internal pressure can be increased. Therefore, the control valve 21 constitutes the heating means of the present invention.

本実施形態においては、抽気タンク6の下部に第二の加熱手段としてヒーター22を設け、抽気タンク6と凝縮器2との間に逆止弁23を設けている。すなわち、抽気タンク6の気相部は、逆止弁23を介して凝縮器2内の不凝縮性ガスの回収口11に接続されている。ヒーター22は、電気ヒーターによるほか、凝縮器2の冷媒ガスなどと抽気タンク6内の冷媒液とを熱交換させることにより、抽気タンク6を加熱する熱交換型のヒーターとしてもよい。抽気タンク6にはリリーフ弁25が設けられており、抽気タンク6内の圧力が一定以上(冷媒により異なるが、HFC−245faの場合は0.16〜0.20MPa程度が好適である。)に上昇すると、抽気タンク6の内部の気体を放出するようになっている。   In the present embodiment, a heater 22 is provided as a second heating means at the lower part of the extraction tank 6, and a check valve 23 is provided between the extraction tank 6 and the condenser 2. That is, the gas phase portion of the extraction tank 6 is connected to the non-condensable gas recovery port 11 in the condenser 2 via the check valve 23. The heater 22 may be an electric heater or a heat exchange type heater that heats the extraction tank 6 by exchanging heat between the refrigerant gas of the condenser 2 and the refrigerant liquid in the extraction tank 6. The extraction tank 6 is provided with a relief valve 25 so that the pressure in the extraction tank 6 is equal to or higher than a certain level (depending on the refrigerant, about 0.16 to 0.20 MPa is suitable for HFC-245fa). When it rises, the gas inside the extraction tank 6 is released.

本実施形態では、抽気タンク6に不凝縮性ガスを回収しようとする場合、制御弁21を開とし、抽気タンク6を冷却する。抽気タンク6内に不凝縮性ガスがない場合、抽気タンク6内の圧力は蒸発器3の圧力とほぼ等しくなる。したがって、抽気タンク6と凝縮器2との間に圧力差ができ、逆止弁23を介して不凝縮性ガスを含んだ冷媒ガスが抽気タンク6に導かれる。このとき、逆止弁23は減圧手段をかねる。抽気タンク6に導かれた冷媒ガスのうち、冷媒成分は冷却器7により冷却されて冷媒液となるが、不凝縮性ガスは液体にならず、気体の状態で抽気タンク6内に滞留する。液化した冷媒はフロート弁8を介して蒸発器3へと戻される。   In this embodiment, when collecting non-condensable gas in the extraction tank 6, the control valve 21 is opened and the extraction tank 6 is cooled. When there is no non-condensable gas in the extraction tank 6, the pressure in the extraction tank 6 becomes substantially equal to the pressure in the evaporator 3. Accordingly, a pressure difference is generated between the extraction tank 6 and the condenser 2, and the refrigerant gas containing the non-condensable gas is guided to the extraction tank 6 through the check valve 23. At this time, the check valve 23 also serves as a pressure reducing means. Of the refrigerant gas guided to the extraction tank 6, the refrigerant component is cooled by the cooler 7 to become a refrigerant liquid, but the non-condensable gas does not become a liquid but stays in the extraction tank 6 in a gaseous state. The liquefied refrigerant is returned to the evaporator 3 through the float valve 8.

抽気タンク6内の圧力は、不凝縮性ガスが蓄積されるにしたがって上昇する。本実施形態では、抽気タンク6に圧力計24が設けられており、抽気タンク6内の圧力と、凝縮器2の圧力との圧力差が規定値(ここでは、0.05MPaとする)以下となった場合、回収から排出へと切り替えられる。
不凝縮性ガスを排出しようとする場合、制御弁21を閉とする。これにより、外気により抽気タンク6は加熱され、抽気タンク6の内圧が上昇する。このとき、第二の加熱手段であるヒーター22を運転しても良い。
The pressure in the extraction tank 6 increases as non-condensable gas accumulates. In the present embodiment, a pressure gauge 24 is provided in the extraction tank 6, and the pressure difference between the pressure in the extraction tank 6 and the pressure of the condenser 2 is equal to or less than a specified value (here, 0.05 MPa). In that case, it is switched from collection to discharge.
When exhausting non-condensable gas, the control valve 21 is closed. Thereby, the extraction tank 6 is heated by outside air, and the internal pressure of the extraction tank 6 increases. At this time, the heater 22 as the second heating means may be operated.

