JP2018176282A - Surface treatment method for mold cooling hole, and mold - Google Patents

Surface treatment method for mold cooling hole, and mold Download PDF

Info

Publication number
JP2018176282A
JP2018176282A JP2018079846A JP2018079846A JP2018176282A JP 2018176282 A JP2018176282 A JP 2018176282A JP 2018079846 A JP2018079846 A JP 2018079846A JP 2018079846 A JP2018079846 A JP 2018079846A JP 2018176282 A JP2018176282 A JP 2018176282A
Authority
JP
Japan
Prior art keywords
cooling hole
mold
injection
cooling
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018079846A
Other languages
Japanese (ja)
Other versions
JP6644334B2 (en
Inventor
覚 庄司
Satoru Shoji
覚 庄司
宮坂 四志男
Yoshio Miyasaka
四志男 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Kihan Co Ltd
Proterial Ltd
Proterial Special Steel Co Ltd
Original Assignee
Hitachi Metals Ltd
Fuji Kihan Co Ltd
Hitachi Metals Tool Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Fuji Kihan Co Ltd, Hitachi Metals Tool Steel Ltd filed Critical Hitachi Metals Ltd
Publication of JP2018176282A publication Critical patent/JP2018176282A/en
Application granted granted Critical
Publication of JP6644334B2 publication Critical patent/JP6644334B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment method that can impart corrosion resistance and stress corrosion crack resistance at a surface of a cooling hole of a mold.SOLUTION: A surface treatment method for a mold cooling hole includes jetting a jetting particulate matter constituted of particle of tin or tin alloy to a surface of a cooling hole formed in a mold and causing it to collide with the surface of the cooling hole, thereby dispersing Sn element contained in the jetting particulate matter at the surface of the cooling hole. Thus, corrosion resistance that is not lost even when being subject to friction or wear is imparted at the surface of the cooling hole.SELECTED DRAWING: Figure 10

Description

本発明は,金型冷却孔の表面処理方法,及び前記方法で表面処理がされた冷却孔を備えた金型に関し,より詳細には,冷却水等の冷媒を導入するために熱間金型に設けられた冷却孔表面に耐応力腐食割れ性を付与することのできる表面処理方法,及び,前記方法によって表面処理がされた冷却孔を備えた金型に関する。   The present invention relates to a method for surface treatment of mold cooling holes, and a mold provided with cooling holes surface-treated by the above method, and more specifically, a hot mold for introducing a coolant such as cooling water. The present invention relates to a surface treatment method capable of providing stress corrosion cracking resistance to the surface of a cooling hole provided in the above, and a mold provided with a cooling hole surface-treated by the above method.

キャビティ内に溶融材料が注湯されるダイカスト金型のように,キャビティ内に高温の材料が導入される熱間金型では,金型の冷却を円滑に行うために金型内に冷却孔を設け,この冷却孔内に冷却水等の冷媒を導入することにより冷却を行っている。   In the case of a hot die where high temperature material is introduced into the cavity like a die-casting die where molten material is poured into the cavity, cooling holes are provided in the die to facilitate cooling of the die. Cooling is performed by introducing a coolant such as cooling water into the cooling holes.

このような冷却孔を備えた金型では,近年,冷却性能を向上させる目的で冷却孔をキャビティ面側に近接させて形成する傾向にあり,その結果,冷却孔への繰り返し熱応力の影響が大きく,腐食環境にある冷却孔表面で応力腐食割れが生じ易くなっており,これを起点とした金型の大割れや,冷媒の漏出等の危険性が高まっている。   In a mold provided with such cooling holes, in recent years, cooling holes tend to be formed close to the cavity surface side for the purpose of improving the cooling performance, and as a result, the influence of repeated thermal stress on the cooling holes Stress corrosion cracking is likely to occur on the surface of the cooling hole which is large and in a corrosive environment, and there is an increased risk of large cracks of the mold starting from this and leakage of the refrigerant.

そのため,このような金型冷却孔表面の応力腐食割れを防止するための各種方法が検討されている。   Therefore, various methods for preventing such stress corrosion cracking on the surface of the mold cooling hole are being studied.

ここで,応力腐食割れは,引張応力の存在,腐食環境の存在,及び,材料特性という3つの要因によって引き起こされ,このうちの1つ以上の要因を取り除くことにより回避し得る。   Here, stress corrosion cracking is caused by three factors: the presence of tensile stress, the presence of a corrosive environment, and material properties, which can be avoided by removing one or more of these factors.

そのため,これらの要因に対応して,応力腐食割れを防止する方法として以下の提案がされている。   Therefore, in response to these factors, the following proposals have been made as methods for preventing stress corrosion cracking.

〔圧縮残留応力の付与〕
応力腐食割れを発生させる要因のうち,引張応力を緩和するために,冷却孔の表面に圧縮残留応力を付与することが行われており,このような圧縮残留応力を付与するために,冷却孔の表面層をショットピーニングによって加工することが提案されている(特許文献1の請求項1)。
[Addition of compressive residual stress]
Among the factors that cause stress corrosion cracking, applying compressive residual stress to the surface of the cooling hole is performed to relieve tensile stress, and to impart such compressive residual stress, the cooling hole It has been proposed to process the surface layer of the above by shot peening (claim 1 of Patent Document 1).

〔保護膜による被覆〕
また,冷却孔の表面を保護膜で覆うことにより腐食環境(水,溶存酸素,塩素イオン等)から隔絶することで冷却孔の表面における腐食の発生,従って,応力腐食割れの発生を防止することも提案されており,このような保護膜による保護の一例として,冷却孔の表面を無電解メッキ(Ni―Pメッキ)層で被覆することも提案されている(特許文献2の請求項1)。
[Coating with protective film]
In addition, covering the surface of the cooling hole with a protective film isolates it from the corrosive environment (water, dissolved oxygen, chlorine ion, etc.), thereby preventing the occurrence of corrosion on the surface of the cooling hole, and hence the occurrence of stress corrosion cracking. It has also been proposed that, as an example of such protection by a protective film, the surface of the cooling hole be covered with an electroless plating (Ni-P plating) layer (claim 1 of Patent Document 2). .

〔圧縮応力の付与と保護膜形成の併用〕
更に,前述した圧縮残留応力の付与と,保護膜の形成の双方を併用することも提案されており,冷却孔の表面に低濃度窒化を施した後,無電解Ni−Pメッキ層で被覆し,その後,更に,ショットピーニングを施すことも提案されている(特許文献3の請求項1,請求項2)。
[Combined use of compressive stress and formation of protective film]
Furthermore, it is also proposed to use both the application of the compressive residual stress described above and the formation of the protective film, and after applying low concentration nitriding to the surface of the cooling hole, the surface is covered with an electroless Ni-P plating layer. After that, it is also proposed to perform shot peening (claims 1 and 2 of Patent Document 3).

なお,前述した特許文献3に記載の構成において冷却孔の表面を覆う無電解Ni−Pメッキ層は,Feよりも腐食し難い(イオン化傾向が小さい)金属によって構成された,所謂「バリア型」の防食膜であるところ,このようなバリア型の防食膜では,保護膜に素地に至る傷や孔が生じると,メッキ層をカソード,素地をアノードとする局部電池が形成されてアノードとなる素地の腐食(溶出)が加速する問題がある。   In the configuration described in Patent Document 3 described above, the electroless Ni-P plating layer covering the surface of the cooling hole is made of a metal which is more resistant to corrosion (smaller ionization tendency) than Fe, so-called "barrier type". In such a barrier type anticorrosion film, when a scratch or a hole reaching the substrate is generated in such a barrier type corrosion film, a local cell is formed with the plating layer as the cathode and the substrate as the anode to become the anode. Corrosion (elution) accelerates.

このようなバリア型の防食膜が有する問題を解消するために,冷却孔の表面に真空パルス窒化を行った後,ピーニング処理し,更に,電解メッキによってFeよりもイオン化傾向が大きいZnやZn合金の犠牲膜を形成して冷却孔の表面を被覆することも提案されている(特許文献4の請求項1,請求項3,図4)。   In order to solve the problems with such barrier type anticorrosion films, vacuum pulse nitriding is performed on the surface of the cooling holes, then peening treatment is performed, and further, Zn or Zn alloy having a higher ionization tendency than Fe by electrolytic plating. It has also been proposed to form a sacrificial film of the above to coat the surface of the cooling hole (claim 1, claim 3 and 4 of Patent Document 4).

このように,Feよりもイオン化傾向が大きいZnやZn合金の犠牲膜で冷却孔の表面を被覆した構成では,犠牲膜に素地に至る傷や孔が生じて局部電池が形成された場合であっても,この局部電池はメッキ層をアノード,素地をカソードとするものとなるため,アノード側のZnが先に腐食することで,素地側の腐食の発生を遅らせることができるものとなっている。   Thus, in the configuration in which the surface of the cooling hole is covered with a sacrificial film of Zn or Zn alloy having a larger ionization tendency than Fe, there is a case where a scratch or a hole reaching the substrate is generated in the sacrificial film to form a local cell. However, since this local cell uses the plating layer as the anode and the base as the cathode, the corrosion on the base side can be delayed by the corrosion of Zn on the anode side first. .

〔材料特性の改善〕
なお,材料特性の改善による応力腐食割れの防止としては,結晶粒を貫いて割れが進行する粒内割れに対してはニッケル含有量の多い鋼種の選択や珪素の添加,粒界に沿って割れが進行する粒界割れに対しては耐粒界腐食鋼を使用する等,金型全体の鋼種を応力腐食割れ感受性の低い材料に見直すことにより行われるのが一般的であるが,冷却孔の表面に対する局部的な表面処理によって,冷却孔の表面付近の結晶構造や成分等を変化させることで,表面部分の材料自体を応力腐食割れが生じ難い性質に改質することで耐応力腐食割れ性を付与することも提案されている。
[Improvement of material properties]
In addition, as prevention of stress corrosion cracking by improvement of material properties, selection of steel type with high nickel content, addition of silicon, cracking along grain boundary, for intragranular cracking in which cracking progresses through crystal grains It is generally performed by reviewing the steel grade of the whole mold to a material with low stress corrosion cracking sensitivity, such as using an intergranular corrosion resistant steel for intergranular cracking in which Stress corrosion cracking resistance is achieved by modifying the material itself of the surface portion to a property that is less likely to cause stress corrosion cracking by changing the crystal structure, components, etc. in the vicinity of the surface of the cooling hole by local surface treatment on the surface. It has also been proposed to grant

このような表面処理の例として,後掲の特許文献5には,冷却孔の表面を480〜600℃の水蒸気に1〜3時間曝すことによりマグネタイト(Fe34)に変化させることにより形成された表面改質層(マグネタイト層)を設けることを提案している(特許文献5[0027]欄[表2]の試料2)。 As an example of such surface treatment, Patent Document 5 mentioned later is formed by changing the surface of the cooling hole to magnetite (Fe 3 O 4 ) by exposing it to steam at 480 to 600 ° C. for 1 to 3 hours. It is proposed to provide a surface modified layer (magnetite layer) as described above (sample 2 of Patent Document 5 [0027] column [Table 2]).

