JPS61130766A - Continuous cooling method in refrigerating and cold storage case - Google Patents
Continuous cooling method in refrigerating and cold storage caseInfo
- Publication number
- JPS61130766A JPS61130766A JP25441184A JP25441184A JPS61130766A JP S61130766 A JPS61130766 A JP S61130766A JP 25441184 A JP25441184 A JP 25441184A JP 25441184 A JP25441184 A JP 25441184A JP S61130766 A JPS61130766 A JP S61130766A
- Authority
- JP
- Japan
- Prior art keywords
- cooler
- cold air
- air path
- cooling
- outside
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Freezers Or Refrigerated Showcases (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、冷凍・冷蔵ケースに於いて冷凍・冷蔵ケース
の本体の貯蔵室及び冷気路を循環する気流を実質上連続
して冷却する方法に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for substantially continuously cooling airflow circulating through a storage chamber and a cold air path in a main body of a freezing/refrigerating case in a freezing/refrigerating case. Regarding.
本明細書で言う冷凍・冷蔵ケースには、例えば、生鮮食
品、青果、乳製品、冷凍食品等を展示・販売する冷蔵オ
ープンシシーケース、リーチイン型の冷蔵シa−ケース
、冷蔵庫、冷凍庫などが含まれる。The frozen/refrigerated cases referred to in this specification include, for example, refrigerated open sissy cases for displaying and selling fresh foods, fruits and vegetables, dairy products, frozen foods, etc., reach-in refrigerated A-cases, refrigerators, freezers, etc. It will be done.
く従来技術とその問題点〉
従来の冷凍・冷蔵ケースは、例えば冷蔵オープンショー
ケースのように、ケース本体内に形成した貯蔵室に冷気
吹出口と冷気吸込口とを設けるとともに、ケース本体内
に一端を上記冷気吸込口に、眺端を上記冷気吹出口に接
続した冷気路を形成し、この冷気路内に冷却器と、冷気
を貯蔵室および冷気路にわたり循還させるための送風フ
ァンとが配設されている。このような従来の冷凍・冷蔵
ケースでは、運転中に冷却器に霜が着き、冷却効率が1
氏下するという問題がある。Conventional technology and its problems> Conventional freezing and refrigerating cases, such as refrigerated open showcases, have a cold air outlet and a cold air intake in a storage chamber formed within the case body, and also have a cold air outlet and a cold air intake port inside the case body. A cold air path is formed with one end connected to the cold air suction port and a viewing end connected to the cold air outlet, and a cooler and a blower fan for circulating the cold air throughout the storage room and the cold air path are provided in the cold air path. It is arranged. In conventional freezing and refrigeration cases like this, frost builds up on the cooler during operation, reducing cooling efficiency to 1.
There is the issue of delegating him.
この問題を解消するために、従来では、随時または定時
間ごとに冷却器の冷却作動を停止し、ヒータ、冷却器へ
の熱媒の供給などの方法により、冷却器を加熱して除霜
するのが普通である。In order to solve this problem, conventionally, the cooling operation of the cooler is stopped at any time or at regular intervals, and the cooler is heated and defrosted using a method such as a heater or a heating medium supplied to the cooler. is normal.
ところが、この除霜作業(デフ0スト作業)にはかなり
の時間、例えば、4時間冷却作動を続ければ30分以上
というように長い時間が費やされるのが普通である。そ
の結果、貯蔵室に貯蔵されている食品などが、食品衛生
上好ましくない温度まで温められたり、解凍したりして
しまい品質が悪くなることがある。また、除霜を速く済
ませるために冷却器に加えられる熱が冷気路を介して貯
蔵室に伝わることにより、この品質悪化が助長されるの
も問題である。However, this defrosting operation usually takes a considerable amount of time, for example, 30 minutes or more if the cooling operation continues for 4 hours. As a result, food stored in the storage room may be heated to a temperature that is unfavorable from a food hygiene perspective, or thawed, resulting in poor quality. Another problem is that the heat applied to the cooler to speed up defrosting is transmitted to the storage room via the cold air path, which exacerbates this quality deterioration.
〈発明が解決しようとする問題点〉
本発明は、上述の事情のもとで考え出されたもので、そ
の解決しようとする問題点は、冷気路を流通する気流を
実質上連続して所定の温度に冷却し、もって、貯蔵品の
品質悪化をできるだけ防止できるようにすることである
。<Problems to be Solved by the Invention> The present invention was devised under the above-mentioned circumstances, and the problems to be solved by the present invention are as follows: temperature to prevent deterioration of the quality of stored products as much as possible.
