JP6644334B2 - Mold cooling hole surface treatment method and mold - Google Patents

Mold cooling hole surface treatment method and mold Download PDF

Info

Publication number
JP6644334B2
JP6644334B2 JP2018079846A JP2018079846A JP6644334B2 JP 6644334 B2 JP6644334 B2 JP 6644334B2 JP 2018079846 A JP2018079846 A JP 2018079846A JP 2018079846 A JP2018079846 A JP 2018079846A JP 6644334 B2 JP6644334 B2 JP 6644334B2
Authority
JP
Japan
Prior art keywords
cooling hole
mold
injection
cooling
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018079846A
Other languages
Japanese (ja)
Other versions
JP2018176282A (en
Inventor
覚 庄司
覚 庄司
宮坂 四志男
四志男 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Fuji Kihan Co Ltd
Hitachi Metals Tool Steel Ltd
Original Assignee
Hitachi Metals Ltd
Fuji Kihan Co Ltd
Hitachi Metals Tool Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Fuji Kihan Co Ltd, Hitachi Metals Tool Steel Ltd filed Critical Hitachi Metals Ltd
Publication of JP2018176282A publication Critical patent/JP2018176282A/en
Application granted granted Critical
Publication of JP6644334B2 publication Critical patent/JP6644334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

本発明は,金型冷却孔の表面処理方法,及び前記方法で表面処理がされた冷却孔を備えた金型に関し,より詳細には,冷却水等の冷媒を導入するために熱間金型に設けられた冷却孔表面に耐応力腐食割れ性を付与することのできる表面処理方法,及び,前記方法によって表面処理がされた冷却孔を備えた金型に関する。   The present invention relates to a surface treatment method for a mold cooling hole, and a mold having a cooling hole surface-treated by the method, and more particularly, to a hot mold for introducing a coolant such as cooling water. The present invention relates to a surface treatment method capable of imparting stress corrosion cracking resistance to the surface of a cooling hole provided in a mold, and a mold having a cooling hole surface-treated by the method.

キャビティ内に溶融材料が注湯されるダイカスト金型のように,キャビティ内に高温の材料が導入される熱間金型では,金型の冷却を円滑に行うために金型内に冷却孔を設け,この冷却孔内に冷却水等の冷媒を導入することにより冷却を行っている。   In a hot mold in which a high-temperature material is introduced into a cavity, such as a die-casting mold in which a molten material is poured into a cavity, a cooling hole is provided in the mold to smoothly cool the mold. The cooling is performed by introducing a coolant such as cooling water into the cooling holes.

このような冷却孔を備えた金型では,近年,冷却性能を向上させる目的で冷却孔をキャビティ面側に近接させて形成する傾向にあり,その結果,冷却孔への繰り返し熱応力の影響が大きく,腐食環境にある冷却孔表面で応力腐食割れが生じ易くなっており,これを起点とした金型の大割れや,冷媒の漏出等の危険性が高まっている。   In molds with such cooling holes, the cooling holes have recently tended to be formed close to the cavity surface for the purpose of improving cooling performance. As a result, the effect of repeated thermal stress on the cooling holes has been reduced. Stress corrosion cracking is likely to occur on the cooling hole surface in a large and corrosive environment, and there is an increased risk of large cracks in the mold and leakage of refrigerant from this as a starting point.

そのため,このような金型冷却孔表面の応力腐食割れを防止するための各種方法が検討されている。   Therefore, various methods for preventing such stress corrosion cracking on the surface of the mold cooling hole are being studied.

ここで,応力腐食割れは,引張応力の存在,腐食環境の存在,及び,材料特性という3つの要因によって引き起こされ,このうちの1つ以上の要因を取り除くことにより回避し得る。   Here, stress corrosion cracking is caused by three factors: the presence of tensile stress, the presence of a corrosive environment, and material properties, and can be avoided by removing one or more of these factors.

そのため,これらの要因に対応して,応力腐食割れを防止する方法として以下の提案がされている。   Therefore, the following proposals have been made as methods for preventing stress corrosion cracking in response to these factors.

〔圧縮残留応力の付与〕
応力腐食割れを発生させる要因のうち,引張応力を緩和するために,冷却孔の表面に圧縮残留応力を付与することが行われており,このような圧縮残留応力を付与するために,冷却孔の表面層をショットピーニングによって加工することが提案されている(特許文献1の請求項1)。
(Applying compressive residual stress)
Among the factors that cause stress corrosion cracking, compressive residual stress is applied to the surface of cooling holes to reduce tensile stress. It has been proposed to process the surface layer by shot peening (Claim 1 of Patent Document 1).

〔保護膜による被覆〕
また,冷却孔の表面を保護膜で覆うことにより腐食環境(水,溶存酸素,塩素イオン等)から隔絶することで冷却孔の表面における腐食の発生,従って,応力腐食割れの発生を防止することも提案されており,このような保護膜による保護の一例として,冷却孔の表面を無電解メッキ(Ni―Pメッキ)層で被覆することも提案されている(特許文献2の請求項1)。
[Coating with protective film]
Also, by covering the cooling hole surface with a protective film to isolate it from corrosive environments (water, dissolved oxygen, chloride ions, etc.), corrosion on the cooling hole surface, and thus the occurrence of stress corrosion cracking, can be prevented. As an example of such protection by a protective film, it has been proposed to cover the surface of the cooling hole with an electroless plating (Ni-P plating) layer (claim 1 of Patent Document 2). .

〔圧縮応力の付与と保護膜形成の併用〕
更に,前述した圧縮残留応力の付与と,保護膜の形成の双方を併用することも提案されており,冷却孔の表面に低濃度窒化を施した後,無電解Ni−Pメッキ層で被覆し,その後,更に,ショットピーニングを施すことも提案されている(特許文献3の請求項1,請求項2)。
[Combined use of applying compressive stress and forming protective film]
Furthermore, it has been proposed to use both the above-described application of the compressive residual stress and the formation of the protective film. The surface of the cooling hole is subjected to low-concentration nitriding and then coated with an electroless Ni-P plating layer. Then, it is also proposed to further perform shot peening (claims 1 and 2 of Patent Document 3).

なお,前述した特許文献3に記載の構成において冷却孔の表面を覆う無電解Ni−Pメッキ層は,Feよりも腐食し難い(イオン化傾向が小さい)金属によって構成された,所謂「バリア型」の防食膜であるところ,このようなバリア型の防食膜では,保護膜に素地に至る傷や孔が生じると,メッキ層をカソード,素地をアノードとする局部電池が形成されてアノードとなる素地の腐食(溶出)が加速する問題がある。   In the configuration described in Patent Document 3 described above, the electroless Ni-P plating layer that covers the surface of the cooling hole is formed of a metal that is less likely to corrode (has a lower ionization tendency) than Fe, a so-called “barrier type”. However, in the case of such a barrier type anticorrosion film, if a scratch or a hole is formed in the protective film, the local cell having the plating layer as a cathode and the substrate as an anode is formed, and the substrate as an anode is formed. There is a problem that corrosion (elution) of the steel is accelerated.

このようなバリア型の防食膜が有する問題を解消するために,冷却孔の表面に真空パルス窒化を行った後,ピーニング処理し,更に,電解メッキによってFeよりもイオン化傾向が大きいZnやZn合金の犠牲膜を形成して冷却孔の表面を被覆することも提案されている(特許文献4の請求項1,請求項3,図4)。   In order to solve the problem of the barrier type anticorrosion film, the surface of the cooling hole is subjected to vacuum pulse nitriding, followed by peening, and furthermore, Zn or Zn alloy having a greater ionization tendency than Fe by electrolytic plating. It has also been proposed to form a sacrifice film to cover the surface of the cooling hole (Claim 1, Claim 3 and FIG. 4 of Patent Document 4).

このように,Feよりもイオン化傾向が大きいZnやZn合金の犠牲膜で冷却孔の表面を被覆した構成では,犠牲膜に素地に至る傷や孔が生じて局部電池が形成された場合であっても,この局部電池はメッキ層をアノード,素地をカソードとするものとなるため,アノード側のZnが先に腐食することで,素地側の腐食の発生を遅らせることができるものとなっている。   As described above, in the configuration in which the surface of the cooling hole is covered with the sacrificial film of Zn or Zn alloy, which has a higher ionization tendency than Fe, the sacrificial film may be damaged to the substrate or a hole may be formed to form a local battery. However, since this local battery uses the plating layer as the anode and the substrate as the cathode, Zn on the anode side corrodes first, so that the occurrence of corrosion on the substrate side can be delayed. .

〔材料特性の改善〕
なお,材料特性の改善による応力腐食割れの防止としては,結晶粒を貫いて割れが進行する粒内割れに対してはニッケル含有量の多い鋼種の選択や珪素の添加,粒界に沿って割れが進行する粒界割れに対しては耐粒界腐食鋼を使用する等,金型全体の鋼種を応力腐食割れ感受性の低い材料に見直すことにより行われるのが一般的であるが,冷却孔の表面に対する局部的な表面処理によって,冷却孔の表面付近の結晶構造や成分等を変化させることで,表面部分の材料自体を応力腐食割れが生じ難い性質に改質することで耐応力腐食割れ性を付与することも提案されている。
(Improvement of material properties)
In order to prevent stress corrosion cracking by improving the material properties, it is necessary to select a steel type with a high nickel content, add silicon, and crack along the grain boundaries. In general, this is done by reviewing the steel type of the entire mold to a material with low susceptibility to stress corrosion cracking, such as using intergranular corrosion resistant steel for grain boundary cracking where cracks progress. By modifying the crystal structure and components near the surface of the cooling hole by local surface treatment on the surface, the material itself on the surface is modified to a property that is less likely to cause stress corrosion cracking. Has also been proposed.

このような表面処理の例として,後掲の特許文献5には,冷却孔の表面を480〜600℃の水蒸気に1〜3時間曝すことによりマグネタイト(Fe34)に変化させることにより形成された表面改質層(マグネタイト層)を設けることを提案している(特許文献5[0027]欄[表2]の試料2)。 Examples of such surface treatment, Patent Document 5 described subsequently herein, formed by changing the magnetite (Fe 3 O 4) by exposing 1-3 hours the surface of the cooling holes to four hundred eighty to six hundred ° C. steam It is proposed to provide a modified surface modified layer (magnetite layer) (Patent Document 5 [0027], sample 2 in column [Table 2]).

〔その他〕
金型冷却孔の表面処理に関する発明ではなく,かつ,応力腐食割れの防止に関する処理を開示したものでも,応力腐食割れを防止する効果があることを予測させる記載もされていないが,後掲の特許文献6には,金属製品の表面に金属粒体を噴射することで,金属粒体中の組成物中の元素を金属製品の表面に拡散させる常温拡散,浸透メッキ方法が記載されており,この特許文献6には,噴射する金属粒体として錫の使用についても示唆している(特許文献6[0084])。
[Others]
Although it is not an invention relating to the surface treatment of the mold cooling holes and discloses a treatment relating to the prevention of stress corrosion cracking, there is no description for predicting the effect of preventing the stress corrosion cracking. Patent Document 6 describes a room temperature diffusion and permeation plating method in which an element in a composition in a metal particle is diffused to the surface of the metal product by spraying the metal particle on the surface of the metal product. This Patent Document 6 also suggests the use of tin as metal particles to be sprayed (Patent Document 6 [0084]).