〔その他〕
金型冷却孔の表面処理に関する発明ではなく,かつ,応力腐食割れの防止に関する処理を開示したものでも,応力腐食割れを防止する効果があることを予測させる記載もされていないが,後掲の特許文献6には,金属製品の表面に金属粒体を噴射することで,金属粒体中の組成物中の元素を金属製品の表面に拡散させる常温拡散,浸透メッキ方法が記載されており,この特許文献6には,噴射する金属粒体として錫の使用についても示唆している(特許文献6[0084])。
[Others]
Although the invention does not relate to the surface treatment of mold cooling holes, and it also discloses the treatment for preventing stress corrosion cracking, it is not described to predict that it has the effect of preventing stress corrosion cracking. Patent Document 6 describes a normal temperature diffusion, penetration plating method in which elements in the composition in the metal particles are diffused to the surface of the metal product by injecting the metal particles onto the surface of the metal product. Patent Document 6 also suggests the use of tin as the metal particles to be jetted (Patent Document 6 [0084]).

なお,特許文献6は,ここに記載されている方法を「メッキ方法」と指称するが,特許文献6に記載の方法で形成される表面層は,浸炭や窒化等によって鋼製品の表面に形成される層と同様,素地中に,他の元素を拡散・浸透させて形成した「表面改質層」であり,特許文献2〜4のように,無電解メッキや電解メッキによって形成される,素地とは別の成分によって素地上を覆う「メッキ層」とは異なる。   Although Patent Document 6 refers to the method described herein as "plating method", the surface layer formed by the method described in Patent Document 6 is formed on the surface of a steel product by carburizing, nitriding, etc. Similar to the layers to be formed, it is a "surface modified layer" formed by diffusing and infiltrating other elements into the substrate, and formed by electroless plating or electrolytic plating as in Patent Documents 2 to 4, It differs from the "plating layer" that covers the substrate by components other than the substrate.

特開平7−290222号公報Japanese Patent Application Laid-Open No. 7-290222 特開平9−271923号公報Japanese Patent Application Laid-Open No. 9-217923 特開2009−72798号公報JP, 2009-72798, A 特開2013−159831号公報JP, 2013-159831, A 特開2016−204754号公報JP, 2016-204754, A 特開平 8−333671号公報JP-A-8-333671

以上で説明した従来の金型冷却孔の表面処理方法中,ショットピーニングによって圧縮残留応力を付与する方法(特許文献1)は,冷却孔の形成加工等によって生じた引張残留応力や使用時にかかる外部応力を緩和することができるが,引張応力を完全に除去するものではなく,他の方法との併用も行われている。   The method of applying compressive residual stress by shot peening in the conventional surface treatment method for mold cooling holes described above (see Patent Document 1) relates to tensile residual stress generated by forming processing of cooling holes and the like and external force applied during use Although stress can be relieved, tensile stress is not completely eliminated, and it is used in combination with other methods.

このようなショットピーニングによる圧縮残留応力の付与との併用として,特許文献3に記載されているように,無電解Ni―Pメッキによってバリア型の保護膜を形成して冷却孔の表面を腐食環境(水,溶存酸素,塩素イオン等)から隔絶することも考えられるが,この構成では,保護膜に素地に至る傷や孔が生じれば,局部電池の作用によって素地の腐食をより進行させることは前述した通りである。   As described in Patent Document 3 as a combination of application of compressive residual stress by such shot peening, a barrier type protective film is formed by electroless Ni-P plating to corrode the surface of the cooling hole. Isolation from (water, dissolved oxygen, chloride ions, etc.) is also considered, but in this configuration, if scratches or holes that lead to the substrate occur in the protective film, the corrosion of the substrate is further advanced by the action of the local cell. Is as described above.

一方,保護膜をZnやZn合金から成る犠牲膜とした特許文献4に記載の構成では,犠牲膜に素地に至る傷や孔が生じた場合であっても,素地の腐食発生を遅らせることができる点で有利であるが,この構成によっても,あくまでも素地の腐食を「遅らせる」ことができるだけで,保護膜の腐食の進行と共にやがて素地にも腐食が生じることとなる。   On the other hand, in the configuration described in Patent Document 4 in which the protective film is a sacrificial film made of Zn or Zn alloy, the occurrence of corrosion of the substrate can be delayed even if a scratch or a hole reaching the substrate is generated in the sacrificial film. Although it is advantageous in that it can be done, this configuration can only "delay" the corrosion of the substrate, and the corrosion of the substrate will eventually occur as the corrosion of the protective film progresses.

また,保護膜としてZnやZn合金から成る犠牲膜を形成する構成では,素地に至る傷や孔が生じた際には素地の腐食を遅らせることができる点で有利であるものの,イオン化傾向が大きい(従って,腐食しやすい)材料で形成された犠牲膜は,それ自体が経時と共に腐食することで痩せていき保護効果が低下すると共に,この腐食によってメッキ層の表面に錆(白錆)が発生して流路面積を減少させることで冷却効率の低下等を招く場合がある。   Moreover, in the structure which forms the sacrificial film which consists of Zn and Zn alloy as a protective film, when the flaw and the hole to the base are produced, although it is advantageous in being able to delay corrosion of the base, ionization tendency is large. The sacrificial film formed of a material (which is therefore easy to corrode) becomes thin as it corrodes with time and its protective effect is reduced, and this corrosion causes rust (white rust) on the surface of the plated layer The reduction of the flow passage area may lead to a decrease in the cooling efficiency.

このような犠牲膜自身の腐食を防止するためには,冷却孔の表面に犠牲膜を形成した後,この犠牲膜の表面に,更に化成処理を行う等の処置が必要となるが,この方法では処理工数の増加によって冷却孔の表面処理の長時間化,高コスト化を招く。   In order to prevent such corrosion of the sacrificial film itself, after forming the sacrificial film on the surface of the cooling hole, it is necessary to perform further treatment such as chemical conversion treatment on the surface of the sacrificial film. However, the increase in the number of processing steps leads to an increase in the time and cost of surface treatment of the cooling holes.

このように,保護膜の形成は,素地を腐食環境より隔絶することにより耐応力腐食割れ性を付与するものであるため,保護膜に破損等が生じた場合には素地を腐食から保護できなくなる。   Thus, since the formation of the protective film imparts resistance to stress corrosion cracking by isolating the substrate from the corrosive environment, the substrate can not be protected from corrosion when the protective film is damaged or the like. .

これに対し,少なくとも冷却孔の表面付近を,応力腐食割れが生じ難い材料特性に改質することができれば,電解メッキや無電解メッキによるメッキ層を保護膜として形成しない場合であっても,冷却孔表面の応力腐食割れを防止することができると共に,このような表面改質を,前述した保護膜の形成に際する下地処理として行えば,保護膜が破損等した場合であっても応力腐食割れの発生を防止できる。   On the other hand, if it is possible to modify at least the surface of the cooling hole to material properties that are less likely to cause stress corrosion cracking, cooling is possible even if the plating layer is not formed as a protective film by electrolytic plating or electroless plating. Stress corrosion cracking of the hole surface can be prevented, and if such surface modification is carried out as the surface treatment for forming the protective film described above, stress corrosion will occur even if the protective film is damaged or the like. It is possible to prevent the occurrence of cracking.

このような表面改質によって応力腐食割れを防止する方法として,特許文献5は金型の冷却孔の表面組織をマグネタイト(Fe34)に改変することで,腐食,従って応力腐食割れの発生を防止して金型の寿命を大幅に拡大できることを報告する。 As a method of preventing stress corrosion cracking by such surface modification, Patent Document 5 changes the surface structure of the cooling hole of the mold into magnetite (Fe 3 O 4 ), thereby causing corrosion and hence stress corrosion cracking. Report that it can prevent the mold life significantly.

しかし,特許文献5では,冷却孔の表面組織をマグネタイト(Fe34)に改変するために,冷却孔の表面を480〜600℃の水蒸気に,1〜3時間曝す処理を行っており(特許文献5[0014]),より,簡単,かつ短時間の処理で,冷却孔の表面に耐応力腐食割れ性を有する表面改質層を形成することができれば便利である。 However, in Patent Document 5, in order to change the surface structure of the cooling hole into magnetite (Fe 3 O 4 ), the surface of the cooling hole is exposed to water vapor at 480 to 600 ° C. for 1 to 3 hours ( It is convenient if the surface modified layer having stress corrosion cracking resistance can be formed on the surface of the cooling hole by a simple and short-time process, as disclosed in Patent Document 5 [0014].

また,上記方法によって形成されたマグネタイトの表面改質層は,比較的低硬度であり,耐摩耗性が低いために摩擦によってマグネタイト層が滅失すると耐応力腐食割れ性が失われる。   In addition, the surface modification layer of magnetite formed by the above method has a relatively low hardness and has low wear resistance, so if the magnetite layer is lost due to friction, stress corrosion cracking resistance is lost.

そこで本発明は,金型の冷却孔の表面付近を,腐食が生じ難い性質,従って,応力腐食割れが生じ難い材料特性に改質された表面改質層を,比較的簡単,かつ,短時間で形成することができ,しかも,他部材との摩擦によっても耐応力腐食割れ性が失われ難い表面改質層を形成し得る,金型冷却孔の表面処理方法を提供することにより,冷却孔の表面における応力腐食割れの発生を防止して金型の長寿命化を図ることを目的とする。   Therefore, the present invention is relatively simple and for a short time, the surface modified layer which has been modified to the property that corrosion is unlikely to occur near the surface of the cooling hole of the mold, and thus the stress corrosion cracking is unlikely to occur. Cooling holes by providing a method for surface treatment of mold cooling holes, which can form a surface modified layer which is resistant to stress corrosion cracking resistance even by friction with other members. It is an object of the invention to prevent the occurrence of stress corrosion cracking on the surface of the metal mold and to prolong the life of the mold.