このとき、不凝縮性ガスの分圧は絶対温度に比例して高くなるが、これは高々10%程度であり、ほぼ変化しないものと考えてよい。一方、冷媒蒸気の圧力は、温度上昇により大きく上昇する。たとえば、HFC−245faの場合、回収中の温度(5℃程度)では0.06MPa(A)程度であるが、35℃程度に加熱すると0.26MPa(A)程度まで上昇する。すなわち、加熱前の温度を5℃とし、凝縮温度を35℃とすると、加熱前の圧力は0.26−0.05=0.21MPa(A)であるから、不凝縮性ガスの分圧は0.21−0.06=0.15MPa(A)と推定される。ここで、抽気タンクを35℃まで加熱したとすると、冷媒の分圧は0.26MPa(A)まで上昇するので、0.15+0.26=0.41MPa(A)≒0.31MPa(G)程度まで上昇することになる。なお、Aは絶対圧を表し、Gはゲージ圧を表す。   At this time, the partial pressure of the non-condensable gas increases in proportion to the absolute temperature, but this is at most about 10% and may be considered to be almost unchanged. On the other hand, the pressure of the refrigerant vapor rises greatly as the temperature rises. For example, in the case of HFC-245fa, the temperature during recovery (about 5 ° C.) is about 0.06 MPa (A), but when heated to about 35 ° C., it rises to about 0.26 MPa (A). That is, if the temperature before heating is 5 ° C. and the condensation temperature is 35 ° C., the pressure before heating is 0.26-0.05 = 0.21 MPa (A), so the partial pressure of the non-condensable gas is It is estimated that 0.21-0.06 = 0.15 MPa (A). Here, assuming that the extraction tank is heated to 35 ° C., the refrigerant partial pressure rises to 0.26 MPa (A), so that 0.15 + 0.26 = 0.41 MPa (A) ≈0.31 MPa (G) Will rise to. A represents absolute pressure, and G represents gauge pressure.

実際には、抽気タンク6にはリリーフ弁25が設けられているため、冷媒圧力が上昇する前にリリーフ弁25が開き、不凝縮性ガスが機外に排出される。加熱開始後一定時間を経過するか、抽気タンク6内の温度が一定以上となるかの条件で不凝縮性ガスの排出を終了させ、再び制御弁21を開けて冷媒を抽気タンク6に供給し、再び回収動作に切り替える。   Actually, since the extraction tank 6 is provided with the relief valve 25, the relief valve 25 is opened before the refrigerant pressure rises, and the non-condensable gas is discharged outside the apparatus. The discharge of the non-condensable gas is terminated on the condition that a certain time has elapsed after the start of heating or the temperature in the extraction tank 6 becomes a certain level or more, and the control valve 21 is opened again to supply the refrigerant to the extraction tank 6. Then, switch to the collection operation again.

図2は、本発明に係る圧縮式冷凍機の第2の実施形態を示す模式図である。第2の実施形態は、第1の実施形態の圧縮式冷凍機に冷媒を機外に排出しないための吸着器(Absorber)30を設けた例である。図2に示すように、吸着器30と蒸発器3とは三方弁31を介して接続し、吸着器30と抽気タンク6とは三方弁31と逆止弁32を介して接続する。リリーフ弁25は吸着器30に設置されている。   FIG. 2 is a schematic view showing a second embodiment of the compression refrigerator according to the present invention. The second embodiment is an example in which an adsorber (Absorber) 30 for preventing the refrigerant from being discharged outside the apparatus is provided in the compression refrigerator of the first embodiment. As shown in FIG. 2, the adsorber 30 and the evaporator 3 are connected via a three-way valve 31, and the adsorber 30 and the extraction tank 6 are connected via a three-way valve 31 and a check valve 32. The relief valve 25 is installed in the adsorber 30.