なお,特許文献6は,ここに記載されている方法を「メッキ方法」と指称するが,特許文献6に記載の方法で形成される表面層は,浸炭や窒化等によって鋼製品の表面に形成される層と同様,素地中に,他の元素を拡散・浸透させて形成した「表面改質層」であり,特許文献2〜4のように,無電解メッキや電解メッキによって形成される,素地とは別の成分によって素地上を覆う「メッキ層」とは異なる。   In Patent Document 6, the method described herein is referred to as a “plating method”. However, the surface layer formed by the method described in Patent Document 6 is formed on the surface of a steel product by carburizing or nitriding. Like the layer to be formed, it is a “surface modified layer” formed by diffusing and penetrating other elements into the substrate, and is formed by electroless plating or electrolytic plating as in Patent Documents 2 to 4. It is different from the “plating layer” that covers the substrate with a different component from the substrate.

特開平7−290222号公報JP-A-7-290222 特開平9−271923号公報JP-A-9-271923 特開2009−72798号公報JP 2009-72798 A 特開2013−159831号公報JP 2013-159831 A 特開2016−204754号公報JP-A-2006-204754 特開平 8−333671号公報JP-A-8-333671

以上で説明した従来の金型冷却孔の表面処理方法中,ショットピーニングによって圧縮残留応力を付与する方法(特許文献1)は,冷却孔の形成加工等によって生じた引張残留応力や使用時にかかる外部応力を緩和することができるが,引張応力を完全に除去するものではなく,他の方法との併用も行われている。   Among the conventional methods for treating the surface of a mold cooling hole described above, the method of applying a compressive residual stress by shot peening (Patent Document 1) is based on the tensile residual stress generated by forming the cooling hole and the external force applied during use. Although it can relieve stress, it does not completely eliminate tensile stress, and is used in combination with other methods.

このようなショットピーニングによる圧縮残留応力の付与との併用として,特許文献3に記載されているように,無電解Ni―Pメッキによってバリア型の保護膜を形成して冷却孔の表面を腐食環境(水,溶存酸素,塩素イオン等)から隔絶することも考えられるが,この構成では,保護膜に素地に至る傷や孔が生じれば,局部電池の作用によって素地の腐食をより進行させることは前述した通りである。   As described in Patent Document 3, a barrier-type protective film is formed by electroless Ni-P plating to cope with the application of the compressive residual stress by such shot peening, and the surface of the cooling hole is exposed to a corrosive environment. (Water, dissolved oxygen, chloride ions, etc.) can be considered. However, in this configuration, if the protective film has scratches or holes that reach the substrate, the corrosion of the substrate can be further promoted by the action of the local battery. Is as described above.

一方,保護膜をZnやZn合金から成る犠牲膜とした特許文献4に記載の構成では,犠牲膜に素地に至る傷や孔が生じた場合であっても,素地の腐食発生を遅らせることができる点で有利であるが,この構成によっても,あくまでも素地の腐食を「遅らせる」ことができるだけで,保護膜の腐食の進行と共にやがて素地にも腐食が生じることとなる。   On the other hand, in the configuration described in Patent Literature 4 in which the protective film is a sacrificial film made of Zn or a Zn alloy, even if the sacrificial film has a flaw or a hole reaching the substrate, the corrosion of the substrate can be delayed. Although it is advantageous in that it can be performed, this configuration can only "delay" the corrosion of the substrate, and eventually the substrate is also corroded with the progress of the corrosion of the protective film.

また,保護膜としてZnやZn合金から成る犠牲膜を形成する構成では,素地に至る傷や孔が生じた際には素地の腐食を遅らせることができる点で有利であるものの,イオン化傾向が大きい(従って,腐食しやすい)材料で形成された犠牲膜は,それ自体が経時と共に腐食することで痩せていき保護効果が低下すると共に,この腐食によってメッキ層の表面に錆(白錆)が発生して流路面積を減少させることで冷却効率の低下等を招く場合がある。   In addition, the configuration in which a sacrificial film made of Zn or a Zn alloy is formed as a protective film is advantageous in that corrosion of the substrate can be delayed when scratches or holes are formed on the substrate, but the ionization tendency is large. A sacrificial film made of a material (which is susceptible to corrosion) becomes thinner as it erodes over time and loses its protective effect, and this corrosion causes rust (white rust) on the surface of the plating layer. As a result, a decrease in the channel area may lead to a decrease in cooling efficiency.

このような犠牲膜自身の腐食を防止するためには,冷却孔の表面に犠牲膜を形成した後,この犠牲膜の表面に,更に化成処理を行う等の処置が必要となるが,この方法では処理工数の増加によって冷却孔の表面処理の長時間化,高コスト化を招く。   In order to prevent such corrosion of the sacrificial film itself, it is necessary to form a sacrificial film on the surface of the cooling hole and then perform a chemical conversion treatment on the surface of the sacrificial film. In this case, an increase in the number of processing steps leads to a longer surface treatment of the cooling holes and a higher cost.

このように,保護膜の形成は,素地を腐食環境より隔絶することにより耐応力腐食割れ性を付与するものであるため,保護膜に破損等が生じた場合には素地を腐食から保護できなくなる。   As described above, since the formation of the protective film imparts stress corrosion cracking resistance by isolating the substrate from the corrosive environment, if the protective film is damaged, the substrate cannot be protected from corrosion. .

これに対し,少なくとも冷却孔の表面付近を,応力腐食割れが生じ難い材料特性に改質することができれば,電解メッキや無電解メッキによるメッキ層を保護膜として形成しない場合であっても,冷却孔表面の応力腐食割れを防止することができると共に,このような表面改質を,前述した保護膜の形成に際する下地処理として行えば,保護膜が破損等した場合であっても応力腐食割れの発生を防止できる。   On the other hand, if at least the vicinity of the surface of the cooling hole can be modified to a material property in which stress corrosion cracking is unlikely to occur, cooling can be performed even if a plating layer formed by electrolytic plating or electroless plating is not formed as a protective film. In addition to preventing stress corrosion cracking on the surface of the hole, if such surface modification is performed as a base treatment when forming the above-mentioned protective film, even if the protective film is damaged, etc. The occurrence of cracks can be prevented.

このような表面改質によって応力腐食割れを防止する方法として,特許文献5は金型の冷却孔の表面組織をマグネタイト(Fe34)に改変することで,腐食,従って応力腐食割れの発生を防止して金型の寿命を大幅に拡大できることを報告する。 As a method of preventing stress corrosion cracking by such surface modification, Patent Document 5 discloses that the surface structure of the cooling hole of a mold is changed to magnetite (Fe 3 O 4 ) to cause corrosion, and thus the occurrence of stress corrosion cracking. And that the life of the mold can be greatly extended.

しかし,特許文献5では,冷却孔の表面組織をマグネタイト(Fe34)に改変するために,冷却孔の表面を480〜600℃の水蒸気に,1〜3時間曝す処理を行っており(特許文献5[0014]),より,簡単,かつ短時間の処理で,冷却孔の表面に耐応力腐食割れ性を有する表面改質層を形成することができれば便利である。 However, in Patent Document 5, in order to change the surface structure of the cooling hole to magnetite (Fe 3 O 4 ), the surface of the cooling hole is exposed to water vapor at 480 to 600 ° C. for 1 to 3 hours. Patent Document 5 [0014]) It is more convenient if a surface modified layer having stress corrosion cracking resistance can be formed on the surface of the cooling hole with a simpler and shorter process.

また,上記方法によって形成されたマグネタイトの表面改質層は,比較的低硬度であり,耐摩耗性が低いために摩擦によってマグネタイト層が滅失すると耐応力腐食割れ性が失われる。   In addition, the surface modified layer of magnetite formed by the above method has relatively low hardness and low abrasion resistance, so that when the magnetite layer is lost due to friction, stress corrosion cracking resistance is lost.

そこで本発明は,金型の冷却孔の表面付近を,腐食が生じ難い性質,従って,応力腐食割れが生じ難い材料特性に改質された表面改質層を,比較的簡単,かつ,短時間で形成することができ,しかも,他部材との摩擦によっても耐応力腐食割れ性が失われ難い表面改質層を形成し得る,金型冷却孔の表面処理方法を提供することにより,冷却孔の表面における応力腐食割れの発生を防止して金型の長寿命化を図ることを目的とする。   Therefore, the present invention provides a relatively simple and short-time surface modified layer in the vicinity of the surface of the cooling hole of the mold, which has been modified to a material property that is less likely to corrode and therefore less likely to cause stress corrosion cracking. By providing a surface treatment method of a mold cooling hole, which can form a surface modified layer that can hardly lose stress corrosion cracking resistance even by friction with other members, It is an object of the present invention to prevent the occurrence of stress corrosion cracking on the surface of a steel sheet and extend the life of the mold.

上記目的を達成するために,本発明の金型冷却孔の表面処理方法は,
金型に形成された冷却孔の少なくとも表面にSn元素を拡散させる拡散処理を行うことにより,前記金型の素地成分とSnが混在する表面改質層を形成することを特徴とする(請求項1)。
In order to achieve the above object, a method for surface treatment of a mold cooling hole of the present invention comprises:
By performing the diffusion process of diffusing the Sn element at least on the surface of the cooling holes formed in the mold, characterized that you form a surface modified layer matrix component and Sn of the mold are mixed (according Item 1).

前記拡散処理は,平均粒子径10〜100μmの錫及び/又は錫合金の粒子から成る噴射粒体を噴射圧力0.4〜0.8MPaの圧縮気体と共に噴射して前記冷却孔の表面に衝突させることにより,前記噴射粒体中のSn元素を前記冷却孔の表面に拡散させることにより行うことができる(請求項2)。   In the diffusion treatment, an injection particle made of tin and / or tin alloy particles having an average particle diameter of 10 to 100 μm is injected together with a compressed gas having an injection pressure of 0.4 to 0.8 MPa to collide with the surface of the cooling hole. This can be performed by diffusing the Sn element in the spray particles to the surface of the cooling hole (claim 2).

本発明において,平均粒子径とはメジアン径(d50)を言う。   In the present invention, the average particle diameter means a median diameter (d50).

なお,一端を閉塞端とする冷却孔の表面を処理対象とする場合,
前記拡散処理における前記噴射粒体の噴射を,該冷却孔よりも小径の噴射ノズルを該噴射ノズルの先端を冷却孔の前記閉塞端付近,一例として閉塞端の内面に対し数mmの間隔となるまで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら,一例として該噴射ノズルが前記冷却孔より脱するまで,前記噴射粒体の噴射を継続することにより前記拡散処理を行うことが好ましい(請求項3)。
When the surface of a cooling hole whose one end is a closed end is to be treated,
In the diffusion process, the ejection of the ejection granules is performed by using an ejection nozzle having a diameter smaller than the cooling hole with the tip of the ejection nozzle near the closed end of the cooling hole, for example, a distance of several mm from the inner surface of the closed end. It is preferable that the diffusion process is performed by continuing the injection of the injected particles while the injection nozzle is removed from the cooling hole, for example, while gradually pulling out the injection nozzle until the injection nozzle comes out of the cooling hole. (Claim 3).

