WO2017170649A1 - Purging device, refrigerator equipped with same, and method for controlling purging device - Google Patents

Purging device, refrigerator equipped with same, and method for controlling purging device Download PDF

Info

Publication number
WO2017170649A1
WO2017170649A1 PCT/JP2017/012826 JP2017012826W WO2017170649A1 WO 2017170649 A1 WO2017170649 A1 WO 2017170649A1 JP 2017012826 W JP2017012826 W JP 2017012826W WO 2017170649 A1 WO2017170649 A1 WO 2017170649A1
Authority
WO
WIPO (PCT)
Prior art keywords
extraction tank
extraction
refrigerator
pressure
refrigerant
Prior art date
Application number
PCT/JP2017/012826
Other languages
French (fr)
Japanese (ja)
Inventor
良枝 栂野
和島 一喜
直也 三吉
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN201780013481.1A priority Critical patent/CN108700355B/en
Priority to US16/078,800 priority patent/US20190056159A1/en
Publication of WO2017170649A1 publication Critical patent/WO2017170649A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/04Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases
    • F25B43/043Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for withdrawing non-condensible gases for compression type systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/006Details for charging or discharging refrigerants; Service stations therefor characterised by charging or discharging valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an extraction device for extracting non-condensable gas such as air that has entered a refrigerator, a refrigerator equipped with the extraction device, and a control method for the extraction device.
  • refrigerant so-called low-pressure refrigerant
  • non-condensable gas such as air enters the machine from the negative pressure part and passes through the compressor, etc.
  • the refrigerant condensing performance in the condenser is hindered, and the performance as a cooling / heating device is lowered. For this reason, a certain performance is ensured by extracting air from the refrigerator and discharging non-condensable gas outside the apparatus.
  • the non-condensable gas is drawn into the extraction device together with the refrigerant gas, and the refrigerant is cooled and condensed, whereby the non-condensable gas is separated from the refrigerant and discharged to the outside by an exhaust pump or the like (Patent Document 1 below) And 2).
  • the present invention has been made in view of such circumstances, and an extraction device capable of appropriately determining the timing of operation stop and preventing excessive operation continuation, a refrigerator equipped with the extraction device, and a control method for the extraction device The purpose is to provide.
  • an extraction device includes an extraction pipe that extracts a mixed gas containing refrigerant and non-condensable gas from a refrigerator, an extraction tank that stores the mixed gas extracted from the extraction pipe, A cooler that cools the inside of the extraction tank to condense the refrigerant in the mixed gas, a drain pipe that discharges the liquid refrigerant in the extraction tank to the refrigerator, and a fault in the mixed gas in the extraction tank.
  • Exhaust piping for discharging condensed gas to the outside, and control for stopping the operation of the extraction device when the amount of non-condensable gas discharged from the exhaust piping exceeds the amount of non-condensable gas entering the refrigerator Department.
  • the pressure in the bleed tank is reduced, so that a differential pressure with the refrigerant system of the refrigerator (for example, a condenser) is formed, and the chiller is connected to the bleed tank through the bleed pipe.
  • a mixed gas containing refrigerant and non-condensable gas is drawn.
  • the refrigerant in the mixed gas is condensed by the cooler to become a liquid refrigerant and is accumulated below the extraction tank.
  • the non-condensable gas in the mixed gas introduced into the extraction tank remains in the extraction tank as a gas without being condensed even when cooled by the cooler.
  • the refrigerant and the non-condensable gas are separated in the extraction tank.
  • the separated non-condensable gas is discharged to the outside through the exhaust pipe.
  • the liquid refrigerant accumulated in the extraction tank is discharged to a refrigerator (for example, an evaporator) through a drain pipe and reused in the refrigerator.
  • a refrigerator for example, an evaporator
  • the bleeder is stopped. It is possible to prevent excessive continuation of operation.
  • the control unit includes a non-condensable gas density in the bleed tank obtained from a temperature and a pressure in the bleed tank, and an exhaust gas amount from the exhaust pipe. From the above, the amount of non-condensable exhaust gas is obtained.
  • the pressure and temperature in the extraction tank have a saturation relationship.
  • the extraction tank pressure increases by the partial pressure of the non-condensable gas in accordance with the non-condensable gas density included.
  • the non-condensable gas density was obtained from the temperature and pressure in the extraction tank. That is, the partial pressure of the refrigerant in the extraction tank is obtained from the temperature in the extraction tank, and the partial pressure of the non-condensable gas is obtained by subtracting the partial pressure of the refrigerant from the pressure in the extraction tank.
  • the non-condensable gas density can be obtained from the partial pressure of the non-condensable gas using the equation of state of the ideal gas. If the non-condensable gas density is obtained, the exhaust non-condensable gas amount can be obtained using the exhaust gas amount from the exhaust pipe.
  • the amount of exhaust gas can be obtained, for example, from the differential pressure of the exhaust pipe during exhaust and the exhaust time, or can be obtained from the internal volume of the extraction tank and the pressure difference before and after exhaust.
  • control unit obtains the intrusion non-condensable gas amount based on a differential pressure between the pressure in the refrigerant system of the refrigerator and the pressure outside the refrigerator.
  • control unit is configured to perform the bleeder when the increase in the partial pressure of the non-condensable gas in the bleed tank within a predetermined time is equal to or less than a set value. Stop the operation.
  • the increase in the partial pressure of the non-condensable gas in the extraction tank is equal to or less than the set value, it can be determined that the non-condensable gas in the extraction tank is substantially exhausted, so the extraction device is stopped.
  • a refrigerator according to an aspect of the present invention includes the extraction device described in any of the above.
  • a refrigerator that can prevent excessive operation of the extraction device can be provided.
  • the control method of the extraction apparatus which concerns on 1 aspect of this invention is the extraction piping which extracts the mixed gas containing a refrigerant
  • a cooler that cools the inside of the extraction tank and condenses the refrigerant in the mixed gas
  • a drain pipe that discharges the liquid refrigerant in the extraction tank to the refrigerator, and the mixed gas in the extraction tank
  • FIG. 1 shows a schematic configuration of a refrigerator using the extraction device of the present invention.
  • the refrigerator 1 is a turbo refrigerator, and includes a turbo compressor 11 that compresses the refrigerant, and a condenser 12 that condenses the high-temperature and high-pressure gas refrigerant compressed by the compressor 11.
  • a low-pressure refrigerant such as HFO-1233zd (E) is used, and a low-pressure part such as an evaporator becomes an atmospheric pressure or lower during operation.
  • the compressor 11 is a multistage centrifugal compressor driven by an inverter motor 20.
  • the output of the inverter motor 20 is controlled by the control device 16.
  • the condenser 12 is, for example, a shell and tube heat exchanger.
  • the condenser 12 is inserted with a cooling water heat transfer tube 12a through which cooling water for cooling the refrigerant flows.
  • a cooling water return pipe 22a and a cooling water return pipe 22b are connected to the cooling water heat transfer pipe 12a.
  • the cooling water led to the condenser 12 via the cooling water return pipe 22a is led to a cooling tower (not shown) via the cooling water return pipe 22b and exhausted to the outside, and then is discharged to the outside via the cooling water return pipe 22a. It is led to the condenser 12 again.
  • the cooling water delivery pipe 22a is provided with a cooling water pump (not shown) for supplying cooling water and a cooling water inlet temperature sensor 23a for measuring the cooling water inlet temperature Tcin.
  • the cooling water return pipe 22b is provided with a cooling water outlet temperature sensor 23b for measuring the cooling water outlet temperature Tcout and a cooling water flow rate sensor 24 for measuring the cooling water flow rate F2.
  • the condenser 12 is provided with a condenser pressure sensor 25 that measures the condensation pressure Pc in the condenser 12. The measured values of these sensors 23 a, 23 b, 24, and 25 are transmitted to the control device 16.
  • the expansion valve 13 is electrically operated, and the opening degree is set by the control device 16.
  • the evaporator 14 is a heat exchanger of, for example, a shell and tube type.
  • the evaporator 14 is inserted with a cold water heat transfer tube 14a through which cold water that exchanges heat with the refrigerant flows.
  • a chilled water return pipe 32a and a chilled water return pipe 32b are connected to the chilled water heat transfer pipe 14a.
  • the chilled water led to the evaporator 14 via the chilled water outgoing pipe 32a is cooled to a rated temperature (for example, 7 ° C.), and is led to an external load (not shown) via the chilled water return pipe 32b to supply cold heat. It is again led to the evaporator 14 via the forward piping 32a.
  • the chilled water delivery pipe 32a is provided with a chilled water pump (not shown) for feeding chilled water and a chilled water inlet temperature sensor 33a for measuring the chilled water inlet temperature Tin.
  • the cold water return pipe 32b is provided with a cold water outlet temperature sensor 33b for measuring the cold water outlet temperature Tout and a cold water flow rate sensor 34 for measuring the cold water flow rate F1.
  • the evaporator 14 is provided with an evaporator pressure sensor 35 that measures the evaporation pressure Pe in the evaporator 14. The measurement values of these sensors 33a, 33b, 34, and 35 are transmitted to the control device 16.
  • a bleeder 15 is provided between the condenser 12 and the evaporator 14.
  • the extraction device 15 is connected to an extraction pipe 17 that guides a mixed gas containing refrigerant and non-condensable gas (air) from the condenser 12.
  • the extraction pipe 17 is provided with an extraction solenoid valve (extraction valve) 18 for controlling the flow and blocking of the mixed gas.
  • the opening and closing of the extraction solenoid valve 18 is controlled by the control device 16.
  • a drainage pipe 19 that discharges the liquid refrigerant condensed in the extraction device 15 to the evaporator 14 is connected to the extraction device 15.
  • the drainage pipe 19 is provided with a drainage solenoid valve (drainage valve) 21 for controlling the flow and blocking of the liquid refrigerant. Opening and closing of the drainage electromagnetic valve 21 is controlled by the control device 16.
  • FIG. 2 shows the configuration around the extraction device 15.
  • the bleeder 15 is provided with a bleed tank 40 for storing a mixed gas containing a refrigerant led from the bleed pipe 17 and a non-condensable gas.
  • the extraction tank 40 is provided with a cooler 42 that cools the inside of the extraction tank 40 and a heater 44 that heats the inside of the extraction tank 40.
  • the cooler 42 includes a Peltier element, and is provided so that the cooling heat transfer surface 42 a cooled by the Peltier element is exposed in the extraction tank 40.
  • the cooling heat transfer surface 42 a is provided along the vertical direction of the extraction tank 40.
  • a power supply unit (not shown) is connected to the Peltier element of the cooler 42. By controlling the current flowing through the power supply unit by the control device 16, the start and stop of the cooler 42 can be switched.
  • the Peltier element of the cooler 42 is provided with a heat radiating portion (not shown) for releasing the heat absorbed by the cooling heat transfer surface 42a to the outside.
  • the heat radiating part is provided with a water cooling device for allowing cooling water to flow, and radiates heat at a constant temperature.
  • a heat radiating part is good also as an air cooling type which is not provided with a water cooling device.
  • the heater 44 is, for example, an electric heater, and is attached to the bottom of the extraction tank 40. The start and stop of the heater 44 are controlled by the control device 16.
  • the extraction tank 40 is provided with an extraction tank pressure sensor 46 for detecting the pressure Pt in the extraction tank 40 and an extraction tank temperature sensor 48 for detecting the temperature Tt in the extraction tank 40.
  • the measured values of these sensors 46 and 48 are transmitted to the control device 16.
  • An exhaust pipe 50 for discharging gas (mainly non-condensable gas) in the extraction tank 40 is connected to the upper portion of the extraction tank 40.
  • the exhaust pipe 50 is provided with an exhaust solenoid valve (exhaust valve) 52 for controlling the flow and shutoff of gas. The opening and closing of the exhaust electromagnetic valve 52 is controlled by the control device 16.
  • the control device 16 has a function of controlling the number of revolutions of the compressor 11 based on a measured value received from each sensor, a load factor sent from the host system, and a control function of the bleeder 15. Yes.
  • the control device 16 includes, for example, a CPU (Central Processing Unit) (not shown), a memory such as a RAM (Random Access Memory), and a computer-readable recording medium.
  • a CPU Central Processing Unit
  • a memory such as a RAM (Random Access Memory)
  • a computer-readable recording medium A series of processing steps for realizing various functions to be described later are recorded in a recording medium or the like in the form of a program, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. Thus, various functions described later are realized.
  • the refrigerator 1 described above uses a low-pressure refrigerant, air that is a non-condensable gas enters the refrigerator 1 from the negative pressure portion during operation.
  • the negative pressure portion include a region where the pressure is relatively low during a refrigeration cycle such as an evaporator, but the condenser 12 can also have a negative pressure in winter.
  • the air that has entered the refrigerator 1 is mainly accumulated in the condenser 12.
  • the bleeder 15 operates the air accumulated in the condenser 12 at a predetermined interval and discharges the air in the refrigerator 1 to the outside.
  • Table 1 summarizes the operating states of the Peltier element, each solenoid valve, and the like in each step described below.
  • a circle indicates ON or open, and a circle indicates OFF or closed.
  • step S1 When the refrigerator 1 is in operation and the amount of air that is non-condensable gas entering the refrigerator 1 is less than a predetermined value, the extraction device 15 is stopped (step S1). At this time, the Peltier element of the cooler 42 is turned off, the extraction solenoid valve 18 and the exhaust solenoid valve 52 are closed, the drainage solenoid valve 21 is opened, and the heater 44 is turned off.
