JP6416735B2 - Nitride component manufacturing method and nitride component - Google Patents

Nitride component manufacturing method and nitride component Download PDF

Info

Publication number
JP6416735B2
JP6416735B2 JP2015220675A JP2015220675A JP6416735B2 JP 6416735 B2 JP6416735 B2 JP 6416735B2 JP 2015220675 A JP2015220675 A JP 2015220675A JP 2015220675 A JP2015220675 A JP 2015220675A JP 6416735 B2 JP6416735 B2 JP 6416735B2
Authority
JP
Japan
Prior art keywords
layer
precipitated
treatment
nitrided
counted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015220675A
Other languages
Japanese (ja)
Other versions
JP2017088959A (en
Inventor
幸紀 松田
幸紀 松田
光典 秋武
光典 秋武
Original Assignee
大同Dmソリューション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大同Dmソリューション株式会社 filed Critical 大同Dmソリューション株式会社
Priority to JP2015220675A priority Critical patent/JP6416735B2/en
Publication of JP2017088959A publication Critical patent/JP2017088959A/en
Application granted granted Critical
Publication of JP6416735B2 publication Critical patent/JP6416735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は窒化部品の製造方法及び窒化部品に関し、特に耐表面剥離性に優れた窒化部品の製造方法及び窒化部品に関する。   The present invention relates to a nitrided part manufacturing method and a nitrided part, and more particularly to a nitrided part manufacturing method and a nitrided part excellent in surface peel resistance.

従来、熱間加工用の金型や工具等の鋼部品については、その表面改質方法として、塩浴法、ガス法等による窒化処理が広く行われている。   Conventionally, nitriding treatment by a salt bath method, a gas method or the like is widely performed as a surface modification method for steel parts such as a hot working die or tool.

窒化処理は、他の表面改質方法である浸炭焼入れや高周波焼入れ等と異なって変態を伴わず、処理温度も低いことから熱処理歪み,寸法変化が小さく、また表層に鉄窒化物である化合物層が生じることで耐摩耗性,耐焼付性,耐食性の向上が期待できる。   Unlike other surface modification methods such as carburizing and induction quenching, nitriding treatment is not accompanied by transformation, and the treatment temperature is low, so heat treatment distortion and dimensional change are small, and the surface is a compound layer made of iron nitride. This can be expected to improve wear resistance, seizure resistance, and corrosion resistance.

また窒化処理では、鉄窒化物層である化合物層とその直下の窒化拡散層(以下単に拡散層とする)に起因する圧縮残留応力の付加と、拡散層における窒素の侵入による硬さ上昇によって、疲労強度を向上させることができる。   Further, in the nitriding treatment, due to the addition of compressive residual stress caused by the compound layer that is an iron nitride layer and the nitriding diffusion layer immediately below (hereinafter simply referred to as a diffusion layer) and the increase in hardness due to the penetration of nitrogen in the diffusion layer, The fatigue strength can be improved.

特に使用条件が過酷な熱間鍛造型等の金型や工具に用いられる鋼部品にあっては、部品寿命を延ばすため拡散層を含む窒化層を部品表面からより深くまで形成することが望ましい。
しかしながらこのような場合、拡散層の粒界(旧オーステナイト結晶粒界)上に炭化物が析出し、この析出炭化物によって窒化処理面で剥離が生じ易くなってしまう問題が生じる。
窒化処理時に粒界上に炭化物が析出するのは、表層近くに予め存在していた炭化物中のCが窒化処理時に侵入してきたNと置換され、そのCが結晶粒界で炭化物として再析出するものと推測される。
例えば図2(A)は、窒化処理により拡散層の粒界に析出した炭化物の実例(窒化処理後のミクロ組織を示した顕微鏡写真)を示したものである。この図に示すように析出炭化物は粒界に沿って屈曲しながら連続的に析出するものが多い。
またこの析出炭化物は、窒化表面に対し平行に析出する傾向があり、析出炭化物が粒界に沿って連なるように多数生じた場合、窒化表面と平行な面で剥離が生じ易く、これが窒化処理された部品の寿命を短くする原因のひとつとなっている。
In particular, in steel parts used in dies and tools such as hot forging dies under severe use conditions, it is desirable to form a nitride layer including a diffusion layer deeper from the part surface in order to extend the life of the parts.
However, in such a case, there arises a problem that carbide precipitates on the grain boundary (former austenite crystal grain boundary) of the diffusion layer, and the precipitation carbide easily causes separation on the nitriding surface.
Carbide precipitates on the grain boundaries during the nitriding treatment because C in the carbide previously existing near the surface layer is replaced with N that has entered during the nitriding treatment, and the C is reprecipitated as carbides at the grain boundaries. Presumed to be.
For example, FIG. 2A shows an actual example of a carbide (micrograph showing the microstructure after nitriding) of the carbide precipitated at the grain boundary of the diffusion layer by nitriding. As shown in this figure, most of the precipitated carbide precipitates continuously while bending along the grain boundary.
In addition, this precipitated carbide tends to precipitate parallel to the nitrided surface, and when a large number of precipitated carbides are formed so as to continue along the grain boundary, peeling is likely to occur on the plane parallel to the nitrided surface, which is nitrided. This is one of the causes of shortening the service life of parts.

この析出炭化物の発生を抑制する方法として、例えば窒化処理における処理時間を短くしたり、処理温度を低くしたりして鋼部品表面に侵入するN量を抑制することが有効である。しかしながらこの場合形成される窒化層が浅くなってしまい窒化処理自体の効果が小さくなってしまう。   As a method for suppressing the generation of this precipitated carbide, it is effective to suppress the amount of N entering the steel part surface by shortening the treatment time in the nitriding treatment or lowering the treatment temperature, for example. However, in this case, the formed nitride layer becomes shallow, and the effect of the nitriding process itself is reduced.