本実施形態では、三方弁31は、常時、抽気タンク6と吸着器30とを連通させるように接続される。抽気タンク6の内圧が上がってきた場合、図1に示す実施形態と同様に、加熱手段(制御弁21,ヒーター22)により抽気タンク6内の圧力が上昇させられる。抽気タンク6内の圧力が吸着器30の内圧を越えると、不凝縮性ガスを含んだ冷媒ガスが吸着器30へと流れる。吸着器30内には活性炭等が充填されており、流れ込んだガス中の冷媒を吸着する。吸着されなかった不凝縮性ガスは吸着器30内に残留し、徐々に吸着器30内の圧力を上昇させる。吸着器30の内圧がリリーフ弁25の設定値を上回ると、リリーフ弁25を介して不凝縮性ガスが外部へ排出される。   In the present embodiment, the three-way valve 31 is always connected so that the extraction tank 6 and the adsorber 30 are in communication. When the internal pressure of the extraction tank 6 increases, the pressure in the extraction tank 6 is increased by the heating means (the control valve 21 and the heater 22) as in the embodiment shown in FIG. When the pressure in the extraction tank 6 exceeds the internal pressure of the adsorber 30, the refrigerant gas containing non-condensable gas flows to the adsorber 30. The adsorber 30 is filled with activated carbon or the like, and adsorbs the refrigerant in the flowing gas. The non-condensable gas that has not been adsorbed remains in the adsorber 30 and gradually increases the pressure in the adsorber 30. When the internal pressure of the adsorber 30 exceeds the set value of the relief valve 25, the noncondensable gas is discharged to the outside through the relief valve 25.

ここで第1の実施形態と同様に、加熱開始後一定時間を経過するか、抽気タンク6内の温度が一定以上となるかの条件で排出を終了させ、再び制御弁21を開けて冷媒を抽気タンク6に供給すると、抽気タンク6の内圧は急激に下がり、再び回収動作に入る。このとき、吸着器30に送られた不凝縮性ガスは、逆止弁32の働きにより抽気タンク6には戻らない。したがって、次の排出動作時には、同様に不凝縮性ガスを機外に排出する。   Here, as in the first embodiment, the discharge is terminated on the condition that a certain time has elapsed after the start of heating or the temperature in the extraction tank 6 becomes a certain level or more, and the control valve 21 is opened again to supply the refrigerant. When the bleed tank 6 is supplied, the internal pressure of the bleed tank 6 rapidly decreases and the recovery operation is started again. At this time, the non-condensable gas sent to the adsorber 30 does not return to the extraction tank 6 by the function of the check valve 32. Therefore, at the next discharge operation, the non-condensable gas is discharged out of the apparatus as well.

前記吸着器30は冷媒ガスを吸着すると徐々に吸着能力が低下する。このため、吸着器内を減圧し、同時に加熱することで吸着した冷媒を排出する、再生の動作が必要となる。この場合、三方弁31を、吸着器30と蒸発器3とが接続されるように動作させ、吸着器30をヒーター等(図示せず)で加熱する。これにより、吸着器30内の冷媒は蒸発器3へと還流され、吸着器30は再生される。   When the adsorber 30 adsorbs the refrigerant gas, the adsorption capacity gradually decreases. For this reason, the operation | movement of the reproduction | regeneration which discharges | emits the refrigerant | coolant adsorbed by decompressing the inside of adsorption machine and heating simultaneously is needed. In this case, the three-way valve 31 is operated so that the adsorber 30 and the evaporator 3 are connected, and the adsorber 30 is heated by a heater or the like (not shown). Thereby, the refrigerant in the adsorber 30 is refluxed to the evaporator 3, and the adsorber 30 is regenerated.

これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。   Although the embodiment of the present invention has been described so far, the present invention is not limited to the above-described embodiment, and it is needless to say that the present invention may be implemented in various different forms within the scope of the technical idea.

1 圧縮機
2 凝縮器
3 蒸発器
4 膨張弁
5 冷媒配管
6 抽気タンク
7 冷却器
8 フロート弁
9 オリフィス
10 オリフィス(減圧手段)
11 回収口
12 真空ポンプ
13 開閉弁
21 制御弁
22 ヒーター
23 逆止弁
24 圧力計
25 リリーフ弁
30 吸着器
31 三方弁
32 逆止弁
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Evaporator 4 Expansion valve 5 Refrigerant piping 6 Extraction tank 7 Cooler 8 Float valve 9 Orifice 10 Orifice (pressure reduction means)
DESCRIPTION OF SYMBOLS 11 Recovery port 12 Vacuum pump 13 On-off valve 21 Control valve 22 Heater 23 Check valve 24 Pressure gauge 25 Relief valve 30 Adsorber 31 Three-way valve 32 Check valve

Claims (8)