また,前記冷却孔の表面には,前記拡散処理前,又は前記拡散処理中のいずれかにおいてショットピーニングを行うことが好ましく(請求項4),このショットピーニングには,表面のスケール除去等を行う効果があることから,Sn元素を拡散させる前述の拡散処理を行う前にショットピーニングを行うことが好ましい。
Preferably, the surface of the cooling hole is subjected to shot peening either before the diffusion treatment or during the diffusion treatment (claim 4). In this shot peening, scale removal or the like of the surface is performed. Because of the effect, it is preferable to perform shot peening before performing the above-described diffusion processing for diffusing the Sn element.

この場合のショットピーニングは,平均粒子径20〜149μmのショットを噴射圧力0.3〜0.8MPaの圧縮気体と共に噴射して行うことができる(請求項5)。   In this case, shot peening can be performed by injecting a shot having an average particle diameter of 20 to 149 μm together with a compressed gas having an injection pressure of 0.3 to 0.8 MPa.

なお,一端を閉塞端とする冷却孔の表面を処理対象とする場合,
前記ショットピーニングにおける前記ショットの噴射についても,前記冷却孔よりも小径の噴射ノズルを該噴射ノズルの先端を冷却孔の前記閉塞端付近,一例として閉塞端の内面に対し数mmの間隔となるまで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら,一例として該噴射ノズルが前記冷却孔より脱するまで,前記ショットの噴射を継続することにより行うことが好ましい(請求項6)。
When the surface of a cooling hole whose one end is a closed end is to be treated,
Also for the injection of the shot in the shot peening, the injection nozzle having a diameter smaller than that of the cooling hole is set such that the tip of the injection nozzle is close to the closed end of the cooling hole, for example, a distance of several mm from the inner surface of the closed end. It is preferable that the shot be started by inserting the shot and that the shot be continuously ejected while gradually pulling out the spray nozzle until the ejected nozzle comes out of the cooling hole (claim 6).

この場合,前記冷却孔内で前記ノズルの先端を揺動させることが好ましい(請求項7)。   In this case, it is preferable to swing the tip of the nozzle in the cooling hole (claim 7).

なお,前述した本発明の表面処理方法は,窒化又は軟窒化処理がされた前記冷却孔の表面を処理対象として行うことができる(請求項8)。   In addition, the surface treatment method of the present invention described above can be performed on the surface of the cooling hole that has been subjected to nitriding or nitrocarburizing treatment (claim 8).

また,本発明の金型は,
冷却用の冷媒を導入する冷却孔が形成された金型において,
前記冷却孔の表面に,Sn元素が拡散されて前記金型の素地成分と混在する表面改質層が形成されていることを特徴とする(請求項9)。
The mold of the present invention
In a mold with a cooling hole for introducing a coolant for cooling,
The surface of the cooling hole is formed with a surface modified layer in which Sn element is diffused and mixed with a base component of the mold (Claim 9).

この表面改質層は,更に圧縮残留応力が付与されているものとすることが好ましい(請求項10)。   It is preferable that the surface modified layer is further provided with a compressive residual stress.

更に,前記冷却孔が表面に窒化層又は軟窒化層を備え,前記表面改質層が,前記窒化層又は軟窒化層に形成されていても良い(請求項11)。   Further, the cooling hole may include a nitrided layer or a nitrocarburized layer on the surface, and the surface modified layer may be formed in the nitrided layer or the nitrocarburized layer.

以上で説明した本発明の構成により,本発明の方法で表面処理を行った冷却孔を備えた金型では,冷却孔の表面にSn元素を拡散させたことで耐食性を発揮し,これにより,冷却孔表面での腐食の発生が防止されることで応力腐食割れの発生を好適に防止することができた。   According to the configuration of the present invention described above, the mold having the cooling holes subjected to the surface treatment by the method of the present invention exhibits the corrosion resistance by diffusing the Sn element on the surface of the cooling holes. The occurrence of stress corrosion cracking was successfully prevented by preventing the occurrence of corrosion on the cooling hole surface.

しかも,本発明の方法で処理された表面は,摩擦摩耗後においても優れた耐食効果を発揮する,耐摩耗性に優れたものであった。   Moreover, the surface treated by the method of the present invention exhibited excellent corrosion resistance even after frictional wear, and was excellent in wear resistance.

このようなSn元素の拡散は,所定粒径の錫及び/又は錫合金の粒体である噴射粒体を,所定の噴射圧力で噴射するという比較的簡単な方法で,短時間のうちに行うことが可能である。   Such diffusion of the Sn element is performed in a relatively short time by a relatively simple method of injecting spray particles, which are particles of tin and / or tin alloy having a predetermined particle size, at a predetermined injection pressure. It is possible.

冷却孔の表面にショットピーニングを行う構成では,前述したSn元素の拡散に伴う耐食性の付与と,ショットピーニングによる圧縮残留応力の付与との相乗効果によって,より一層の耐応力腐食割れ性を付与することができた。   In the configuration in which shot peening is performed on the surface of the cooling hole, more stress corrosion cracking resistance is imparted by the synergistic effect of the above-described imparting of corrosion resistance due to the diffusion of Sn element and the imparting of compressive residual stress by shot peening. I was able to.

更に,拡散処理における噴射粒体の噴射や,ショットピーニングにおけるショットの噴射を,冷却孔よりも小径の噴射ノズルをその先端を冷却孔の閉塞端付近まで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら噴射を継続する構成では,噴射ノズルの外周と冷却孔の内周間の間隔が狭く,従って噴射したショットや噴射粒体が孔外に抜け難く詰まり易い,細径の冷却孔の表面を処理対象とした場合であっても,ショットピーニングやSn元素の拡散処理を好適に行うことができた。   Further, the injection of the spray particles in the diffusion processing and the shot injection in the shot peening are started with the injection nozzle having a smaller diameter than the cooling hole inserted into the vicinity of the closed end of the cooling hole. In the configuration in which the injection is continued while gradually pulling out, the distance between the outer circumference of the injection nozzle and the inner circumference of the cooling hole is narrow, so that the shot or injected particles that are injected are difficult to fall out of the hole and are easily clogged. Even when the surface was to be treated, shot peening and Sn element diffusion treatment could be suitably performed.

特に,冷却孔内で前記噴射ノズルの先端側を揺動させながら前述した噴射を行うことで,加工むら等の発生についても好適に防止することができた。   In particular, by performing the above-described injection while oscillating the tip side of the injection nozzle in the cooling hole, it is possible to suitably prevent the occurrence of processing unevenness and the like.

なお,本発明の表面処理は,窒化や軟窒化が行われている冷却孔の表面に対し行うことで,窒化や軟窒化処理との相乗効果を得ることも可能である。   The surface treatment of the present invention can be performed on the surface of the cooling hole where nitriding or nitrocarburizing is performed, so that a synergistic effect with nitriding or nitrocarburizing can be obtained.

金型とその冷却孔を模式的に記載した説明図。FIG. 3 is an explanatory view schematically showing a mold and its cooling holes. 閉塞端を有する冷却孔表面に対する噴射粒体/ショットの噴射方法の説明図であり,(A)は全体構成,(B)は噴射ノズルの先端部の拡大図,(C)は噴射ノズルの先端を(B)図に示したC矢視方向より見た図。It is explanatory drawing of the injection method of the injection granule / shot with respect to the cooling hole surface which has a closed end, (A) is the whole structure, (B) is an enlarged view of the tip part of an injection nozzle, (C) is the tip of an injection nozzle. FIG. 2 is a view as viewed from the direction of arrow C shown in FIG. (A)は試料1(比較例),(B)は試料2(比較例),(C)は試料3(実施例),(D)は試料4(実施例)の輪郭曲線。(A) is the contour curve of Sample 1 (Comparative Example), (B) is the contour curve of Sample 2 (Comparative Example), (C) is the contour curve of Sample 3 (Example), and (D) is the contour curve of Sample 4 (Example). 試料1(比較例)表面のSEM像であり,(A)は1000倍,(B)は3000倍。It is the SEM image of the surface of the sample 1 (comparative example), (A) is 1000 times, (B) is 3000 times. 試料2(比較例)表面のSEM像であり,(A)は1000倍,(B)は3000倍。It is the SEM image of the surface of the sample 2 (comparative example), (A) is 1000 times, (B) is 3000 times. 試料3(実施例)表面のSEM像であり,(A)は1000倍,(B)は3000倍。It is the SEM image of the surface of the sample 3 (Example), (A) is 1000 times, (B) is 3000 times. 試料4(実施例)表面のSEM像であり,(A)は1000倍,(B)は3000倍。It is the SEM image of the surface of the sample 4 (Example), (A) is 1000 times, (B) is 3000 times. 試料1(比較例)表面のEDX定性分析結果。EDX qualitative analysis result of sample 1 (comparative example) surface. 試料2(比較例)表面のEDX定性分析結果。EDX qualitative analysis result of the surface of sample 2 (comparative example). 試料3(実施例)表面のEDX定性分析結果。Sample 3 (Example) EDX qualitative analysis result of surface. 試料4(実施例)表面のEDX定性分析結果。EDX qualitative analysis result of the surface of Sample 4 (Example). 摩擦摩耗試験(ボール・オン・ディスク試験)の説明図。Explanatory drawing of a friction wear test (ball-on-disk test). 耐食性試験結果を示す試験前後の各試料の表面を撮影した写真。The photograph which image | photographed the surface of each sample before and after the test which shows a corrosion resistance test result. 投射材の噴射方法に対する評価試験で使用した試験片と試験方法の説明図。Explanatory drawing of the test piece used for the evaluation test with respect to the injection method of a shot material, and a test method.

以下に,本発明の金型冷却孔の表面処理方法を,添付図面を参照しながら説明する。   Hereinafter, the surface treatment method of the mold cooling hole of the present invention will be described with reference to the accompanying drawings.

〔処理対象:金型の冷却孔〕
本発明の表面処理方法は,ダイカスト金型等の熱間金型内に冷却水等の冷媒を導入するために設けられた冷却孔の表面(内壁)を処理対象とする。
[Processing target: Mold cooling hole]
The surface treatment method of the present invention treats the surface (inner wall) of a cooling hole provided for introducing a coolant such as cooling water into a hot mold such as a die casting mold.

処理対象とする金型の鋼種は特に限定されず,一例として,SKD61(JIS G4404 2006)に代表されるSKD系の熱間ダイス鋼(SKD4,SKD5,SKD6,SKD61,SKD62,SKD7,SKD8)や,SKT系の熱間鍛造用型鋼(SKT3,SKT4,SKT6)等,熱間金型に使用される鋼種はいずれも本発明の表面処理の対象とすることができる。   The steel type of the die to be processed is not particularly limited. For example, SKD-based hot die steels (SKD4, SKD5, SKD6, SKD61, SKD62, SKD7, SKD8) represented by SKD61 (JIS G4404 2006), and the like. Any steel type used for a hot die such as a hot forging die steel (SKT3, SKT4, SKT6) of the SKT series can be subjected to the surface treatment of the present invention.