〈問題点を解決するための手段〉
本発明は、上述の問題点を解消するために次のような技
術的手段を講じるものである。<Means for Solving the Problems> The present invention takes the following technical measures to solve the above-mentioned problems.
即ち、冷凍・冷蔵ケースの本体の冷気路と該本体の外部
空間とを区画する隔壁の一部分を回転板で形成し、上記
回転板の表裏各面にそれぞれ少なくとも1個の冷却器を
固定し、各冷却器及びこれと直列接続される各開閉弁と
を有する1対の冷却器回路を外部冷媒回路に接続し、冷
気路に位置させられた一方の冷却器に接続された開閉弁
を開いてこの冷却器を冷却作動させる間に、上記上側空
間に位置させられた他方の冷却器に接続された開閉弁を
閉じてこの冷却器の外気熱による自然除霜を行ない、次
いで、冷気路内の冷却器への着霜が所定量に達した時以
後冷気路外の冷却器に接続された開閉弁を開いてその冷
却器への冷媒の供給を行ない、この冷却器を冷気路内の
温度まで予冷してから回転板を回転させ、冷気路外に移
動させられた冷却器に接続された開閉弁を閉じる手順を
ふむという技術的手段が講じられる。That is, a part of the partition wall that partitions the cold air path of the main body of the freezing/refrigerating case and the external space of the main body is formed by a rotating plate, and at least one cooler is fixed to each of the front and back surfaces of the rotating plate, A pair of cooler circuits having each cooler and each on-off valve connected in series thereto are connected to an external refrigerant circuit, and the on-off valve connected to one of the coolers located in the cold air path is opened. While this cooler is in cooling operation, the on-off valve connected to the other cooler located in the upper space is closed to perform natural defrosting of this cooler using outside air heat, and then the air in the cold air path is When the frost on the cooler reaches a predetermined amount, the on-off valve connected to the cooler outside the cold air path is opened to supply refrigerant to the cooler, and the cooler is heated to the temperature inside the cold air path. A technical measure is taken in which, after pre-cooling, the rotary plate is rotated and the on-off valve connected to the cooler moved outside the cold air path is closed.
〈発明の作用〉
一方では、両開閉弁のうち冷気路内に位置させられた冷
却器に接続されているものを開弁して冷気路の冷却作業
を行なう間に、好ましくは、これを貯蔵室の気温に対応
させて開閉させることにより貯蔵室の温度調整を併せて
行ない、他方では、もう1つの開閉弁を閉弁させること
により冷気路の外に位置させられた他方の冷却器への冷
媒の流通を遮断し、この冷却器を外気にさらして外気で
自然に加熱して除霜作業が行なわれる。換言すれば、両
冷却器の除霜作業を交互に冷気路外で繰返し、その除霜
作業の間にも冷気路内に位置させられた冷却器を用いて
貯蔵室の冷却を行なえ、除霜作業による冷却の中断を実
質的になくせる。ここで、回転板を反転させる間は冷却
が中断されるのであるが、その時間は、例えば、約10
秒以下というようにきわめて短かい時間であり、実質的
には無視できる。<Operation of the Invention> On the other hand, it is preferable to store the opening/closing valve connected to the cooler located in the cold air path while cooling the cold air path by opening the one connected to the cooler located in the cold air path. The temperature of the storage room is adjusted by opening and closing according to the temperature of the room, and on the other hand, by closing the other on-off valve, the air is supplied to the other cooler located outside the cold air path. Defrosting is performed by cutting off the flow of refrigerant and exposing the cooler to the outside air to allow it to naturally heat up. In other words, the defrosting operation of both coolers is repeated alternately outside the cold air path, and during the defrosting operation, the storage room can be cooled using the cooler located inside the cold air path. This virtually eliminates interruptions in cooling due to work. Here, cooling is interrupted while the rotary plate is reversed, and the time is, for example, about 10
It is an extremely short period of time, less than a second, and can be virtually ignored.
また、冷却作業を担当する冷却器への着霜が所定量に達
すると、着霜が更に進められる間に冷気路外の冷却器を
予冷し、この冷却器が冷気路内の温度と同じになってか
ら回転板を回転させ、その冷却器を冷気路内に移動させ
るので、冷却器が余分な外気温を冷気路内に持ち込まな
くよる。従って、冷却器の交替期に冷気路内の温度が外
気温によって上昇させられることがほとんどなくなり、
冷気の温度を一定に維持できる。In addition, when the frost on the cooler responsible for cooling reaches a predetermined amount, the cooler outside the cold air path is precooled while the frosting is progressing further, and this cooler reaches the same temperature as the temperature inside the cold air path. The rotary plate is then rotated and the cooler is moved into the cold air path, so the cooler does not bring excess outside temperature into the cold air path. Therefore, when the cooler is replaced, the temperature in the cold air passage is hardly raised by the outside temperature.