蒸発器、凝縮器および圧縮機を備え、蒸発器での圧力が大気圧以下となる場合がある冷媒を用いる圧縮式冷凍機において、
前記凝縮器に接続され、凝縮器から不凝縮性ガスを含む冷媒ガスを抽気する抽気タンクと、
前記抽気タンクの内部に設けられ、前記凝縮器から供給された冷媒液を気化させて前記抽気タンク内を冷却する冷却器と、
前記抽気タンク内を加熱して抽気タンクの内圧を上昇させるための加熱手段とを備え、
前記加熱手段は、前記凝縮器から前記冷却器に液冷媒を供給する配管に設置された制御弁であることを特徴とする圧縮式冷凍機。
In a compression type refrigerator that includes an evaporator, a condenser, and a compressor, and uses a refrigerant in which the pressure in the evaporator may be equal to or lower than atmospheric pressure.
An extraction tank connected to the condenser and for extracting refrigerant gas containing non-condensable gas from the condenser;
A cooler that is provided inside the extraction tank and vaporizes the refrigerant liquid supplied from the condenser to cool the inside of the extraction tank;
Heating means for heating the inside of the extraction tank and increasing the internal pressure of the extraction tank;
The compression refrigeration machine, wherein the heating means is a control valve installed in a pipe for supplying liquid refrigerant from the condenser to the cooler.
前記制御弁を閉じることにより、外気により前記抽気タンクを加熱することを特徴とする請求項1に記載の圧縮式冷凍機。   The compression refrigerator according to claim 1, wherein the extraction tank is heated by outside air by closing the control valve. 前記制御弁は、液冷媒の圧力を減圧する減圧手段を兼ねることを特徴とする請求項1または2に記載の圧縮式冷凍機。   The compression type refrigerator according to claim 1 or 2, wherein the control valve also serves as a pressure reducing means for reducing the pressure of the liquid refrigerant. 前記凝縮器から不凝縮性ガスを含む冷媒ガスを前記抽気タンクに抽気する配管に逆止弁を設けたことを特徴とする請求項1乃至のいずれか一項に記載の圧縮式冷凍機。 The compression type refrigerator according to any one of claims 1 to 3 , wherein a check valve is provided in a pipe for extracting refrigerant gas containing non-condensable gas from the condenser to the extraction tank. 前記抽気タンクに、抽気タンクの内圧が上昇した場合に開いて不凝縮性ガスを機外に排出するリリーフ弁を設けたことを特徴とする請求項1乃至のいずれか一項に記載の圧縮式冷凍機。 The compression according to any one of claims 1 to 4 , wherein a relief valve is provided in the bleed tank to open when the internal pressure of the bleed tank rises and to discharge non-condensable gas to the outside of the machine. Type refrigerator. 冷媒を吸着する機能を有する吸着器を前記抽気タンクに連通させて設け、前記抽気タンクから不凝縮性ガスを含む冷媒ガスを前記吸着器に導いて冷媒を吸着可能にしたことを特徴とする請求項1乃至のいずれか一項に記載の圧縮式冷凍機。 An adsorber having a function of adsorbing refrigerant is provided in communication with the extraction tank, and refrigerant gas containing non-condensable gas is introduced from the extraction tank to the adsorber so that the refrigerant can be adsorbed. Item 5. A compression type refrigerator according to any one of Items 1 to 4 . 前記吸着器に、吸着器の内圧が上昇した場合に開いて不凝縮性ガスを機外に排出するリリーフ弁を設けたことを特徴とする請求項に記載の圧縮式冷凍機。 The compression refrigerator according to claim 6 , wherein the adsorber is provided with a relief valve that opens when the internal pressure of the adsorber increases and discharges noncondensable gas to the outside of the apparatus. 前記抽気タンクから不凝縮性ガスを含む冷媒ガスを前記吸着器に導く配管に逆止弁を設けたことを特徴とする請求項に記載の圧縮式冷凍機。 The compression type refrigerator according to claim 6 , wherein a check valve is provided in a pipe for introducing refrigerant gas containing noncondensable gas from the extraction tank to the adsorber.
JP2014035085A 2014-02-26 2014-02-26 Compression refrigerator Active JP6343156B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014035085A JP6343156B2 (en) 2014-02-26 2014-02-26 Compression refrigerator
CN201510076569.0A CN104864645B (en) 2014-02-26 2015-02-12 Compression refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014035085A JP6343156B2 (en) 2014-02-26 2014-02-26 Compression refrigerator

Publications (2)

Publication Number Publication Date
JP2015161421A JP2015161421A (en) 2015-09-07
JP6343156B2 true JP6343156B2 (en) 2018-06-13

Family

ID=53910657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014035085A Active JP6343156B2 (en) 2014-02-26 2014-02-26 Compression refrigerator

Country Status (2)