このような金型に形成される冷却孔としては,図1に模式的に示したように,例えば金型の背面側(キャビティ面とは反対側)からキャビティ面に向かって金型の厚さ方向に形成された冷却孔のように一端を閉塞端とする冷却孔と,図1において金型の厚さ方向に対し直交方向に表されている冷却孔のように貫通孔として形成された冷却孔等,各種の冷却孔がある。そして,例えば,これら各種の冷却孔どうしが繋がって,この繋がった冷却孔中を冷媒が循環している。本発明の表面処理方法は,これらの冷却孔のいずれに対しても適用可能である。   As schematically shown in FIG. 1, the cooling hole formed in such a mold is, for example, the thickness of the mold from the back side of the mold (the side opposite to the cavity surface) toward the cavity surface. A cooling hole formed at one end as a closed end, such as a cooling hole formed in a direction, and a cooling hole formed as a through hole, such as a cooling hole shown in a direction perpendicular to the thickness direction of the mold in FIG. There are various cooling holes such as holes. Then, for example, these various cooling holes are connected to each other, and the refrigerant circulates in the connected cooling holes. The surface treatment method of the present invention can be applied to any of these cooling holes.

対象とする冷却孔のサイズは特に限定されないが,閉塞端を有する冷却孔については,孔径が細くなるに従い,ショットや噴射粒体が冷却孔内で目詰まりを起こし易くなり加工が困難となるものの,本発明で採用する後述の噴射方法を適用する場合,金型に形成する最小レベルの冷却孔のサイズである直径2mmの冷却孔までは表面処理できることを確認している。   The size of the target cooling hole is not particularly limited, but for a cooling hole with a closed end, as the hole diameter becomes smaller, shots and spray particles are more likely to be clogged in the cooling hole, making processing difficult. It has been confirmed that the surface treatment can be performed up to a cooling hole having a diameter of 2 mm, which is the minimum size of the cooling hole formed in the mold, when the injection method described later adopted in the present invention is applied.

なお,本発明の表面処理方法は,切削加工等を行ったままの冷却孔の表面に対し行うことも可能であるが,冷却孔の表面にツールマーク等の凹凸が形成されている場合には,凹部を起点として割れが発生し易くなること,また,冷却孔の形成を放電加工にて行った場合,表面に付着した酸化スケールやマイクロクラックの原因となる放電硬化層を事前に除去しておくことが好ましいことから,本願の処理を行う前に,冷却孔の表面に対し,砥粒を噴射して研磨するサンドブラスト等の研磨処理を行っておくものとしても良い。   The surface treatment method of the present invention can be applied to the surface of the cooling hole while cutting or the like is performed. However, when the surface of the cooling hole has irregularities such as a tool mark, In addition, when the cooling holes are formed by electric discharge machining, the discharge hardened layer that causes oxide scale and micro cracks adhered to the surface should be removed in advance. Since it is preferable to perform the polishing, the surface of the cooling hole may be subjected to a polishing process such as sandblasting in which abrasive grains are sprayed and polished before performing the process of the present invention.

また,冷却孔の表面に対しては,必要に応じて既知の方法により窒化や軟窒化等の処理を行うものとしても良く,このようにして窒化や軟窒化処理を行った後の冷却孔の表面に対し,本発明の処理を行うものとしても良い。   If necessary, the surface of the cooling hole may be subjected to a treatment such as nitriding or nitrocarburizing by a known method. The treatment of the present invention may be performed on the surface.

〔表面処理〕
以上で説明した金型の冷却孔表面に対し,本発明の表面処理が施される。
〔surface treatment〕
The surface treatment of the present invention is applied to the cooling hole surface of the mold described above.

この表面処理方法は,金型に形成された冷却孔の少なくとも表面にSn元素を拡散させる拡散処理を少なくとも含み,好ましくは,上記拡散処理の他,冷却孔の表面にショットピーニングを適用して,圧縮残留応力を付与することが好ましい。   This surface treatment method includes at least a diffusion treatment for diffusing Sn element into at least the surface of the cooling hole formed in the mold. Preferably, in addition to the diffusion treatment, shot peening is applied to the surface of the cooling hole. It is preferable to apply a compressive residual stress.

本実施形態では,冷却孔の表面に,まず,ショットピーニングを行って圧縮残留応力を付与し,その後,Sn元素を拡散させる前述の拡散処理を行う場合を例に挙げて説明する。   In the present embodiment, an example will be described in which the surface of the cooling hole is first subjected to shot peening to impart a compressive residual stress, and then the above-described diffusion process for diffusing the Sn element is performed.

ショットピーニングは,金属やセラミック,ガラス等の略球状の粒子から成るショットを,圧縮気体と共に冷却孔の表面に噴射,衝突させて行う冷間加工の一種であり,このショットピーニングを行うことで,表面組織の微細化による冷却孔の表面硬度の上昇(加工硬化)が得られると共に,圧縮残留応力を付与することができる。   Shot peening is a type of cold working in which shots composed of roughly spherical particles of metal, ceramic, glass, etc., are sprayed and collided with the compressed gas onto the surface of the cooling holes. By performing this shot peening, An increase in surface hardness (work hardening) of the cooling holes due to the refinement of the surface structure can be obtained, and a compressive residual stress can be given.

使用するショットとしては,前述したように金属,セラミック,ガラス等の,ショットピーニングに使用されるショット材の材質として既知の各種材質のショットを使用することができるが,好ましくは,処理対象とする冷却孔の表面硬度よりも高硬度のものを使用する。   As the shot to be used, as described above, shots of various materials known as materials of the shot material used for shot peening, such as metal, ceramic, and glass, can be used. Use a cooling hole whose hardness is higher than the surface hardness.

ショットの粒径としては,平均粒径20〜149μmのものを使用することができ,このショットを,噴射圧力0.3〜0.8MPaの圧縮空気等の圧縮気体と共に噴射する。   The shot may have an average particle diameter of 20 to 149 μm. The shot is injected together with a compressed gas such as compressed air having an injection pressure of 0.3 to 0.8 MPa.

なお,ショットピーニングは一回のみの処理で行うこともできるが,複数回に分けて行うものとしても良く,例えば段階的に噴射圧力やショットの粒径を変化させる等して,処理後の冷却孔の表面粗さが改善されるように行っても良い。   The shot peening can be performed only once, but may be performed in a plurality of times. For example, by changing the injection pressure or the particle size of the shot stepwise, cooling after the processing may be performed. It may be performed so that the surface roughness of the holes is improved.

本実施形態において,Sn元素を拡散させる前述の拡散処理は,前述したショットピーニングを行った後の冷却孔の表面に対し行う。   In the present embodiment, the above-described diffusion processing for diffusing the Sn element is performed on the surface of the cooling hole after the above-described shot peening.

このようなSn元素の拡散は,錫又は錫合金から成る噴射粒体を冷却孔の表面に噴射して衝突させることにより行うことができ,衝突時のエネルギーによって,噴射粒体中のSn元素の一部を,冷却孔の表面に拡散させることができる。   Such diffusion of the Sn element can be carried out by injecting the blast particles made of tin or a tin alloy onto the surface of the cooling hole and causing them to collide with each other. Some can be diffused to the surface of the cooling holes.

この拡散処理に使用する噴射粒体は,冷却孔の表面に拡散させるSn元素を含むものである必要があり,純錫の粒体は勿論,錫を主成分とする錫合金の粒体についても使用することができ,また,自然酸化によって表面に酸化膜が形成された錫の粒体等,その一部又は全部が酸化錫の形態をとるものであっても良い。   The spray particles used for this diffusion process need to contain Sn elements to be diffused to the surface of the cooling hole, and are used not only for pure tin particles but also for tin alloy particles containing tin as a main component. Alternatively, some or all of tin particles having an oxide film formed on the surface by natural oxidation may be in the form of tin oxide.

前述したショットピーニングに使用するショットとは異なり,拡散処理に使用する噴射粒体の形状は,略球状のものに限らず,角を有する形状のものについても使用可能であり,その形状は限定されない。   Unlike the shot used for shot peening described above, the shape of the spray particles used for the diffusion process is not limited to a substantially spherical shape, but can also be used for shapes having corners, and the shape is not limited. .

使用する噴射粒体の平均粒径は10〜100μmの範囲であり,この噴射粒体を噴射圧力0.4〜0.8MPaの圧縮空気等の圧縮気体と共に噴射することにより,冷却孔の表面にSn元素を拡散することができる。   The average particle size of the spray particles used is in the range of 10 to 100 μm. By spraying the spray particles together with a compressed gas such as compressed air having a spray pressure of 0.4 to 0.8 MPa, the surface of the cooling hole is formed. Sn element can be diffused.

なお,本実施形態では,前述したショットピーニングを行った後に,錫又は錫合金の噴射粒体を噴射してSn元素を拡散させる拡散処理を行う場合を例に挙げて説明したが,2つの処理は,冷却孔の表面に,圧縮残留応力の付与とSn元素の拡散の双方を行うことができればその順序は特に限定されず,Sn元素を拡散した後に冷却孔の表面に対しショットピーニングを行うものとしても良く,又は,噴射粒体の噴射(拡散処理)とショットの噴射(ショットピーニング)を同時に行って,Sn元素の拡散と圧縮残留応力の付与を同時に行うものとしても良い。   In the present embodiment, the case where the above-described shot peening is performed and then the diffusion process of injecting tin or tin alloy spray particles to diffuse the Sn element is described as an example. The order is not particularly limited as long as both the application of compressive residual stress and the diffusion of Sn element can be performed on the surface of the cooling hole, and the surface of the cooling hole is shot-peened after the Sn element is diffused. Alternatively, the injection of spray particles (diffusion processing) and the injection of shots (shot peening) may be performed at the same time to simultaneously diffuse the Sn element and impart compressive residual stress.

但し,ショットピーニングには,表面のスケール除去等を行う効果があることから,Sn元素を拡散させる前述の拡散処理を行う前にショットピーニングを行うことが好ましい。   However, since shot peening has the effect of removing scale from the surface, it is preferable to perform shot peening before performing the above-described diffusion treatment for diffusing the Sn element.

上記ショットピーニングにおけるショットの噴射や拡散処理における噴射粒体の噴射は,以下の方法により行うことができる。   The shot injection in the shot peening and the injection of the spray particles in the diffusion process can be performed by the following methods.

なお,以下に説明するショットや噴射粒体の噴射方法は,本発明の処理を行うに先立ち,冷却孔の表面を砥粒の噴射によって研磨等する場合,この砥粒の噴射等にも適用可能である。   In addition, the method of injecting shots and blasting particles described below can be applied to the blasting of abrasive grains when the surface of the cooling hole is polished by blasting of abrasive grains prior to performing the processing of the present invention. It is.