The temperature of cold air can be maintained constant.
〈実施例の説明〉
以下、本発明の実施例を冷蔵オープンショーケースに適
用した場合を例にとって図面に基づき説明する。<Description of Embodiments> Hereinafter, an example in which an embodiment of the present invention is applied to a refrigerated open showcase will be described based on the drawings.
第1図、第2図は本発明方法の実施に用いる冷蔵オープ
ンショーケースの一例を示し、この冷蔵オープンショー
ケースは、第1図に示すように、ショーケース本体1内
に前面が開放された貯蔵室2を備える。この貯蔵室2の
前面開放部3の上縁部にはその全長にわたって冷気吹出
口4が形成され、この下側に配風室5を隔てて配風グリ
ル6が配設される。前面開放部3の下縁部にはその全長
にわたってパンチングプレートで覆われた冷気吸込ロア
が形成される。ショーケース本体1内には、さらに、上
記貯蔵室2の上下および後側にわたってコ字形に形成さ
れた冷気路8が設けられる。この冷気路8の一端は上記
冷気吸込ロアに、他端は上記冷気吹出口4にそれぞれ接
続され、貯蔵室2、配風室5及び冷気路8により1つの
冷気循還路が構成される。。FIGS. 1 and 2 show an example of a refrigerated open showcase used for carrying out the method of the present invention. As shown in FIG. A storage room 2 is provided. A cold air outlet 4 is formed along the entire length of the upper edge of the front open portion 3 of the storage chamber 2, and a distribution grill 6 is disposed below this with an air distribution chamber 5 interposed therebetween. A cold air suction lower is formed at the lower edge of the front opening 3 and covered with a punching plate over its entire length. Inside the showcase body 1, there is further provided a cold air passage 8 formed in a U-shape extending above, below, and at the rear of the storage chamber 2. One end of this cold air passage 8 is connected to the cold air suction lower, and the other end is connected to the cold air outlet 4, and the storage chamber 2, the ventilation chamber 5, and the cold air passage 8 constitute one cold air circulation passage. .
この冷気路8の土壁部9の一部がその左右方向の全幅に
わたって回転板10で形成され、この回転板10の両面
にそれぞれ冷却器11が固定され、両冷却器のうち冷気
路8内に位置させられた冷却器11のみが冷却作動させ
られるように両冷却器11の作動状態を切換える制御装
置12が設けられる。A part of the earthen wall 9 of this cold air passage 8 is formed of a rotary plate 10 over its entire width in the left and right direction, and coolers 11 are fixed to both sides of this rotary plate 10. A control device 12 is provided for switching the operating states of both coolers 11 so that only the cooler 11 located at the lower end is operated for cooling.
第2図に示すように、上記回転板10は、その上下及び
前後方向の中心を通る中心線を中心にして回転できるよ
うに、その左右両側縁の中心にそれぞれ回転板10の回
転軸心と同軸心状に固定された中空支軸13.13を介
して左右の各側壁14に支持される。中空支軸13.1
3の一方は、これに対応する側壁14の外側に延出され
、この延出部を駆動装置15で駆動することにより回転
板10が180°ピツチで一方向または交互に正逆各方
向に回転させら八る。As shown in FIG. 2, the rotary plate 10 has a rotation axis located at the center of each of its left and right edges so that the rotary plate 10 can rotate about a center line that passes through its vertical and longitudinal centers. It is supported by the left and right side walls 14 via hollow support shafts 13.13 fixed coaxially. Hollow support shaft 13.1
3 is extended to the outside of the corresponding side wall 14, and by driving this extended portion with a drive device 15, the rotary plate 10 is rotated in one direction or alternately in forward and reverse directions with a 180° pitch. Let's go.