尚、窒化層中の炭窒化物を抑制する方法としては、下記の特許文献1に記載されたものがある。
この特許文献1では、「窒化した工具、金型およびその製造方法」についての発明が示され、そこにおいて窒化処理前の鋼部品に脱炭処理を施し、その後に窒化処理を行うことで、窒化硬さを高めるとともに窒化層中の脆弱な炭窒化物の生成、成長を抑制する点が開示されている。
In addition, as a method for suppressing carbonitride in the nitride layer, there is one described in Patent Document 1 below.
In this Patent Document 1, an invention about “nitrided tool, mold and manufacturing method thereof” is shown, in which a steel part before nitriding is subjected to decarburization, and then nitriding is performed, thereby nitriding The point which raises hardness and suppresses the production | generation and growth of a weak carbonitride in a nitride layer is disclosed.

特開2004−332029号公報JP 2004-332029 A

しかしながら本発明者らが、窒化処理によって形成される先述の析出炭化物を抑制するため、予め脱炭処理を施した鋼部品に対して塩浴窒化処理を行ったところ、拡散層での析出炭化物を抑制する効果はあったものの、析出炭化物起因のものとは異なる、最外層付近での表面剥離が助長され、金型等の部品寿命の改善には不十分であった。
本発明は以上のような事情を背景とし、耐表面剥離性に優れた窒化部品を製造することができる窒化部品の製造方法及び窒化部品を提供することを目的としてなされたものである。
However, when the present inventors performed salt bath nitriding treatment on a steel part that had been previously decarburized in order to suppress the above-described precipitated carbide formed by nitriding treatment, the precipitated carbide in the diffusion layer was reduced. Although there was an inhibitory effect, surface peeling in the vicinity of the outermost layer, which is different from that caused by precipitated carbides, was promoted, which was insufficient for improving the life of parts such as molds.
The present invention has been made for the purpose of providing a nitrided part manufacturing method and a nitrided part capable of producing a nitrided part excellent in surface peel resistance, against the background described above.

而して請求項1は窒化部品の製造方法に関するもので、Cを0.10〜0.70質量%含有する鋼材から成る窒化部品の製造方法であって、該鋼材から成る部品を加熱して、該部品の表層部に脱炭層を形成する脱炭処理を行い、該脱炭処理後に該脱炭層の表面を除去する表面除去処理を実施して該部品の表面C濃度を0.10〜0.25質量%となし、しかる後塩浴窒化処理を実施することを特徴とする。   Thus, claim 1 relates to a method for manufacturing a nitrided part, which is a method for manufacturing a nitrided part made of a steel material containing 0.10 to 0.70% by mass of C, and heating the part made of the steel material. Then, a decarburization treatment is performed to form a decarburization layer on the surface layer portion of the part, and after the decarburization process, a surface removal process is performed to remove the surface of the decarburization layer, so that the surface C concentration of the part is 0.10 to 0 .25% by mass, followed by a salt bath nitriding treatment.

請求項2は、請求項1において、窒化層における旧オーステナイト結晶粒界上に析出する長さ5μm以上の析出炭化物が、粒界に沿って途中で屈曲する2辺で構成されていた場合を1個とカウントし、更に屈曲する3辺で構成されていた場合を1.5個、屈曲する4辺で構成されていた場合を2個、屈曲のない1辺のみの場合を0.5個とカウントしたとき、前記窒化層の表面から深さ100μm、幅200μmの範囲で該析出炭化物が10個未満であることを特徴とする。 A second aspect of the present invention relates to a case in which the precipitated carbide having a length of 5 μm or more precipitated on the prior austenite grain boundaries in the nitride layer is composed of two sides bent along the grain boundaries in the first aspect. It is counted as 1.5 pieces when it is composed of 3 sides that bend further, 2 when it is composed of 4 sides that bend, and 0.5 when it is composed of only 1 side without bending. When counted , the number of the precipitated carbides is less than 10 within a range of 100 μm depth and 200 μm width from the surface of the nitride layer.

請求項3は窒化部品に関するもので、Cを0.10〜0.70質量%含有する鋼材から成る窒化部品であって、部品の表層部に、表面C濃度を0.10〜0.25質量%とする脱炭層とともに、窒化層が形成されており、
該窒化層における旧オーステナイト結晶粒界上に析出する長さ5μm以上の析出炭化物が、粒界に沿って途中で屈曲する2辺で構成されていた場合を1個とカウントし、更に屈曲する3辺で構成されていた場合を1.5個、屈曲する4辺で構成されていた場合を2個、屈曲のない1辺のみの場合を0.5個とカウントしたとき、前記窒化層の表面から深さ100μm、幅200μmの範囲で該析出炭化物が10個未満であることを特徴とする。
Claim 3 relates to a nitrided part, which is a nitrided part made of a steel material containing 0.10 to 0.70 mass% of C, and has a surface C concentration of 0.10 to 0.25 mass on the surface layer of the part. % And a decarburized layer, a nitride layer is formed,
The case where the precipitated carbide of 5 μm or more deposited on the prior austenite grain boundary in the nitride layer is composed of two sides bent along the grain boundary is counted as one and further bent 3 When the number of sides of the nitrided layer is 1.5, the case of 4 sides that are bent is counted as 2, and the number of one side without bending is counted as 0.5 . The number of the precipitated carbides is less than 10 in a range of 100 μm depth and 200 μm width from the surface.

請求項4は、請求項3において、前記窒化部品が金型又は工具として用いられるものであることを特徴とする。   A fourth aspect is characterized in that, in the third aspect, the nitrided part is used as a mold or a tool.

以上のように本発明は、塩浴窒化処理前に脱炭処理を行い、予め部品表層部に低C領域の脱炭層を形成しておくことで、塩浴窒化処理における拡散層での析出炭化物の発生を抑制するようになしたものである。
先述した拡散層の結晶粒界に生じる析出炭化物は、部品表層部のC濃度が高いほど、また窒化処理時に部品表層部に侵入するN量が多いほど、その発生が顕著となる。そこで本発明では脱炭処理にて事前に表層部のC濃度を低下させておくことで、窒化処理時に部品表層部に侵入するN量を減らすことなく結晶粒界上の析出する炭化物を抑制することができる。
本発明者らが確認したところによれば、脱炭処理にて部品表面のC濃度を0.25%以下、より望ましくは0.20%以下とすることが結晶粒界上の析出炭化物の抑制に有効である。
As described above, the present invention performs the decarburization treatment before the salt bath nitriding treatment, and previously forms the decarburized layer in the low C region in the component surface layer portion, thereby precipitating carbide in the diffusion layer in the salt bath nitriding treatment. This is intended to suppress the occurrence of.
The precipitation carbide generated at the crystal grain boundary of the diffusion layer described above becomes more prominent as the C concentration in the part surface layer part is higher and as the amount of N entering the part surface layer part during nitriding is larger. Therefore, in the present invention, by reducing the C concentration in the surface layer portion in advance by decarburization treatment, the carbides precipitated on the grain boundaries are suppressed without reducing the amount of N entering the component surface layer portion during nitriding treatment. be able to.
As a result of confirmation by the present inventors, it is possible to suppress precipitated carbides on the grain boundaries by setting the C concentration on the part surface to 0.25% or less, more desirably 0.20% or less in the decarburization treatment. It is effective for.