  • step S2 calculation of the amount of air entering the refrigerant system of the refrigerator 1 is performed as follows.
  • the control device 16 obtains the condensation pressure Pc from the condenser pressure sensor 25 and the evaporation pressure Pe from the evaporator pressure sensor 35, and calculates the differential pressure between the condenser 12 and the atmospheric pressure in the evaporator 14 by the following equation.
  • Differential pressure (condenser) atmospheric pressure ⁇ condensation pressure Pc (1)
  • Differential pressure (evaporator) Atmospheric pressure-Evaporation pressure Pe (2)
  • invasion amount is calculated like the following Formula.
  • Air intrusion amount (instantaneous value) f (differential pressure) (3) That is, the air intrusion amount (instantaneous value) is a function of the differential pressure (for example, a function of a 1 ⁇ 2 power of the differential pressure), and is the sum of the air intrusion amount in the condenser 12 and the air intrusion amount in the evaporator 14.
  • the air amount (integrated value) that has entered the refrigerant system of the refrigerator 1 is calculated as a value obtained by integrating the air intrusion amount (instantaneous value) with time.
  • Air intrusion amount (integrated value) ⁇ air intrusion amount (instantaneous value) (4)
  • step S4 preparation for starting the bleeder 15 is performed (step S4). Specifically, the Peltier element of the cooler 42 is turned on, and the drainage solenoid valve 21 is closed. Thereby, the inside of the extraction tank 40 becomes a closed space, and heat is absorbed from the cooling heat transfer surface 42a by cooling by the Peltier element. Due to the heat absorption from the cooling heat transfer surface 42a, the temperature in the extraction tank 40 decreases and the pressure in the extraction tank 40 also decreases.
  • step S5 the value obtained by subtracting the extraction tank pressure Pt obtained by the extraction tank pressure sensor 46 from the condensation pressure Pc obtained by the condenser pressure sensor 25 exceeds the set value (step S5), the extraction electromagnetic valve 18 is opened. (Step S6).
  • the mixed gas containing the refrigerant and the air flows into the extraction tank 40 from the condenser 12 through the extraction pipe 17 according to the differential pressure between the condenser 12 and the extraction tank 40. Flows in.
  • the refrigerant is cooled to the condensation temperature or lower and liquefied by cooling from the cooling heat transfer surface 42a.
  • the air which is a non-condensable gas, stays in the extraction tank 40 in a gas state without being condensed even by cooling from the cooling heat transfer surface 42a.
  • the level of the liquid refrigerant condensed in the extraction tank 40 and accumulated below the extraction tank 40 is detected by two methods.
  • step S7 Liquid level detection by pressure change (step S7)] As shown in step S7, when the value obtained by subtracting the extraction tank pressure Pt obtained by the extraction tank pressure sensor 46 from the condensation pressure Pc obtained by the condenser pressure sensor 25 exceeds the set value, the extraction tank 40 It is determined that the liquid level of the liquid refrigerant has increased. This set value is determined in advance by a test or the like.
  • the cooling heat transfer surface 42a Since the cooling heat transfer surface 42a is installed in the extraction tank 40 in the height direction (see FIG. 2), when the liquid level of the liquid refrigerant accumulated below the extraction tank 40 rises, the cooling heat transfer surface The surface 42a is submerged from below with the liquid refrigerant. When the cooling heat transfer surface 42a is submerged by the liquid refrigerant, the heat transfer area for cooling the gas is reduced, and the condensing capacity is reduced. When the condensing capacity decreases, the pressure Pt in the extraction tank 40 increases, and the differential pressure from the condensing pressure Pc of the condenser 12 decreases. As described above, when the inside of the extraction tank 40 is cooled, the pressure in the extraction tank 40 is reduced.
  • the refrigerant condensation amount is calculated as shown in step S8.
  • the temperature in the extraction tank 40 is obtained.
  • the extraction tank temperature Tt is obtained by the extraction tank temperature sensor 48.
  • the extraction tank temperature may be calculated from the extraction tank pressure Pt obtained by the extraction tank pressure sensor 46.
  • the saturation temperature obtained from the extraction tank pressure Pt is set as the extraction tank temperature.
  • the refrigerant condensation amount (instantaneous value) is obtained from the cooling capacity of the cooler 42 and the latent heat of condensation of the refrigerant.
  • the cooling capacity of the Peltier element used in the cooler 42 is determined by the difference between the heat absorption side temperature and the heat radiation temperature and the current flowing through the Peltier element. If the heat radiation temperature (cooling water temperature or outside air temperature) and the current flowing through the Peltier element are constant, the cooling capacity Qp_W [W] is calculated as a function of the heat absorption side temperature ( ⁇ the extraction tank temperature Tt) as follows: .
  • G_in_ref Qp_W / Q_LH ⁇ 3600/10 3 (7)
  • the refrigerant condensation amount (integrated value) is obtained by integrating the refrigerant condensation amount (instantaneous value) obtained by the above equation (7) with time.
  • Refrigerant condensation amount (integrated value) ⁇ refrigerant condensation amount (instantaneous value) (8)
  • step S9 When the refrigerant condensation amount (integrated value) exceeds the set value (step S9), it is determined that the liquid level of the liquid refrigerant in the extraction tank 40 has risen, and the process proceeds to step S10 to drain the liquid.
  • step S10 the drain solenoid valve 21 is opened, and the liquid refrigerant in the extraction tank 40 is discharged.
  • the liquid refrigerant in the extraction tank 40 is guided to the evaporator 14 through the drain pipe 19.
  • step S10 After a certain period of time has elapsed since the drainage solenoid valve 21 was opened in step S10, the drainage solenoid valve 21 is closed and the drainage is terminated (step S11).
  • This predetermined time is set in advance by a test before the refrigerator 1 is installed.
  • step S12 Detection by pressure change (step S12)
  • the liquid refrigerant is discharged from the extraction tank 40 in step S10, the liquid immersion of the cooling heat transfer surface 42a of the cooler 42 is eliminated and the cooling capacity is restored, so that the pressure in the extraction tank 40 decreases.
  • air, which is a non-condensable gas stays in the extraction tank 40 in a predetermined amount or more, the air covers the cooling heat transfer surface 42a and the heat transfer performance is hindered.
  • step S12 when the difference value obtained by subtracting the extraction tank pressure Pt obtained by the extraction tank pressure sensor 46 from the condensation pressure Pc obtained by the condenser pressure sensor 25 in step S12 exceeds the set value, that is, When the extraction tank pressure Pt does not fall below the predetermined value, it is determined that the air stays in the extraction tank 40 at a predetermined amount or more.
  • the process proceeds to step S15 and preparation for exhaust is performed.
  • step S13 the amount of air in the extraction tank (integrated value), which is the amount of air remaining in the extraction tank 40, is obtained by calculation. Specifically, it is calculated based on the air intrusion amount (integrated value) calculated in step S2 described above.
  • step S14 the amount of air in the extraction tank (integrated value) exceeds the set value (step S14)
  • step S15 the exhaust gas is exhausted. Make preparations.
  • step S15 the gas in the extraction tank 40 is prepared to be exhausted. Specifically, the Peltier element of the cooler 42 is turned off, the extraction solenoid valve 18 is closed, and the heater 44 is turned on. As a result, the internal temperature rises after the inside of the extraction tank 40 is sealed, so that the pressure in the extraction tank 40 increases. Then, when the bleed tank pressure Pt obtained from the bleed tank pressure sensor 46 increases and exceeds a set value (atmospheric pressure + ⁇ ) that is higher than the atmospheric pressure by a predetermined value ⁇ (step S16), the process proceeds to step S17. Proceed and start exhausting.
  • a set value atmospheric pressure + ⁇
  • step S17 the exhaust solenoid valve 52 is opened and the heater 44 is turned off. Thereby, the gas which has the air in the extraction tank 40 as a main component through the exhaust pipe 50 is released to the outside (atmosphere).
  • the reason why the heater 44 is turned off at this time is that the refrigerant remaining in the extraction tank 40 is not discharged to the outside more than necessary.
  • step S18 When the pressure in the extraction tank 40 falls below the set value (atmospheric pressure + ⁇ ) that is higher by the predetermined value ⁇ than the atmospheric pressure (step S18), the process proceeds to step S19.
  • the reason why this set value is set to a pressure higher than the atmospheric pressure by a predetermined value ⁇ is that if the exhaust electromagnetic valve 52 is opened until the atmospheric pressure falls below the atmospheric pressure, the atmosphere flows backward and is introduced into the extraction tank 40. This is to prevent it.
  • step S19 the exhaust solenoid valve 52 is closed and the exhaust is terminated.
  • step S20 an exhaust air amount (integrated value) that is the total amount of air exhausted to the outside (atmosphere) via the exhaust pipe 50 is calculated. Specifically, it is as follows. First, in order to obtain the air density ⁇ _t_air [kg / m 3 ] in the extraction tank 40, the refrigerant saturation pressure Pt_ref [MPa (abs)] in the extraction tank 40 is calculated. The refrigerant saturation pressure Pt_ref in the extraction tank 40 is a saturation pressure corresponding to the temperature Tt in the extraction tank 40.
  • the relational expression between the saturation pressure and the saturation temperature can be defined as the following expression as a function of the saturation temperature for each refrigerant.
  • Pt_ref f (Tt) (9)
  • the air partial pressure Pt_air [MPa (abs)] in the bleed tank 40 can be calculated as follows using the bleed tank pressure Pt (total pressure).
  • Pt_air Pt ⁇ Pt_ref (10) Therefore, the air mass w_t_air [kg] in the extraction tank 40 is expressed by the following equation from the ideal gas state equation.
  • w_t_air Pt_air ⁇ Vt ⁇ M_air / (R ⁇ Tt) (11)
  • Vt is the volume [m 3 ] of the extraction tank 40
  • M_air is the molecular weight [kg / mol] of air
  • R is a gas constant
  • Tt is the temperature [K] in the extraction tank 40. Therefore, the air density ⁇ _t_air in the extraction tank 40 is expressed by the following formula.
  • ⁇ _t_air w_t_air / Vt (12)
  • the exhaust air amount w_ex_air [kg] is calculated.
  • the exhaust gas volume V_ex [m 3 ] is estimated from the differential pressure between the pressure Pt in the extraction tank 40 and the atmospheric pressure Pa and the time Time_ex [sec] during which the exhaust electromagnetic valve 52 is open in step S17.
  • V_ex f (Pt ⁇ Pa, Time_ex) (13)
  • the exhaust gas volume V_ex may be obtained from the volume Vt of the extraction tank 40 and the pressure difference before and after the exhaust, instead of the above equation (13).
  • the exhaust air amount w_ex_air obtained by the above equation (14) is a value per exhaust, when the exhaust is performed a plurality of times, the exhaust air amount w_ex_air is multiplied by the exhaust number n.
  • the obtained value is the exhaust air amount (integrated value).
  • Exhaust air amount (integrated value) w_ex_air ⁇ n (15)
  • step S21 it is determined whether or not the exhaust air amount (integrated value) exceeds the intrusion air amount (integrated value) obtained in step S2. If the exhausted air amount (integrated value) exceeds the intruding air amount (integrated value), it is determined that exhaust has been sufficiently performed, and the process proceeds to step S23, where the extraction device 15 is stopped.
  • step S22 the partial pressure of air in the extraction tank 40 within a predetermined time period is set. If the increase in Pt_air (see equation (10)) is equal to or less than the set value, the process proceeds to step S23, and the bleeder 15 is stopped.
  • This step S22 sets an increase in the partial pressure of air in the extraction tank 40 even when the calculation of the exhaust air amount (integrated value) or the intrusion air amount (integrated value) is inaccurate for some reason. This is because it can be determined that the air in the extraction tank 40 is substantially exhausted if the value is less than or equal to the value.
  • step S23 for stopping the bleeder 15 the drain solenoid valve 21 is opened. Thereby, the inside of the extraction tank 40 is communicated with the evaporator 14. This is to prevent the pressure inside the extraction tank 40 from increasing due to the influence of the outside air temperature.
  • steps S20 and S21 when the amount of exhaust air (integrated value) exhausted from the exhaust pipe 50 exceeds the amount of intruded air (integrated value) that has entered the refrigerator 1, the bleeder 15 is turned on. Since the operation is stopped, it is possible to appropriately determine the operation stop timing and to prevent the bleeder 15 from continuing to operate excessively.
  • the pressure Pt and the temperature Tt in the extraction tank 40 have a saturation relationship.
  • the bleed tank pressure Pt increases by the partial pressure of air according to the air density contained.
  • the air density is obtained from the temperature Tt and the pressure Pt in the extraction tank 40 (see formula (9) to formula (12)).
  • the air density can be obtained by calculation only by obtaining the temperature Tt and the pressure Pt of the extraction tank 40, and thus the exhaust air amount can be obtained.
  • step S22 in consideration of the case where the calculation of the exhaust air amount (integrated value) or the intrusion air amount (integrated value) is inaccurate for some reason, the exhaust air amount ( Even if the integrated value) does not exceed the intrusion air amount (integrated value), the air in the extraction tank 40 is substantially exhausted if the increase in the air partial pressure in the extraction tank 40 is equal to or less than the set value. It was decided that the bleeder was stopped. Thereby, excessive operation continuation of the bleeder 15 can be prevented.
  • the structure of the refrigerator 1 shown in FIG. 1 is an example, and is not limited to this structure.
  • it is good also as a structure which replaces with the water-cooled condenser 12 and arrange
  • the refrigerator 1 is not limited to the case having only a cooling function, for example, it may have only a heat pump function or both a cooling function and a heat pump function.
  • Peltier element is used as a cooling device used for the cooler 42, the present invention is not limited to this, and any other device can be used as long as the inside of the extraction tank 40 can be cooled below the condensation temperature of the refrigerant.
  • the cooling device may be used.
  • an electric heater is used as the heater 44, the present invention is not limited to this, and a heat transfer tube through which a high-temperature refrigerant flows is used as long as the inside of the extraction tank 40 can be heated.
  • Other types of heaters such as a heater may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