上記回転板10の左右両側縁部にはそれぞれT事後手1
6.16が設けられる。各T字接手16.16は、回転
板10の回転軸心外向きに開口させられた共通接続口1
7.17と回転板10の表裏方向に向けて開口させられ
た分岐または集合接続口18.18または19.19と
を有する。ただし、分岐側のT事後手16はT字上辺部
がクラン (り形に屈曲形成さ
れているので、両分岐接続口17.17の回転板表裏方
向から見た位置は回転軸心に関して対称位置となる。回
転板10の表側の分岐接続口18と裏側の集合接続口1
9(図示せず)との開には、回転板10の表側に配置さ
れた電磁開閉弁20、回転板10の裏側に配置された膨
張弁21及び冷却器11 (図示せず)を直列に接続す
る一方の冷却器回路22が接続される。同様に、回転板
10の裏側の分岐接続口18(図示せず)と表側の集合
接続口19との間には、回転板10の裏側に配置された
電磁開閉弁20(図示せず)、回転板10の表側に配置
さhた膨張弁21及び冷却器11を直列に接続する他方
の冷却器回路22が接続される。両T字接手16.16
の各共通接続口17.17にはそれぞれ各中空支軸13
.13の軸心に沿って設けられた各接続管23.23及
びそれらの各外端に接続されたスイベル接手24.24
を介して外部冷媒回路25(その両端部のみを図示する
)が接続される。The left and right edges of the rotary plate 10 are provided with T-rear arms 1, respectively.
6.16 is provided. Each T-shaped joint 16.16 has a common connection port 1 opened outward from the rotation axis of the rotary plate 10.
7.17 and a branch or collective connection port 18.18 or 19.19 opened toward the front and back directions of the rotary plate 10. However, since the upper side of the T-shape of the T-handle 16 on the branch side is bent in the shape of a cran, the positions of both branch connection ports 17 and 17 when viewed from the front and back of the rotary plate are symmetrical with respect to the rotation axis. The branch connection port 18 on the front side of the rotating plate 10 and the collective connection port 1 on the back side
9 (not shown), an electromagnetic on-off valve 20 placed on the front side of the rotating plate 10, an expansion valve 21 placed on the back side of the rotating plate 10, and a cooler 11 (not shown) are connected in series. One cooler circuit 22 is connected. Similarly, between the branch connection port 18 (not shown) on the back side of the rotary plate 10 and the collective connection port 19 on the front side, an electromagnetic on-off valve 20 (not shown) arranged on the back side of the rotary plate 10, The other cooler circuit 22 that connects the expansion valve 21 arranged on the front side of the rotary plate 10 and the cooler 11 in series is connected. Double T-shaped joint 16.16
Each common connection port 17.17 has each hollow support shaft 13.
.. Each connecting pipe 23.23 provided along the axis of 13 and a swivel joint 24.24 connected to each outer end thereof.
An external refrigerant circuit 25 (only both ends thereof are shown) is connected thereto.
上記制御装置12は、上記各電磁弁20.20と、回転
板10の回転位相を検出する回転板位置検出装置26及
び回転板位置検出装置26の検出結果に基づき冷気路8
fullの冷却器11に接続された電磁弁20を開弁さ
せ、他方の電磁弁20を閉弁させる制御回路27とから
なる6上記位置検出装置26は、上壁9に固定支持され
た1個の近接スイッチ28と上記一方の中空支軸13に
固定された1対のスイッチ駆動体29.29とからなる
。The control device 12 controls the cold air path 8 based on the detection results of the electromagnetic valves 20, 20, a rotary plate position detecting device 26 that detects the rotational phase of the rotary plate 10, and a rotary plate position detecting device 26.
The position detection device 26 consists of a control circuit 27 that opens a solenoid valve 20 connected to the full cooler 11 and closes the other solenoid valve 20. It consists of a proximity switch 28 and a pair of switch drive bodies 29 and 29 fixed to one of the hollow support shafts 13.
上記制御回路27は、必要に応じて、貯蔵室2の温度に
対応して上記一方の電磁弁20を開閉制御して貯蔵室2
の温度を実質的に一定に調整する温度調整制御用の制御
回路(図示せず)及び冷気路8内の冷却器11への着霜
が所定量を上回る時に(このことは、例えば、回転板の
回転後の所定時間経過の検出または冷却器11の前後の
冷媒温度差、冷気の温度及び湿度に基づき着霜量を演算
により検出する)上記他方の電磁弁20を開弁して行な
う予冷制御用の制御回路(図示せず)と一体的に構成さ
れている。The control circuit 27 controls the opening and closing of the one electromagnetic valve 20 according to the temperature of the storage compartment 2, as necessary.
When frost buildup on the cooler 11 in the cold air path 8 exceeds a predetermined amount (this means, for example, Detecting the passage of a predetermined time after the rotation of the cooler 11 or calculating the amount of frost based on the refrigerant temperature difference before and after the cooler 11, the temperature and humidity of the cold air) Pre-cooling control performed by opening the other electromagnetic valve 20 It is constructed integrally with a control circuit (not shown).