上記目的を達成するために,本発明の金型冷却孔の表面処理方法は,
金型に形成された冷却孔の少なくとも表面にSn元素を拡散させる拡散処理を行うことを特徴とする(請求項1)。
In order to achieve the above object, the surface treatment method for mold cooling holes of the present invention is
A diffusion process is performed to diffuse Sn element on at least the surface of the cooling hole formed in the mold (claim 1).

前記拡散処理は,平均粒子径10〜100μmの錫及び/又は錫合金の粒子から成る噴射粒体を噴射圧力0.4〜0.8MPaの圧縮気体と共に噴射して前記冷却孔の表面に衝突させることにより,前記噴射粒体中のSn元素を前記冷却孔の表面に拡散させることにより行うことができる(請求項2)。   In the diffusion process, jet particles consisting of tin and / or tin alloy particles having an average particle diameter of 10 to 100 μm are jetted together with compressed gas having a jet pressure of 0.4 to 0.8 MPa to collide with the surface of the cooling hole This can be performed by diffusing the Sn element in the blast particles to the surface of the cooling hole (claim 2).

本発明において,平均粒子径とはメジアン径(d50)を言う。   In the present invention, the average particle size refers to the median diameter (d50).

なお,一端を閉塞端とする冷却孔の表面を処理対象とする場合,
前記拡散処理における前記噴射粒体の噴射を,該冷却孔よりも小径の噴射ノズルを該噴射ノズルの先端を冷却孔の前記閉塞端付近,一例として閉塞端の内面に対し数mmの間隔となるまで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら,一例として該噴射ノズルが前記冷却孔より脱するまで,前記噴射粒体の噴射を継続することにより前記拡散処理を行うことが好ましい(請求項3)。
When the surface of the cooling hole whose end is a closed end is to be treated,
The injection nozzle of the injection particles in the diffusion process has an injection nozzle with a diameter smaller than the cooling hole, and the tip of the injection nozzle has a distance of several mm from the inner end of the cooling hole, for example, the inner surface of the closed end. It is preferable to perform the diffusion process by continuing the injection of the injection particles until, for example, the injection nozzle is removed from the cooling hole while gradually extracting the injection nozzle while starting in the state of being inserted up to (Claim 3).

また,前記冷却孔の表面には,ショットピーニングを行うことが好ましく(請求項4),このショットピーニングには,表面のスケール除去等を行う効果があることから,Sn元素を拡散させる前述の拡散処理を行う前にショットピーニングを行うことが好ましい。   Further, it is preferable to perform shot peening on the surface of the cooling hole (claim 4). Since this shot peening has an effect of removing the scale of the surface, the above-mentioned diffusion to diffuse the Sn element It is preferable to perform shot peening before performing processing.

この場合のショットピーニングは,平均粒子径20〜149μmのショットを噴射圧力0.3〜0.8MPaの圧縮気体と共に噴射して行うことができる(請求項5)。   The shot peening in this case can be performed by injecting a shot having an average particle diameter of 20 to 149 μm together with a compressed gas having an injection pressure of 0.3 to 0.8 MPa (claim 5).

なお,一端を閉塞端とする冷却孔の表面を処理対象とする場合,
前記ショットピーニングにおける前記ショットの噴射についても,前記冷却孔よりも小径の噴射ノズルを該噴射ノズルの先端を冷却孔の前記閉塞端付近,一例として閉塞端の内面に対し数mmの間隔となるまで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら,一例として該噴射ノズルが前記冷却孔より脱するまで,前記ショットの噴射を継続することにより行うことが好ましい(請求項6)。
When the surface of the cooling hole whose end is a closed end is to be treated,
Also for the injection of the shot in the shot peening, the injection nozzle having a diameter smaller than the cooling hole is a tip of the injection nozzle close to the closed end of the cooling hole, for example, a few mm from the inner surface of the closed end. It is preferable to start in the inserted state and continue the injection of the shot until, for example, the injection nozzle is removed from the cooling hole while gradually extracting the injection nozzle (Claim 6).

この場合,前記冷却孔内で前記ノズルの先端を揺動させることが好ましい(請求項7)。   In this case, it is preferable to swing the tip of the nozzle in the cooling hole.

なお,前述した本発明の表面処理方法は,窒化又は軟窒化処理がされた前記冷却孔の表面を処理対象として行うことができる(請求項8)。   The above-described surface treatment method of the present invention can be performed on the surface of the cooling hole which has been subjected to the nitriding or soft nitriding treatment (claim 8).

また,本発明の金型は,
冷却用の冷媒を導入する冷却孔が形成された金型において,
前記冷却孔の表面に,Sn元素が拡散された表面改質層が形成されていることを特徴とする(請求項9)。
Also, the mold of the present invention is
In a mold in which a cooling hole for introducing a refrigerant for cooling is formed,
A surface modified layer in which Sn is diffused is formed on the surface of the cooling hole.

この表面改質層は,更に圧縮残留応力が付与されているものとすることが好ましい(請求項10)。   It is preferable that the surface modification layer is further provided with compressive residual stress (claim 10).

更に,前記冷却孔が表面に窒化層又は軟窒化層を備え,前記表面改質層が,前記窒化層又は軟窒化層に形成されていても良い(請求項11)。   Furthermore, the cooling hole may be provided with a nitrided layer or a soft nitrided layer on the surface, and the surface modified layer may be formed in the nitrided layer or the soft nitrided layer (claim 11).

以上で説明した本発明の構成により,本発明の方法で表面処理を行った冷却孔を備えた金型では,冷却孔の表面にSn元素を拡散させたことで耐食性を発揮し,これにより,冷却孔表面での腐食の発生が防止されることで応力腐食割れの発生を好適に防止することができた。   According to the configuration of the present invention described above, in the mold provided with the cooling hole surface-treated by the method of the present invention, the corrosion resistance is exhibited by diffusing the Sn element on the surface of the cooling hole. The occurrence of stress corrosion cracking was able to be suitably prevented by preventing the occurrence of corrosion on the surface of the cooling hole.

しかも,本発明の方法で処理された表面は,摩擦摩耗後においても優れた耐食効果を発揮する,耐摩耗性に優れたものであった。   Moreover, the surface treated by the method of the present invention exhibited excellent corrosion resistance even after frictional wear, and was excellent in abrasion resistance.

このようなSn元素の拡散は,所定粒径の錫及び/又は錫合金の粒体である噴射粒体を,所定の噴射圧力で噴射するという比較的簡単な方法で,短時間のうちに行うことが可能である。   Such diffusion of Sn element is carried out in a short time by a relatively simple method of injecting jetted particles, which are particles of tin and / or tin alloy of a predetermined particle diameter, at a predetermined injection pressure It is possible.

冷却孔の表面にショットピーニングを行う構成では,前述したSn元素の拡散に伴う耐食性の付与と,ショットピーニングによる圧縮残留応力の付与との相乗効果によって,より一層の耐応力腐食割れ性を付与することができた。   In the configuration in which shot peening is performed on the surface of the cooling hole, the stress corrosion cracking resistance is further imparted by the synergetic effect of imparting the corrosion resistance accompanied by the diffusion of the Sn element described above and the application of compressive residual stress by shot peening. I was able to.

更に,拡散処理における噴射粒体の噴射や,ショットピーニングにおけるショットの噴射を,冷却孔よりも小径の噴射ノズルをその先端を冷却孔の閉塞端付近まで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら噴射を継続する構成では,噴射ノズルの外周と冷却孔の内周間の間隔が狭く,従って噴射したショットや噴射粒体が孔外に抜け難く詰まり易い,細径の冷却孔の表面を処理対象とした場合であっても,ショットピーニングやSn元素の拡散処理を好適に行うことができた。   Furthermore, injection of injection particles in diffusion processing and injection of shots in shot peening are started with the injection nozzle having a diameter smaller than that of the cooling hole inserted to the vicinity of the closed end of the cooling hole, In the configuration in which the injection is continued while gradually drawing out, the gap between the outer circumference of the injection nozzle and the inner circumference of the cooling hole is narrow, so the shot and the jetted particles are hard to come out of the hole and easily clogged. Even when the surface was to be treated, shot peening and diffusion treatment of Sn element could be suitably performed.

特に,冷却孔内で前記噴射ノズルの先端側を揺動させながら前述した噴射を行うことで,加工むら等の発生についても好適に防止することができた。   In particular, by performing the above-described injection while swinging the tip end side of the injection nozzle in the cooling hole, it is possible to preferably prevent the occurrence of processing unevenness and the like.

なお,本発明の表面処理は,窒化や軟窒化が行われている冷却孔の表面に対し行うことで,窒化や軟窒化処理との相乗効果を得ることも可能である。   The surface treatment of the present invention can be performed on the surface of the cooling hole where nitriding or soft nitriding is performed to obtain a synergetic effect with the nitriding or soft nitriding treatment.

金型とその冷却孔を模式的に記載した説明図。Explanatory drawing which described typically a metal mold | die and its cooling hole. 閉塞端を有する冷却孔表面に対する噴射粒体/ショットの噴射方法の説明図であり,(A)は全体構成,(B)は噴射ノズルの先端部の拡大図,(C)は噴射ノズルの先端を(B)図に示したC矢視方向より見た図。It is explanatory drawing of the injection method of injection | pouring particle | grain / shot with respect to the cooling hole surface which has a closed end, (A) is whole structure, (B) is the enlarged view of the front-end | tip part of injection nozzle, (C) is the front-end of injection nozzle (B) the figure seen from the C arrow direction shown to the figure. (A)は試料1(比較例),(B)は試料2(比較例),(C)は試料3(実施例),(D)は試料4(実施例)の輪郭曲線。(A) is sample 1 (comparative example), (B) is sample 2 (comparative example), (C) is sample 3 (example), (D) is a contour curve of sample 4 (example). 試料1(比較例)表面のSEM像であり,(A)は1000倍,(B)は3000倍。It is a SEM image of the surface of sample 1 (comparative example), (A) is 1000 times and (B) is 3000 times. 試料2(比較例)表面のSEM像であり,(A)は1000倍,(B)は3000倍。It is a SEM image of the surface of sample 2 (comparative example), (A) is 1000 times, (B) is 3000 times. 試料3(実施例)表面のSEM像であり,(A)は1000倍,(B)は3000倍。It is a SEM image of sample 3 (example) surface, and (A) is 1000 times and (B) is 3000 times. 試料4(実施例)表面のSEM像であり,(A)は1000倍,(B)は3000倍。It is a SEM image of sample 4 (example) surface, and (A) is 1000 times and (B) is 3000 times. 試料1(比較例)表面のEDX定性分析結果。Sample 1 (comparative example) EDX qualitative analysis result of the surface. 試料2(比較例)表面のEDX定性分析結果。Sample 2 (comparative example) EDX qualitative analysis result of the surface. 試料3(実施例)表面のEDX定性分析結果。Sample 3 (Example) EDX qualitative analysis result of the surface. 試料4(実施例)表面のEDX定性分析結果。Sample 4 (example) EDX qualitative analysis result of the surface. 摩擦摩耗試験(ボール・オン・ディスク試験)の説明図。Explanatory drawing of a friction wear test (ball on disk test). 耐食性試験結果を示す試験前後の各試料の表面を撮影した写真。The photograph which image | photographed the surface of each sample before and behind the test which shows a corrosion-resistant test result. 投射材の噴射方法に対する評価試験で使用した試験片と試験方法の説明図。Explanatory drawing of the test piece and test method which were used by the evaluation test with respect to the injection method of a projectile.