かかる本発明によれば、厚い拡散層を確保することで硬さを上昇させて疲労強度を高めるとともに、拡散層における結晶粒界上の析出炭化物を抑制することで耐表面剥離性も向上させることができる。
尚、脱炭処理によって部品表層部に低C領域を形成した場合であっても、部品表面の硬さについては窒化処理によって十分な値を確保することができる。
According to the present invention, by securing a thick diffusion layer, the hardness is increased and the fatigue strength is increased, and the surface peeling resistance is also improved by suppressing precipitated carbides on the grain boundaries in the diffusion layer. Can do.
Even when a low C region is formed in the component surface layer by decarburization, a sufficient value can be secured for the surface of the component by nitriding.

但し、塩浴窒化処理を施した窒化部品に生じる表面剥離は、析出炭化物に起因するものとこれ以外のもの(析出炭化物に起因しないもの)とがある。
本発明者らが析出炭化物に起因しない表面剥離の原因を究明したところ、脱炭処理により部品表面にCがほとんど含有されていない(フェライト相に近い)領域が存在する状態で塩浴窒化処理が施されると、最表層付近に通常の組織とは異なる剥離を起こしやすい組織が生じること、更に脱炭処理後表面除去処理を施して部品表面のC濃度を0.10%以上とすればその剥離を起こしやすい組織の発生を抑制することができることを見出した。
However, surface peeling that occurs in a nitrided part that has been subjected to salt bath nitriding treatment may be caused by precipitated carbides or other (not caused by precipitated carbides).
When the present inventors investigated the cause of surface peeling not caused by precipitated carbides, salt bath nitriding treatment was performed in a state where there was a region containing almost no C (similar to the ferrite phase) on the component surface by decarburization treatment. When applied, a structure that tends to cause separation different from the normal structure is generated in the vicinity of the outermost layer, and further, when the surface removal treatment is performed after the decarburization treatment and the C concentration on the part surface is set to 0.10% or more, It has been found that generation of a tissue that easily peels can be suppressed.

本発明はこれらの知見に基づくもので、塩浴窒化処理前に脱炭処理にて生じたCがほとんど含有されていない表面部分を除去することにより、部品表面のC濃度を0.10〜0.25%とし、その後に塩浴窒化処理を行うようになしたことを特徴としたものである。
かかる本発明によれば、塩浴窒化処理前の部品表面のC濃度の最適化を図ることにより部品寿命低下の原因となる窒化層での表面剥離の発生を抑制し得て、窒化部品の寿命の大幅延長が期待できる。
The present invention is based on these findings, and by removing the surface portion containing almost no C produced by the decarburization treatment before the salt bath nitriding treatment, the C concentration on the component surface is reduced to 0.10-0. .25%, and then a salt bath nitriding treatment is performed.
According to the present invention, by optimizing the C concentration on the surface of the component before the salt bath nitriding treatment, it is possible to suppress the occurrence of surface peeling in the nitride layer which causes a decrease in the lifetime of the component. Can be expected to extend significantly.

尚、本発明の製造方法は、質量%でC:0.10〜0.70%含有する鋼材からなる部品を対象としている。
C量が0.10%未満の鋼材にあってはそもそも本発明が規定する表面C濃度0.10〜0.25%よりもC濃度が低く、C量が0.70%を越える鋼材にあっては、脱炭処理によって生じる表面から深さ方向に向かうC濃度の勾配の傾きが大きいため、表面除去処理で部品の表面C濃度を0.10〜0.25%の範囲に収めるのが難しい。
そこで本発明では対象とする鋼材のC含有量を0.10〜0.70%とする。
In addition, the manufacturing method of this invention makes object the components which consist of steel materials containing C: 0.10-0.70% by mass%.
For steel materials with a C content of less than 0.10%, the C concentration is lower than the surface C concentration of 0.10 to 0.25% specified by the present invention, and the C content exceeds 0.70%. Therefore, since the gradient of the C concentration gradient from the surface to the depth direction generated by the decarburization process is large, it is difficult to keep the surface C concentration of the component in the range of 0.10 to 0.25% by the surface removal process. .
Therefore, in the present invention, the C content of the target steel material is set to 0.10 to 0.70%.

本発明では、特に窒化層における旧オーステナイト結晶粒界上に析出する長さ5μm以上の析出炭化物が、粒界に沿って途中で屈曲する2辺で構成されていた場合を1個とカウントし、更に屈曲する3辺で構成されていた場合を1.5個、屈曲する4辺で構成されていた場合を2個、屈曲のない1辺のみの場合を0.5個とカウントしたとき、窒化層の表面から深さ100μm、幅200μmの範囲で析出炭化物を10個未満とすることが望ましい(請求項2)。
上述のように窒化層中の結晶粒界に析出炭化物が多量に析出すると表面剥離が生じ部品寿命が大幅に低下する。
In the present invention, in particular, a case where the precipitated carbide having a length of 5 μm or more precipitated on the prior austenite grain boundary in the nitride layer is constituted by two sides bent along the grain boundary is counted as one, Further, when 1.5 is configured with 3 sides bent, 2 when configured with 4 sides bent, and 0.5 when only 1 side without bending is counted , Desirably, the number of precipitated carbides is less than 10 within a range of a depth of 100 μm and a width of 200 μm from the surface of the nitride layer.
As described above, when a large amount of precipitated carbide precipitates at the crystal grain boundaries in the nitride layer, surface peeling occurs and the life of the component is greatly reduced.