処理対象とする冷却孔が,図1に示した冷却孔のうち,入口と出口を有する貫通孔として形成されたものである場合には,入口又は出口の一方より圧縮空気等の圧縮気体と共にショットや噴射粒体を導入すると共に,他方より噴出させることで,冷却孔の表面にショットや噴射粒体を衝突させるようにしても良い。   If the cooling hole to be treated is one of the cooling holes shown in FIG. 1 which is formed as a through hole having an inlet and an outlet, a shot is taken together with a compressed gas such as compressed air from either the inlet or the outlet. Alternatively, shots or spray particles may be caused to collide with the surface of the cooling hole by introducing or spraying particles from the other side.

処理対象とする冷却孔が,図1に示した冷却孔のうち,一端を閉塞端とする孔である場合には,図2(A)に示すように,冷却孔の孔径よりも小さく,かつ,冷却孔の表面と噴射ノズルの外周面との間に,少なくとも圧縮気体とショットや噴射粒体との混合流体の通過許容間隔を形成し得る外径を有する噴射ノズルを使用し,この噴射ノズルを冷却孔内に挿入して噴射する。なお,この方法は貫通孔として形成された冷却孔にも適用可能である。   When the cooling hole to be processed is one of the cooling holes shown in FIG. 1 having one end closed, as shown in FIG. 2A, the diameter is smaller than the diameter of the cooling hole, and Using an injection nozzle having an outer diameter between the surface of the cooling hole and the outer peripheral surface of the injection nozzle at least capable of forming a permissible interval for the passage of the mixed fluid of the compressed gas, the shot and the injection particles. Is inserted into the cooling hole and injected. This method is also applicable to cooling holes formed as through holes.

このような噴射ノズルを使用したショットや噴射粒体の噴射は,噴射ノズルの先端が冷却孔の閉塞端内面に対し数mm程度の間隔,例えば3〜5mm程度の間隔となるまで噴射ノズルを冷却孔内に挿入し,この位置でショットや噴射粒体の噴射を開始し,噴射ノズルを冷却孔より徐々に引き抜きながら噴射ノズルが冷却孔から脱するまで噴射を継続することで,閉塞端の内面を含む冷却孔の表面全体にショットや噴射粒体を衝突させることができる。   In the shots and the injection of the spray particles using such an injection nozzle, the injection nozzle is cooled until the tip of the injection nozzle is spaced from the inner surface of the closed end of the cooling hole by about several mm, for example, about 3 to 5 mm. Inserting into the hole, starting the injection of shots and spray particles at this position, continuing the injection until the injection nozzle comes out of the cooling hole while gradually pulling out the injection nozzle from the cooling hole, the inner surface of the closed end Shots and spray particles can be caused to collide with the entire surface of the cooling hole including the particles.

噴射ノズルの引き抜きは,早すぎると冷却孔の表面を十分に処理できず,遅すぎると,噴射されたショットや噴射粒体が冷却孔内に詰まって噴射できなくなることから,0.1〜50mm/sの引き抜き速度で引き抜くことが好ましく,一例として直径4mmの冷却孔に対する噴射において,0.5〜50mm/sである。   If the ejection nozzle is too early, the surface of the cooling hole cannot be sufficiently treated if it is too early, and if it is too late, the shot or injected particles clogged in the cooling hole and cannot be ejected. / S withdrawal speed is preferred, for example, 0.5 to 50 mm / s when spraying into a cooling hole having a diameter of 4 mm.

ショットや噴射粒体の噴射中,噴射ノズルの先端側を,図2(B),(C)中に矢印で示すように冷却孔内で揺動させて,冷却孔の表面に対し均一に加工を行うことができるようにしても良い。   During shot or injection particle injection, the tip side of the injection nozzle is swung in the cooling hole as shown by the arrows in FIGS. 2 (B) and 2 (C) to uniformly process the surface of the cooling hole. May be performed.

なお,孔径が比較的大きい冷却孔を処理対象とする場合には,噴射ノズルの外周と冷却孔の内周間の隙間を確保することが容易であるが,冷却孔の孔径が小さくなると,噴射ノズルの外周と冷却孔の内周間の間隔を確保し難くなり,噴射されたショットや噴射粒体が冷却孔外に排出され難くなることで冷却孔内にショットや噴射粒体が詰まり易くなることから,冷却孔の孔径に対し,適切なサイズの噴射ノズルの選択が必要となる。   When a cooling hole having a relatively large hole diameter is to be processed, it is easy to secure a gap between the outer periphery of the injection nozzle and the inner periphery of the cooling hole. It becomes difficult to secure the space between the outer circumference of the nozzle and the inner circumference of the cooling hole, and it becomes difficult for the shots and spray particles ejected to be discharged out of the cooling holes, so that the shots and spray particles easily clog in the cooling holes. Therefore, it is necessary to select an injection nozzle having an appropriate size for the diameter of the cooling hole.

下記の表1に,閉塞端を有する冷却孔のうち,特に噴射粒体の噴射が難しくなる孔径8mm以下の冷却孔に使用する噴射ノズルの組合せ例を示す。   Table 1 below shows examples of the combination of the injection nozzles used for the cooling holes having a hole diameter of 8 mm or less, in particular, of the cooling holes having the closed ends, in which the injection of the injection particles is difficult.

なお,Sn元素を拡散させる拡散処理とショットピーニングとを含む本発明における冷却孔の表面処理の工程例と,各工程における処理条件の一例を下記の表2に示す。   Table 2 below shows an example of the surface treatment of the cooling holes in the present invention including the diffusion treatment for diffusing the Sn element and shot peening, and an example of the treatment conditions in each step.

表2に示す例は,放電加工によって冷却孔を形成した金型に対する表面処理の例を示したもので,工程1でSiC砥粒を噴射して,放電加工によって冷却孔の表面に生じた酸化スケールと放電硬化層を除去するサンドブラスト処理を行った後,工程2でショットピーニングを行っている。   The example shown in Table 2 shows an example of surface treatment for a mold in which cooling holes are formed by electric discharge machining. In step 1, SiC abrasive grains are sprayed, and oxidation generated on the surface of the cooling holes by electric discharge machining is performed. After performing sandblasting for removing the scale and the discharge hardened layer, shot peening is performed in step 2.

また,工程2でショットピーニングを行った後,工程3のショットピーニングで冷却孔表面の鉄分除去を行うと共に,面粗さの改善を行うためのショットの噴射を行った後,工程4でSn粒体を噴射して,冷却孔表面にSn元素を拡散させる拡散処理を行っている。   In addition, after performing shot peening in step 2, iron is removed from the surface of the cooling hole by shot peening in step 3, and shots are injected to improve the surface roughness. Diffusion processing is performed by injecting the body to diffuse the Sn element on the cooling hole surface.

1.試験片による評価
以下に,本発明の表面処理方法で処理した試験片に対し,表面状態の評価と耐食性の評価試験を行った結果を示すと共に,本願で採用する投射材の噴射方法に対する評価試験を行った結果を以下に示す。
1. Evaluation by test piece The following shows the results of the evaluation of the surface condition and the evaluation test of the corrosion resistance of the test piece treated by the surface treatment method of the present invention, and the evaluation test for the injection method of the shot material used in the present application. Are shown below.

〔表面状態の評価試験〕
(1)試験の目的
本願発明の方法で表面処理を行った後の試験片表面の状態を,圧縮残留応力,表面形状,及び成分に基づいて確認する。
(Surface condition evaluation test)
(1) Object of the test The condition of the test piece surface after the surface treatment by the method of the present invention is confirmed based on the residual compressive stress, the surface shape, and the components.

(2)試験方法
SKD61製の4枚の試験片(焼入れ・焼き戻し品:幅25mm×長さ25mm×厚さ5mm,硬さ45HRC)に,それぞれ下記の表3に示す処理を行って得た試料1〜4の表面に対し,cosα法を用いたX線残留応力測定,レーザー顕微鏡及び走査型電子顕微鏡(SEM)に基づく表面形状観察,及び,エネルギー分散型X線分析(EDX)による元素分析を行った。
(2) Test method Four test pieces (hardened / tempered product: width 25 mm x length 25 mm x thickness 5 mm, hardness 45HRC) made of SKD61 were obtained by performing the treatments shown in Table 3 below. X-ray residual stress measurement using cosα method, surface shape observation based on laser microscope and scanning electron microscope (SEM), and elemental analysis by energy dispersive X-ray analysis (EDX) on the surfaces of samples 1 to 4 Was done.

(3)試験結果
(3-1) 残留応力測定結果
上記4種類の試験片に対し,幅方向(X方向)と長さ方向(Y方向)の双方の残留応力を測定した結果を下記の表4に示す。
(3) Test results
(3-1) Residual stress measurement results Table 4 below shows the results of measuring the residual stress in the width direction (X direction) and the length direction (Y direction) for the above four types of test pieces.

なお,試料2(軟窒化処理品)の残量応力を測定した結果,高い圧縮残留応力が付与されていることは確認されたが,測定値のばらつきが大きく(標準偏差が大きく),得られた数値の正確性についての信頼度が低いことに鑑み,表4において空欄とした。   As a result of measuring the residual stress of sample 2 (soft-nitrided product), it was confirmed that a high compressive residual stress was applied, but the dispersion of the measured values was large (the standard deviation was large) and obtained. In view of the low reliability of the accuracy of the numerical values, the values are left blank in Table 4.

以上の結果から,本願の方法で処理した試料(試料3,試料4)では,未処理(焼入れ・焼き戻し処理のまま)の試料1の試験片に比較して,より大きな圧縮残留応力を付与できていることが確認された。   From the above results, the sample (sample 3 and sample 4) treated by the method of the present invention imparted a larger compressive residual stress than the untreated (hardened / tempered) sample 1 sample. It was confirmed that it was done.

また,試料1の試験片では,X方向とY方向で応力値が大きく相違するものとなっていたが,本発明の方法で処理した試験片では,X方向とY方向で応力値に殆ど差がなく,本願の方法では試験片表面のいずれの方向に対しても均一に圧縮残留応力を付与できていることが確認された。   In the test piece of sample 1, the stress value was largely different between the X direction and the Y direction. However, in the test piece treated by the method of the present invention, the stress value was almost different between the X direction and the Y direction. Therefore, it was confirmed that the compressive residual stress could be uniformly applied to the test piece surface in any direction by the method of the present invention.

(3-2) 表面形状
試料1〜4の輪郭曲線を図3に,表面のSEM像を図4〜7にそれぞれ示す。
図3に示した輪郭曲線より,比較例である試料1及び試料2の表面には,割れの起点となり得る深く鋭利な凹部(谷)が多数形成されているのに対し,本願発明の方法で処理した試料3及び試料4の表面は,試料1,2に比較して全体的になだらかな輪郭となっていることが判る。
(3-2) Surface shape The contour curves of samples 1 to 4 are shown in Fig. 3, and the SEM images of the surface are shown in Figs. 4 to 7, respectively.
According to the contour curves shown in FIG. 3, a large number of deep and sharp concave portions (valleys) which can be the starting points of cracks are formed on the surfaces of the sample 1 and the sample 2 which are the comparative examples. It can be seen that the surfaces of the processed samples 3 and 4 have a gentler contour as compared to the samples 1 and 2.