上記制御回路27と各電磁弁20.20とは、本体1の
側壁14にケーシングが支持され、ロータが電線を内装
したフレキシブルシラインド30を介して上記回転板1
0に連動連結されたスリンプリング装置31を介して接
続される。符号32は、フレキシブルシラインド30の
一端と回転板10の一側縁の中央部とを連結する座金で
ある。The control circuit 27 and each electromagnetic valve 20.20 are connected to the rotating plate 1 through a flexible shield 30 having a casing supported on the side wall 14 of the main body 1, and a rotor having electric wires therein.
0 through a sling ring device 31 operatively connected to the sling ring device 31 . Reference numeral 32 is a washer that connects one end of the flexible shield 30 to the center of one side edge of the rotary plate 10.
E記駆動装置15は、例えば、、中空支軸13の延出部
に外嵌されたビニオン、このピニオンに噛み合わせられ
るラック及び該ランクをその歯列方向に往復駆動するシ
リンダで構成するなど、種々の構成が考えられるが、こ
こでは作動時に高度の静粛性を得るとともに容易に得ら
れる駆動源を利用するために、電動モータ33と、うね
付きベルトを有するベルト式減速装置34とで構成され
る。The drive device 15 described in E is, for example, configured with a pinion fitted onto the extending portion of the hollow support shaft 13, a rack meshed with the pinion, and a cylinder that drives the rank back and forth in the tooth row direction. Various configurations are possible, but here, in order to obtain a high degree of quietness during operation and to utilize an easily available drive source, the configuration is configured with an electric motor 33 and a belt type reduction gear 34 having a ribbed belt. be done.
符号35は冷気循環路における気流を形成するための送
風ファン装置である。Reference numeral 35 is a blower fan device for forming an airflow in the cold air circulation path.
第3図はこの冷蔵オープンショーケースを用いて冷気路
8外で冷却器11の予冷を行なわない場合(B)と、本
発明方法に従ってその予冷を行なう場合(A)との冷気
路の温度変化を比較して示す温度/時間関係図である。FIG. 3 shows the temperature change in the cold air passage when the cooler 11 is not precooled outside the cold air passage 8 using this refrigerated open showcase (B) and when the precooling is performed according to the method of the present invention (A). FIG. 2 is a temperature/time relationship diagram showing a comparison of
次にこの冷蔵ショーケースを用いる本発明の一実施例を
該冷蔵シラーケースの動作とともに説明する。Next, an embodiment of the present invention using this refrigerated showcase will be described together with the operation of the refrigerated Syrah case.
年、冷却路8内の冷却器11による冷却作業が進められ
、その冷却器11への着霜が所定量に達したとすると、
上記制御装置12によって冷気路8外の冷却器11に接
続された電磁弁20が追加的に開弁させられ、冷媒は両
冷却器回路22.22に同時に流通させられる。これに
より冷気路8外の冷却器11が冷却される。この冷却器
11が略々冷気路8内の温度まで冷却されると(このこ
とは、該冷却器11の温度を検出するか、冷却が一定の
速さで進行させられるものとして、電磁弁20の開弁後
の所定の設定時間の経過を検出することにより検出され
る)、制御回路27により駆動装置15が作動させられ
る。これにより上記回転板10が180°回転させられ
て上壁9の他の部分と略々面一状に位置させられたこと
を回転板位置検出装置26が検出すると、駆動装置15
の (作動が停止させられ、同時
に冷気路8内からその外に移動させられた冷却器11に
接続された電磁弁2−0が閉弁させら−れる。このよう
にして、冷気路8内の冷却作業は2個の冷却器11.1
1が交替して行なわれ、その交替に要する時間は、数秒
間である。従って、冷却作業は実質上連続して行なわれ
ることになる。Assuming that in 2017, the cooling work by the cooler 11 in the cooling path 8 is progressing, and the frost on the cooler 11 has reached a predetermined amount,
A solenoid valve 20 connected to the cooler 11 outside the cold air path 8 is additionally opened by the control device 12, so that the refrigerant is allowed to flow through both cooler circuits 22, 22 simultaneously. As a result, the cooler 11 outside the cold air path 8 is cooled. When the cooler 11 is cooled to approximately the temperature in the cold air passage 8 (this means that the temperature of the cooler 11 is detected or the solenoid valve 2 (detected by detecting the elapse of a predetermined set time after the valve is opened), the drive device 15 is operated by the control circuit 27. When the rotary plate position detection device 26 detects that the rotary plate 10 has been rotated by 180 degrees and is positioned substantially flush with the other portion of the upper wall 9, the drive device 15
(The operation is stopped, and at the same time, the solenoid valve 2-0 connected to the cooler 11 moved from inside the cold air path 8 to the outside thereof is closed. The cooling operation is carried out by two coolers11.1.