A purging device equipped with: a purging pipe (17) for purging a gas mixture containing a coolant and a non-condensable gas from a refrigerator; a purging tank (40) for storing the gas mixture purged from the purging pipe (17); a cooling device (42) which cools the interior of the purging tank (40) and condenses the coolant in the gas mixture; a drainage pipe (19) for discharging the liquid coolant inside the purging tank (40) to the refrigerator; an exhaust pipe (50) for discharging the non-condensable gas in the gas mixture inside the purging tank (40) to the exterior; and a control unit (16) which stops operation of the purging device (15) when the discharged non-condensable gas amount discharged from the exhaust pipe (50) exceeds the introduced non-condensable gas amount introduced into the refrigerator.

Description

抽気装置およびこれを備えた冷凍機ならびに抽気装置の制御方法Bleed device, refrigerator equipped with the same, and control method of bleed device
 本発明は、冷凍機に侵入した空気等の不凝縮ガスを抽気する抽気装置およびこれを備えた冷凍機ならびに抽気装置の制御方法に関するものである。 The present invention relates to an extraction device for extracting non-condensable gas such as air that has entered a refrigerator, a refrigerator equipped with the extraction device, and a control method for the extraction device.
 運転中の作動圧力が機内で一部負圧となる冷媒(いわゆる低圧冷媒)を用いる冷熱機器においては、負圧部から空気等の不凝縮ガスが機内に侵入し、圧縮機等を通った後の凝縮器に滞留する。凝縮器に不凝縮ガスが滞留すると凝縮器における冷媒の凝縮性能が阻害され、冷熱機器としての性能が低下する。このため、冷凍機から抽気を行い、不凝縮ガスを機外へ排出することにより、一定の性能を確保するようにしている。抽気によって、不凝縮ガスは冷媒ガスとともに抽気装置内に引込まれ、冷媒が冷却され凝縮することにより、不凝縮ガスが冷媒から分離され、排気ポンプ等で機外へ排出される(下記特許文献1及び2参照)。 In refrigeration equipment that uses refrigerant (so-called low-pressure refrigerant) whose operating pressure during operation is partially negative in the machine, after non-condensable gas such as air enters the machine from the negative pressure part and passes through the compressor, etc. In the condenser. If the non-condensable gas stays in the condenser, the refrigerant condensing performance in the condenser is hindered, and the performance as a cooling / heating device is lowered. For this reason, a certain performance is ensured by extracting air from the refrigerator and discharging non-condensable gas outside the apparatus. By extraction, the non-condensable gas is drawn into the extraction device together with the refrigerant gas, and the refrigerant is cooled and condensed, whereby the non-condensable gas is separated from the refrigerant and discharged to the outside by an exhaust pump or the like (Patent Document 1 below) And 2).
特開2001-50618号公報Japanese Patent Laid-Open No. 2001-50618 特開2006-38346号公報JP 2006-38346 A
 しかし、抽気装置は、運転停止のタイミングを適切に行なわずに過剰に運転継続が行われると、冷凍機から冷媒を過剰に抽気してしまい冷凍機の能力を低下させてしまうおそれがある。 However, if the operation of the bleeder is continued excessively without properly performing the operation stop timing, the refrigerant is excessively extracted from the chiller, which may reduce the capacity of the chiller.
 本発明は、このような事情に鑑みてなされたものであって、運転停止のタイミングを適切に判断して過剰な運転継続を防止できる抽気装置およびこれを備えた冷凍機ならびに抽気装置の制御方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an extraction device capable of appropriately determining the timing of operation stop and preventing excessive operation continuation, a refrigerator equipped with the extraction device, and a control method for the extraction device The purpose is to provide.
 上記課題を解決するために、本発明の抽気装置およびこれを備えた冷凍機ならびに抽気装置の制御方法は以下の手段を採用する。
 すなわち、本発明の一態様にかかる抽気装置は、冷凍機から冷媒と不凝縮ガスを含む混合ガスを抽気する抽気配管と、前記抽気配管から抽気された前記混合ガスを貯留する抽気タンクと、前記抽気タンク内を冷却して前記混合ガス中の冷媒を凝縮させる冷却器と、前記抽気タンク内の液冷媒を前記冷凍機へ排出する排液配管と、前記抽気タンク内の前記混合ガス中の不凝縮ガスを外部へ排出する排気配管と、前記排気配管から排出した排出不凝縮ガス量が、前記冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、当該抽気装置の動作を停止する制御部とを備えている。
In order to solve the above-mentioned problems, the bleeder of the present invention, the refrigerator equipped with the bleeder, and the control method of the bleeder employ the following means.
That is, an extraction device according to an aspect of the present invention includes an extraction pipe that extracts a mixed gas containing refrigerant and non-condensable gas from a refrigerator, an extraction tank that stores the mixed gas extracted from the extraction pipe, A cooler that cools the inside of the extraction tank to condense the refrigerant in the mixed gas, a drain pipe that discharges the liquid refrigerant in the extraction tank to the refrigerator, and a fault in the mixed gas in the extraction tank. Exhaust piping for discharging condensed gas to the outside, and control for stopping the operation of the extraction device when the amount of non-condensable gas discharged from the exhaust piping exceeds the amount of non-condensable gas entering the refrigerator Department.
 冷却器によって抽気タンク内を冷却すると、抽気タンク内の圧力が減少するので、冷凍機の冷媒系統(例えば凝縮器)との差圧が形成され、抽気配管を介して冷凍機から抽気タンクへと冷媒と不凝縮ガスを含む混合ガスが引き込まれる。抽気タンク内では、冷却器によって混合ガス中の冷媒が凝縮されて液冷媒となり抽気タンクの下方に蓄積される。一方、抽気タンク内に導かれた混合ガス中の不凝縮ガスは冷却器によって冷却されても凝縮されずにガスのまま抽気タンク内に滞留する。これにより、抽気タンク内で冷媒と不凝縮ガスが分離される。分離された不凝縮ガスは、排気配管を介して外部へと放出される。抽気タンク内に蓄積された液冷媒は、排液配管を介して冷凍機(例えば蒸発器)へと排出され、冷凍機にて再利用される。
 排気配管から排出した排出不凝縮ガス量が、冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、抽気装置を停止することとしたので、運転停止のタイミングを適切に判断して抽気装置の過剰な運転継続を防止することができる。
When the inside of the bleed tank is cooled by the cooler, the pressure in the bleed tank is reduced, so that a differential pressure with the refrigerant system of the refrigerator (for example, a condenser) is formed, and the chiller is connected to the bleed tank through the bleed pipe. A mixed gas containing refrigerant and non-condensable gas is drawn. In the extraction tank, the refrigerant in the mixed gas is condensed by the cooler to become a liquid refrigerant and is accumulated below the extraction tank. On the other hand, the non-condensable gas in the mixed gas introduced into the extraction tank remains in the extraction tank as a gas without being condensed even when cooled by the cooler. Thereby, the refrigerant and the non-condensable gas are separated in the extraction tank. The separated non-condensable gas is discharged to the outside through the exhaust pipe. The liquid refrigerant accumulated in the extraction tank is discharged to a refrigerator (for example, an evaporator) through a drain pipe and reused in the refrigerator.
When the amount of non-condensable gas discharged from the exhaust pipe exceeds the amount of non-condensable gas that has entered the refrigerator, the bleeder is stopped. It is possible to prevent excessive continuation of operation.
 さらに、本発明の一態様に係る抽気装置では、前記制御部は、前記抽気タンク内の温度および圧力から得られた該抽気タンク内の不凝縮ガス密度と、前記排気配管からの排出ガス量とから、前記排出不凝縮ガス量を得る。 Furthermore, in the bleeder according to one aspect of the present invention, the control unit includes a non-condensable gas density in the bleed tank obtained from a temperature and a pressure in the bleed tank, and an exhaust gas amount from the exhaust pipe. From the above, the amount of non-condensable exhaust gas is obtained.
 抽気タンク内に冷媒のみが存在する場合には、抽気タンク内の圧力と温度は飽和の関係となる。しかし、抽気タンク内に不凝縮ガスが含まれている場合には、含まれる不凝縮ガス密度に応じて不凝縮ガスの分圧分だけ抽気タンク圧力は高くなる。これを利用して、抽気タンク内の温度および圧力から不凝縮ガス密度を得ることとした。すなわち、抽気タンク内の温度から抽気タンク内の冷媒の分圧を得て、抽気タンク内の圧力から冷媒の分圧を引くことにより、不凝縮ガスの分圧が得られる。そして、不凝縮ガスの分圧から、理想気体の状態方程式を用いて不凝縮ガス密度を得ることができる。不凝縮ガス密度が得られれば、排気配管からの排出ガス量を用いて排出不凝縮ガス量を得ることができる。排出ガス量は、例えば、排気時の排気配管の差圧と排気時間から求めることができ、または、抽気タンクの内容積と排気前後の圧力差によって求めることができる。 When there is only refrigerant in the extraction tank, the pressure and temperature in the extraction tank have a saturation relationship. However, when non-condensable gas is contained in the extraction tank, the extraction tank pressure increases by the partial pressure of the non-condensable gas in accordance with the non-condensable gas density included. By utilizing this, the non-condensable gas density was obtained from the temperature and pressure in the extraction tank. That is, the partial pressure of the refrigerant in the extraction tank is obtained from the temperature in the extraction tank, and the partial pressure of the non-condensable gas is obtained by subtracting the partial pressure of the refrigerant from the pressure in the extraction tank. And the non-condensable gas density can be obtained from the partial pressure of the non-condensable gas using the equation of state of the ideal gas. If the non-condensable gas density is obtained, the exhaust non-condensable gas amount can be obtained using the exhaust gas amount from the exhaust pipe. The amount of exhaust gas can be obtained, for example, from the differential pressure of the exhaust pipe during exhaust and the exhaust time, or can be obtained from the internal volume of the extraction tank and the pressure difference before and after exhaust.
 さらに、本発明の一態様に係る抽気装置では、前記制御部は、前記冷凍機の冷媒系統内の圧力と冷凍機外の圧力との差圧に基づいて、前記侵入不凝縮ガス量を得る。 Furthermore, in the bleeder according to one aspect of the present invention, the control unit obtains the intrusion non-condensable gas amount based on a differential pressure between the pressure in the refrigerant system of the refrigerator and the pressure outside the refrigerator.
 冷凍機の冷媒系統内の圧力が冷凍機外の圧力よりも低くなった場合に、不凝縮ガスが冷凍機の冷媒系統内に侵入する。そこで、冷凍機の冷媒系統内の圧力と冷凍機外の圧力との差圧に基づいて、侵入不凝縮ガス量を得ることとした。 When the pressure in the refrigerant system of the refrigerator becomes lower than the pressure outside the refrigerator, non-condensable gas enters the refrigerant system of the refrigerator. Therefore, the amount of invasion non-condensable gas is obtained based on the pressure difference between the pressure in the refrigerant system of the refrigerator and the pressure outside the refrigerator.
 さらに、本発明の一態様に係る抽気装置では、前記制御部は、予め設定された一定時間内における前記抽気タンク内の不凝縮ガスの分圧の上昇が設定値以下の場合に、当該抽気装置の動作を停止する。 Furthermore, in the bleeder according to an aspect of the present invention, the control unit is configured to perform the bleeder when the increase in the partial pressure of the non-condensable gas in the bleed tank within a predetermined time is equal to or less than a set value. Stop the operation.
 抽気タンク内の不凝縮ガスの分圧の上昇が設定値以下であれば、抽気タンク内の不凝縮ガスは略排気されていると判断できるので、抽気装置を停止することとした。 If the increase in the partial pressure of the non-condensable gas in the extraction tank is equal to or less than the set value, it can be determined that the non-condensable gas in the extraction tank is substantially exhausted, so the extraction device is stopped.
 また、本発明の一態様に係る冷凍機は、上記のいずれかに記載の抽気装置を備えている。 Further, a refrigerator according to an aspect of the present invention includes the extraction device described in any of the above.
 上記のいずれかの抽気装置を備えているので、抽気装置の過剰な運転継続を防止できる冷凍機を提供することができる。 Since any one of the above extraction devices is provided, a refrigerator that can prevent excessive operation of the extraction device can be provided.
 また、本発明の一態様に係る抽気装置の制御方法は、冷凍機から冷媒と不凝縮ガスを含む混合ガスを抽気する抽気配管と、前記抽気配管から抽気された前記混合ガスを貯留する抽気タンクと、前記抽気タンク内を冷却して前記混合ガス中の冷媒を凝縮させる冷却器と、前記抽気タンク内の液冷媒を前記冷凍機へ排出する排液配管と、前記抽気タンク内の前記混合ガス中の不凝縮ガスを外部へ排出する排気配管とを備えた抽気装置の制御方法であって、前記排気配管から排出した排出不凝縮ガス量が、前記冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、当該抽気装置の動作を停止することを特徴とする。 Moreover, the control method of the extraction apparatus which concerns on 1 aspect of this invention is the extraction piping which extracts the mixed gas containing a refrigerant | coolant and non-condensable gas from a refrigerator, and the extraction tank which stores the said mixed gas extracted from the said extraction piping A cooler that cools the inside of the extraction tank and condenses the refrigerant in the mixed gas, a drain pipe that discharges the liquid refrigerant in the extraction tank to the refrigerator, and the mixed gas in the extraction tank And an exhaust pipe for exhausting non-condensable gas to the outside, wherein the amount of exhausted non-condensable gas exhausted from the exhaust pipe is reduced to the amount of invading non-condensable gas that has entered the refrigerator. When it exceeds, the operation of the extraction device is stopped.
 抽気装置の運転停止のタイミングを適切に判断することにより、抽気装置の過剰な運転継続を防止することができる。 It is possible to prevent excessive operation of the bleeder from being continued by appropriately determining the timing of stopping the bleeder.
本発明の一実施形態に係る抽気装置を用いた冷凍機を示した概略構成図である。It is the schematic block diagram which showed the refrigerator using the extraction apparatus which concerns on one Embodiment of this invention. 図1の抽気装置周りを示した概略構成図である。It is the schematic block diagram which showed the bleeder periphery of FIG. 抽気装置の動作を示したフローチャートである。It is the flowchart which showed operation | movement of the extraction apparatus. 抽気装置の動作を示したフローチャートである。It is the flowchart which showed operation | movement of the extraction apparatus. 抽気装置の動作を示したフローチャートである。It is the flowchart which showed operation | movement of the extraction apparatus.
 以下に、本発明の一実施形態について、図面を参照して説明する。
 図1には、本発明の抽気装置を用いた冷凍機の概略構成が示されている。同図に示すように、冷凍機1は、ターボ冷凍機とされており、冷媒を圧縮するターボ式の圧縮機11と、圧縮機11によって圧縮された高温高圧のガス冷媒を凝縮する凝縮器12と、凝縮器12からの液冷媒を膨張させる膨張弁13と、膨張弁13によって膨張させられた液冷媒を蒸発させる蒸発器14と、冷凍機1の冷媒系統内に侵入した空気(不凝縮ガス)を大気へ放出する抽気装置15と、冷凍機1が備える各部の制御を行う制御装置(制御部)16とを主な構成として備えている。