なお,試料1(未処理品)と,本願の方法で処理した試料4の表面における山頂点の算術平均曲(Spc:ISO 25178)を測定した結果,試料1(未処理品)では1/12477.066mm,試料4(実施例)では1/4529.218mmであり,この結果からも本発明の方法で処理を行った試験片では,凹凸の山頂がつぶれて,表面がなだらかな形状となっていることが確認されている。   The arithmetic mean tune (Spc: ISO 25178) of the peaks on the surfaces of Sample 1 (untreated product) and Sample 4 treated by the method of the present invention was measured. 0.066 mm and 1 / 4529.218 mm for Sample 4 (Example). From this result, it can be seen from the results that the peaks of the irregularities were flattened and the surface became smooth in the test piece treated by the method of the present invention. Has been confirmed.

また,各試料の表面を撮影したSEM像より,比較例である試料1の表面にはツールマークが残っており(図4参照),また,同様に比較例である試料2の表面では,粒状の細かい凹凸の存在が確認されたが(図5参照),本発明の方法で処理した試料3,試料4の表面には,このような粒状の細かい凹凸の存在は確認できず(図6,図7参照),試料1,2に比較して割れの発生し難い形状となっていることが判る。   From the SEM image of the surface of each sample, a tool mark remains on the surface of sample 1 as a comparative example (see FIG. 4). Although the presence of fine irregularities was confirmed (see FIG. 5), the existence of such granular fine irregularities was not confirmed on the surfaces of Samples 3 and 4 treated by the method of the present invention (FIG. 6). It can be seen that the shape is less prone to cracking as compared to Samples 1 and 2.

(3-3) EDX定量分析結果
試料1〜4の表面に対し,エネルギー分散型X線分析(EDX)による元素分析を行った結果を図8〜11に示す。
また,各試料表面のEDX半定量値を下記の表5に示す。
(3-3) EDX Quantitative Analysis Results FIGS. 8 to 11 show the results of elemental analysis of the surfaces of Samples 1 to 4 by energy dispersive X-ray analysis (EDX).
Table 5 below shows the semi-quantitative EDX value of each sample surface.

なお,参考のためJIS G 4404 2006 におけるSKD61の化学成分を下記の表6に示す。   The chemical components of SKD61 in JIS G 4404 2006 are shown in Table 6 below for reference.

図8より,試料1の表面からはC,Fe,Si,Mo,V,Cr,Mnが検出されているが,これらの成分は,表6に示したようにいずれもSKD61の構成成分であると共に,各成分の半定量値(表5参照)も,SKD61の組成と略一致することから,試料1では,素地であるSKD61の成分がそのまま表面の成分として検出されていることが判る。   8, C, Fe, Si, Mo, V, Cr, and Mn are detected from the surface of the sample 1. These components are all constituents of the SKD 61 as shown in Table 6. At the same time, the semi-quantitative value of each component (see Table 5) also substantially coincides with the composition of SKD61, which indicates that, in Sample 1, the component of SKD61, which is the base material, is detected as a surface component as it is.

図9より,試料2の表面からは,素地(SKD61)の成分であるC,Fe,Si,Mo,V,Cr,Mnの他,NとOが検出されており,軟窒化によって表面に窒素Nが拡散していることが確認できる。   From FIG. 9, N and O are detected from the surface of the sample 2 in addition to C, Fe, Si, Mo, V, Cr, and Mn, which are the components of the base material (SKD61). It can be confirmed that N is diffused.

図10より,試料3の表面からは,素地(SKD61)の成分であるC,Fe,Si,Mo,V,Cr,Mnと,軟窒化により表面に拡散したNの他,Snが検出されており,また,試料2に比較してOの検出量が増加している。   From FIG. 10, Sn, in addition to C, Fe, Si, Mo, V, Cr, and Mn, which are components of the base material (SKD61), N diffused to the surface by nitrocarburizing, and Sn were detected from the surface of Sample 3. In addition, the amount of O detected is larger than that of Sample 2.

なお,半定量分析による定量の結果,Snを55.1%と多量に含んでいることが確認された。   In addition, as a result of quantification by semi-quantitative analysis, it was confirmed that Sn was contained as much as 55.1%.

これにより,本発明の表面処理方法によって試料3の素地(SKD61)の表面にSn元素が多量に拡散したことが判る。   This indicates that the Sn element diffused in a large amount on the surface of the base material (SKD61) of Sample 3 by the surface treatment method of the present invention.

また,Oの増加より,本願の処理を行うことで表面が酸化したものと考えられる。   Also, from the increase in O, it is considered that the surface was oxidized by performing the treatment of the present invention.

図11より,試料4の表面からは素地(SKD61)の成分であるC,Fe,Si,Mo,V,Cr,Mnと,軟窒化により表面に拡散したNの他,Snが検出されており,また,試料2に比較してOの検出量が増加している。   From FIG. 11, Sn, in addition to C, Fe, Si, Mo, V, Cr, and Mn, which are components of the base material (SKD61), N diffused to the surface by nitrocarburizing, and Sn were detected from the surface of Sample 4. In addition, the amount of O detected is larger than that of Sample 2.

なお,半定量分析による定量の結果では,Snを28.5%と多量に含んでいることが確認された。   The results of quantification by semi-quantitative analysis confirmed that Sn was contained as much as 28.5%.

これにより,本発明の表面処理方法によって試料4の表面にSn元素が多量に拡散したことが判る。   Thus, it can be seen that the Sn element diffused into the surface of the sample 4 in a large amount by the surface treatment method of the present invention.

また,Oの増加より,本願の処理を行うことで表面が酸化したものと考えられる。   Also, from the increase in O, it is considered that the surface was oxidized by performing the treatment of the present invention.

(3-4) FE−EPMAによる元素分布の計測
前掲の試料2及び試料4に対し,電解放出型電子プローブマイクロアナライザー(Field Emission - Electron Probe Micro Analyzer; FE-EPMA)による面分析を行い,元素分布を計測した。
(3-4) Measurement of element distribution by FE-EPMA Surface analysis was performed on Samples 2 and 4 above using a field emission-electron probe microanalyzer (FE-EPMA), The distribution was measured.

試料2及び試料4を厚み方向にワイヤーによって切断し,切断面を導電性樹脂に埋め込んで鏡面研磨した後,鏡面研磨後の断面の表面層付近の元素分布を,FE−EPMAにてマッピングした。   Samples 2 and 4 were cut with a wire in the thickness direction, the cut surfaces were embedded in a conductive resin and mirror-polished, and the element distribution near the surface layer of the cross-section after mirror polishing was mapped by FE-EPMA.

計測の結果,試料2(比較例)の試験片において,内部Fe部分に部分的にFeが薄く,Crが濃い箇所が点状に存在しており,この部分に合金成分であるCr炭化物が点在しているものと考えられる。   As a result of the measurement, in the test piece of Sample 2 (Comparative Example), a part where Fe was thin and Cr was deep was present in a dot-like manner in the internal Fe part, and Cr carbide as an alloy component was spotted in this part. It is considered that there is.

また,試料2の表層部には,軟窒化処理に伴う化合物層の影響と見られるNの濃化が確認されると共に,Oが部分的に濃化していることが確認された。   Further, in the surface layer portion of the sample 2, it was confirmed that the concentration of N, which is considered to be affected by the compound layer accompanying the nitrocarburizing treatment, and the O was partially concentrated.

なお,Sn粒子の噴射を行っていない試料2の試験片では,Sn元素は検出されていない。   It should be noted that Sn elements were not detected in the test piece of Sample 2 in which the injection of Sn particles was not performed.

これに対し試料4(実施例)の試験片の内部Fe部分でも,部分的にFeが薄く,Crが濃い箇所が点状に存在している点は試料2と同様であり,本発明の処理によっても内部の構造は変化することなく維持されていることが判る。   On the other hand, also in the internal Fe portion of the test piece of Sample 4 (Example), the point that the portion where Fe is thin and the portion where Cr is dense is present in a dot-like manner is the same as Sample 2, and the treatment of the present invention was performed. It can also be seen that the internal structure is maintained without change.

また,試料4の表層部では,試料2とは異なりNの濃化が観察できない一方,Snが濃化している箇所の存在が確認されており,本発明の方法で処理することにより窒素化合物層が除去されると共に,Sn粒子の噴射によって,試料の表面に対しSn元素が拡散されていることが確認された。   Also, unlike the sample 2, the N concentration cannot be observed in the surface layer portion of the sample 4, but the existence of a portion where the Sn concentration has been confirmed was confirmed. Thus, the nitrogen compound layer was treated by the method of the present invention. Was removed, and it was confirmed that the Sn element was diffused into the surface of the sample by the injection of the Sn particles.

〔耐食性の評価試験〕
(1)試験の目的
本発明の方法で表面処理を行った試験片が耐食性を有すること(特に,Sn元素の拡散により耐食性が付与されること),及び摩擦摩耗試験によっても耐食性が失われないことを確認する。
(Corrosion resistance evaluation test)
(1) Object of the test The test piece surface-treated by the method of the present invention has corrosion resistance (particularly, corrosion resistance is imparted by diffusion of Sn element), and the corrosion resistance is not lost even by the friction and wear test. Make sure that

(2)試験方法
SKD61製の6枚の試験片(焼入れ・焼き戻し品;幅25mm×長さ25mm×厚さ5mm,硬さ45HRC)のそれぞれに対し,下記の表7に示す条件で表面処理を行った後,ボール・オン・ディスク型摩耗機にかけて表面を摩擦摩耗した。
(2) Test method Surface treatment of each of six SKD61 test pieces (hardened / tempered product; width 25 mm x length 25 mm x thickness 5 mm, hardness 45 HRC) under the conditions shown in Table 7 below After that, the surface was frictionally worn by a ball-on-disk wear machine.

摩擦摩耗後の各試験片を洗浄した後,工業用水(約25℃)に240時間浸漬した後の腐食(赤錆)の発生状態を目視にて観察した。   After each test piece after the friction and abrasion was washed, the state of occurrence of corrosion (red rust) after immersion in industrial water (about 25 ° C.) for 240 hours was visually observed.

試験片表面の摩擦摩耗試験は,A5052製のボール(直径10mm),を図12に示すように試験片の表面に荷重9.8Nで押し付け,摩擦半径6mm,回転速度100min-1で,500秒間摺動させた。 The friction and wear test of the test piece surface was performed by pressing an A5052 ball (diameter: 10 mm) against the surface of the test piece with a load of 9.8 N as shown in FIG. 12, a friction radius of 6 mm and a rotation speed of 100 min -1 for 500 seconds. Slided.

工業用水に対する各試料の浸漬は,錆が発生し易い環境とするために約50時間毎に水を入れ替えて溶存酸素の補充を行った。   For immersion of each sample in industrial water, water was replaced every 50 hours to replenish dissolved oxygen in order to create an environment in which rust is likely to occur.