以下に,本発明の金型冷却孔の表面処理方法を,添付図面を参照しながら説明する。   Below, the surface treatment method of the mold cooling hole of this invention is demonstrated, referring an accompanying drawing.

〔処理対象:金型の冷却孔〕
本発明の表面処理方法は,ダイカスト金型等の熱間金型内に冷却水等の冷媒を導入するために設けられた冷却孔の表面(内壁)を処理対象とする。
[Object to be processed: Mold cooling hole]
The surface treatment method of the present invention treats the surface (inner wall) of a cooling hole provided for introducing a coolant such as cooling water into a hot die such as a die casting die.

処理対象とする金型の鋼種は特に限定されず,一例として,SKD61(JIS G4404 2006)に代表されるSKD系の熱間ダイス鋼(SKD4,SKD5,SKD6,SKD61,SKD62,SKD7,SKD8)や,SKT系の熱間鍛造用型鋼(SKT3,SKT4,SKT6)等,熱間金型に使用される鋼種はいずれも本発明の表面処理の対象とすることができる。   The steel type of the mold to be treated is not particularly limited, and as an example, SKD hot die steel (SKD4, SKD5, SKD6, SKD61, SKD62, SKD7, SKD8) represented by SKD61 (JIS G4404 2006) or Any of the steel types used for hot molds, such as SKT type hot forging type steel (SKT3, SKT4, SKT6), etc. can be the object of the surface treatment of the present invention.

このような金型に形成される冷却孔としては,図1に模式的に示したように,例えば金型の背面側(キャビティ面とは反対側)からキャビティ面に向かって金型の厚さ方向に形成された冷却孔のように一端を閉塞端とする冷却孔と,図1において金型の厚さ方向に対し直交方向に表されている冷却孔のように貫通孔として形成された冷却孔等,各種の冷却孔がある。そして,例えば,これら各種の冷却孔どうしが繋がって,この繋がった冷却孔中を冷媒が循環している。本発明の表面処理方法は,これらの冷却孔のいずれに対しても適用可能である。   As the cooling holes formed in such a mold, as schematically shown in FIG. 1, for example, the thickness of the mold from the back side of the mold (opposite to the cavity surface) toward the cavity surface Cooling holes with one end closed like a cooling hole formed in the direction and cooling formed as a through hole like a cooling hole represented in the direction perpendicular to the thickness direction of the mold in FIG. 1 There are various cooling holes such as holes. And, for example, these various cooling holes are connected to each other, and the refrigerant circulates in the connected cooling holes. The surface treatment method of the present invention is applicable to any of these cooling holes.

対象とする冷却孔のサイズは特に限定されないが,閉塞端を有する冷却孔については,孔径が細くなるに従い,ショットや噴射粒体が冷却孔内で目詰まりを起こし易くなり加工が困難となるものの,本発明で採用する後述の噴射方法を適用する場合,金型に形成する最小レベルの冷却孔のサイズである直径2mmの冷却孔までは表面処理できることを確認している。   The size of the target cooling hole is not particularly limited, but as for the cooling hole having a closed end, as the hole diameter becomes smaller, shots and jetted particles are easily clogged in the cooling hole and processing becomes difficult. When applying the injection method described later adopted in the present invention, it has been confirmed that the surface can be treated up to the cooling hole having a diameter of 2 mm which is the size of the cooling hole of the minimum level formed in the mold.

なお,本発明の表面処理方法は,切削加工等を行ったままの冷却孔の表面に対し行うことも可能であるが,冷却孔の表面にツールマーク等の凹凸が形成されている場合には,凹部を起点として割れが発生し易くなること,また,冷却孔の形成を放電加工にて行った場合,表面に付着した酸化スケールやマイクロクラックの原因となる放電硬化層を事前に除去しておくことが好ましいことから,本願の処理を行う前に,冷却孔の表面に対し,砥粒を噴射して研磨するサンドブラスト等の研磨処理を行っておくものとしても良い。   Although the surface treatment method of the present invention can be applied to the surface of the cooling hole as it has been subjected to cutting, etc., in the case where irregularities such as tool marks are formed on the surface of the cooling hole. (2) If cracks are likely to be generated starting from the recess, and if the formation of the cooling holes is carried out by electrical discharge machining, remove in advance the oxide scale attached to the surface and the discharge hardened layer that causes micro cracks. Since it is preferable that the surface of the cooling hole is subjected to polishing treatment such as sand blasting, in which abrasive grains are jetted and polished, may be performed on the surface of the cooling hole.

また,冷却孔の表面に対しては,必要に応じて既知の方法により窒化や軟窒化等の処理を行うものとしても良く,このようにして窒化や軟窒化処理を行った後の冷却孔の表面に対し,本発明の処理を行うものとしても良い。   In addition, the surface of the cooling hole may be treated by nitriding, soft nitriding, etc. by a known method as necessary. In this way, the cooling hole after the nitriding or soft nitriding treatment is performed The process of the present invention may be performed on the surface.

〔表面処理〕
以上で説明した金型の冷却孔表面に対し,本発明の表面処理が施される。
〔surface treatment〕
The surface treatment of the present invention is applied to the cooling hole surface of the mold described above.

この表面処理方法は,金型に形成された冷却孔の少なくとも表面にSn元素を拡散させる拡散処理を少なくとも含み,好ましくは,上記拡散処理の他,冷却孔の表面にショットピーニングを適用して,圧縮残留応力を付与することが好ましい。   This surface treatment method includes at least a diffusion treatment for diffusing Sn in at least the surface of the cooling hole formed in the mold, and preferably, shot peening is applied to the surface of the cooling hole besides the diffusion treatment, It is preferable to apply compressive residual stress.

本実施形態では,冷却孔の表面に,まず,ショットピーニングを行って圧縮残留応力を付与し,その後,Sn元素を拡散させる前述の拡散処理を行う場合を例に挙げて説明する。   In the present embodiment, first, shot peening is performed on the surface of the cooling hole to apply compressive residual stress, and then the above-described diffusion process of diffusing the Sn element is described as an example.

ショットピーニングは,金属やセラミック,ガラス等の略球状の粒子から成るショットを,圧縮気体と共に冷却孔の表面に噴射,衝突させて行う冷間加工の一種であり,このショットピーニングを行うことで,表面組織の微細化による冷却孔の表面硬度の上昇(加工硬化)が得られると共に,圧縮残留応力を付与することができる。   Shot peening is a type of cold working in which a shot consisting of substantially spherical particles of metal, ceramic, glass, etc. is injected and collided with the compressed gas onto the surface of a cooling hole, and this shot peening is performed by performing this shot peening. An increase in surface hardness (work hardening) of the cooling holes due to the refinement of the surface structure can be obtained, and compressive residual stress can be imparted.

使用するショットとしては,前述したように金属,セラミック,ガラス等の,ショットピーニングに使用されるショット材の材質として既知の各種材質のショットを使用することができるが,好ましくは,処理対象とする冷却孔の表面硬度よりも高硬度のものを使用する。   As the shot to be used, as described above, shots of various materials known as shot materials used for shot peening, such as metal, ceramic, glass, etc., can be used, but preferably they are to be treated Use one with a hardness higher than the surface hardness of the cooling holes.

ショットの粒径としては,平均粒径20〜149μmのものを使用することができ,このショットを,噴射圧力0.3〜0.8MPaの圧縮空気等の圧縮気体と共に噴射する。   As the particle size of the shot, one having an average particle size of 20 to 149 μm can be used, and this shot is jetted together with a compressed gas such as compressed air having a jet pressure of 0.3 to 0.8 MPa.

なお,ショットピーニングは一回のみの処理で行うこともできるが,複数回に分けて行うものとしても良く,例えば段階的に噴射圧力やショットの粒径を変化させる等して,処理後の冷却孔の表面粗さが改善されるように行っても良い。   Shot peening may be performed only once, or may be performed multiple times, for example, by changing the injection pressure and the particle size of the shot stepwise, etc., and cooling after processing It may be done to improve the surface roughness of the holes.

本実施形態において,Sn元素を拡散させる前述の拡散処理は,前述したショットピーニングを行った後の冷却孔の表面に対し行う。   In the present embodiment, the above-described diffusion processing for diffusing the Sn element is performed on the surface of the cooling hole after the above-described shot peening is performed.

このようなSn元素の拡散は,錫又は錫合金から成る噴射粒体を冷却孔の表面に噴射して衝突させることにより行うことができ,衝突時のエネルギーによって,噴射粒体中のSn元素の一部を,冷却孔の表面に拡散させることができる。   Such diffusion of the Sn element can be performed by injecting and colliding the jetted particles made of tin or tin alloy onto the surface of the cooling hole, and the energy at the time of collision makes it possible to A part can be diffused to the surface of the cooling hole.

この拡散処理に使用する噴射粒体は,冷却孔の表面に拡散させるSn元素を含むものである必要があり,純錫の粒体は勿論,錫を主成分とする錫合金の粒体についても使用することができ,また,自然酸化によって表面に酸化膜が形成された錫の粒体等,その一部又は全部が酸化錫の形態をとるものであっても良い。   The injection particles used for this diffusion treatment need to contain Sn elements to be diffused to the surface of the cooling hole, and of course the particles of pure tin as well as the particles of a tin alloy containing tin as the main component Some or all of tin particles, such as tin particles having an oxide film formed on the surface by natural oxidation, may take the form of tin oxide.