 冷媒としては、例えばHFO-1233zd(E)といった低圧冷媒が用いられており、運転中には蒸発器等の低圧部が大気圧以下となる。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic configuration of a refrigerator using the extraction device of the present invention. As shown in the figure, the refrigerator 1 is a turbo refrigerator, and includes a turbo compressor 11 that compresses the refrigerant, and a condenser 12 that condenses the high-temperature and high-pressure gas refrigerant compressed by the compressor 11. An expansion valve 13 for expanding the liquid refrigerant from the condenser 12, an evaporator 14 for evaporating the liquid refrigerant expanded by the expansion valve 13, and air (non-condensable gas) entering the refrigerant system of the refrigerator 1 ) To the atmosphere, and a control device (control unit) 16 that controls each unit included in the refrigerator 1 as main components.
As the refrigerant, for example, a low-pressure refrigerant such as HFO-1233zd (E) is used, and a low-pressure part such as an evaporator becomes an atmospheric pressure or lower during operation.
 圧縮機11は、インバータモータ20により駆動される多段遠心圧縮機である。インバータモータ20は、制御装置16によってその出力が制御されている。 The compressor 11 is a multistage centrifugal compressor driven by an inverter motor 20. The output of the inverter motor 20 is controlled by the control device 16.
 凝縮器12は、例えばシェルアンドチューブ型とされた熱交換器とされている。凝縮器12には、冷媒を冷却するための冷却水が内部を流通する冷却水用伝熱管12aが挿通されている。冷却水用伝熱管12aには、冷却水往き配管22aと冷却水戻り配管22bとが接続されている。冷却水往き配管22aを介して凝縮器12に導かれた冷却水は、冷却水戻り配管22bを介して図示しない冷却塔に導かれ外部へと排熱した後に、冷却水往き配管22aを介して再び凝縮器12へと導かれるようになっている。
 冷却水往き配管22aには、冷却水を送水する冷却水ポンプ(図示せず)と、冷却水入口温度Tcinを計測する冷却水入口温度センサ23aとが設けられている。冷却水戻り配管22bには、冷却水出口温度Tcoutを計測する冷却水出口温度センサ23bと、冷却水流量F2を計測する冷却水流量センサ24とが設けられている。
 凝縮器12には、凝縮器12内の凝縮圧力Pcを計測する凝縮器圧力センサ25が設けられている。
 これらセンサ23a,23b,24,25の計測値は、制御装置16へと送信されるようになっている。
The condenser 12 is, for example, a shell and tube heat exchanger. The condenser 12 is inserted with a cooling water heat transfer tube 12a through which cooling water for cooling the refrigerant flows. A cooling water return pipe 22a and a cooling water return pipe 22b are connected to the cooling water heat transfer pipe 12a. The cooling water led to the condenser 12 via the cooling water return pipe 22a is led to a cooling tower (not shown) via the cooling water return pipe 22b and exhausted to the outside, and then is discharged to the outside via the cooling water return pipe 22a. It is led to the condenser 12 again.
The cooling water delivery pipe 22a is provided with a cooling water pump (not shown) for supplying cooling water and a cooling water inlet temperature sensor 23a for measuring the cooling water inlet temperature Tcin. The cooling water return pipe 22b is provided with a cooling water outlet temperature sensor 23b for measuring the cooling water outlet temperature Tcout and a cooling water flow rate sensor 24 for measuring the cooling water flow rate F2.
The condenser 12 is provided with a condenser pressure sensor 25 that measures the condensation pressure Pc in the condenser 12.
The measured values of these sensors 23 a, 23 b, 24, and 25 are transmitted to the control device 16.
 膨張弁13は、電動式とされており、制御装置16によって開度が設定されるようになっている。 The expansion valve 13 is electrically operated, and the opening degree is set by the control device 16.
 蒸発器14は、例えばシェルアンドチューブ型とされた熱交換器とされている。蒸発器14には、冷媒と熱交換する冷水が内部を流通する冷水用伝熱管14aが挿通されている。冷水用伝熱管14aには、冷水往き配管32aと冷水戻り配管32bとが接続されている。冷水往き配管32aを介して蒸発器14に導かれた冷水は、定格温度(例えば7℃)まで冷却され、冷水戻り配管32bを介して図示しない外部負荷に導かれて冷熱を供給した後に、冷水往き配管32aを介して再び蒸発器14へと導かれるようになっている。
 冷水往き配管32aには、冷水を送水する冷水ポンプ(図示せず)と、冷水入口温度Tinを計測する冷水入口温度センサ33aとが設けられている。冷水戻り配管32bには、冷水出口温度Toutを計測する冷水出口温度センサ33bと、冷水流量F1を計測する冷水流量センサ34とが設けられている。
 蒸発器14には、蒸発器14内の蒸発圧力Peを計測する蒸発器圧力センサ35が設けられている。
 これらセンサ33a,33b,34,35の計測値は、制御装置16へと送信されるようになっている。
The evaporator 14 is a heat exchanger of, for example, a shell and tube type. The evaporator 14 is inserted with a cold water heat transfer tube 14a through which cold water that exchanges heat with the refrigerant flows. A chilled water return pipe 32a and a chilled water return pipe 32b are connected to the chilled water heat transfer pipe 14a. The chilled water led to the evaporator 14 via the chilled water outgoing pipe 32a is cooled to a rated temperature (for example, 7 ° C.), and is led to an external load (not shown) via the chilled water return pipe 32b to supply cold heat. It is again led to the evaporator 14 via the forward piping 32a.
The chilled water delivery pipe 32a is provided with a chilled water pump (not shown) for feeding chilled water and a chilled water inlet temperature sensor 33a for measuring the chilled water inlet temperature Tin. The cold water return pipe 32b is provided with a cold water outlet temperature sensor 33b for measuring the cold water outlet temperature Tout and a cold water flow rate sensor 34 for measuring the cold water flow rate F1.
The evaporator 14 is provided with an evaporator pressure sensor 35 that measures the evaporation pressure Pe in the evaporator 14.
The measurement values of these sensors 33a, 33b, 34, and 35 are transmitted to the control device 16.
 凝縮器12と蒸発器14との間には、抽気装置15が設けられている。抽気装置15には、凝縮器12から冷媒と不凝縮ガス(空気)を含む混合ガスを導く抽気配管17が接続されている。抽気配管17には、混合ガスの流通および遮断を制御するための抽気電磁弁(抽気弁)18が設けられている。この抽気電磁弁18の開閉は、制御装置16によって制御される。
 抽気装置15には、抽気装置15内で凝縮させた液冷媒を蒸発器14へ排出する排液配管19が接続されている。排液配管19には、液冷媒の流通および遮断を制御するための排液電磁弁(排液弁)21が設けられている。この排液電磁弁21の開閉は、制御装置16によって制御される。
A bleeder 15 is provided between the condenser 12 and the evaporator 14. The extraction device 15 is connected to an extraction pipe 17 that guides a mixed gas containing refrigerant and non-condensable gas (air) from the condenser 12. The extraction pipe 17 is provided with an extraction solenoid valve (extraction valve) 18 for controlling the flow and blocking of the mixed gas. The opening and closing of the extraction solenoid valve 18 is controlled by the control device 16.
A drainage pipe 19 that discharges the liquid refrigerant condensed in the extraction device 15 to the evaporator 14 is connected to the extraction device 15. The drainage pipe 19 is provided with a drainage solenoid valve (drainage valve) 21 for controlling the flow and blocking of the liquid refrigerant. Opening and closing of the drainage electromagnetic valve 21 is controlled by the control device 16.
 図2には、抽気装置15周りの構成が示されている。抽気装置15は、抽気配管17から導かれた冷媒と不凝縮ガスを含む混合ガスを貯留する抽気タンク40を備えている。抽気タンク40には、抽気タンク40内を冷却する冷却器42と、抽気タンク40内を加熱するヒータ44とが設けられている。 FIG. 2 shows the configuration around the extraction device 15. The bleeder 15 is provided with a bleed tank 40 for storing a mixed gas containing a refrigerant led from the bleed pipe 17 and a non-condensable gas. The extraction tank 40 is provided with a cooler 42 that cools the inside of the extraction tank 40 and a heater 44 that heats the inside of the extraction tank 40.
 冷却器42は、ペルチェ素子を備えており、ペルチェ素子によって冷却された冷却伝熱面42aが抽気タンク40内に露出するように設けられている。冷却伝熱面42aは、抽気タンク40の上下方向に沿って設けられている。冷却器42のペルチェ素子には、図示しない給電部が接続されている。制御装置16によって給電部に流す電流を制御することで、冷却器42の起動及び停止が切り替えられるようになっている。また、冷却器42のペルチェ素子には、冷却伝熱面42aにて吸熱した熱を外部へ放出する放熱部(図示せず)が設けられている。放熱部には、冷却水を通水させる水冷装置が設けられており、一定温度にて放熱されるようになっている。なお、放熱部は、水冷装置を備えない空冷式としても良い。 The cooler 42 includes a Peltier element, and is provided so that the cooling heat transfer surface 42 a cooled by the Peltier element is exposed in the extraction tank 40. The cooling heat transfer surface 42 a is provided along the vertical direction of the extraction tank 40. A power supply unit (not shown) is connected to the Peltier element of the cooler 42. By controlling the current flowing through the power supply unit by the control device 16, the start and stop of the cooler 42 can be switched. Further, the Peltier element of the cooler 42 is provided with a heat radiating portion (not shown) for releasing the heat absorbed by the cooling heat transfer surface 42a to the outside. The heat radiating part is provided with a water cooling device for allowing cooling water to flow, and radiates heat at a constant temperature. In addition, a heat radiating part is good also as an air cooling type which is not provided with a water cooling device.
 ヒータ44は、例えば電気式ヒータとされており、抽気タンク40の底部に取り付けられている。制御装置16によってヒータ44の起動及び停止が制御されるようになっている。 The heater 44 is, for example, an electric heater, and is attached to the bottom of the extraction tank 40. The start and stop of the heater 44 are controlled by the control device 16.
 抽気タンク40には、抽気タンク40内の圧力Ptを検出する抽気タンク用圧力センサ46と、抽気タンク40内の温度Ttを検出する抽気タンク用温度センサ48とが設けられている。これらセンサ46,48の計測値は、制御装置16へと送信されるようになっている。
 抽気タンク40の上部には、抽気タンク40内のガス(主として不凝縮ガス)を排出する排気配管50が接続されている。排気配管50には、ガスの流通および遮断を制御するための排気電磁弁(排気弁)52が設けられている。この排気電磁弁52の開閉は、制御装置16によって制御される。
The extraction tank 40 is provided with an extraction tank pressure sensor 46 for detecting the pressure Pt in the extraction tank 40 and an extraction tank temperature sensor 48 for detecting the temperature Tt in the extraction tank 40. The measured values of these sensors 46 and 48 are transmitted to the control device 16.
An exhaust pipe 50 for discharging gas (mainly non-condensable gas) in the extraction tank 40 is connected to the upper portion of the extraction tank 40. The exhaust pipe 50 is provided with an exhaust solenoid valve (exhaust valve) 52 for controlling the flow and shutoff of gas. The opening and closing of the exhaust electromagnetic valve 52 is controlled by the control device 16.
 制御装置16は、各センサから受信した測定値や上位システムから送られてくる負荷率などに基づいて圧縮機11の回転数などを制御する機能や、抽気装置15の制御機能などを有している。 The control device 16 has a function of controlling the number of revolutions of the compressor 11 based on a measured value received from each sensor, a load factor sent from the host system, and a control function of the bleeder 15. Yes.
 制御装置16は、例えば、図示しないCPU(中央演算装置)、RAM(Random Access Memory)等のメモリ、及びコンピュータ読み取り可能な記録媒体等かを備えている。後述の各種機能を実現するための一連の処理の過程は、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。 The control device 16 includes, for example, a CPU (Central Processing Unit) (not shown), a memory such as a RAM (Random Access Memory), and a computer-readable recording medium. A series of processing steps for realizing various functions to be described later are recorded in a recording medium or the like in the form of a program, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. Thus, various functions described later are realized.
 上述した冷凍機1は、低圧冷媒を用いているので、運転中に負圧部から不凝縮ガスである空気が冷凍機1内に侵入する。負圧部としては、主として蒸発器等の冷凍サイクル時に相対的に低圧となる領域が挙げられるが、冬期には凝縮器12も負圧となり得る。冷凍機1内に侵入した空気は、主に、凝縮器12内に蓄積されることになる。抽気装置15は、凝縮器12内に蓄積された空気を所定の間隔で運転させて冷凍機1内の空気を外部へと排出する。 Since the refrigerator 1 described above uses a low-pressure refrigerant, air that is a non-condensable gas enters the refrigerator 1 from the negative pressure portion during operation. Examples of the negative pressure portion include a region where the pressure is relatively low during a refrigeration cycle such as an evaporator, but the condenser 12 can also have a negative pressure in winter. The air that has entered the refrigerator 1 is mainly accumulated in the condenser 12. The bleeder 15 operates the air accumulated in the condenser 12 at a predetermined interval and discharges the air in the refrigerator 1 to the outside.
 次に、図3~図5を用いて、抽気装置15の動作について説明する。
 表1には、以下に説明する各ステップにおけるペルチェ素子、各電磁弁等の動作状態がまとめられている。下表において、○印はONまたは開を示し、●印はOFFまたは閉を示す。
Figure JPOXMLDOC01-appb-T000001
Next, the operation of the bleeder 15 will be described with reference to FIGS.
Table 1 summarizes the operating states of the Peltier element, each solenoid valve, and the like in each step described below. In the table below, a circle indicates ON or open, and a circle indicates OFF or closed.
Figure JPOXMLDOC01-appb-T000001
 冷凍機1の運転中で、不凝縮ガスである空気の冷凍機1内への侵入量が所定値未満の場合には、抽気装置15は停止状態とされる(ステップS1)。このとき、冷却器42のペルチェ素子はOFFとされ、抽気電磁弁18及び排気電磁弁52は閉とされ、排液電磁弁21は開とされ、ヒータ44はOFFとされている。 When the refrigerator 1 is in operation and the amount of air that is non-condensable gas entering the refrigerator 1 is less than a predetermined value, the extraction device 15 is stopped (step S1). At this time, the Peltier element of the cooler 42 is turned off, the extraction solenoid valve 18 and the exhaust solenoid valve 52 are closed, the drainage solenoid valve 21 is opened, and the heater 44 is turned off.
 ステップS2では、冷凍機1の冷媒系統内に侵入する空気量の計算を以下のように行う。制御装置16は、凝縮器圧力センサ25から凝縮圧力Pcと、蒸発器圧力センサ35から蒸発圧力Peとを取得し、凝縮器12と蒸発器14における大気圧との差圧の計算を下式のように行う。
  差圧(凝縮器)=大気圧―凝縮圧力Pc ・・・(1)
  差圧(蒸発器)=大気圧-蒸発圧力Pe ・・・(2)
 そして、式(1)及び式(2)に基づき、空気侵入量(瞬時値)を下式のように算出する。
  空気侵入量(瞬時値)=f(差圧) ・・・(3)
 すなわち、空気侵入量(瞬時値)は差圧の関数(例えば差圧の1/2乗の関数)とされ、凝縮器12における空気侵入量と蒸発器14における空気侵入量との和とする。
 そして、冷凍機1の冷媒系統に侵入した空気量(積算値)は、空気侵入量(瞬時値)を時間で積分した値として算出される。
  空気侵入量(積算値)=Σ空気侵入量(瞬時値) ・・・(4)
In step S2, calculation of the amount of air entering the refrigerant system of the refrigerator 1 is performed as follows. The control device 16 obtains the condensation pressure Pc from the condenser pressure sensor 25 and the evaporation pressure Pe from the evaporator pressure sensor 35, and calculates the differential pressure between the condenser 12 and the atmospheric pressure in the evaporator 14 by the following equation. Do as follows.
Differential pressure (condenser) = atmospheric pressure−condensation pressure Pc (1)
Differential pressure (evaporator) = Atmospheric pressure-Evaporation pressure Pe (2)
And based on Formula (1) and Formula (2), the air penetration | invasion amount (instantaneous value) is calculated like the following Formula.
Air intrusion amount (instantaneous value) = f (differential pressure) (3)