本発明者らが析出炭化物の発生個数と鍛造型の寿命との関係を調査したところ、図1のような関係が認められた。
同図は窒化処理された鍛造用パンチを用いてその先端部で剥離が生じるショット数、及び窒化層の表面から深さ100μm、幅200μmの範囲での析出炭化物の発生個数を調査し、析出炭化物が発生していないパンチにおけるショット数を100として、各パンチの寿命(剥離開始ショット数)を指数で表したものである。
同図によれば析出炭化物の発生個数が10個超となると金型寿命指数が大幅に低下する。
即ち請求項1の製造方法によって、析出炭化物の発生個数を10個以下とすることで析出炭化物起因の剥離を良好に防止することが可能である。
When the present inventors investigated the relationship between the number of precipitated carbides generated and the life of the forging die, the relationship shown in FIG. 1 was recognized.
This figure investigates the number of shots where peeling occurs at the tip using a forging punch that has been nitrided, and the number of precipitated carbides in the range of 100 μm deep and 200 μm wide from the surface of the nitrided layer. In this example, the number of shots in a punch in which no occurrence occurs is defined as 100, and the life of each punch (number of shots at which peeling starts) is expressed as an index.
According to the figure, when the number of precipitated carbides generated exceeds 10, the mold life index is significantly reduced.
That is, according to the manufacturing method of the first aspect, it is possible to satisfactorily prevent peeling due to the precipitated carbide by setting the number of generated carbides to 10 or less.

ここで析出炭化物の発生個数は、結晶粒界上に析出する長さ5μm以上の析出炭化物が、途中で屈曲する2辺で構成されていた場合を1個としてカウントした。
析出炭化物の発生個数の測定方法をこのように規定したのは、析出炭化物は屈曲する2辺で構成された形態が多く、且つ屈曲しながら連なった形態は剥離に対して有害であることが多くの調査で実証されたためである。
Here, the number of precipitated carbides generated was counted as one when the precipitated carbides having a length of 5 μm or more precipitated on the grain boundaries were composed of two sides bent in the middle.
The method of measuring the number of precipitated carbides generated is defined in this way because precipitated carbides are often composed of two sides that bend, and the form that continues while bending is often harmful to peeling. This is because it was proved in the survey.

請求項3は窒化部品に関するもので、部品の表層部には表面C濃度を0.10〜0.25質量%とする脱炭層とともに、窒化層が形成されており、窒化層における旧オーステナイト結晶粒界上に析出する長さ5μm以上の析出炭化物が、途中で屈曲する2辺で構成されていた場合を1個とカウントし、更に屈曲する3辺で構成されていた場合を1.5個、屈曲する4辺で構成されていた場合を2個、屈曲のない1辺のみの場合を0.5個とカウントしたとき、窒化層の表面から深さ100μm、幅200μmの範囲で析出炭化物を10個未満としたものである。かかる窒化部品は、請求項1の製造方法によって好適に製造することが可能である。
Claim 3 relates to a nitrided part, and a nitrided layer is formed on a surface layer portion of the part together with a decarburized layer having a surface C concentration of 0.10 to 0.25% by mass, and prior austenite crystal grains in the nitrided layer are formed. The case where the precipitated carbide having a length of 5 μm or more deposited on the boundary is constituted by two sides that are bent in the middle is counted as one, and 1.5 cases that are further constituted by three sides that are bent, When the number of the bent sides is two and the number of only one side that is not bent is counted as 0.5 , the precipitated carbide is deposited in the range of 100 μm deep and 200 μm wide from the surface of the nitride layer. The number is less than 10. Such a nitrided part can be suitably manufactured by the manufacturing method of claim 1.

上記本発明の窒化部品は、特に高い疲労強度及び耐割れ性が要求される金型又は工具に適用して好適である(請求項4)。
ここで金型又は工具としては、温熱間鍛造用のパンチやダイ,ダイカスト金型,アルミ押し出し用型等に用いられる金型本体はもとより、これに組み付けられて使用される中子,ピン等の金型部品の外、熱間ロール等の用途のもの、更には広く金属,ガラス,樹脂等を加工するための治具等も含まれる。
The nitrided part of the present invention is suitable for application to a mold or a tool that requires particularly high fatigue strength and crack resistance (claim 4).
Here, as the mold or tool, not only the die body used for hot forging punches and dies, die-casting dies, aluminum extrusion dies, etc., but also cores, pins, etc. that are assembled and used. In addition to mold parts, those for applications such as hot rolls, and jigs for processing metal, glass, resin, etc. are also included.

以上のような本発明によれば、窒化層中の析出炭化物の発生を抑制し得て、耐表面剥離性に優れた窒化部品を製造することができる窒化部品の製造方法及び窒化部品を提供することができる。   According to the present invention as described above, there are provided a nitrided part manufacturing method and a nitrided part that can suppress the occurrence of precipitated carbide in the nitrided layer and can manufacture a nitrided part having excellent surface peeling resistance. be able to.

結晶粒界上生じた析出炭化物の個数と金型寿命との関係を示した図である。It is the figure which showed the relationship between the number of the precipitation carbide | carbonized_material produced on the crystal grain boundary, and a metal mold | die lifetime. 比較例1のミクロ組織の写真及び析出炭化物数の測定方法の説明図である。It is explanatory drawing of the photograph of the microstructure of the comparative example 1, and the measuring method of the number of precipitation carbide | carbonized_materials. 実施例における剥離試験の説明図である。It is explanatory drawing of the peeling test in an Example. 実施例4におけるミクロ組織の写真である。4 is a photograph of the microstructure in Example 4.

次に本発明の実施形態を詳しく説明する。
本実施形態では、窒化部品を、機械加工→脱炭処理→焼入焼戻し処理→表面除去処理→窒化処理の各工程を経て製造する。
使用する鋼材としては例えばJIS SKD61等の合金工具鋼が好適であるが、これに限定するものではなく、必要に応じてCを0.10〜0.70%含有する鋼材を使用することができる。
まず、機械加工の工程において鋼材を所定の形状に加工する。
Next, embodiments of the present invention will be described in detail.
In the present embodiment, the nitrided part is manufactured through each process of machining, decarburization, quenching and tempering, surface removal, and nitriding.
As the steel material to be used, for example, an alloy tool steel such as JIS SKD61 is suitable, but the steel material containing 0.10 to 0.70% of C can be used if necessary. .
First, a steel material is processed into a predetermined shape in a machining process.