前述したショットピーニングに使用するショットとは異なり,拡散処理に使用する噴射粒体の形状は,略球状のものに限らず,角を有する形状のものについても使用可能であり,その形状は限定されない。   Unlike the shot used for the shot peening described above, the shape of the injection particles used for the diffusion process is not limited to the substantially spherical one, but can be used for the one having a corner, and the shape is not limited. .

使用する噴射粒体の平均粒径は10〜100μmの範囲であり,この噴射粒体を噴射圧力0.4〜0.8MPaの圧縮空気等の圧縮気体と共に噴射することにより,冷却孔の表面にSn元素を拡散することができる。   The average particle diameter of the injection particles used is in the range of 10 to 100 μm, and the injection particles are injected together with compressed gas such as compressed air at an injection pressure of 0.4 to 0.8 MPa to the surface of the cooling hole. Sn element can be diffused.

なお,本実施形態では,前述したショットピーニングを行った後に,錫又は錫合金の噴射粒体を噴射してSn元素を拡散させる拡散処理を行う場合を例に挙げて説明したが,2つの処理は,冷却孔の表面に,圧縮残留応力の付与とSn元素の拡散の双方を行うことができればその順序は特に限定されず,Sn元素を拡散した後に冷却孔の表面に対しショットピーニングを行うものとしても良く,又は,噴射粒体の噴射(拡散処理)とショットの噴射(ショットピーニング)を同時に行って,Sn元素の拡散と圧縮残留応力の付与を同時に行うものとしても良い。   In the present embodiment, after performing the above-described shot peening, the case of performing the diffusion process of diffusing tin elements by injecting the spray particles of tin or tin alloy is described as an example, but two processes are performed. The order is not particularly limited as long as both the application of compressive residual stress and the diffusion of the Sn element can be performed on the surface of the cooling hole, and shot peening is performed on the surface of the cooling hole after the Sn element is diffused. Alternatively, the diffusion of the Sn element and the application of the compressive residual stress may be simultaneously performed by simultaneously performing the injection (diffusion process) of the injection particles and the injection (shot peening) of the shot.

但し,ショットピーニングには,表面のスケール除去等を行う効果があることから,Sn元素を拡散させる前述の拡散処理を行う前にショットピーニングを行うことが好ましい。   However, since shot peening has the effect of removing the scale on the surface, it is preferable to perform shot peening before performing the above-described diffusion process of diffusing the Sn element.

上記ショットピーニングにおけるショットの噴射や拡散処理における噴射粒体の噴射は,以下の方法により行うことができる。   The injection of shot in shot peening and the injection of injection particles in the diffusion process can be performed by the following method.

なお,以下に説明するショットや噴射粒体の噴射方法は,本発明の処理を行うに先立ち,冷却孔の表面を砥粒の噴射によって研磨等する場合,この砥粒の噴射等にも適用可能である。   In addition, prior to performing the process of the present invention, the method of jetting shots or jetted particles described below can be applied to the jetting of abrasive grains, etc., when the surface of the cooling hole is polished by the jetting of abrasive grains, etc. It is.

処理対象とする冷却孔が,図1に示した冷却孔のうち,入口と出口を有する貫通孔として形成されたものである場合には,入口又は出口の一方より圧縮空気等の圧縮気体と共にショットや噴射粒体を導入すると共に,他方より噴出させることで,冷却孔の表面にショットや噴射粒体を衝突させるようにしても良い。   In the case where the cooling hole to be treated is formed as a through hole having an inlet and an outlet among the cooling holes shown in FIG. 1, the shot with the compressed gas such as compressed air is made from one of the inlet and the outlet. Alternatively, the shot particles may be made to collide with the surface of the cooling hole by introducing the spray particles and injecting them from the other.

処理対象とする冷却孔が,図1に示した冷却孔のうち,一端を閉塞端とする孔である場合には,図2(A)に示すように,冷却孔の孔径よりも小さく,かつ,冷却孔の表面と噴射ノズルの外周面との間に,少なくとも圧縮気体とショットや噴射粒体との混合流体の通過許容間隔を形成し得る外径を有する噴射ノズルを使用し,この噴射ノズルを冷却孔内に挿入して噴射する。なお,この方法は貫通孔として形成された冷却孔にも適用可能である。   When the cooling hole to be treated is a hole whose end is a closed end among the cooling holes shown in FIG. 1, as shown in FIG. 2 (A), it is smaller than the hole diameter of the cooling hole, And an injection nozzle having an outer diameter capable of forming an allowable passage of a mixed fluid of at least compressed gas and shot or injection particles between the surface of the cooling hole and the outer peripheral surface of the injection nozzle, the injection nozzle Is inserted into the cooling hole and injected. In addition, this method is applicable also to the cooling hole formed as a through-hole.

このような噴射ノズルを使用したショットや噴射粒体の噴射は,噴射ノズルの先端が冷却孔の閉塞端内面に対し数mm程度の間隔,例えば3〜5mm程度の間隔となるまで噴射ノズルを冷却孔内に挿入し,この位置でショットや噴射粒体の噴射を開始し,噴射ノズルを冷却孔より徐々に引き抜きながら噴射ノズルが冷却孔から脱するまで噴射を継続することで,閉塞端の内面を含む冷却孔の表面全体にショットや噴射粒体を衝突させることができる。   The shot and injection particle spray using such an injection nozzle cools the injection nozzle until the tip of the injection nozzle has an interval of about several mm, for example, an interval of about 3 to 5 mm, to the inner surface of the closed end of the cooling hole. Insert into the hole, start injection of shot and spray particles at this position, and continue the injection until the injection nozzle comes out of the cooling hole while gradually pulling out the injection nozzle from the cooling hole, the inner surface of the closed end The shot and blast particles can collide with the entire surface of the cooling hole including the

噴射ノズルの引き抜きは,早すぎると冷却孔の表面を十分に処理できず,遅すぎると,噴射されたショットや噴射粒体が冷却孔内に詰まって噴射できなくなることから,0.1〜50mm/sの引き抜き速度で引き抜くことが好ましく,一例として直径4mmの冷却孔に対する噴射において,0.5〜50mm/sである。   If the ejection nozzle is pulled out too early, the surface of the cooling hole can not be sufficiently treated, and if it is too late, the shot or jetted particles clogged in the cooling hole and can not be jetted, so 0.1 to 50 mm It is preferable to withdraw at a withdrawal rate of 1 / s, for example, 0.5 to 50 mm / s for injection to a cooling hole with a diameter of 4 mm.

ショットや噴射粒体の噴射中,噴射ノズルの先端側を,図2(B),(C)中に矢印で示すように冷却孔内で揺動させて,冷却孔の表面に対し均一に加工を行うことができるようにしても良い。   During injection of the shot or injection particles, the tip side of the injection nozzle is swung in the cooling hole as shown by the arrows in FIGS. 2 (B) and 2 (C) to uniformly process the surface of the cooling hole It may be possible to

なお,孔径が比較的大きい冷却孔を処理対象とする場合には,噴射ノズルの外周と冷却孔の内周間の隙間を確保することが容易であるが,冷却孔の孔径が小さくなると,噴射ノズルの外周と冷却孔の内周間の間隔を確保し難くなり,噴射されたショットや噴射粒体が冷却孔外に排出され難くなることで冷却孔内にショットや噴射粒体が詰まり易くなることから,冷却孔の孔径に対し,適切なサイズの噴射ノズルの選択が必要となる。   When a cooling hole with a relatively large hole diameter is to be treated, it is easy to secure a gap between the outer periphery of the injection nozzle and the inner periphery of the cooling hole. It becomes difficult to secure the distance between the outer periphery of the nozzle and the inner periphery of the cooling hole, and it becomes difficult for the shot and the jetted particles to be discharged out of the cooling hole, so that the shot and the jetted particles are easily clogged in the cooling hole. Therefore, it is necessary to select a jet nozzle of an appropriate size for the hole diameter of the cooling hole.

下記の表1に,閉塞端を有する冷却孔のうち,特に噴射粒体の噴射が難しくなる孔径8mm以下の冷却孔に使用する噴射ノズルの組合せ例を示す。   Table 1 below shows an example of the combination of injection nozzles used for the cooling holes having a hole diameter of 8 mm or less where the injection particles are difficult to be jetted among the cooling holes having the closed end.

なお,Sn元素を拡散させる拡散処理とショットピーニングとを含む本発明における冷却孔の表面処理の工程例と,各工程における処理条件の一例を下記の表2に示す。   In addition, the process example of the surface treatment of the cooling hole in this invention containing the diffusion process which diffuses Sn element, and shot peening, and an example of the process conditions in each process are shown in following Table 2.

表2に示す例は,放電加工によって冷却孔を形成した金型に対する表面処理の例を示したもので,工程1でSiC砥粒を噴射して,放電加工によって冷却孔の表面に生じた酸化スケールと放電硬化層を除去するサンドブラスト処理を行った後,工程2でショットピーニングを行っている。   The example shown in Table 2 shows an example of the surface treatment to the mold in which the cooling holes are formed by electric discharge machining, and the SiC abrasive is jetted in step 1 and the oxidation generated on the surface of the cooling holes by electric discharge machining Shot peening is performed in step 2 after sandblasting to remove the scale and the discharge-hardened layer.

また,工程2でショットピーニングを行った後,工程3のショットピーニングで冷却孔表面の鉄分除去を行うと共に,面粗さの改善を行うためのショットの噴射を行った後,工程4でSn粒体を噴射して,冷却孔表面にSn元素を拡散させる拡散処理を行っている。   After shot peening is performed in step 2, iron content on the surface of the cooling hole is removed by shot peening in step 3, and shots are sprayed to improve surface roughness. The body is injected and diffusion processing is performed to diffuse the Sn element on the surface of the cooling hole.

1.試験片による評価
以下に,本発明の表面処理方法で処理した試験片に対し,表面状態の評価と耐食性の評価試験を行った結果を示すと共に,本願で採用する投射材の噴射方法に対する評価試験を行った結果を以下に示す。
1. Evaluation by Test Pieces The results of evaluation of surface condition and corrosion resistance evaluation test are shown below for the test pieces treated by the surface treatment method of the present invention, and evaluation test for the shot material injection method adopted in the present application The results of the above are shown below.