That is, the air intrusion amount (instantaneous value) is a function of the differential pressure (for example, a function of a ½ power of the differential pressure), and is the sum of the air intrusion amount in the condenser 12 and the air intrusion amount in the evaporator 14.
The air amount (integrated value) that has entered the refrigerant system of the refrigerator 1 is calculated as a value obtained by integrating the air intrusion amount (instantaneous value) with time.
Air intrusion amount (integrated value) = Σ air intrusion amount (instantaneous value) (4)
 上記のように算出した空気侵入量(積算値)が、予め決められた設定値を超えると(ステップS3)、抽気装置15の起動準備が行われる(ステップS4)。具体的には、冷却器42のペルチェ素子をONとし、排液電磁弁21を閉とする。これにより、抽気タンク40内は閉空間となり、ペルチェ素子による冷却によって冷却伝熱面42aから吸熱が行われる。冷却伝熱面42aからの吸熱によって、抽気タンク40内の温度が低下するとともに、抽気タンク40内の圧力も低下する。
 凝縮器圧力センサ25によって得られた凝縮圧力Pcから抽気タンク用圧力センサ46によって得られた抽気タンク圧力Ptを引いた値が設定値を超えた場合に(ステップS5)、抽気電磁弁18を開とする(ステップS6)。
When the air intrusion amount (integrated value) calculated as described above exceeds a predetermined set value (step S3), preparation for starting the bleeder 15 is performed (step S4). Specifically, the Peltier element of the cooler 42 is turned on, and the drainage solenoid valve 21 is closed. Thereby, the inside of the extraction tank 40 becomes a closed space, and heat is absorbed from the cooling heat transfer surface 42a by cooling by the Peltier element. Due to the heat absorption from the cooling heat transfer surface 42a, the temperature in the extraction tank 40 decreases and the pressure in the extraction tank 40 also decreases.
When the value obtained by subtracting the extraction tank pressure Pt obtained by the extraction tank pressure sensor 46 from the condensation pressure Pc obtained by the condenser pressure sensor 25 exceeds the set value (step S5), the extraction electromagnetic valve 18 is opened. (Step S6).
 抽気電磁弁18を開とすることによって、凝縮器12と抽気タンク40との差圧に応じて、凝縮器12から抽気配管17を介して冷媒と空気を含む混合ガスが抽気タンク40内へと流れ込む。抽気タンク40内では、冷却伝熱面42aからの冷却によって、冷媒が凝縮温度以下まで冷却されて液化される。一方、不凝縮ガスである空気は、冷却伝熱面42aからの冷却によっても凝縮されずにガス状態のまま抽気タンク40内に滞留する。
 以下に説明するように、2通りの方法で、抽気タンク40内で凝縮されて抽気タンク40の下方に蓄積された液冷媒の液位を検知する。
By opening the extraction solenoid valve 18, the mixed gas containing the refrigerant and the air flows into the extraction tank 40 from the condenser 12 through the extraction pipe 17 according to the differential pressure between the condenser 12 and the extraction tank 40. Flows in. In the extraction tank 40, the refrigerant is cooled to the condensation temperature or lower and liquefied by cooling from the cooling heat transfer surface 42a. On the other hand, the air, which is a non-condensable gas, stays in the extraction tank 40 in a gas state without being condensed even by cooling from the cooling heat transfer surface 42a.
As will be described below, the level of the liquid refrigerant condensed in the extraction tank 40 and accumulated below the extraction tank 40 is detected by two methods.
[圧力変化による液位検知(ステップS7)]
 ステップS7に示すように、凝縮器圧力センサ25によって得られた凝縮圧力Pcから抽気タンク用圧力センサ46によって得られた抽気タンク圧力Ptを引いた値が設定値を超えた場合に、抽気タンク40内における液冷媒の液位が上昇したと判断する。この設定値は、予め試験等によって決定されている。
[Liquid level detection by pressure change (step S7)]
As shown in step S7, when the value obtained by subtracting the extraction tank pressure Pt obtained by the extraction tank pressure sensor 46 from the condensation pressure Pc obtained by the condenser pressure sensor 25 exceeds the set value, the extraction tank 40 It is determined that the liquid level of the liquid refrigerant has increased. This set value is determined in advance by a test or the like.
 冷却伝熱面42aは、抽気タンク40内で高さ方向に向けて設置されている(図2参照)ので、抽気タンク40の下方に蓄積された液冷媒の液位が上昇すると、冷却伝熱面42aが液冷媒で下方から液没することになる。冷却伝熱面42aが液冷媒によって液没すると、ガスを冷却する伝熱面積が減少するため、凝縮能力が低下する。凝縮能力が低下すると、抽気タンク40内の圧力Ptが上昇して、凝縮器12の凝縮圧力Pcとの差圧が小さくなる。このように、抽気タンク40内を冷却すると抽気タンク40内の圧力が低下するが、抽気タンク40内での冷媒の凝縮が進むと、抽気タンク40に液冷媒が蓄積されて冷却伝熱面42aを液冷媒が覆うことにより、抽気タンク40内の圧力Ptが上昇するという減少が生じる。そこで、抽気タンク用圧力センサ46で抽気タンク40内の圧力Ptを計測し、計測値が下降した後に上昇して所定値以上となり凝縮圧力Pcとの差圧が設定値を超えたことを捉えて、抽気タンク40内の液冷媒の液位の上昇を検知する。
 上記のように抽気タンク40内の液冷媒の液位の上昇を検知したら、ステップS10へと進み、排液を行う。
Since the cooling heat transfer surface 42a is installed in the extraction tank 40 in the height direction (see FIG. 2), when the liquid level of the liquid refrigerant accumulated below the extraction tank 40 rises, the cooling heat transfer surface The surface 42a is submerged from below with the liquid refrigerant. When the cooling heat transfer surface 42a is submerged by the liquid refrigerant, the heat transfer area for cooling the gas is reduced, and the condensing capacity is reduced. When the condensing capacity decreases, the pressure Pt in the extraction tank 40 increases, and the differential pressure from the condensing pressure Pc of the condenser 12 decreases. As described above, when the inside of the extraction tank 40 is cooled, the pressure in the extraction tank 40 is reduced. However, when the refrigerant condenses in the extraction tank 40, liquid refrigerant is accumulated in the extraction tank 40 and the cooling heat transfer surface 42a. When the liquid refrigerant covers this, a decrease occurs in that the pressure Pt in the extraction tank 40 increases. Therefore, the pressure Pt in the bleed tank 40 is measured by the bleed tank pressure sensor 46, and after the measured value has fallen, it rises to become a predetermined value or more and captures that the differential pressure from the condensation pressure Pc exceeds the set value. The rise in the liquid level of the liquid refrigerant in the extraction tank 40 is detected.
When the rise in the liquid level of the liquid refrigerant in the extraction tank 40 is detected as described above, the process proceeds to step S10 and the liquid is discharged.
[計算による液位検知(ステップS8及びS9)]
 計算による液冷媒の液位検知では、ステップS8に示すように、冷媒凝縮量の計算を行う。
 先ず、冷媒凝縮量(瞬時値)を算出するために、抽気タンク40内の温度を得る。具体的には、抽気タンク用温度センサ48によって抽気タンク温度Ttを得る。抽気タンク用温度センサ48を用いない場合には、抽気タンク用圧力センサ46によって得られる抽気タンク圧力Ptから抽気タンク温度を計算してもよい。具体的には、抽気タンク圧力Ptから得られる飽和温度を抽気タンク温度とする。
[Liquid level detection by calculation (steps S8 and S9)]
In the liquid level detection of the liquid refrigerant by calculation, the refrigerant condensation amount is calculated as shown in step S8.
First, in order to calculate the refrigerant condensation amount (instantaneous value), the temperature in the extraction tank 40 is obtained. Specifically, the extraction tank temperature Tt is obtained by the extraction tank temperature sensor 48. When the extraction tank temperature sensor 48 is not used, the extraction tank temperature may be calculated from the extraction tank pressure Pt obtained by the extraction tank pressure sensor 46. Specifically, the saturation temperature obtained from the extraction tank pressure Pt is set as the extraction tank temperature.
 そして、冷却器42の冷却能力と、冷媒の凝縮潜熱から冷媒凝縮量(瞬時値)を得る。
 冷却器42で用いるペルチェ素子の冷却能力は、吸熱側温度と放熱温度との差、ペルチェ素子に流れる電流で決まる。放熱温度(冷却水温度または外気温度)、ペルチェ素子に流れる電流を一定とすると、吸熱側温度(≒抽気タンク内温度Tt)の関数として冷却能力Qp_W[W]が下式のように算出される。
  Qp_W=f(Tt) ・・・(5)
 冷媒の凝縮潜熱Q_LH[kJ/kg]は、飽和温度(飽和圧力)におけるガスエンタルピと液エンタルピとの差であるため、下式のように冷媒ごとに抽気タンク内温度Ttの関数として定義される。
  Q_LH=f(Tt) ・・・(6)
 上記の通り得られた冷却能力Qp_Wと凝縮潜熱Q_LHとによって、冷媒凝縮量(瞬時値)G_in_ref[kg/h]が以下の通り算出される。
  G_in_ref=Qp_W/Q_LH×3600/103 ・・・(7)
 上式(7)にて得られた冷媒凝縮量(瞬時値)を時間で積分することによって、冷媒凝縮量(積算値)が得られる。
  冷媒凝縮量(積算値)=Σ冷媒凝縮量(瞬時値) ・・・(8)
The refrigerant condensation amount (instantaneous value) is obtained from the cooling capacity of the cooler 42 and the latent heat of condensation of the refrigerant.
The cooling capacity of the Peltier element used in the cooler 42 is determined by the difference between the heat absorption side temperature and the heat radiation temperature and the current flowing through the Peltier element. If the heat radiation temperature (cooling water temperature or outside air temperature) and the current flowing through the Peltier element are constant, the cooling capacity Qp_W [W] is calculated as a function of the heat absorption side temperature (≈the extraction tank temperature Tt) as follows: .
Qp_W = f (Tt) (5)
Since the refrigerant latent heat of condensation Q_LH [kJ / kg] is the difference between the gas enthalpy and the liquid enthalpy at the saturation temperature (saturation pressure), it is defined as a function of the extraction tank internal temperature Tt for each refrigerant as shown in the following equation. .
Q_LH = f (Tt) (6)
The refrigerant condensing amount (instantaneous value) G_in_ref [kg / h] is calculated as follows using the cooling capacity Qp_W and the condensation latent heat Q_LH obtained as described above.
G_in_ref = Qp_W / Q_LH × 3600/10 3 (7)
The refrigerant condensation amount (integrated value) is obtained by integrating the refrigerant condensation amount (instantaneous value) obtained by the above equation (7) with time.
Refrigerant condensation amount (integrated value) = Σrefrigerant condensation amount (instantaneous value) (8)
 そして、冷媒凝縮量(積算値)が設定値を超えると(ステップS9)、抽気タンク40内の液冷媒の液位が上昇したと判断し、ステップS10へと進み、排液を行う。 When the refrigerant condensation amount (integrated value) exceeds the set value (step S9), it is determined that the liquid level of the liquid refrigerant in the extraction tank 40 has risen, and the process proceeds to step S10 to drain the liquid.
 ステップS10では、排液電磁弁21を開として、抽気タンク40内の液冷媒の排出を行う。抽気タンク40内の液冷媒は、排液配管19を通り、蒸発器14へと導かれる。 In step S10, the drain solenoid valve 21 is opened, and the liquid refrigerant in the extraction tank 40 is discharged. The liquid refrigerant in the extraction tank 40 is guided to the evaporator 14 through the drain pipe 19.
 ステップS10にて排液電磁弁21を開としてから一定時間経過した後に、排液電磁弁21を閉じ、排液を終了する(ステップS11)。この一定時間は、冷凍機1設置前の試験等によって予め設定しておく。 After a certain period of time has elapsed since the drainage solenoid valve 21 was opened in step S10, the drainage solenoid valve 21 is closed and the drainage is terminated (step S11). This predetermined time is set in advance by a test before the refrigerator 1 is installed.
 次に、抽気タンク40内に蓄積された不凝縮ガスである空気を、排気配管50を介して外部(大気)へ排出するか否かの判断を、以下の2通りの方法で検出することによって行う。
[圧力変化による検出(ステップS12)]
 ステップS10にて抽気タンク40から液冷媒を排出すると、冷却器42の冷却伝熱面42aの液没が解消されて冷却能力が回復するので、抽気タンク40内の圧力は降下することになる。しかし、抽気タンク40内に不凝縮ガスである空気が所定量以上滞留していると、空気が冷却伝熱面42aを覆い伝熱性能が阻害されることになる。したがって、液冷媒の排液後に抽気タンク40内の圧力が所定値以下まで下がらない場合には、抽気タンク40内に空気が所定量以上滞留していると判断することができる。そこで、ステップS12にて、凝縮器圧力センサ25によって得られた凝縮圧力Pcから抽気タンク用圧力センサ46によって得られた抽気タンク圧力Ptを引いた差分値が設定値を超えたままの場合、すなわち、抽気タンク圧力Ptが所定値以下に下がらない場合に、抽気タンク40内に空気が所定量以上滞留していると判断する。
 抽気タンク40内に空気が所定量以上滞留していると判断した場合には、ステップS15に進み、排気の準備を行う。
Next, by detecting whether air, which is non-condensable gas accumulated in the bleed tank 40, is discharged to the outside (atmosphere) via the exhaust pipe 50, it is detected by the following two methods. Do.
[Detection by pressure change (step S12)]
When the liquid refrigerant is discharged from the extraction tank 40 in step S10, the liquid immersion of the cooling heat transfer surface 42a of the cooler 42 is eliminated and the cooling capacity is restored, so that the pressure in the extraction tank 40 decreases. However, if air, which is a non-condensable gas, stays in the extraction tank 40 in a predetermined amount or more, the air covers the cooling heat transfer surface 42a and the heat transfer performance is hindered. Therefore, if the pressure in the extraction tank 40 does not drop to a predetermined value or less after the liquid refrigerant is discharged, it can be determined that air is staying in the extraction tank 40 by a predetermined amount or more. Therefore, when the difference value obtained by subtracting the extraction tank pressure Pt obtained by the extraction tank pressure sensor 46 from the condensation pressure Pc obtained by the condenser pressure sensor 25 in step S12 exceeds the set value, that is, When the extraction tank pressure Pt does not fall below the predetermined value, it is determined that the air stays in the extraction tank 40 at a predetermined amount or more.
When it is determined that the air stays in the extraction tank 40 at a predetermined amount or more, the process proceeds to step S15 and preparation for exhaust is performed.
[計算による検出(ステップS13及びS14)]
 ステップS13では、計算によって抽気タンク40内の空気の滞留量である抽気タンク内空気量(積算値)を得る。具体的には、上述したステップS2にて算出した空気侵入量(積算値)に基づいて算出する。そして、抽気タンク内空気量(積算値)が設定値を超えた場合(ステップS14)には、抽気タンク40内に空気が所定量以上滞留していると判断し、ステップS15に進み、排気の準備を行う。
[Detection by calculation (steps S13 and S14)]
In step S13, the amount of air in the extraction tank (integrated value), which is the amount of air remaining in the extraction tank 40, is obtained by calculation. Specifically, it is calculated based on the air intrusion amount (integrated value) calculated in step S2 described above. When the amount of air in the extraction tank (integrated value) exceeds the set value (step S14), it is determined that air is staying in the extraction tank 40 at a predetermined amount or more, and the process proceeds to step S15, where the exhaust gas is exhausted. Make preparations.
 ステップS15では、抽気タンク40内のガスの排気準備を行う。具体的には、冷却器42のペルチェ素子をOFFとし、抽気電磁弁18を閉とし、ヒータ44をONとする。これにより、抽気タンク40内が密閉された上で内部の温度が上昇するので、抽気タンク40内の圧力が上昇する。そして、抽気タンク用圧力センサ46から得られた抽気タンク圧力Ptが上昇し、大気圧に対して所定値αだけ高い設定値(大気圧+α)を超えた場合(ステップS16)に、ステップS17に進み、排気開始を行う。 In step S15, the gas in the extraction tank 40 is prepared to be exhausted. Specifically, the Peltier element of the cooler 42 is turned off, the extraction solenoid valve 18 is closed, and the heater 44 is turned on. As a result, the internal temperature rises after the inside of the extraction tank 40 is sealed, so that the pressure in the extraction tank 40 increases. Then, when the bleed tank pressure Pt obtained from the bleed tank pressure sensor 46 increases and exceeds a set value (atmospheric pressure + α) that is higher than the atmospheric pressure by a predetermined value α (step S16), the process proceeds to step S17. Proceed and start exhausting.