(脱炭処理)
次に機械加工された鋼部品に対して脱炭処理を施す。
脱炭処理において鋼部品は加熱され、該部品の表層部に低C領域からなる脱炭層が形成される。
脱炭処理条件(加熱温度、保持時間等)については使用する鋼材の成分等により適宜定めることができるが、脱炭処理の加熱温度はAc3〜1050℃が望ましい。Ac3以上で加熱することで鋼組織をオーステナイトとし、表層部の脱炭を促進することができる。
尚、脱炭処理の加熱は大気中で行う他、雰囲気を弱脱炭性に制御した状態で行うことも可能である。
(Decarburization treatment)
Next, the machined steel part is decarburized.
In the decarburization process, the steel part is heated, and a decarburized layer composed of a low C region is formed on the surface layer of the part.
The decarburization treatment conditions (heating temperature, holding time, etc.) can be appropriately determined depending on the components of the steel material used, but the heating temperature for the decarburization treatment is preferably Ac3 to 1050 ° C. By heating with Ac3 or more, the steel structure can be made austenite, and decarburization of the surface layer portion can be promoted.
In addition to heating in the air, the decarburization treatment can be performed in a state where the atmosphere is controlled to be weakly decarburized.

(焼入焼戻し処理)
次に焼入焼戻し処理により鋼部品を、マルテンサイトを主体とする組織とし、各部品に要求されている硬さと靭性を付与する。
この例では、脱炭処理を焼入焼戻し処理とは別に行っているが、焼入時の加熱を利用して脱炭処理を行うことも可能である。
(Quenching and tempering treatment)
Next, the steel part is made into a structure mainly composed of martensite by quenching and tempering treatment, and the required hardness and toughness are imparted to each part.
In this example, the decarburization process is performed separately from the quenching and tempering process, but it is also possible to perform the decarburization process using the heating at the time of quenching.

(表面除去処理)
脱炭処理によって生じた鋼部品表面の、Cがほとんど含有されていない領域を削除するもので、具体的には切削加工や硬質メディア噴射をもって行うことができる。
特に削除する深さを規定するものではないが、鋼種と脱炭処理条件から表層に形成されるC濃度が0.10%未満の層の厚みを予見して、部品表面を除去し、部品表面のC濃度を0.10〜0.25%とする。
尚、表面除去処理は必ずしも部品の全表面について行う必要はなく、特に耐表面剥離性が要求される特定範囲のみに実施することも可能である。
(Surface removal treatment)
The region of the surface of the steel part produced by the decarburization process is almost free of C, and can be specifically performed by cutting or hard media injection.
Although the depth to be deleted is not particularly specified, the thickness of the layer with a C concentration of less than 0.10% formed on the surface layer is predicted based on the steel type and decarburization treatment conditions, and the part surface is removed. The C concentration of 0.10 to 0.25%.
Note that the surface removal treatment does not necessarily have to be performed on the entire surface of the component, and can be performed only in a specific range where surface peel resistance is particularly required.

(塩浴窒化処理)
表面除去処理を行った後、塩浴窒化処理を施す。
溶融塩浴としては、NaCN、KCNO,CaCN2,NaCNOなどを主成分とする塩浴を用いて窒化を行う。またNaCl,Na2CO3などとの混合塩浴を用いることができる。
塩浴窒化処理においては、処理温度500〜600℃で、1〜10Hr浸漬させ、窒化層(拡散層を含む)は50μm以上とするのが望ましい。
(Salt bath nitriding)
After the surface removal treatment, a salt bath nitriding treatment is performed.
As the molten salt bath, nitriding is performed using a salt bath mainly composed of NaCN, KCNO, CaCN 2 , NaCNO or the like. A mixed salt bath with NaCl, Na 2 CO 3 or the like can also be used.
In the salt bath nitriding treatment, it is desirable to immerse 1 to 10 hours at a treatment temperature of 500 to 600 ° C., and the nitrided layer (including the diffusion layer) is 50 μm or more.

供試材として、表1に示す化学組成の圧延材を用いた。供試材をΦ150mmの丸棒状に鍛伸した後に空冷し、更に機械加工にてΦ140mm×L300mmの鋼部品を作製した。
その後表2に記載された条件に従って鋼部品に対し焼入焼戻し処理,表面除去処理を行ない、その後塩浴窒化処理を行った。
As a test material, a rolled material having the chemical composition shown in Table 1 was used. The test material was forged into a Φ150 mm round bar and then air-cooled. Further, a steel part of Φ140 mm × L300 mm was produced by machining.
Thereafter, the steel parts were subjected to quenching and tempering treatment and surface removal treatment according to the conditions described in Table 2, followed by salt bath nitriding treatment.

本例では焼入時の加熱を利用して脱炭処理を行うため、焼入れ時の加熱条件は表2の条件で行ない、その後鋼部品を回転台に載せて回転させ2方向からブロアーで冷却した。
その後焼戻しを580℃×2hの条件で行い、この鋼部品から試験片を採取し、脱炭後の表面C濃度を測定した。
In this example, the decarburization process is performed using the heating at the time of quenching, so the heating conditions at the time of quenching are performed under the conditions shown in Table 2, and then the steel parts are placed on a turntable and rotated from two directions with a blower. .
Thereafter, tempering was performed under conditions of 580 ° C. × 2 h, a test piece was collected from the steel part, and the surface C concentration after decarburization was measured.