Country Link
JP (1) JP6343156B2 (en)
CN (1) CN104864645B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6607558B2 (en) * 2015-08-31 2019-11-20 三菱重工サーマルシステムズ株式会社 Refrigerator and control method thereof
JP6644620B2 (en) * 2016-03-31 2020-02-12 三菱重工サーマルシステムズ株式会社 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device
JP6644619B2 (en) * 2016-03-31 2020-02-12 三菱重工サーマルシステムズ株式会社 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device
CN106196728A (en) * 2016-08-29 2016-12-07 上海柯茂机械有限公司 Emptier for heat pump
CN108344214B (en) * 2017-01-23 2020-03-17 约克(无锡)空调冷冻设备有限公司 Exhaust device, refrigeration air-conditioning system and exhaust method of non-condensable gas
CN107477911A (en) * 2017-08-22 2017-12-15 重庆美的通用制冷设备有限公司 Refrigeration system
US11519648B2 (en) * 2017-12-31 2022-12-06 Technion Research And Development Foundation Ltd. Purge system for closed-cycle absorption heat pumps
CN108955014B (en) * 2018-09-18 2023-12-01 江苏允微流体科技有限公司 Closed vacuum refrigeration cold accumulation equipment and method
CN110260436B (en) * 2019-07-11 2023-09-05 珠海格力电器股份有限公司 Air conditioning system and air conditioning system control method
CN110986438A (en) * 2019-12-18 2020-04-10 珠海格力电器股份有限公司 Air conditioning unit with function of cleaning non-condensable gas

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3145544A (en) * 1961-11-07 1964-08-25 American Radiator & Standard Refrigeration system impurity purge means
JPS61130766A (en) * 1984-11-30 1986-06-18 株式会社ジャパンメンテナンス Continuous cooling method in refrigerating and cold storage case
JPH04316972A (en) * 1991-04-15 1992-11-09 Hitachi Ltd Extracted gas purifying device for refrigerating hachine
JP2001050618A (en) * 1999-08-06 2001-02-23 Mitsubishi Heavy Ind Ltd Noncondensable gas extraction unit and refrigerator having the same
JP2006038347A (en) * 2004-07-27 2006-02-09 Ebara Refrigeration Equipment & Systems Co Ltd Refrigerating machine
CN201209983Y (en) * 2008-05-12 2009-03-18 上海海事大学 Non-condensable gas separation plant of novel ammine refrigeration system
US10190808B2 (en) * 2012-04-30 2019-01-29 Trane International Inc. Refrigeration system with purge and acid filter
CN202562151U (en) * 2012-05-08 2012-11-28 珠海格力电器股份有限公司 Air-conditioning system
CN103335446B (en) * 2013-05-27 2015-08-12 中国五环工程有限公司 Low-grade heat source obtains joint refrigeration technique and the device of cold

Also Published As

Publication number Publication date
JP2015161421A (en) 2015-09-07
CN104864645A (en) 2015-08-26
CN104864645B (en) 2019-02-12

Similar Documents

Publication Publication Date Title
JP6343156B2 (en) Compression refrigerator
US11635239B2 (en) Refrigeration system with purge and acid filter
WO2009157325A1 (en) Refrigerating cycle apparatus, and air-conditioning apparatus
JP5323023B2 (en) Refrigeration equipment
WO2014184931A1 (en) Refrigeration device
JP2008128535A (en) Bleeder for compression type refrigerating machine
JP4394717B2 (en) Operation method of adsorption refrigeration system
JP5014271B2 (en) Refrigeration cycle equipment
JP5754263B2 (en) Vacuum cooling device
JP5606732B2 (en) Refrigerant recovery device
JP5606714B2 (en) Bleeding recovery device, operation method thereof, and turbo refrigerator equipped with the same
EP3045843A1 (en) Refrigerating device
WO2012140974A1 (en) Extraction device and method for refrigerating machine
JP5677282B2 (en) Refrigeration cycle equipment
JP2013002737A (en) Refrigeration cycle device
JP6288942B2 (en) Refrigeration equipment
WO2017169925A1 (en) Cooling system and cooling method
JP2006038346A (en) Refrigerating machine
KR102158196B1 (en) Refrigerant recovery equipment that can be used continuously
US20180259232A1 (en) Cooling system and cooling method
JP6771311B2 (en) Refrigeration cycle equipment
JP2008196731A (en) Refrigerating apparatus
JP2012241967A (en) Supercritical steam compressing type heat pump, and water heater
JP2006038347A (en) Refrigerating machine
US20190203991A1 (en) Subcritical Carbon Dioxide Dehumidifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180518

R150 Certificate of patent or registration of utility model

Ref document number: 6343156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250