(3)試験結果
工業用水に浸漬する前後の各試料の表面状態を図13に,この表面状態に基づく耐食性の評価結果を,下記の表8に,示す。
(3) Test Results FIG. 13 shows the surface condition of each sample before and after immersion in industrial water, and Table 8 below shows the results of the corrosion resistance evaluation based on the surface condition.

以上の結果から,本発明の表面処理方法で表面処理を行うことで,高い耐食性が得られることが確認された。   From the above results, it was confirmed that high corrosion resistance was obtained by performing the surface treatment by the surface treatment method of the present invention.

なお,軟窒化処理によって高い圧縮残留応力が付与されている試料6において顕著な錆の発生が確認されていることから,圧縮残留応力を付与したのみでは耐食性が得られていないことが判る。   Note that significant rust was observed in Sample 6 to which high compressive residual stress was applied by the nitrocarburizing treatment, indicating that corrosion resistance was not obtained only by applying compressive residual stress.

従って,本発明の表面方法で処理された試料9及び10における耐食性は,軟窒化(試料10)やショットピーニング(試料9,10)による圧縮残留応力の付与によって得られたものではなく,Sn元素の拡散によって冷却孔表面の材料特性が変化したことにより得られたものであることが合理的に推察される。   Therefore, the corrosion resistance of Samples 9 and 10 treated by the surface method of the present invention was not obtained by applying compressive residual stress by nitrocarburizing (Sample 10) or shot peening (Samples 9 and 10). It is reasonably speculated that this was obtained by the change in the material properties of the cooling hole surface due to the diffusion of.

なお,軟窒化処理を行った後の試験片の表面にマグネタイト(Fe34)の表面改質層を形成した試料8の試験片においても,本願の方法で表面処理を行った試料9及び試料10の試験片と同様,摩擦摩耗試験後においても摩擦面の耐食性が失われていなかった。 The test piece of Sample 8 in which the surface modified layer of magnetite (Fe 3 O 4 ) was formed on the surface of the test piece after the nitrocarburizing treatment was also used. Like the test piece of Sample 10, the corrosion resistance of the friction surface was not lost even after the friction and wear test.

しかし,同じくマグネタイト(Fe34)の表面改質層を形成したものであっても,未処理(焼入れ・焼き戻しのまま)の表面に直接,マグネタイト(Fe34)の表面改質層を形成した試料7では,摩擦試験でボールと接触した部分においてマグネタイト層が摩耗して耐食性が失われ,大量の赤錆が発生しており,マグネタイト(Fe34)の表面改質層は,高い耐食性を有するものの,軟窒化等の表面強化処理を行っていないそのままの状態では摩擦や摩耗に弱いものであることが確認された。 However, even also obtained by forming a surface modification layer of magnetite (Fe 3 O 4), directly to the surface of the untreated (left-hardened), surface modification of magnetite (Fe 3 O 4) sample 7 to form a layer, magnetite layer in a portion in contact with the ball is the corrosion resistance and abrasion loss in friction test, a large amount of red rust has occurred, the surface modification layer of magnetite (Fe 3 O 4) is However, it was confirmed that although it had high corrosion resistance, it was weak to friction and abrasion without being subjected to surface strengthening treatment such as soft nitriding.

これに対し,本発明の表面処理方法では,軟窒化処理後の表面に対し本発明の表面処理を適用した場合(試料10)の他,未処理(焼入れ・焼き戻しのまま)の表面に直接,本発明の表面処理を行った場合(試料9)のいずれにおいても,摩擦試験でボールと接触した部分を含め耐腐食性が失われておらず,下地処理として窒化(軟窒化)を行っていない場合であっても摩擦に強い表面処理が行えていることが確認できた。   On the other hand, in the surface treatment method of the present invention, in addition to the case where the surface treatment of the present invention is applied to the surface after the nitrocarburizing treatment (sample 10), it is directly applied to the untreated (as-quenched / tempered) surface. In any of the cases where the surface treatment of the present invention was performed (sample 9), the corrosion resistance was not lost including the portion in contact with the ball in the friction test, and nitriding (soft nitriding) was performed as a base treatment. It was confirmed that a surface treatment resistant to friction was performed even when there was no such treatment.

このような高い耐摩耗性が得られた理由は不明であるが,図10及び図11のEDX定性分析結果に表れているように,本願の方法で表面処理を行った試料の表面では,酸素(O)の検出量が増加していることから,Sn(硬度5HV)が酸化することにより高硬度の酸化錫(最大で硬度1650HV)となることで高い耐摩耗性を発揮したことが一因ではないかと推察される。   The reason why such high abrasion resistance was obtained is unknown, but as shown in the results of the EDX qualitative analysis in FIGS. 10 and 11, the surface of the sample subjected to the surface treatment by the method of the present invention has oxygen. Due to the increase in the detection amount of (O), Sn (hardness 5 HV) was oxidized to become high hardness tin oxide (hardness 1650 HV at the maximum) and high wear resistance was exhibited. It is speculated that this is not the case.

〔投射材の噴射方法に対する評価試験〕
(1)試験の目的
本発明で採用するショット及び/又は噴射粒体の噴射方法により,閉塞端を有する比較的細径の冷却孔に対しても処理が行えることを確認する。
(Evaluation test for shot material injection method)
(1) Object of the test It is confirmed that the method of spraying shot and / or spray particles employed in the present invention can perform processing even on a relatively small diameter cooling hole having a closed end.

(2)試験方法
図14に示すように,断面半円状の溝が形成された2枚の試験片(SKD61)を,相互の溝が重なるように重ね合わせて,一端を閉塞端とする孔を形成し,この孔に対し本発明の表面処理を行った。
(2) Test method As shown in FIG. 14, two test pieces (SKD61) each having a semicircular cross-sectional groove are overlapped so that the grooves overlap each other, and a hole having one end as a closed end is formed. Was formed, and the surface treatment of the present invention was performed on the holes.

各試験片として溝形成面を高温の水蒸気に暴露することでマグネタイト(Fe34)層を形成したもの(特許文献5の処理に対応)を使用し,この試験片の溝形成面を重ね合わせることにより,直径4mm,長さ290mmの孔を形成した。 As each test piece, a magnetite (Fe 3 O 4 ) layer was formed by exposing the groove forming surface to high-temperature steam (corresponding to the treatment of Patent Document 5), and the groove forming surfaces of the test pieces were overlapped. By combining, a hole having a diameter of 4 mm and a length of 290 mm was formed.

この孔内に,外径2.0mm,内径1.4mm,長さ350mmの噴射ノズルを挿入して,SiCのショット(53〜45μm)を,噴射圧力0.7MPaで噴射した後,Snの粒体(50〜20μm)を,噴射圧力0.7MPaで噴射した。   An injection nozzle having an outer diameter of 2.0 mm, an inner diameter of 1.4 mm, and a length of 350 mm is inserted into the hole, a SiC shot (53 to 45 μm) is injected at an injection pressure of 0.7 MPa, and then Sn particles are injected. A body (50-20 μm) was injected at an injection pressure of 0.7 MPa.

ショット及び噴射粒体の噴射は,噴射ノズルの先端が閉塞端に対し数mmの間隔となるまで挿入し,この位置で噴射を開始すると共に,噴射ノズルを孔より徐々に引き抜きながら,噴射ノズルの先端が孔より脱するまで噴射を継続した。   Inject the shot and spray particles until the tip of the spray nozzle is several mm away from the closed end, start spraying at this position, and gradually pull out the spray nozzle from the hole, Injection was continued until the tip came off the hole.

上記の表面処理を行った後,重ね合わせていた試験片を分離し,孔(溝)の表面のうち,閉塞端付近の表面とその他の部分の表面(孔の胴の部分)における残留応力(いずれも孔の長手方向の残留応力)を,cosα法を用いたX線残留応力測定にて測定した。   After performing the above-mentioned surface treatment, the superposed test pieces were separated and the residual stresses on the surface of the hole (groove) near the closed end and on the other surface (the body of the hole) In each case, the residual stress in the longitudinal direction of the hole) was measured by X-ray residual stress measurement using the cosα method.

(3)試験結果
上記方法で測定した孔表面の残留応力値は,本発明の表面処理を行う前の状態では閉塞端付近で−25MPa,その他の部分で+450MPaであったものが,本発明の表面処理を行った後では,閉塞端付近で−585MPa,その他の部分で−831MPaとなっていた。
(3) Test results The residual stress value of the hole surface measured by the above method was −25 MPa near the closed end before the surface treatment according to the present invention and +450 MPa in the other portions before the surface treatment according to the present invention. After the surface treatment, the pressure was -585 MPa near the closed end and -831 MPa in other portions.

細径で,かつ閉塞端を有する冷却孔内に挿入した噴射ノズルよりショットや噴射粒体を噴射する場合,噴射ノズルの外周と冷却孔の内壁間の隙間が狭く,噴射したショットや噴射粒体で冷却孔が詰まってしまうために,冷却孔の表面を処理することが困難であることは既に述べた通りである。   When injecting shots or spray particles from a spray nozzle inserted into a cooling hole with a small diameter and having a closed end, the gap between the outer periphery of the spray nozzle and the inner wall of the cooling hole is narrow, and the shot or spray particles sprayed. As described above, it is difficult to treat the surface of the cooling hole because the cooling hole is clogged.

しかし,本願の表面処理方法で提案するように,噴射ノズルを引き抜きながらショットや噴射粒体を噴射する処理では,このような目詰まりを生じさせることなく噴射を行うことができ,かつ,孔の表面に対し,高い圧縮残留応力を付与しうるエネルギーを伴ってショットや噴射粒体が衝突していることが確認された。   However, as proposed in the surface treatment method of the present application, in the process of ejecting shots or ejected particles while pulling out the ejection nozzle, the ejection can be performed without causing such clogging, and the hole can be formed. It was confirmed that shots and blasted particles collided with the surface with energy that could impart high compressive residual stress.

また,処理後の表面に対するSn元素の拡散についての確認を行った結果,試料3,4に対する試験結果(図10,11参照)と同様,冷却孔の表面にSn元素が拡散していることが確認された。   In addition, as a result of confirming the diffusion of the Sn element on the surface after the treatment, it was found that the Sn element was diffused on the surface of the cooling hole as in the test results for the samples 3 and 4 (see FIGS. 10 and 11). confirmed.

従って,本願の表面処理方法で採用する噴射方法は,閉塞端を有する冷却孔の表面に対しショットピーニングや噴射粒体を噴射して行うSn元素の拡散処理を行う上で有効な噴射方法であると言える。   Therefore, the injection method adopted in the surface treatment method of the present invention is an effective injection method for performing the shot peening or the diffusion treatment of the Sn element by spraying the spray particles on the surface of the cooling hole having the closed end. It can be said.

2.金型による評価
(1)試験の目的
金型の冷却孔に対して本発明の処理方法を適用することで,耐応力腐食割れ性が付与されることを確認する。
2. Evaluation by die (1) Purpose of test It is confirmed that stress corrosion cracking resistance is imparted by applying the treatment method of the present invention to cooling holes of the die.