表面除去処理は、表2の通り切削加工(K法)若しくは硬質メディア噴射(L法)の何れかの方法により行い、表面除去処理後の鋼部品から試験片を採取し、窒化前の表面C濃度を測定した。
その後シアン酸カリウム(KCNO)を主成分とする塩浴を用いて550℃×10Hrの条件で塩浴窒化処理を行い、組織観察及び析出炭化物数の測定、硬さ試験、剥離試験に供した。
ここで表面C濃度の測定、析出炭化物数の測定、母材硬さ試験、剥離試験はそれぞれ以下のようにして行った。
The surface removal treatment is performed by either cutting (K method) or hard media injection (L method) as shown in Table 2, and specimens are collected from the steel parts after the surface removal treatment, and the surface C before nitriding Concentration was measured.
Thereafter, salt bath nitriding treatment was performed using a salt bath containing potassium cyanate (KCNO) as a main component under the condition of 550 ° C. × 10 Hr, and subjected to structure observation, measurement of the number of precipitated carbides, hardness test, and peeling test.
Here, the measurement of the surface C concentration, the measurement of the number of precipitated carbides, the base material hardness test, and the peeling test were performed as follows.

<表面C濃度の測定>
JIS G 0558に準拠し、試験片を断面方向に切断・埋込・研磨を実施し、表面から内部へ垂直に電子線マイクロアナリシス(EPMA)でC濃度を線分析し、表面から生地のC濃度が得られるまで炭素濃度推移曲線を作成し、かかる曲線より表面C濃度を求めた。
<Measurement of surface C concentration>
In accordance with JIS G 0558, the specimen was cut, embedded, and polished in the cross-sectional direction, and the C concentration was linearly analyzed from the surface to the inside by electron beam microanalysis (EPMA). A carbon concentration transition curve was prepared until the surface C concentration was obtained, and the surface C concentration was determined from the curve.

<析出炭化物数の測定>
窒化部品の断面をナイタール腐食後、図2(A)で示すようなミクロ組織写真(倍率400倍)を用いて、表層から深さ100μm、幅200μmの範囲で結晶粒界に生じた析出炭化物の数を測定する。
析出炭化物の数の測定は、図2(B)で示すよう結晶粒界上に析出する、長さLが5μm以上の析出炭化物が、粒界に沿って途中で屈曲する2辺で構成されていた場合を1個とカウントし、更に屈曲する3辺が連なった場合を1.5個、屈曲する4辺が連なった場合を2個とカウントする。尚、屈曲のない1辺のみのものは0.5個とカウントする。
また、析出炭化物が緩やかに湾曲している場合でも旧オーステナイト結晶粒界を想定し、隣の粒界との結節点を越えて延びている場合は屈曲とみなす。
測定は2視野について行いその平均値を求め、表2において、析出炭化物数が0〜10個未満の場合はA、10〜25個未満の場合はB、25〜100個未満の場合はC、100個以上の場合はDとした。
<Measurement of the number of precipitated carbides>
After the Nital corrosion of the cross-section of the nitrided part, using the microstructure photograph (magnification 400 times) as shown in FIG. 2 (A), the precipitation carbide generated in the grain boundary within the range of 100 μm depth and 200 μm width from the surface layer Measure the number.
As shown in FIG. 2B, the number of precipitated carbides consists of two sides that precipitate on the grain boundaries and have a length L of 5 μm or more and bend along the grain boundaries. The case is counted as one, and the case where three bent sides are connected is counted as 1.5, and the case where four bent sides are connected is counted as two. In addition, only one side without bending is counted as 0.5.
In addition, even when the precipitated carbide is gently curved, a prior austenite grain boundary is assumed, and if it extends beyond the nodal point with the adjacent grain boundary, it is regarded as a bend.
The measurement is performed for two visual fields, and the average value is obtained. In Table 2, when the number of precipitated carbides is less than 0-10, A, when less than 10-25, B, when less than 25-100, C, In the case of 100 or more, D was used.

<母材硬さ試験>
上記窒化部品から採取した試験片の切断面にて、表面から内部方向に2000μmの深さまでの硬さ試験を行ない母材の硬さを求めた。
硬さ試験はJIS Z 2244に準拠し、ビッカース硬度計にて荷重1.961Nで実施した。また測定は5箇所行い、平均値を用いる。
<Base material hardness test>
The hardness of the base material was determined by performing a hardness test from the surface to the depth of 2000 μm on the cut surface of the test piece collected from the nitrided part.
The hardness test was performed in accordance with JIS Z 2244 with a load of 1.961 N using a Vickers hardness tester. In addition, measurement is performed at five locations, and an average value is used.

<剥離試験>
得られた窒化部品よりサイズ20×20×20mmの試験片を作成し、図3(A)に示すようにその窒化表面に対してロックウェル硬度計を用いて荷重1471N(150Kgf)で1/16インチの鋼球からなる圧子を押し付け、試験面に2箇所圧痕を生じさせて、圧痕の縁に生じる亀裂の状態を観察する。
そして亀裂の発生が最も顕著な部分を図3(A)で示す等級見本と比較して最も近い亀裂の等級1,2,3の何れかを選択する。
<Peel test>
A test piece having a size of 20 × 20 × 20 mm was prepared from the obtained nitrided part, and as shown in FIG. 3 (A), the nitrided surface was 1/16 with a load of 1471N (150 Kgf) using a Rockwell hardness meter. An indenter made of an inch steel ball is pressed to create two indentations on the test surface, and the state of cracks generated at the edges of the indentation is observed.
Then, the portion where cracks are most prominent is compared with the grade sample shown in FIG.

次に図3(B)に示すように圧痕部分の断面を写真撮影(倍率200倍)して、図中点線で示した表面から100μmの範囲の窒化層に生じた割れの個数をカウントする。断面観察は2箇所の圧痕について行い、割れが多くみとめられた圧痕の断面にてその割れの個数から割れレベルを求めた。
具体的には割れの個数が0〜5であれば割れレベルを1、割れの個数が6以上であれば割れレベルを2とした。
Next, as shown in FIG. 3B, a photograph of the cross section of the indentation portion is taken (magnification 200 times), and the number of cracks generated in the nitride layer in the range of 100 μm from the surface indicated by the dotted line in the drawing is counted. Cross-sectional observation was performed on two indentations, and the crack level was determined from the number of cracks in the cross-section of the indentation where many cracks were found.
Specifically, if the number of cracks is 0 to 5, the crack level is 1, and if the number of cracks is 6 or more, the crack level is 2.