1 is carried out alternately, and the time required for the alternation is several seconds. Therefore, the cooling operation is carried out substantially continuously.
上記冷却器11は、冷気路8に入れられる直前の所定時
間にわたって冷媒の供給を受け、十分に冷却されてから
冷気路8内に移されるので、除霜後にその冷却器11を
冷気路8内に移して冷却作業を行なう際に外部から冷気
路8内に余分な熱がほとんど持ち込まれず、第3図(A
)線で示すように、そのまま定常状態を維持できる。こ
れに対し、冷却器11を予冷せずに冷気路8内に移動さ
せた場合には、第3図(B)線で示すように、約5分間
にわたり外から冷却器11が持ち込んだ外気温による冷
気路8内の温度上昇が認められる。The cooler 11 is supplied with refrigerant for a predetermined period of time immediately before entering the cold air path 8, and is sufficiently cooled before being moved into the cold air path 8. Therefore, after defrosting, the cooler 11 is moved into the cold air path 8. When performing cooling work in the cold air passage 8, almost no excess heat is brought into the cold air passage 8 from the outside, as shown in Figure 3 (A).
) As shown by the line, the steady state can be maintained as it is. On the other hand, when the cooler 11 is moved into the cold air path 8 without pre-cooling, the outside air temperature is brought in by the cooler 11 from outside for about 5 minutes, as shown by the line in FIG. An increase in temperature within the cold air passage 8 due to the above is observed.
冷気路8内でもう1個の冷却器11による冷却が始めら
れると、同時に冷気路8外でそれまで冷却作業を行なっ
ていた冷却器11の除霜作業が行なわれる。冷気路8に
於いて冷却作業を始めてから冷却器11への着霜が所定
量に達するまでの時間は、冷気の温度、湿度等の種々の
環境条件や貯蔵物の状態などによって異なるが、経験上
、約2〜4時間である。このような時間は冷気路8外の
冷却器11を周囲の大気で自然加熱して除霜するには十
分な長さである。従って、除霜促進用の電気ヒータ等の
加熱装置及びこれを作動させるためのエネルギが不要に
なる。When cooling by another cooler 11 is started within the cold air passage 8, at the same time, the defrosting operation of the cooler 11 which has been performing the cooling operation outside the cold air passage 8 is performed. The time it takes from the start of cooling work in the cold air path 8 until the frost on the cooler 11 reaches a predetermined amount varies depending on various environmental conditions such as the temperature of the cold air, humidity, and the condition of the stored items, but it depends on experience. Above, it takes about 2 to 4 hours. Such a period of time is long enough to defrost the cooler 11 outside the cold air path 8 by naturally heating it with the surrounding atmosphere. Therefore, a heating device such as an electric heater for promoting defrosting and energy for operating the heating device are not required.
ここで注目すべきことは、冷却器11が本体1の上壁9
上で外気に触れるようにしであることである。すなわち
、このような箇所では貯蔵室2の前面開放部3から逸出
する寒冷の影響が少なく、したがって比較的高温の外気
によって冷却器11が自然加熱されることになり、高能
率な除霜が行なわれる。What should be noted here is that the cooler 11 is connected to the upper wall 9 of the main body 1.
The top should be exposed to the outside air. That is, in such places, the influence of the cold escaping from the front opening 3 of the storage room 2 is small, and therefore the cooler 11 is naturally heated by the relatively high temperature outside air, and highly efficient defrosting is achieved. It is done.
尚、冷気路8内の冷却器11は冷気路8の上部に配置さ
れているので、この冷却器11から冷気吹出口4までの
経路が短かく、その間での冷気からの寒冷損失がきわめ
て小さくなる。したがって、実質上、貯蔵室2内の食品
等には全く悪影響が与えられなくなる。また、冷気路8
内の冷却器1,1が冷気路8の上部に配置されており、
冷却により密度が高められた冷気の沈降しようとする性
質に逆られずに冷気を冷却器吹出口4に送れるので、送
風ファン装置35の負担を小さくできる。更に、配風室
5及び配風グリル6により、冷却風を貯蔵室2の上面か
ら適当に分散させて送給できるので、貯蔵室2内の冷却
を平均的に行なうことができ、貯蔵品の品質管理が容易
になる利点が得られる。In addition, since the cooler 11 in the cold air path 8 is arranged at the upper part of the cold air path 8, the path from this cooler 11 to the cold air outlet 4 is short, and the cooling loss from the cold air in between is extremely small. Become. Therefore, the food and the like in the storage chamber 2 are virtually not adversely affected at all. In addition, cold air path 8
The coolers 1, 1 inside are arranged at the upper part of the cold air path 8,
Since the cold air can be sent to the cooler outlet 4 without going against the tendency of the cold air whose density has been increased by cooling to settle, the burden on the blower fan device 35 can be reduced. Furthermore, the air distribution chamber 5 and the air distribution grille 6 allow the cooling air to be distributed and sent from the upper surface of the storage chamber 2, so that the inside of the storage chamber 2 can be cooled evenly, and the stored items can be cooled evenly. The advantage is that quality control becomes easier.