 ステップS17では、排気電磁弁52を開とし、ヒータ44をOFFとする。これにより、排気配管50を介して抽気タンク40内の空気を主成分とするガスが外部(大気)へと放出される。このときにヒータ44をOFFとしているのは、抽気タンク40内に残存している冷媒を必要以上に外部へと放出しないためである。 In step S17, the exhaust solenoid valve 52 is opened and the heater 44 is turned off. Thereby, the gas which has the air in the extraction tank 40 as a main component through the exhaust pipe 50 is released to the outside (atmosphere). The reason why the heater 44 is turned off at this time is that the refrigerant remaining in the extraction tank 40 is not discharged to the outside more than necessary.
 そして、抽気タンク40内の圧力が大気圧に対して所定値βだけ高い設定値(大気圧+β)を下回った場合(ステップS18)に、ステップS19へと進む。この設定値を大気圧よりも所定値βだけ高い圧力としたのは、大気圧を下回るまで排気電磁弁52を開としておくと、大気が逆流して抽気タンク40内に導かれてしまうのを防止するためである。
 ステップS19では、排気電磁弁52を閉として、排気を終了させる。
When the pressure in the extraction tank 40 falls below the set value (atmospheric pressure + β) that is higher by the predetermined value β than the atmospheric pressure (step S18), the process proceeds to step S19. The reason why this set value is set to a pressure higher than the atmospheric pressure by a predetermined value β is that if the exhaust electromagnetic valve 52 is opened until the atmospheric pressure falls below the atmospheric pressure, the atmosphere flows backward and is introduced into the extraction tank 40. This is to prevent it.
In step S19, the exhaust solenoid valve 52 is closed and the exhaust is terminated.
 次に、ステップS20以降へ進み、抽気装置15の停止の判断を行う。
 ステップS20では、排気配管50を介して外部(大気)へと排出した空気の総量である排出空気量(積算値)を算出する。具体的には以下の通りである。
 先ず、抽気タンク40内の空気密度ρ_t_air[kg/m]を得るために、抽気タンク40内の冷媒飽和圧力Pt_ref[MPa(abs)]を算出する。抽気タンク40内の冷媒飽和圧力Pt_refは、抽気タンク40内の温度Tt相当の飽和圧力とする。飽和圧力と飽和温度との関係式は、冷媒ごとに飽和温度の関数として下式の通り定義できる。
  Pt_ref=f(Tt) ・・・(9)
 そうすると、抽気タンク40内の空気分圧Pt_air[MPa(abs)]は、抽気タンク圧力Pt(全圧)を用いて、下式のように算出できる。
  Pt_air=Pt-Pt_ref ・・・(10)
 したがって、抽気タンク40内の空気質量w_t_air[kg]は、理想気体の状態方程式から、下式の通りとなる。
  w_t_air=Pt_air×Vt×M_air/(R×Tt) ・・・(11)
 ここで、Vtは抽気タンク40の容積[m]、M_airは空気の分子量[kg/mol]、Rはガス定数、Ttは抽気タンク40内の温度[K]である。
 よって、抽気タンク40内の空気密度ρ_t_airは、下式の通りとなる。
  ρ_t_air=w_t_air/Vt ・・・(12)
Next, it progresses to step S20 and after, and the stop of the extraction apparatus 15 is determined.
In step S20, an exhaust air amount (integrated value) that is the total amount of air exhausted to the outside (atmosphere) via the exhaust pipe 50 is calculated. Specifically, it is as follows.
First, in order to obtain the air density ρ_t_air [kg / m 3 ] in the extraction tank 40, the refrigerant saturation pressure Pt_ref [MPa (abs)] in the extraction tank 40 is calculated. The refrigerant saturation pressure Pt_ref in the extraction tank 40 is a saturation pressure corresponding to the temperature Tt in the extraction tank 40. The relational expression between the saturation pressure and the saturation temperature can be defined as the following expression as a function of the saturation temperature for each refrigerant.
Pt_ref = f (Tt) (9)
Then, the air partial pressure Pt_air [MPa (abs)] in the bleed tank 40 can be calculated as follows using the bleed tank pressure Pt (total pressure).
Pt_air = Pt−Pt_ref (10)
Therefore, the air mass w_t_air [kg] in the extraction tank 40 is expressed by the following equation from the ideal gas state equation.
w_t_air = Pt_air × Vt × M_air / (R × Tt) (11)
Here, Vt is the volume [m 3 ] of the extraction tank 40, M_air is the molecular weight [kg / mol] of air, R is a gas constant, and Tt is the temperature [K] in the extraction tank 40.
Therefore, the air density ρ_t_air in the extraction tank 40 is expressed by the following formula.
ρ_t_air = w_t_air / Vt (12)
 以上のように抽気タンク40内の空気密度ρ_t_airが得られたら、排出空気量w_ex_air[kg]を算出する。
 排出ガス体積V_ex[m]は、抽気タンク40内の圧力Ptと大気圧Paとの差圧と、ステップS17において排気電磁弁52を開としていた時間Time_ex[sec]から推定する。
  V_ex=f(Pt-Pa,Time_ex) ・・・(13)
 なお、排出ガス体積V_exは、上式(13)に代えて、抽気タンク40の容積Vtと、排気前後の圧力差から求めても良い。
 上式で得られた排出ガス体積V_exと抽気タンク40内の空気密度ρ_t_airを用いて、排出空気量w_ex_airを下式のように算出する。
  w_ex_air=V_ex×ρ_t_air ・・・(14)
When the air density ρ_t_air in the extraction tank 40 is obtained as described above, the exhaust air amount w_ex_air [kg] is calculated.
The exhaust gas volume V_ex [m 3 ] is estimated from the differential pressure between the pressure Pt in the extraction tank 40 and the atmospheric pressure Pa and the time Time_ex [sec] during which the exhaust electromagnetic valve 52 is open in step S17.
V_ex = f (Pt−Pa, Time_ex) (13)
The exhaust gas volume V_ex may be obtained from the volume Vt of the extraction tank 40 and the pressure difference before and after the exhaust, instead of the above equation (13).
Using the exhaust gas volume V_ex obtained by the above equation and the air density ρ_t_air in the extraction tank 40, the exhaust air amount w_ex_air is calculated by the following equation.
w_ex_air = V_ex × ρ_t_air (14)
 上式(14)で得られた排出空気量w_ex_airは、1回の排気あたりの値であるから、複数回の排気を行った場合には、排出空気量w_ex_airに対して排気回数nを乗じて得られた値が排出空気量(積算値)となる。
  排出空気量(積算値)=w_ex_air×n ・・・(15)
 このように排出空気量(積算値)が得られると、ステップS21へ進む。
Since the exhaust air amount w_ex_air obtained by the above equation (14) is a value per exhaust, when the exhaust is performed a plurality of times, the exhaust air amount w_ex_air is multiplied by the exhaust number n. The obtained value is the exhaust air amount (integrated value).
Exhaust air amount (integrated value) = w_ex_air × n (15)
When the exhaust air amount (integrated value) is obtained in this way, the process proceeds to step S21.
 ステップS21では、排出空気量(積算値)がステップS2で得られた侵入空気量(積算値)を超えたか否かを判断する。
 排出空気量(積算値)が侵入空気量(積算値)を超えた場合は、十分に排気が行われたとして、ステップS23へと進み、抽気装置15の停止を行う。
In step S21, it is determined whether or not the exhaust air amount (integrated value) exceeds the intrusion air amount (integrated value) obtained in step S2.
If the exhausted air amount (integrated value) exceeds the intruding air amount (integrated value), it is determined that exhaust has been sufficiently performed, and the process proceeds to step S23, where the extraction device 15 is stopped.
 一方で、排出空気量(積算値)が侵入空気量(積算値)を超えていない場合は、ステップS4へ戻り、上述した抽気、排液及び排気を繰り返す。
 また、排出空気量(積算値)が侵入空気量(積算値)を超えなかった場合であっても、ステップS22に示すように、予め設定された一定時間内の抽気タンク40内の空気分圧Pt_air(式(10)参照)の上昇が設定値以下の場合には、ステップS23へと進み、抽気装置15の停止を行う。このステップS22は、何らかの理由で、排出空気量(積算値)や侵入空気量(積算値)の計算が不正確であった場合であっても、抽気タンク40内の空気分圧の上昇が設定値以下であれば、抽気タンク40内の空気は略排気されていると判断できるからである。
On the other hand, when the discharged air amount (integrated value) does not exceed the intruding air amount (integrated value), the process returns to step S4, and the above-described extraction, drainage, and exhaust are repeated.
Even if the exhausted air amount (integrated value) does not exceed the intruding air amount (integrated value), as shown in step S22, the partial pressure of air in the extraction tank 40 within a predetermined time period is set. If the increase in Pt_air (see equation (10)) is equal to or less than the set value, the process proceeds to step S23, and the bleeder 15 is stopped. This step S22 sets an increase in the partial pressure of air in the extraction tank 40 even when the calculation of the exhaust air amount (integrated value) or the intrusion air amount (integrated value) is inaccurate for some reason. This is because it can be determined that the air in the extraction tank 40 is substantially exhausted if the value is less than or equal to the value.
 抽気装置15の停止を行うステップS23では、排液電磁弁21を開とする。これにより、抽気タンク40内を蒸発器14に連通させる。これは、抽気タンク40内が外気温度の影響によって圧力上昇することを防止するためである。 In step S23 for stopping the bleeder 15, the drain solenoid valve 21 is opened. Thereby, the inside of the extraction tank 40 is communicated with the evaporator 14. This is to prevent the pressure inside the extraction tank 40 from increasing due to the influence of the outside air temperature.
 以上の通り、本実施形態によれば、以下の作用効果を奏する。
 ステップS20及びS21にて説明したように、排気配管50から排出した排出空気量(積算値)が、冷凍機1内に侵入した侵入空気量(積算値)を超えた場合に、抽気装置15を停止することとしたので、運転停止のタイミングを適切に判断して抽気装置15の過剰な運転継続を防止することができる。
As described above, according to the present embodiment, the following operational effects are obtained.
As explained in steps S20 and S21, when the amount of exhaust air (integrated value) exhausted from the exhaust pipe 50 exceeds the amount of intruded air (integrated value) that has entered the refrigerator 1, the bleeder 15 is turned on. Since the operation is stopped, it is possible to appropriately determine the operation stop timing and to prevent the bleeder 15 from continuing to operate excessively.
 抽気タンク40内に冷媒のみが存在する場合には、抽気タンク40内の圧力Ptと温度Ttは飽和の関係となる。しかし、抽気タンク40内に空気が含まれている場合には、含まれる空気密度に応じて空気の分圧分だけ抽気タンク圧力Ptは高くなる。これを利用して、抽気タンク40内の温度Ttおよび圧力Ptから空気密度を得ることとした(式(9)~式(12)参照)。このように、抽気タンク40の温度Tt及び圧力Ptを得るだけで、演算により空気密度を得ることができ、ひいては排出空気量を得ることができる。 When only the refrigerant exists in the extraction tank 40, the pressure Pt and the temperature Tt in the extraction tank 40 have a saturation relationship. However, when air is contained in the bleed tank 40, the bleed tank pressure Pt increases by the partial pressure of air according to the air density contained. By utilizing this, the air density is obtained from the temperature Tt and the pressure Pt in the extraction tank 40 (see formula (9) to formula (12)). As described above, the air density can be obtained by calculation only by obtaining the temperature Tt and the pressure Pt of the extraction tank 40, and thus the exhaust air amount can be obtained.
 ステップS22にて説明したように、何らかの理由で、排出空気量(積算値)や侵入空気量(積算値)の計算が不正確であった場合を考慮して、ステップS21にて排出空気量(積算値)が侵入空気量(積算値)を超えなかった場合であっても、抽気タンク40内の空気分圧の上昇が設定値以下であれば、抽気タンク40内の空気は略排気されていると判断し、抽気装置を停止することとした。これにより、抽気装置15の過剰な運転継続を防止することができる。 As described in step S22, in consideration of the case where the calculation of the exhaust air amount (integrated value) or the intrusion air amount (integrated value) is inaccurate for some reason, the exhaust air amount ( Even if the integrated value) does not exceed the intrusion air amount (integrated value), the air in the extraction tank 40 is substantially exhausted if the increase in the air partial pressure in the extraction tank 40 is equal to or less than the set value. It was decided that the bleeder was stopped. Thereby, excessive operation continuation of the bleeder 15 can be prevented.
 なお、図1に示した冷凍機1の構成は一例であり、この構成に限定されない。例えば、水冷式の凝縮器12に代えて空気熱交換器を配置し、外気と冷媒との間で熱交換を行うような構成としてもよい。また、冷凍機1は冷却機能のみを有する場合に限定されず、例えば、ヒートポンプ機能のみ、或いは、冷却機能及びヒートポンプ機能の両方を有しているものであってもよい。 In addition, the structure of the refrigerator 1 shown in FIG. 1 is an example, and is not limited to this structure. For example, it is good also as a structure which replaces with the water-cooled condenser 12 and arrange | positions an air heat exchanger and performs heat exchange between external air and a refrigerant | coolant. Moreover, the refrigerator 1 is not limited to the case having only a cooling function, for example, it may have only a heat pump function or both a cooling function and a heat pump function.
 また、冷却器42に用いる冷却デバイスとしてペルチェ素子を用いることとしたが、本発明はこれに限定されるものではなく、抽気タンク40内を冷媒の凝縮温度以下に冷却できるものであれば、他の冷却装置であっても良い。 Further, although the Peltier element is used as a cooling device used for the cooler 42, the present invention is not limited to this, and any other device can be used as long as the inside of the extraction tank 40 can be cooled below the condensation temperature of the refrigerant. The cooling device may be used.
 また、ヒータ44としては、電気式ヒータを用いることとしたが、本発明はこれに限定されるものではなく、抽気タンク40内を加熱できるものであれば、高温冷媒が流れる伝熱管を用いたヒータなど他の形式のヒータであっても良い。 In addition, although an electric heater is used as the heater 44, the present invention is not limited to this, and a heat transfer tube through which a high-temperature refrigerant flows is used as long as the inside of the extraction tank 40 can be heated. Other types of heaters such as a heater may be used.
1 冷凍機
11 圧縮機
12 凝縮器
13 膨張弁
14 蒸発器
15 抽気装置
16 制御装置(制御部)
17 抽気配管
18 抽気電磁弁(抽気弁)
19 排液配管
20 インバータモータ
21 排液電磁弁(排液弁)
22a 冷却水往き配管
22b 冷却水戻り配管
23a 冷却水入口温度センサ
23b 冷却水出口温度センサ
24 冷却水流量センサ
25 凝縮器圧力センサ
32a 冷水往き配管
32b 冷水戻り配管
33a 冷水入口温度センサ
33b 冷水出口温度センサ
34 冷水流量センサ
35 蒸発器圧力センサ
40 抽気タンク
42 冷却器
44 ヒータ
46 抽気タンク用圧力センサ
48 抽気タンク用温度センサ
50 排気配管
52 排気電磁弁(排気弁)
DESCRIPTION OF SYMBOLS 1 Refrigerator 11 Compressor 12 Condenser 13 Expansion valve 14 Evaporator 15 Extraction device 16 Control apparatus (control part)
17 Extraction piping 18 Extraction solenoid valve (extraction valve)
19 Drainage pipe 20 Inverter motor 21 Drainage solenoid valve (drainage valve)
22a Cooling water outlet pipe 22b Cooling water return pipe 23a Cooling water inlet temperature sensor 23b Cooling water outlet temperature sensor 24 Cooling water flow rate sensor 25 Condenser pressure sensor 32a Chilled water outgoing pipe 32b Chilled water return pipe 33a Chilled water inlet temperature sensor 33b Chilled water outlet temperature sensor 34 Chilled water flow sensor 35 Evaporator pressure sensor 40 Extraction tank 42 Cooler 44 Heater 46 Extraction tank pressure sensor 48 Extraction tank temperature sensor 50 Exhaust piping 52 Exhaust solenoid valve (exhaust valve)