表2で示した剥離試験の評価は、亀裂の等級(1,2,3)と割れレベル(1,2)の積の値(1〜6の何れかの値)に基づいて行なった。具体的には亀裂の等級×割れレベルの値が1〜2の場合はA、3〜4の場合はB、5〜6の場合はCとした。   The evaluation of the peel test shown in Table 2 was performed based on the product value (any one of 1 to 6) of the crack grade (1, 2, 3) and the crack level (1, 2). Specifically, when the value of crack grade × crack level is 1-2, it is A, 3-4 is B, and 5-6 is C.

表2の結果において、比較例1及び比較例4は、窒化処理前に脱炭処理を行っておらず窒化処理前の表面C濃度が比較例1で0.40%、比較例4で0.55%と、本発明の上限値0.25%よりも高い。このため窒化処理において多くの析出炭化物が生成され(表2における析出炭化物数は比較例1がD、比較例4がC)、剥離試験の結果もCである。
尚、図2(A)は比較例1の窒化処理後のミクロ組織写真である。この画像からも析出炭化物数が多数生じていることが見て取れる。
In the results of Table 2, in Comparative Example 1 and Comparative Example 4, the decarburization treatment was not performed before the nitriding treatment, and the surface C concentration before the nitriding treatment was 0.40% in Comparative Example 1 and 0. 0 in Comparative Example 4. 55%, which is higher than the upper limit of 0.25% of the present invention. For this reason, many precipitation carbide | carbonized_materials are produced | generated in the nitriding process (the number of precipitation carbide | carbonized_materials in Table 2 is D in the comparative example 1, and C is the comparative example 4), and the result of a peeling test is also C.
2A is a microstructural photograph after the nitriding treatment of Comparative Example 1. FIG. It can be seen from this image that a large number of precipitated carbides are generated.

比較例2及び比較例3は、脱炭処理を行った後、表面除去処理を行なわなかった例である。これらの例では窒化前の表面C濃度が本発明の下限値0.10%よりも低くなっている。この場合析出炭化物起因ではない剥離が生じ易くなり、その結果剥離試験の結果が比較例2でB、表面C濃度が更に低い比較例3ではCであった。   Comparative Example 2 and Comparative Example 3 are examples in which the surface removal treatment was not performed after the decarburization treatment. In these examples, the surface C concentration before nitriding is lower than the lower limit of 0.10% of the present invention. In this case, exfoliation not attributable to precipitated carbides was likely to occur, and as a result, the exfoliation test results were B in Comparative Example 2 and C in Comparative Example 3 where the surface C concentration was even lower.

比較例5も比較例1,4と同様に脱炭処理を行わなかった例である。この比較例5は比較的低C(0.18%)の鋼種を使用しているため析出炭化物数の値は低く抑えられており良好である。但しこの比較例5では析出炭化物に起因しない表面剥離が生じ、剥離試験の結果はCであった。この比較例5とほぼ同じ表面C濃度で脱炭処理及び表面除去処理が施された実施例1,4の剥離試験の結果が良好であることから、耐表面剥離性を向上させるためには脱炭処理及び表面除去処理を経て所定の表面C濃度を得ることが有効と思われる。   Comparative Example 5 is an example in which the decarburization treatment was not performed as in Comparative Examples 1 and 4. Since this comparative example 5 uses a relatively low C (0.18%) steel type, the value of the number of precipitated carbides is kept low and is good. However, in Comparative Example 5, surface peeling not caused by precipitated carbide occurred, and the result of the peeling test was C. Since the results of the peel tests of Examples 1 and 4 that were subjected to decarburization treatment and surface removal treatment at almost the same surface C concentration as in Comparative Example 5 were good, in order to improve the surface peel resistance, the removal was performed. It seems effective to obtain a predetermined surface C concentration through charcoal treatment and surface removal treatment.

比較例6は高C(1.03%)の鋼種に対して、脱炭処理及び表面除去処理を実施したものである。この例のように高Cの鋼種においては、脱炭処理後の表面から深さ方向に向けてのC濃度の勾配の傾きが大きいため、表面C濃度が0.25%としてもその直下のC量は急激に高くなるためどうしても析出炭化物が生じやすくなる。この例において析出炭化物数はB、剥離試験はCであった。   In Comparative Example 6, decarburization treatment and surface removal treatment were performed on a high C (1.03%) steel type. In the high C steel grade as in this example, since the gradient of the C concentration gradient from the surface after decarburization to the depth direction is large, even if the surface C concentration is 0.25%, C the amount is just precipitated carbide for rapidly increases is likely to occur. In this example, the number of precipitated carbides was B, and the peel test was C.

これに対して本発明の条件を満たす実施例1〜7は、析出炭化物数、剥離試験、何れの結果もAで良好な結果が得られた。
図4に実施例4のミクロ組織を示しているが、この画像から、実施例4のものは析出炭化物数が良好に抑制されていることが見て取れる。
On the other hand, in Examples 1 to 7 that satisfy the conditions of the present invention, good results were obtained with A for all the results of the number of precipitated carbides and the peel test.
FIG. 4 shows the microstructure of Example 4. From this image, it can be seen that the number of precipitated carbides in Example 4 is well suppressed.

以上本発明の実施形態を詳述したがこれはあくまで一例示であり、本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。   Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the spirit of the present invention.

Claims (4)