もちろん、本発明を実施するのに用いる冷蔵ショーケー
スは上述の一例に限定されることはなく、たとえば、回
転板10は冷気路8とこれの後側の外部空間を区画する
本体の後壁の一部を回転板10にしてもよい。また、駆
動装置15のシリンダやモータ33は電動、エア駆動、
油圧駆動など種々の駆動源のものが考えられる。もっと
も、この駆動装置は人力駆動装置にしてもよい。更に、
上壁9、回転板10、冷却器11、制御装置12、駆動
装置15、配風室5など配風グリル6よりも上側に配置
される各部品な配風グリル6とともに本体1の他の部分
とは別に一体的に組み立て、−個のユニット部品として
もよい。この場合、既存の冷凍・冷蔵ケースの上壁を取
外してこのユニット部品を組付けることにより、既存の
冷凍・冷蔵ケースを改造できる。Of course, the refrigerated showcase used to carry out the present invention is not limited to the above-mentioned example. A part of the rotating plate 10 may be used. Further, the cylinder and motor 33 of the drive device 15 may be electrically driven, air driven,
Various drive sources such as hydraulic drive are possible. However, this drive device may be a human power drive device. Furthermore,
Other parts of the main body 1 along with the air distribution grill 6, such as the upper wall 9, the rotary plate 10, the cooler 11, the control device 12, the drive device 15, the air distribution chamber 5, etc., are arranged above the air distribution grill 6. It is also possible to assemble it as a separate unit into - unit parts. In this case, the existing freezer/refrigerator case can be modified by removing the top wall of the existing freezer/refrigerator case and assembling this unit part.
〈本発明の効果〉
上述のように、本発明に係る冷凍・冷蔵ケースの連続冷
却方法は、2個の冷却器を交互に冷気路内に位置させて
交替に冷却作業を行なわせるので、実質上連続して冷却
作業を行なえる。また、冷気路外の冷却器を冷気路に移
動させるに先立ち、該冷却器を冷気路内の温度まで冷却
するので、冷気路に余分な外気熱が持ち込まれず、冷気
路内の温度を実質上一定に維持でき、理想的な温度管理
が行なえる。その結果、冷却作業の中断や除霜のなめの
加熱による貯蔵室の昇温及びこれに伴なう貯蔵品0品質
悪化を完全に防止できる・
I<Effects of the present invention> As described above, in the continuous cooling method for a freezing/refrigerating case according to the present invention, two coolers are alternately positioned in the cold air path and the cooling work is performed in turn, so Cooling work can be performed continuously. In addition, before moving the cooler outside the cold air path to the cold air path, the cooler is cooled to the temperature inside the cold air path, so excess outside heat is not brought into the cold air path, and the temperature inside the cold air path is substantially reduced. It can be maintained constant and ideal temperature control can be performed. As a result, it is possible to completely prevent the temperature increase in the storage room due to interruptions in cooling operations and heating during defrosting, and the resulting deterioration in the quality of stored products.