〔表面状態の評価試験〕
(1)試験の目的
本願発明の方法で表面処理を行った後の試験片表面の状態を,圧縮残留応力,表面形状,及び成分に基づいて確認する。
[Evaluation test of surface condition]
(1) Purpose of test The condition of the surface of the test piece after surface treatment by the method of the present invention is confirmed based on compressive residual stress, surface shape, and components.

(2)試験方法
SKD61製の4枚の試験片(焼入れ・焼き戻し品:幅25mm×長さ25mm×厚さ5mm,硬さ45HRC)に,それぞれ下記の表3に示す処理を行って得た試料1〜4の表面に対し,cosα法を用いたX線残留応力測定,レーザー顕微鏡及び走査型電子顕微鏡(SEM)に基づく表面形状観察,及び,エネルギー分散型X線分析(EDX)による元素分析を行った。
(2) Test method Four SKD 61 test pieces (quenched and tempered products: width 25 mm x length 25 mm x thickness 5 mm, hardness 45 HRC) were obtained by performing the treatments shown in Table 3 below. For the surface of samples 1 to 4, X-ray residual stress measurement using cos α method, surface shape observation based on laser microscope and scanning electron microscope (SEM), and elemental analysis by energy dispersive X-ray analysis (EDX) Did.

(3)試験結果
(3-1) 残留応力測定結果
上記4種類の試験片に対し,幅方向(X方向)と長さ方向(Y方向)の双方の残留応力を測定した結果を下記の表4に示す。
(3) Test results
(3-1) Result of measurement of residual stress The results of measurement of residual stress in the width direction (X direction) and the length direction (Y direction) of the above four types of test pieces are shown in Table 4 below.

なお,試料2(軟窒化処理品)の残量応力を測定した結果,高い圧縮残留応力が付与されていることは確認されたが,測定値のばらつきが大きく(標準偏差が大きく),得られた数値の正確性についての信頼度が低いことに鑑み,表4において空欄とした。   In addition, as a result of measuring the residual stress of Sample 2 (soft nitrided product), it was confirmed that high compressive residual stress was applied, but the variation of measured values is large (standard deviation is large). In view of the low reliability of the accuracy of the numerical values, Table 4 is left blank.

以上の結果から,本願の方法で処理した試料(試料3,試料4)では,未処理(焼入れ・焼き戻し処理のまま)の試料1の試験片に比較して,より大きな圧縮残留応力を付与できていることが確認された。   From the above results, in the samples treated by the method of the present invention (Samples 3 and 4), a larger compressive residual stress is imparted as compared with the test piece of Sample 1 (untreated (quenched / tempered)). It was confirmed that it was possible.

また,試料1の試験片では,X方向とY方向で応力値が大きく相違するものとなっていたが,本発明の方法で処理した試験片では,X方向とY方向で応力値に殆ど差がなく,本願の方法では試験片表面のいずれの方向に対しても均一に圧縮残留応力を付与できていることが確認された。   Moreover, in the test piece of sample 1, the stress value is largely different in the X direction and the Y direction, but in the test piece treated by the method of the present invention, the stress value almost differs in the X direction and the Y direction. It was confirmed that in the method of the present invention, compressive residual stress could be applied uniformly in any direction on the surface of the test piece.

(3-2) 表面形状
試料1〜4の輪郭曲線を図3に,表面のSEM像を図4〜7にそれぞれ示す。
図3に示した輪郭曲線より,比較例である試料1及び試料2の表面には,割れの起点となり得る深く鋭利な凹部(谷)が多数形成されているのに対し,本願発明の方法で処理した試料3及び試料4の表面は,試料1,2に比較して全体的になだらかな輪郭となっていることが判る。
(3-2) Surface Shape The contour curves of the samples 1 to 4 are shown in FIG. 3 and the SEM images of the surface are shown in FIGS.
According to the method of the present invention, a large number of deep and sharp recesses (valleys) which can be the origin of cracking are formed on the surfaces of sample 1 and sample 2 which are comparative examples, from the contour curve shown in FIG. It can be seen that the surfaces of the treated sample 3 and the sample 4 have a generally smooth contour as compared with the samples 1 and 2.

なお,試料1(未処理品)と,本願の方法で処理した試料4の表面における山頂点の算術平均曲(Spc:ISO 25178)を測定した結果,試料1(未処理品)では1/12477.066mm,試料4(実施例)では1/4529.218mmであり,この結果からも本発明の方法で処理を行った試験片では,凹凸の山頂がつぶれて,表面がなだらかな形状となっていることが確認されている。   In addition, as a result of measuring the arithmetic mean curvature (Spc: ISO 25178) of the peak point in the surface of the sample 1 (untreated product) and the sample 4 processed by the method of this application, it is 1/12477 in the sample 1 (untreated product). In the test piece treated according to the method of the present invention, the peaks of the asperities are crushed and the surface becomes a smooth shape. Has been confirmed.

また,各試料の表面を撮影したSEM像より,比較例である試料1の表面にはツールマークが残っており(図4参照),また,同様に比較例である試料2の表面では,粒状の細かい凹凸の存在が確認されたが(図5参照),本発明の方法で処理した試料3,試料4の表面には,このような粒状の細かい凹凸の存在は確認できず(図6,図7参照),試料1,2に比較して割れの発生し難い形状となっていることが判る。   Also, according to the SEM image of the surface of each sample, tool marks remain on the surface of sample 1 as a comparative example (see FIG. 4), and similarly, on the surface of sample 2 as a comparative example, Although the presence of fine asperities was confirmed (see FIG. 5), the presence of such granular fine asperities could not be confirmed on the surfaces of sample 3 and sample 4 treated by the method of the present invention (FIG. 6, As shown in FIG. 7), it can be seen that the shape is less likely to be cracked than samples 1 and 2.

(3-3) EDX定量分析結果
試料1〜4の表面に対し,エネルギー分散型X線分析(EDX)による元素分析を行った結果を図8〜11に示す。
また,各試料表面のEDX半定量値を下記の表5に示す。
(3-3) EDX quantitative analysis result The result of having performed elemental analysis by energy dispersive X ray analysis (EDX) to the surface of samples 1-4 is shown in Drawings 8-11.
Moreover, the semi-quantitative value of EDX of each sample surface is shown in the following Table 5.

なお,参考のためJIS G 4404 2006 におけるSKD61の化学成分を下記の表6に示す。   The chemical components of SKD 61 in JIS G 4404 2006 are shown in Table 6 below for reference.

図8より,試料1の表面からはC,Fe,Si,Mo,V,Cr,Mnが検出されているが,これらの成分は,表6に示したようにいずれもSKD61の構成成分であると共に,各成分の半定量値(表5参照)も,SKD61の組成と略一致することから,試料1では,素地であるSKD61の成分がそのまま表面の成分として検出されていることが判る。   As shown in FIG. 8, C, Fe, Si, Mo, V, Cr, and Mn are detected from the surface of sample 1, but these components are all components of SKD 61 as shown in Table 6. At the same time, the semi-quantitative values (see Table 5) of the respective components also substantially match the composition of SKD 61, so that it can be seen that in Sample 1, the component of SKD 61 which is the substrate is detected as it is as the component of the surface.

図9より,試料2の表面からは,素地(SKD61)の成分であるC,Fe,Si,Mo,V,Cr,Mnの他,NとOが検出されており,軟窒化によって表面に窒素Nが拡散していることが確認できる。   As shown in FIG. 9, N and O other than C, Fe, Si, Mo, V, Cr, and Mn, which are components of green body (SKD 61), are detected from the surface of sample 2 and nitrogen on the surface by soft nitriding. It can be confirmed that N is diffused.

図10より,試料3の表面からは,素地(SKD61)の成分であるC,Fe,Si,Mo,V,Cr,Mnと,軟窒化により表面に拡散したNの他,Snが検出されており,また,試料2に比較してOの検出量が増加している。   From FIG. 10, C, Fe, Si, Mo, V, Cr, and Mn, which are components of green body (SKD 61), and N diffused to the surface by soft nitriding are detected from the surface of sample 3 and Sn is detected. Also, the detected amount of O is increased compared to the sample 2.

なお,半定量分析による定量の結果,Snを55.1%と多量に含んでいることが確認された。   In addition, as a result of quantification by semi-quantitative analysis, it was confirmed that Sn is contained in a large amount of 55.1%.

これにより,本発明の表面処理方法によって試料3の素地(SKD61)の表面にSn元素が多量に拡散したことが判る。   From this, it can be seen that a large amount of Sn element was diffused to the surface of the substrate (SKD 61) of sample 3 by the surface treatment method of the present invention.

また,Oの増加より,本願の処理を行うことで表面が酸化したものと考えられる。   Moreover, it is thought that the surface was oxidized by performing the process of this application from the increase of O.

図11より,試料4の表面からは素地(SKD61)の成分であるC,Fe,Si,Mo,V,Cr,Mnと,軟窒化により表面に拡散したNの他,Snが検出されており,また,試料2に比較してOの検出量が増加している。   From FIG. 11, from the surface of sample 4, C, Fe, Si, Mo, V, Cr, and Mn, which are components of base (SKD 61), and N diffused to the surface by soft nitriding, as well as Sn are detected. Also, the detected amount of O is increased compared to the sample 2.

なお,半定量分析による定量の結果では,Snを28.5%と多量に含んでいることが確認された。   In addition, as a result of quantification by semi-quantitative analysis, it was confirmed that Sn is contained as much as 28.5%.

これにより,本発明の表面処理方法によって試料4の表面にSn元素が多量に拡散したことが判る。   From this, it can be understood that a large amount of Sn element was diffused to the surface of the sample 4 by the surface treatment method of the present invention.

また,Oの増加より,本願の処理を行うことで表面が酸化したものと考えられる。   Moreover, it is thought that the surface was oxidized by performing the process of this application from the increase of O.

(3-4) FE−EPMAによる元素分布の計測
前掲の試料2及び試料4に対し,電解放出型電子プローブマイクロアナライザー(Field Emission - Electron Probe Micro Analyzer; FE-EPMA)による面分析を行い,元素分布を計測した。
(3-4) Measurement of element distribution by FE-EPMA The surface analysis of sample 2 and sample 4 mentioned above was carried out by field emission electron probe micro analyzer (FE-EPMA), and the element was analyzed. The distribution was measured.