Claims (6)

  1.  冷凍機から冷媒と不凝縮ガスを含む混合ガスを抽気する抽気配管と、
     前記抽気配管から抽気された前記混合ガスを貯留する抽気タンクと、
     前記抽気タンク内を冷却して前記混合ガス中の冷媒を凝縮させる冷却器と、
     前記抽気タンク内の液冷媒を前記冷凍機へ排出する排液配管と、
     前記抽気タンク内の前記混合ガス中の不凝縮ガスを外部へ排出する排気配管と、
     前記排気配管から排出した排出不凝縮ガス量が、前記冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、当該抽気装置の動作を停止する制御部と、
    を備えている抽気装置。
    An extraction pipe for extracting a mixed gas containing refrigerant and non-condensable gas from the refrigerator;
    An extraction tank for storing the mixed gas extracted from the extraction pipe;
    A cooler that cools the inside of the extraction tank and condenses the refrigerant in the mixed gas;
    A drainage pipe for discharging the liquid refrigerant in the extraction tank to the refrigerator;
    An exhaust pipe for discharging the non-condensable gas in the mixed gas in the extraction tank to the outside;
    A control unit that stops the operation of the extraction device when the amount of non-condensable gas discharged from the exhaust pipe exceeds the amount of non-condensable gas that has entered the refrigerator;
    A bleed device comprising:
  2.  前記制御部は、前記抽気タンク内の温度および圧力から得られた該抽気タンク内の不凝縮ガス密度と、前記排気配管からの排出ガス量とから、前記排出不凝縮ガス量を得る請求項1に記載の抽気装置。 The control unit obtains the exhaust non-condensable gas amount from the non-condensable gas density in the extraction tank obtained from the temperature and pressure in the extraction tank and the exhaust gas amount from the exhaust pipe. The bleeder described in 1.
  3.  前記制御部は、前記冷凍機の冷媒系統内の圧力と冷凍機外の圧力との差圧に基づいて、前記侵入不凝縮ガス量を得る請求項1又は2に記載の抽気装置。 The bleeder according to claim 1 or 2, wherein the control unit obtains the intrusion non-condensable gas amount based on a differential pressure between a pressure in the refrigerant system of the refrigerator and a pressure outside the refrigerator.
  4.  前記制御部は、予め設定された一定時間内における前記抽気タンク内の不凝縮ガスの分圧の上昇が設定値以下の場合に、当該抽気装置の動作を停止する請求項1から3のいずれかに記載の抽気装置。 The control unit according to any one of claims 1 to 3, wherein the control unit stops the operation of the extraction device when the increase in the partial pressure of the non-condensable gas in the extraction tank within a predetermined time period is equal to or less than a set value. The bleeder described in 1.
  5.  請求項1から4のいずれかに記載の抽気装置を備えている冷凍機。 A refrigerator having the extraction device according to any one of claims 1 to 4.
  6.  冷凍機から冷媒と不凝縮ガスを含む混合ガスを抽気する抽気配管と、
     前記抽気配管から抽気された前記混合ガスを貯留する抽気タンクと、
     前記抽気タンク内を冷却して前記混合ガス中の冷媒を凝縮させる冷却器と、
     前記抽気タンク内の液冷媒を前記冷凍機へ排出する排液配管と、
     前記抽気タンク内の前記混合ガス中の不凝縮ガスを外部へ排出する排気配管と、
    を備えた抽気装置の制御方法であって、
     前記排気配管から排出した排出不凝縮ガス量が、前記冷凍機内に侵入した侵入不凝縮ガス量を超えた場合に、当該抽気装置の動作を停止する抽気装置の制御方法。
    An extraction pipe for extracting a mixed gas containing refrigerant and non-condensable gas from the refrigerator;
    An extraction tank for storing the mixed gas extracted from the extraction pipe;
    A cooler that cools the inside of the extraction tank and condenses the refrigerant in the mixed gas;
    A drainage pipe for discharging the liquid refrigerant in the extraction tank to the refrigerator;
    An exhaust pipe for discharging the non-condensable gas in the mixed gas in the extraction tank to the outside;
    A method for controlling a bleeder comprising:
    A control method of a bleeder that stops the operation of the bleeder when the amount of discharged non-condensable gas discharged from the exhaust pipe exceeds the amount of invaded non-condensed gas that has entered the refrigerator.
PCT/JP2017/012826 2016-03-31 2017-03-29 Purging device, refrigerator equipped with same, and method for controlling purging device WO2017170649A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780013481.1A CN108700355B (en) 2016-03-31 2017-03-29 Air extraction device, refrigerator provided with same, and control method for air extraction device
US16/078,800 US20190056159A1 (en) 2016-03-31 2017-03-29 Purging device, chiller equipped with same, and method for controlling purging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016071997A JP6644620B2 (en) 2016-03-31 2016-03-31 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device
JP2016-071997 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170649A1 true WO2017170649A1 (en) 2017-10-05