I
第1図は本発明を実施するための冷蔵オープンショーケ
ースの一例の縦断側面図、第2図は平面図、−第3図は
冷気路8外における冷却器11の予冷を行なわない連続
冷却方法による場合(B)とその予冷を行なう本発明の
連続冷却方法による場合(A>との冷気路8の温度変化
の実例を比較して示す温度/時間関係図である。
出願人 株式会社ジャパンメンテナンス第 1 図
第2図
第 3 図
9!閉
λFIG. 1 is a longitudinal sectional side view of an example of a refrigerated open showcase for implementing the present invention, FIG. 2 is a plan view, and FIG. 3 is a continuous cooling method without precooling the cooler 11 outside the cold air path 8. It is a temperature/time relationship diagram comparing and showing an example of the temperature change of the cold air path 8 in the case (B) according to the case (B) and the case (A>) according to the continuous cooling method of the present invention that performs precooling. Applicant: Japan Maintenance Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 9! Closed λ
Claims (1)
空間とを区画する隔壁の一部分を回転板で形成し、上記
回転板の表裏各面にそれぞれ少なくとも1個の冷却器を
固定し、各冷却器及びこれと直列接続される各開閉弁と
を有する1対の冷却器回路を外部冷媒回路に接続し、冷
気路に位置させられた一方の冷却器に接続された開閉弁
を開いてこの冷却器を冷却作動させる間に、上記上側空
間に位置させられた他方の冷却器に接続された開閉弁を
閉じてこの冷却器の外気熱による自然除霜を行ない、次
いで、冷気路内の冷却器への着霜が所定量に達した時以
後冷気路外の冷却器に接続された開閉弁を開いてその冷
却器への冷媒の供給を行ない、この冷却器を冷気路内の
温度まで予冷してから回転板を回転させ、冷気路外に移
動させられた冷却器に接続された開閉弁を閉じる手順か
らなる冷凍・冷蔵ケースに於ける連続冷却方法。(1) Part of the partition wall that partitions the cold air path of the main body of the freezing/refrigerating case and the external space of the main body is formed by a rotating plate, and at least one cooler is fixed to each of the front and back surfaces of the rotating plate. , a pair of cooler circuits having each cooler and each on-off valve connected in series thereto are connected to an external refrigerant circuit, and the on-off valve connected to one of the coolers located in the cold air path is opened. While the lever cooler is operating for cooling, the on-off valve connected to the other cooler located in the upper space is closed to perform natural defrosting of this cooler using outside air heat, and then the air inside the cold air path is When the frost on the cooler reaches a predetermined amount, the on-off valve connected to the cooler outside the cold air path is opened to supply refrigerant to that cooler, and the cooler is heated to a temperature within the cold air path. A continuous cooling method for freezing and refrigerating cases, which consists of pre-cooling to a maximum temperature, then rotating a rotary plate and closing an on-off valve connected to a cooler that has been moved outside the cold air path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25441184A JPS61130766A (en) | 1984-11-30 | 1984-11-30 | Continuous cooling method in refrigerating and cold storage case |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25441184A JPS61130766A (en) | 1984-11-30 | 1984-11-30 | Continuous cooling method in refrigerating and cold storage case |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61130766A true JPS61130766A (en) | 1986-06-18 |
Family
ID=17264598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25441184A Pending JPS61130766A (en) | 1984-11-30 | 1984-11-30 | Continuous cooling method in refrigerating and cold storage case |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61130766A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015161421A (en) * | 2014-02-26 | 2015-09-07 | 荏原冷熱システム株式会社 | Compression type refrigeration machine |
-
1984
- 1984-11-30 JP JP25441184A patent/JPS61130766A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015161421A (en) * | 2014-02-26 | 2015-09-07 | 荏原冷熱システム株式会社 | Compression type refrigeration machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3066636B2 (en) | Refrigerator with air curtain generation device | |
KR20040068784A (en) | Refrigerator Having Temperature- Controlled Chamber | |
JP2002168549A (en) | Horizontal refrigerator | |
JPS61130766A (en) | Continuous cooling method in refrigerating and cold storage case | |
JPS61134556A (en) | Continuous cooling type freezing and refrigerating case | |
JPH0510967U (en) | Freezer refrigerator with thawing room | |
JP3600009B2 (en) | Refrigerator control method | |
JP3152538B2 (en) | Cooling storage | |
JP2852300B2 (en) | Quick freezer | |
KR100425114B1 (en) | defrosting method in the refrigerator with 2 evaporators | |
JPS6345660Y2 (en) | ||
JP3026165B2 (en) | Commercial refrigeration showcase and power supply control method for commercial refrigeration showcase | |
JP2542277Y2 (en) | High humidity thawing cool box | |
JPS61289280A (en) | Cold air distributor for refrigerating open showcase | |
KR100379403B1 (en) | defrosting method in the refrigerator with 2 evaporators | |
CN1200236C (en) | Electric refrigerator having two soft freezing and freshness-keeping chamber | |
JP2003287331A (en) | Refrigerator | |
KR940009566B1 (en) | Open showcase | |
JPH0424387Y2 (en) | ||
KR200151348Y1 (en) | Air induct device of showcase | |
JPH0136068Y2 (en) | ||
JPH11304331A (en) | Control method for refrigerator | |
JPS5917193Y2 (en) | Rapid low temperature and humidity thawing chamber | |
JP2002243334A (en) | Refrigerator | |
JPS6328387Y2 (en) |