試料2及び試料4を厚み方向にワイヤーによって切断し,切断面を導電性樹脂に埋め込んで鏡面研磨した後,鏡面研磨後の断面の表面層付近の元素分布を,FE−EPMAにてマッピングした。   Samples 2 and 4 were cut with a wire in the thickness direction and the cut surface was embedded in a conductive resin and mirror-polished. Then, the element distribution near the surface layer of the cross-section after mirror-polishing was mapped by FE-EPMA.

計測の結果,試料2(比較例)の試験片において,内部Fe部分に部分的にFeが薄く,Crが濃い箇所が点状に存在しており,この部分に合金成分であるCr炭化物が点在しているものと考えられる。   As a result of measurement, in the test piece of sample 2 (comparative example), Fe is partially thin in the internal Fe portion, and a place where Cr is thick is present in a point shape, and Cr carbide which is an alloy component is present in this point It is thought that it exists.

また,試料2の表層部には,軟窒化処理に伴う化合物層の影響と見られるNの濃化が確認されると共に,Oが部分的に濃化していることが確認された。   In addition, in the surface layer portion of sample 2, it was confirmed that the concentration of N which is considered to be the influence of the compound layer accompanying the soft nitriding treatment was confirmed, and that the O was partially concentrated.

なお,Sn粒子の噴射を行っていない試料2の試験片では,Sn元素は検出されていない。   In addition, in the test piece of the sample 2 which is not injecting Sn particle | grains, Sn element is not detected.

これに対し試料4(実施例)の試験片の内部Fe部分でも,部分的にFeが薄く,Crが濃い箇所が点状に存在している点は試料2と同様であり,本発明の処理によっても内部の構造は変化することなく維持されていることが判る。   On the other hand, even in the internal Fe portion of the test piece of sample 4 (example), the point is that Fe is partially thin and the place where Cr is thick is present in the form of dots, similar to sample 2; Also shows that the internal structure is maintained without change.

また,試料4の表層部では,試料2とは異なりNの濃化が観察できない一方,Snが濃化している箇所の存在が確認されており,本発明の方法で処理することにより窒素化合物層が除去されると共に,Sn粒子の噴射によって,試料の表面に対しSn元素が拡散されていることが確認された。   Also, unlike the sample 2, in the surface layer part of the sample 4, while the concentration of N can not be observed, the existence of the place where Sn is concentrated is confirmed, and the nitrogen compound layer is treated by the method of the present invention. It was confirmed that the Sn element was diffused to the surface of the sample by the injection of Sn particles while

〔耐食性の評価試験〕
(1)試験の目的
本発明の方法で表面処理を行った試験片が耐食性を有すること(特に,Sn元素の拡散により耐食性が付与されること),及び摩擦摩耗試験によっても耐食性が失われないことを確認する。
[Evaluation test of corrosion resistance]
(1) Purpose of test The test piece surface-treated by the method of the present invention has corrosion resistance (in particular, the corrosion resistance is imparted by diffusion of Sn element), and the corrosion resistance is not lost even by the frictional wear test. Make sure.

(2)試験方法
SKD61製の6枚の試験片(焼入れ・焼き戻し品;幅25mm×長さ25mm×厚さ5mm,硬さ45HRC)のそれぞれに対し,下記の表7に示す条件で表面処理を行った後,ボール・オン・ディスク型摩耗機にかけて表面を摩擦摩耗した。
(2) Test method Surface treatment of each of six test pieces (hardened and tempered product; width 25 mm × length 25 mm × thickness 5 mm, hardness 45 HRC) made of SKD 61 under the conditions shown in Table 7 below. The surface was friction-abraded by a ball-on-disk type abrasion machine.

摩擦摩耗後の各試験片を洗浄した後,工業用水(約25℃)に240時間浸漬した後の腐食(赤錆)の発生状態を目視にて観察した。   After washing each test piece after frictional wear, the occurrence of corrosion (red rust) after immersion in industrial water (about 25 ° C.) for 240 hours was visually observed.

試験片表面の摩擦摩耗試験は,A5052製のボール(直径10mm),を図12に示すように試験片の表面に荷重9.8Nで押し付け,摩擦半径6mm,回転速度100min-1で,500秒間摺動させた。 Friction abrasion test specimen surface, A5052 manufactured balls (diameter 10 mm), the pressing under a load 9.8N on the surface of the test piece as shown in FIG. 12, the friction radius 6 mm, at a rotational speed 100 min -1, 500 sec I made it slide.

工業用水に対する各試料の浸漬は,錆が発生し易い環境とするために約50時間毎に水を入れ替えて溶存酸素の補充を行った。   In the immersion of each sample in industrial water, the water was replaced about every 50 hours to replenish the dissolved oxygen in order to make the environment prone to rusting.

(3)試験結果
工業用水に浸漬する前後の各試料の表面状態を図13に,この表面状態に基づく耐食性の評価結果を,下記の表8に,示す。
(3) Test Results The surface condition of each sample before and after immersion in industrial water is shown in FIG. 13, and the evaluation results of corrosion resistance based on this surface condition are shown in Table 8 below.

以上の結果から,本発明の表面処理方法で表面処理を行うことで,高い耐食性が得られることが確認された。   From the above results, it was confirmed that high surface corrosion resistance can be obtained by performing surface treatment with the surface treatment method of the present invention.

なお,軟窒化処理によって高い圧縮残留応力が付与されている試料6において顕著な錆の発生が確認されていることから,圧縮残留応力を付与したのみでは耐食性が得られていないことが判る。   In addition, since generation | occurrence | production of remarkable rust is confirmed in the sample 6 to which high compressive residual stress is provided by the soft nitriding process, it turns out that corrosion resistance is not obtained only by giving compressive residual stress.

従って,本発明の表面方法で処理された試料9及び10における耐食性は,軟窒化(試料10)やショットピーニング(試料9,10)による圧縮残留応力の付与によって得られたものではなく,Sn元素の拡散によって冷却孔表面の材料特性が変化したことにより得られたものであることが合理的に推察される。   Therefore, the corrosion resistance in samples 9 and 10 treated by the surface method of the present invention is not obtained by application of compressive residual stress by soft nitriding (sample 10) or shot peening (samples 9, 10), and the Sn element It is reasonably speculated that this is obtained by changing the material properties of the cooling hole surface by the diffusion of

なお,軟窒化処理を行った後の試験片の表面にマグネタイト(Fe34)の表面改質層を形成した試料8の試験片においても,本願の方法で表面処理を行った試料9及び試料10の試験片と同様,摩擦摩耗試験後においても摩擦面の耐食性が失われていなかった。 In addition, even in the test piece of the sample 8 in which the surface modification layer of magnetite (Fe 3 O 4 ) is formed on the surface of the test piece after the soft nitriding treatment, the sample 9 which has been surface treated by the method of the present application Similar to the specimen of sample 10, the corrosion resistance of the friction surface was not lost after the friction and wear test.

しかし,同じくマグネタイト(Fe34)の表面改質層を形成したものであっても,未処理(焼入れ・焼き戻しのまま)の表面に直接,マグネタイト(Fe34)の表面改質層を形成した試料7では,摩擦試験でボールと接触した部分においてマグネタイト層が摩耗して耐食性が失われ,大量の赤錆が発生しており,マグネタイト(Fe34)の表面改質層は,高い耐食性を有するものの,軟窒化等の表面強化処理を行っていないそのままの状態では摩擦や摩耗に弱いものであることが確認された。 However, even also obtained by forming a surface modification layer of magnetite (Fe 3 O 4), directly to the surface of the untreated (left-hardened), surface modification of magnetite (Fe 3 O 4) In sample 7 where a layer is formed, the magnetite layer wears and loses corrosion resistance in the portion in contact with the ball in the friction test, and a large amount of red rust is generated, and the surface modification layer of magnetite (Fe 3 O 4 ) is Although it has high corrosion resistance, it has been confirmed that it is vulnerable to friction and wear when it is not subjected to surface strengthening treatment such as soft nitriding.

これに対し,本発明の表面処理方法では,軟窒化処理後の表面に対し本発明の表面処理を適用した場合(試料10)の他,未処理(焼入れ・焼き戻しのまま)の表面に直接,本発明の表面処理を行った場合(試料9)のいずれにおいても,摩擦試験でボールと接触した部分を含め耐腐食性が失われておらず,下地処理として窒化(軟窒化)を行っていない場合であっても摩擦に強い表面処理が行えていることが確認できた。   On the other hand, in the surface treatment method of the present invention, in addition to the case where the surface treatment of the present invention is applied to the surface after soft nitriding treatment (Sample 10), directly on the surface of untreated (as-quenched and tempered) In any of the surface treatments of the present invention (Sample 9), the corrosion resistance including the portion in contact with the ball was not lost in the friction test, and nitriding (soft nitriding) was performed as the surface treatment. It was confirmed that the surface treatment resistant to friction was performed even when there was no case.

このような高い耐摩耗性が得られた理由は不明であるが,図10及び図11のEDX定性分析結果に表れているように,本願の方法で表面処理を行った試料の表面では,酸素(O)の検出量が増加していることから,Sn(硬度5HV)が酸化することにより高硬度の酸化錫(最大で硬度1650HV)となることで高い耐摩耗性を発揮したことが一因ではないかと推察される。   The reason why such high wear resistance is obtained is unclear, but as shown in the EDX qualitative analysis results of FIG. 10 and FIG. 11, oxygen is observed on the surface of the sample subjected to the surface treatment by the method of the present invention. As the detected amount of (O) increases, one of the causes is that it exhibits high wear resistance by becoming tin oxide with high hardness (maximum hardness 1650 HV) by oxidizing Sn (hardness 5 HV) It is guessed that it is not.

〔投射材の噴射方法に対する評価試験〕
(1)試験の目的
本発明で採用するショット及び/又は噴射粒体の噴射方法により,閉塞端を有する比較的細径の冷却孔に対しても処理が行えることを確認する。
[Evaluation test for injection method of projectiles]
(1) Purpose of test It is confirmed that the processing can be performed even for a relatively small diameter cooling hole having a closed end by the shot and / or spray particle injection method adopted in the present invention.