Family

ID=59964878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012826 WO2017170649A1 (en) 2016-03-31 2017-03-29 Purging device, refrigerator equipped with same, and method for controlling purging device

Country Status (4)

Country Link
US (1) US20190056159A1 (en)
JP (1) JP6644620B2 (en)
CN (1) CN108700355B (en)
WO (1) WO2017170649A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365919B2 (en) 2018-07-06 2022-06-21 Danfoss A/S Apparatus for removing non-condensable gases from a refrigerant

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6644619B2 (en) * 2016-03-31 2020-02-12 三菱重工サーマルシステムズ株式会社 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device
JP6971776B2 (en) * 2017-10-25 2021-11-24 三菱重工サーマルシステムズ株式会社 Bleed air control device and control method
US10760838B2 (en) * 2017-12-20 2020-09-01 Lennox Industries Inc. Method and apparatus for refrigerant detector calibration confirmation
CN110345672B (en) * 2019-07-16 2021-03-12 珠海格力电器股份有限公司 Non-condensable gas purification device, refrigeration system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303907A (en) * 1996-05-15 1997-11-28 Hitachi Ltd Absorption freezer
JP2000292033A (en) * 1999-04-01 2000-10-20 Ebara Corp Purging unit for refrigerator
JP2002372348A (en) * 2001-06-18 2002-12-26 Mitsubishi Heavy Ind Ltd Absorption refrigerating unit
US20130298995A1 (en) * 2012-05-11 2013-11-14 Service Solutions U.S. Llc Methods and systems for reducing refrigerant loss during air purge
WO2016047305A1 (en) * 2014-09-25 2016-03-31 三菱重工業株式会社 Control device and control method for bleed device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130283832A1 (en) * 2012-04-30 2013-10-31 Trane International Inc. Refrigeration system with purge using enrivonmentally-suitable chiller refrigerant
JP6343156B2 (en) * 2014-02-26 2018-06-13 荏原冷熱システム株式会社 Compression refrigerator
JP6644619B2 (en) * 2016-03-31 2020-02-12 三菱重工サーマルシステムズ株式会社 Bleeding device, refrigerator provided with the same, and method of controlling bleeding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09303907A (en) * 1996-05-15 1997-11-28 Hitachi Ltd Absorption freezer
JP2000292033A (en) * 1999-04-01 2000-10-20 Ebara Corp Purging unit for refrigerator
JP2002372348A (en) * 2001-06-18 2002-12-26 Mitsubishi Heavy Ind Ltd Absorption refrigerating unit
US20130298995A1 (en) * 2012-05-11 2013-11-14 Service Solutions U.S. Llc Methods and systems for reducing refrigerant loss during air purge
WO2016047305A1 (en) * 2014-09-25 2016-03-31 三菱重工業株式会社 Control device and control method for bleed device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365919B2 (en) 2018-07-06 2022-06-21 Danfoss A/S Apparatus for removing non-condensable gases from a refrigerant

Also Published As

Publication number Publication date
CN108700355B (en) 2020-09-11
CN108700355A (en) 2018-10-23
JP2017180994A (en) 2017-10-05
JP6644620B2 (en) 2020-02-12
US20190056159A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017170649A1 (en) Purging device, refrigerator equipped with same, and method for controlling purging device
CN108474601B (en) Vapor compression type refrigerator and control method thereof
JP3988780B2 (en) Refrigeration equipment
WO2017170627A1 (en) Purging device, refrigerator equipped with same, and method for controlling purging device
EP2881684B1 (en) Container refrigeration device
TWI558962B (en) Constant temperature liquid circulation device and its operation method
JP6766518B2 (en) Marine refrigeration equipment
EP2881685B1 (en) Container refrigeration device and control method thereof
US20220235945A1 (en) Hot water supply apparatus
DK2902728T3 (en) Automatic detection of refrigerant fill levels in refrigeration circuits
EP2801772B1 (en) Refrigeration device and method for detecting filling of wrong refrigerant
US11525612B2 (en) Method for refrigerant charge determination in a cooling circuit
JP2002022300A (en) Refrigeration apparatus
JP6643711B2 (en) Refrigeration cycle apparatus and cooling method
KR20120087385A (en) Air source water heater and operation control method thereof
JP5880975B2 (en) Control apparatus and control method for refrigeration apparatus, and refrigeration apparatus including the control apparatus
KR101372265B1 (en) Heat system of using cycle heat-pump
JP5458355B2 (en) Temperature control method and apparatus
JPS6111578A (en) Discharger for noncondensable gas from absorption refrigerator
JPH06119542A (en) Refrigerator for automatic vending machine
JP2002054852A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775186

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775186

Country of ref document: EP

Kind code of ref document: A1