Cを0.10〜0.70質量%含有する鋼材から成る窒化部品の製造方法であって、
該鋼材から成る部品を加熱して、該部品の表層部に脱炭層を形成する脱炭処理を行い、
該脱炭処理後に該脱炭層の表面を除去する表面除去処理を実施して、該部品の表面C濃度を0.10〜0.25質量%となし、
しかる後塩浴窒化処理を実施することを特徴とする窒化部品の製造方法。
A method for producing a nitrided part made of a steel material containing 0.10 to 0.70% by mass of C,
Heating the component made of the steel material, and performing a decarburization process to form a decarburized layer on the surface layer of the component;
A surface removal treatment for removing the surface of the decarburized layer after the decarburization treatment is performed, and the surface C concentration of the component is made 0.10 to 0.25% by mass,
Thereafter, a salt bath nitriding treatment is performed, and a method for manufacturing a nitrided part is provided.
請求項1において、窒化層における旧オーステナイト結晶粒界上に析出する長さ5μm以上の析出炭化物が、粒界に沿って途中で屈曲する2辺で構成されていた場合を1個とカウントし、更に屈曲する3辺で構成されていた場合を1.5個、屈曲する4辺で構成されていた場合を2個、屈曲のない1辺のみの場合を0.5個とカウントしたとき、前記窒化層の表面から深さ100μm、幅200μmの範囲で該析出炭化物が10個未満であることを特徴とする窒化部品の製造方法。 In claim 1, the case where the precipitated carbide having a length of 5 μm or more precipitated on the prior austenite grain boundaries in the nitride layer is composed of two sides bent along the grain boundaries is counted as one. Further, when 1.5 is configured with 3 sides bent, 2 when configured with 4 sides bent, and 0.5 when only 1 side without bending is counted , A method for producing a nitrided part, comprising less than 10 precipitated carbides in a range of a depth of 100 μm and a width of 200 μm from the surface of the nitride layer. Cを0.10〜0.70質量%含有する鋼材から成る窒化部品であって、
部品の表層部に、表面C濃度を0.10〜0.25質量%とする脱炭層とともに、窒化層が形成されており、
該窒化層における旧オーステナイト結晶粒界上に析出する長さ5μm以上の析出炭化物が、粒界に沿って途中で屈曲する2辺で構成されていた場合を1個とカウントし、更に屈曲する3辺で構成されていた場合を1.5個、屈曲する4辺で構成されていた場合を2個、屈曲のない1辺のみの場合を0.5個とカウントしたとき、前記窒化層の表面から深さ100μm、幅200μmの範囲で該析出炭化物が10個未満であることを特徴とする窒化部品。
A nitrided part made of a steel material containing 0.10 to 0.70 mass% of C,
A nitride layer is formed on the surface layer of the component together with a decarburized layer having a surface C concentration of 0.10 to 0.25% by mass,
The case where the precipitated carbide of 5 μm or more deposited on the prior austenite grain boundary in the nitride layer is composed of two sides bent along the grain boundary is counted as one and further bent 3 When the number of sides of the nitrided layer is 1.5, the case of 4 sides that are bent is counted as 2, and the number of one side without bending is counted as 0.5 . A nitrided part characterized in that the number of precipitated carbides is less than 10 in a range of 100 μm in depth and 200 μm in width from the surface.
請求項3において、前記窒化部品が金型又は工具として用いられるものであることを特徴とする窒化部品。   4. The nitrided part according to claim 3, wherein the nitrided part is used as a mold or a tool.
JP2015220675A 2015-11-10 2015-11-10 Nitride component manufacturing method and nitride component Active JP6416735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015220675A JP6416735B2 (en) 2015-11-10 2015-11-10 Nitride component manufacturing method and nitride component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015220675A JP6416735B2 (en) 2015-11-10 2015-11-10 Nitride component manufacturing method and nitride component

Publications (2)

Publication Number Publication Date
JP2017088959A JP2017088959A (en) 2017-05-25
JP6416735B2 true JP6416735B2 (en) 2018-10-31

Family

ID=58769315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015220675A Active JP6416735B2 (en) 2015-11-10 2015-11-10 Nitride component manufacturing method and nitride component

Country Status (1)

Country Link
JP (1) JP6416735B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3797894B1 (en) * 2018-05-22 2023-01-18 Hitachi Metals, Ltd. Method for manufacturing forged article
JP7172275B2 (en) 2018-08-17 2022-11-16 日立金属株式会社 Hot stamping die steel, hot stamping die and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3056646B2 (en) * 1994-10-04 2000-06-26 新日本製鐵株式会社 Surface treatment method for steel pipe joints with excellent galling resistance
JPH10226818A (en) * 1996-12-11 1998-08-25 Sumitomo Metal Ind Ltd Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP4184147B2 (en) * 2003-05-06 2008-11-19 山陽特殊製鋼株式会社 NITRIDED TOOL, DIE AND ITS MANUFACTURING METHOD
JP2012183563A (en) * 2011-03-07 2012-09-27 Jtekt Corp Method of manufacturing shaft member for wheel rolling bearing device
JP6312988B2 (en) * 2013-06-07 2018-04-18 株式会社リケン Large piston ring manufacturing method, large piston ring material, and large piston ring.

Also Published As

Publication number Publication date
JP2017088959A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
JP5299140B2 (en) MATERIAL OF SHOT PEENING PROJECTION MATERIAL AND METHOD FOR PRODUCING SHOT PEENING PROJECTION MATERIAL
EP3118346B1 (en) Nitriding method and nitrided part production method
JP5761105B2 (en) Cold forging and nitriding steel, cold forging and nitriding steel and cold forging and nitriding parts
CN107849679B (en) Nitrided steel member and method for producing same
JP5533712B2 (en) Hot-worked steel for surface hardening
JP5644483B2 (en) Hot-worked steel for surface hardening
JP6416735B2 (en) Nitride component manufacturing method and nitride component
JP2009299181A (en) High strength steel having excellent delayed fracture resistance, high strength bolt, and method for producing the same
JP5878699B2 (en) Steel product and manufacturing method thereof
JP6558016B2 (en) Carburized machine structural parts
JP6911606B2 (en) Nitriding parts and nitriding method
KR101865530B1 (en) Method for producing tool
JP7013833B2 (en) Carburized parts
JP5768734B2 (en) Rolled steel for cold forging and nitriding
JP2017082299A (en) Manufacturing method of product member and product member
JP2016183398A (en) Manufacturing method of product member and product member
Easton et al. Effects of forming route and heat treatment on the distortion behaviour of case-hardened martensitic steel type S156
JP7063070B2 (en) Carburized parts
EP3214189B1 (en) Method for manufacturing a quenched and tempered seamless pipe for a high-strength hollow spring
JP7163770B2 (en) Rolling bearing component and manufacturing method thereof
JP5825152B2 (en) Cold forging and nitriding steel and cold forging and nitriding parts
JP7063071B2 (en) Carburized parts
Mochtar et al. Application of shot peening and shot blasting to increase hardness and depth of nitride hardened layer to the modified H13 steel as die casting die materials
JP2005336560A (en) High-carbon steel sheet for precision-blanked parts, and precision-blanked parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181004

R150 Certificate of patent or registration of utility model

Ref document number: 6416735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250