(2)試験方法
本発明の方法で表面処理を行った金型(SKD61)の冷却孔と,未処理の冷却孔にそれぞれ冷却水を導入した状態で金型の加熱と冷却を繰り返して行った後,冷却孔内部の表面状態を目視により観察した。
(2) Test method Heating and cooling of the mold were repeated while cooling water was introduced into the cooling hole of the mold (SKD61) surface-treated by the method of the present invention and the untreated cooling hole. Thereafter, the surface condition inside the cooling hole was visually observed.

(3)試験結果
観察の結果,未処理の冷却孔の表面では,2万サイクルの加熱と冷却の繰り返しにより冷却孔の表面全体に錆が発生すると共に,クラックが発生していることが確認された。
(3) Test results As a result of observation, it was confirmed that rust was generated on the entire surface of the cooling hole and cracks were generated on the surface of the untreated cooling hole by repeating 20,000 cycles of heating and cooling. Was.

これに対し,本発明の方法で表面処理を行った冷却孔の表面では,3万サイクル加熱と冷却を繰り返した後においても極僅かな錆の発生が確認されたのみで,冷却孔の表面の殆どは,錆のない,きれいな状態に保たれていた。   On the other hand, on the surface of the cooling hole subjected to the surface treatment by the method of the present invention, only slight generation of rust was confirmed even after repeating 30,000 cycles of heating and cooling. Most were kept clean without rust.

また,本発明の方法で処理を行った冷却孔の表面には,クラックの発生も確認することはできなかった。   Also, no cracks could be found on the surface of the cooling hole treated by the method of the present invention.

以上の結果から,本発明の表面処理方法には,金型の冷却孔表面に耐応力腐食割れ性を付与する効果があることが確認された。

From the above results, it was confirmed that the surface treatment method of the present invention had an effect of imparting stress corrosion cracking resistance to the cooling hole surface of the mold.

Claims (11)

金型に形成された冷却孔の少なくとも表面にSn元素を拡散させる拡散処理を行うことにより,前記金型の素地成分とSnが混在する表面改質層を形成することを特徴とする金型冷却孔の表面処理方法。 Mold cooling characterized by forming a surface modified layer in which the base component of the mold and Sn are mixed by performing a diffusion treatment for diffusing Sn element into at least the surface of the cooling hole formed in the mold. Surface treatment method for holes. 前記拡散処理を,平均粒子径10〜100μmの錫及び/又は錫合金の粒子から成る噴射粒体を噴射圧力0.4〜0.8MPaの圧縮気体と共に噴射して前記冷却孔の表面に衝突させることにより,前記噴射粒体中のSn元素を前記冷却孔の表面に拡散させることにより行うことを特徴とする請求項1記載の金型冷却孔の表面処理方法。   In the diffusion treatment, a sprayed particle made of tin and / or tin alloy particles having an average particle diameter of 10 to 100 μm is injected together with a compressed gas having an injection pressure of 0.4 to 0.8 MPa to impinge on the surface of the cooling hole. 2. The method according to claim 1, wherein the step is carried out by diffusing the Sn element in the spray particles into the surface of the cooling hole. 一端を閉塞端とする冷却孔の表面を処理対象とすると共に,
前記拡散処理における前記噴射粒体の噴射を,該冷却孔よりも小径の噴射ノズルを該噴射ノズルの先端を冷却孔の前記閉塞端付近まで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら前記噴射粒体の噴射を継続することを特徴とする請求項2記載の金型冷却孔の表面処理方法。
The surface of the cooling hole whose one end is a closed end is treated and
The spraying of the spray particles in the diffusion process is started with a spray nozzle having a smaller diameter than the cooling hole inserted with the tip of the spray nozzle inserted near the closed end of the cooling hole, and the spray nozzle is gradually pulled out. 3. The method according to claim 2, wherein the injection of the injection particles is continued while the injection is being performed.
前記拡散処理前,又は前記拡散処理中の前記冷却孔の表面にショットピーニングを行うことを特徴とする請求項1〜3いずれか1項記載の金型冷却孔の表面処理方法。 The surface treatment method for a die cooling hole according to any one of claims 1 to 3 , wherein shot peening is performed on the surface of the cooling hole before the diffusion treatment or during the diffusion treatment. 前記ショットピーニングを,平均粒子径20〜149μmのショットを噴射圧力0.3〜0.8MPaの圧縮気体と共に噴射して行うことを特徴とする請求項4記載の金型冷却孔の表面処理方法。   5. The method according to claim 4, wherein the shot peening is performed by injecting a shot having an average particle diameter of 20 to 149 [mu] m together with a compressed gas having an injection pressure of 0.3 to 0.8 MPa. 一端を閉塞端とする冷却孔の表面を処理対象とすると共に,
前記ショットピーニングにおける前記ショットの噴射を,該冷却孔よりも小径の噴射ノズルを該噴射ノズルの先端を冷却孔の前記閉塞端付近まで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら前記ショットの噴射を継続することを特徴とする請求項5記載の金型冷却孔の表面処理方法。
The surface of the cooling hole whose one end is a closed end is treated and
The injection of the shot in the shot peening is started with an injection nozzle having a smaller diameter than the cooling hole inserted with the tip of the injection nozzle inserted near the closed end of the cooling hole, and the injection nozzle is gradually withdrawn. 6. The method according to claim 5, wherein the injection of the shot is continued.
前記冷却孔内で前記ノズルの先端を揺動させることを特徴とする請求項3又は6記載の金型冷却孔の表面処理方法。   7. The method according to claim 3, wherein the tip of the nozzle is swung within the cooling hole. 窒化又は軟窒化処理がされた前記冷却孔の表面を処理対象とする請求項1〜7いずれか1項記載の金型冷却孔の表面処理方法。   The surface treatment method of a mold cooling hole according to any one of claims 1 to 7, wherein a surface of the cooling hole subjected to nitriding or nitrocarburizing is treated. 冷却用の冷媒を導入する冷却孔が形成された金型において,
前記冷却孔の表面に,Sn元素が拡散されて前記金型の素地成分と混在する表面改質層が形成されていることを特徴とする金型。
In a mold with a cooling hole for introducing a coolant for cooling,
A mold wherein a surface modified layer in which Sn element is diffused and mixed with a base component of the mold is formed on a surface of the cooling hole.
前記表面改質層に圧縮残留応力が付与されていることを特徴とする請求項9記載の金型。   The mold according to claim 9, wherein a compressive residual stress is applied to the surface-modified layer. 前記冷却孔が表面に窒化層又は軟窒化層を備え,前記表面改質層が,前記窒化層又は軟窒化層に形成されていることを特徴とする請求項9又は10記載の金型。

The mold according to claim 9, wherein the cooling hole includes a nitrided layer or a nitrocarburized layer on the surface, and the surface modified layer is formed in the nitrided layer or the nitrocarburized layer.

JP2018079846A 2017-04-19 2018-04-18 Mold cooling hole surface treatment method and mold Active JP6644334B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082818 2017-04-19
JP2017082818 2017-04-19

Publications (2)

Publication Number Publication Date
JP2018176282A JP2018176282A (en) 2018-11-15
JP6644334B2 true JP6644334B2 (en) 2020-02-12

Family

ID=64282015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079846A Active JP6644334B2 (en) 2017-04-19 2018-04-18 Mold cooling hole surface treatment method and mold

Country Status (1)

Country Link
JP (1) JP6644334B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6818207B1 (en) * 2019-07-24 2021-01-20 Rtm 株式会社 Surface treatment method for cooling holes in molds
JP7198316B1 (en) 2021-07-27 2022-12-28 パンチ工業株式会社 Die casting mold parts and method for manufacturing die casting mold parts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158974A (en) * 1999-12-03 2001-06-12 Fuji Seisakusho:Kk Corrosion prevention method
JP2002085981A (en) * 2000-09-14 2002-03-26 Fuji Kihan:Kk Oxidized metal coating film having oxygen deficient inclination structure
JP4724152B2 (en) * 2006-08-31 2011-07-13 株式会社エヌ・ティ・ティ・ドコモ Non-reciprocal circuit element
JP2009072798A (en) * 2007-09-19 2009-04-09 Rtm 株式会社 Die
JP4772082B2 (en) * 2008-05-09 2011-09-14 株式会社不二機販 Method for forming surface-enhanced coating and surface-enhanced product
US9149908B2 (en) * 2011-12-26 2015-10-06 Sintokogio, Ltd. Shot processing method and shot processing device
DE112012006404T5 (en) * 2012-05-24 2015-02-19 Sintokogio, Ltd. Shot blasting
JP2015016489A (en) * 2013-07-11 2015-01-29 大同特殊鋼株式会社 Mold crack generation prevention method

Also Published As

Publication number Publication date
JP2018176282A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
Li et al. Active screen plasma nitriding of austenitic stainless steel
US8471168B2 (en) Methods of treating metal articles and articles made therefrom
JP5299140B2 (en) MATERIAL OF SHOT PEENING PROJECTION MATERIAL AND METHOD FOR PRODUCING SHOT PEENING PROJECTION MATERIAL
JP6644334B2 (en) Mold cooling hole surface treatment method and mold
JP2008195994A (en) Surface modification method for titanium product, and surface modified titanium product
US6878041B2 (en) Method for removing a metallic layer of a layer-system
KR20160138245A (en) Continuous surface treatment method for steel wire
JPH1029160A (en) Highly hard metal product shot peening method and highly hard metal product
JP6649991B2 (en) Surface treatment method for mold molding surface
JPWO2007023936A1 (en) Shot peening method
JP5225596B2 (en) Method for strengthening alloy steel for hot mold and alloy steel for hot mold formed by suppressing generation of thermal fatigue crack by the method
WO2016027207A1 (en) A method of hardening die surfaces
KR101865530B1 (en) Method for producing tool
Chang et al. Enhancement of erosion resistance on AISI H13 tool steel by oxynitriding treatment
US20220403901A1 (en) Method to produce cast iron brake discs with high corrosion and wear resistance
JP6416735B2 (en) Nitride component manufacturing method and nitride component
JPH10100069A (en) Shot peening method and treated article
GB2554129A (en) Additive manufacturing processing with oxidation
JP4104570B2 (en) Manufacturing method of sliding member
JP6818207B1 (en) Surface treatment method for cooling holes in molds
Ren et al. Effect of Nanocrystallization-Assisted Nitriding on the Corrosion Behavior of AISI 4140 Steel
PL201557B1 (en) Method of elimination of fretting and tribocorrosion effects on the surface of machine parts directly co-working with one another
JP2002069565A (en) High strength steel having excellent delayed fracture resistance and its production method
Oberste-Lehn et al. Influence of Machining on Low Temperature Surface Hardening of Stainless Steel
RU2595184C2 (en) Method of increasing corrosion resistance of structural materials, metal article with increased corrosion resistance

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191220

R150 Certificate of patent or registration of utility model

Ref document number: 6644334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250