(2)試験方法
図14に示すように,断面半円状の溝が形成された2枚の試験片(SKD61)を,相互の溝が重なるように重ね合わせて,一端を閉塞端とする孔を形成し,この孔に対し本発明の表面処理を行った。
(2) Test method As shown in FIG. 14, a hole in which two test pieces (SKD 61) in which grooves having a semicircular cross-section are formed are overlapped so that the grooves overlap each other, and one end is a closed end. These holes were subjected to the surface treatment of the present invention.

各試験片として溝形成面を高温の水蒸気に暴露することでマグネタイト(Fe34)層を形成したもの(特許文献5の処理に対応)を使用し,この試験片の溝形成面を重ね合わせることにより,直径4mm,長さ290mmの孔を形成した。 As each test piece, one in which a magnetite (Fe 3 O 4 ) layer is formed by exposing the groove formation surface to high temperature water vapor (corresponding to the treatment of Patent Document 5) is used, and the groove formation surface of this test piece is overlapped. By combining, a hole 4 mm in diameter and 290 mm in length was formed.

この孔内に,外径2.0mm,内径1.4mm,長さ350mmの噴射ノズルを挿入して,SiCのショット(53〜45μm)を,噴射圧力0.7MPaで噴射した後,Snの粒体(50〜20μm)を,噴射圧力0.7MPaで噴射した。   Insert an injection nozzle with an outer diameter of 2.0 mm, an inner diameter of 1.4 mm, and a length of 350 mm into this hole, and after injecting a shot of SiC (53-45 μm) at an injection pressure of 0.7 MPa The body (50-20 μm) was injected at an injection pressure of 0.7 MPa.

ショット及び噴射粒体の噴射は,噴射ノズルの先端が閉塞端に対し数mmの間隔となるまで挿入し,この位置で噴射を開始すると共に,噴射ノズルを孔より徐々に引き抜きながら,噴射ノズルの先端が孔より脱するまで噴射を継続した。   Shots and injections of injection particles are inserted until the tip of the injection nozzle is several mm apart from the closed end, and injection is started at this position, and while the injection nozzle is gradually drawn out of the hole, The injection was continued until the tip came out of the hole.

上記の表面処理を行った後,重ね合わせていた試験片を分離し,孔(溝)の表面のうち,閉塞端付近の表面とその他の部分の表面(孔の胴の部分)における残留応力(いずれも孔の長手方向の残留応力)を,cosα法を用いたX線残留応力測定にて測定した。   After performing the above surface treatment, the overlapped test pieces are separated, and the residual stress on the surface of the hole (groove) near the closed end and the surface of the other portion (portion of the hole cylinder) ( The residual stress in the longitudinal direction of the hole was measured by X-ray residual stress measurement using the cos α method.

(3)試験結果
上記方法で測定した孔表面の残留応力値は,本発明の表面処理を行う前の状態では閉塞端付近で−25MPa,その他の部分で+450MPaであったものが,本発明の表面処理を行った後では,閉塞端付近で−585MPa,その他の部分で−831MPaとなっていた。
(3) Test results The residual stress value of the hole surface measured by the above method was -25MPa near the closed end before the surface treatment of the present invention, and + 450MPa at the other parts. After surface treatment, it was -585MPa near the closed end and -831MPa at other parts.

細径で,かつ閉塞端を有する冷却孔内に挿入した噴射ノズルよりショットや噴射粒体を噴射する場合,噴射ノズルの外周と冷却孔の内壁間の隙間が狭く,噴射したショットや噴射粒体で冷却孔が詰まってしまうために,冷却孔の表面を処理することが困難であることは既に述べた通りである。   When shot or jetted particles are jetted from a jet nozzle inserted in a cooling hole having a small diameter and a closed end, the gap between the outer periphery of the jet nozzle and the inner wall of the cooling hole is narrow, and the jetted shot or jetted granules As described above, it is difficult to treat the surface of the cooling hole because the cooling hole is clogged.

しかし,本願の表面処理方法で提案するように,噴射ノズルを引き抜きながらショットや噴射粒体を噴射する処理では,このような目詰まりを生じさせることなく噴射を行うことができ,かつ,孔の表面に対し,高い圧縮残留応力を付与しうるエネルギーを伴ってショットや噴射粒体が衝突していることが確認された。   However, as proposed in the surface treatment method of the present application, in the process of injecting shots and injection particles while withdrawing the injection nozzle, the injection can be performed without causing such clogging, and It was confirmed that the shot and the jet particles collided with the energy that could give high compressive residual stress to the surface.

また,処理後の表面に対するSn元素の拡散についての確認を行った結果,試料3,4に対する試験結果(図10,11参照)と同様,冷却孔の表面にSn元素が拡散していることが確認された。   Moreover, as a result of confirming the diffusion of Sn element to the surface after the treatment, it is found that the Sn element is diffused to the surface of the cooling hole as in the test results for samples 3 and 4 (see FIGS. 10 and 11) confirmed.

従って,本願の表面処理方法で採用する噴射方法は,閉塞端を有する冷却孔の表面に対しショットピーニングや噴射粒体を噴射して行うSn元素の拡散処理を行う上で有効な噴射方法であると言える。   Therefore, the injection method employed in the surface treatment method of the present application is an effective injection method for performing the diffusion treatment of Sn element performed by shot peening or injection particles being jetted to the surface of the cooling hole having the closed end. It can be said.

2.金型による評価
(1)試験の目的
金型の冷却孔に対して本発明の処理方法を適用することで,耐応力腐食割れ性が付与されることを確認する。
2. Evaluation by mold (1) Purpose of test It is confirmed that stress corrosion cracking resistance is imparted by applying the processing method of the present invention to the cooling hole of the mold.

(2)試験方法
本発明の方法で表面処理を行った金型(SKD61)の冷却孔と,未処理の冷却孔にそれぞれ冷却水を導入した状態で金型の加熱と冷却を繰り返して行った後,冷却孔内部の表面状態を目視により観察した。
(2) Test method Heating and cooling of the mold were repeated while cooling water was introduced into the cooling holes of the mold (SKD 61) surface-treated by the method of the present invention and the untreated cooling holes. After that, the surface condition inside the cooling hole was visually observed.

(3)試験結果
観察の結果,未処理の冷却孔の表面では,2万サイクルの加熱と冷却の繰り返しにより冷却孔の表面全体に錆が発生すると共に,クラックが発生していることが確認された。
(3) Test results As a result of observation, it is confirmed that, on the surface of the untreated cooling hole, rusting is generated on the entire surface of the cooling hole and the crack is generated due to repeated heating and cooling of 20,000 cycles. The

これに対し,本発明の方法で表面処理を行った冷却孔の表面では,3万サイクル加熱と冷却を繰り返した後においても極僅かな錆の発生が確認されたのみで,冷却孔の表面の殆どは,錆のない,きれいな状態に保たれていた。   On the other hand, on the surface of the cooling hole subjected to the surface treatment according to the method of the present invention, the generation of a very slight rust was confirmed even after repeated 30,000 cycles of heating and cooling. Most of them were kept clean without rust.

また,本発明の方法で処理を行った冷却孔の表面には,クラックの発生も確認することはできなかった。   Further, it was not possible to confirm the occurrence of cracks on the surface of the cooling hole treated by the method of the present invention.

以上の結果から,本発明の表面処理方法には,金型の冷却孔表面に耐応力腐食割れ性を付与する効果があることが確認された。

From the above results, it was confirmed that the surface treatment method of the present invention has the effect of imparting stress corrosion cracking resistance to the surface of the cooling hole of the mold.

Claims (11)

金型に形成された冷却孔の少なくとも表面にSn元素を拡散させる拡散処理を行うことを特徴とする金型冷却孔の表面処理方法。   1. A method of surface treatment of a mold cooling hole, comprising performing a diffusion treatment for diffusing Sn element on at least the surface of a cooling hole formed in the mold. 前記拡散処理を,平均粒子径10〜100μmの錫及び/又は錫合金の粒子から成る噴射粒体を噴射圧力0.4〜0.8MPaの圧縮気体と共に噴射して前記冷却孔の表面に衝突させることにより,前記噴射粒体中のSn元素を前記冷却孔の表面に拡散させることにより行うことを特徴とする請求項1記載の金型冷却孔の表面処理方法。   In the diffusion process, jetted particles consisting of tin and / or tin alloy particles having an average particle diameter of 10 to 100 μm are jetted together with compressed gas having a jet pressure of 0.4 to 0.8 MPa to collide with the surface of the cooling hole The surface treatment method for mold cooling holes according to claim 1, wherein the method is performed by diffusing Sn elements in the blast particles to the surface of the cooling holes. 一端を閉塞端とする冷却孔の表面を処理対象とすると共に,
前記拡散処理における前記噴射粒体の噴射を,該冷却孔よりも小径の噴射ノズルを該噴射ノズルの先端を冷却孔の前記閉塞端付近まで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら前記噴射粒体の噴射を継続することを特徴とする請求項2記載の金型冷却孔の表面処理方法。
Processing the surface of the cooling hole whose end is a closed end,
The injection of the injection particles in the diffusion process is started with the injection nozzle having a diameter smaller than that of the cooling hole inserted in the tip of the injection nozzle close to the closed end of the cooling hole, and the injection nozzle is gradually drawn out 3. The method according to claim 2, wherein the injection of the injection particles is continued.
前記冷却孔の表面にショットピーニングを行うことを特徴とする請求項1〜3いずれか1項記載の金型冷却孔の表面処理方法。   The method for surface treatment of a mold cooling hole according to any one of claims 1 to 3, wherein shot peening is performed on the surface of the cooling hole. 前記ショットピーニングを,平均粒子径20〜149μmのショットを噴射圧力0.3〜0.8MPaの圧縮気体と共に噴射して行うことを特徴とする請求項4記載の金型冷却孔の表面処理方法。   5. The method according to claim 4, wherein the shot peening is performed by injecting a shot having an average particle diameter of 20 to 149 [mu] m with a compressed gas having an injection pressure of 0.3 to 0.8 MPa. 一端を閉塞端とする冷却孔の表面を処理対象とすると共に,
前記ショットピーニングにおける前記ショットの噴射を,該冷却孔よりも小径の噴射ノズルを該噴射ノズルの先端を冷却孔の前記閉塞端付近まで挿入した状態で開始し,前記噴射ノズルを徐々に引き抜きながら前記ショットの噴射を継続することを特徴とする請求項5記載の金型冷却孔の表面処理方法。
Processing the surface of the cooling hole whose end is a closed end,
The injection of the shot in the shot peening starts with the injection nozzle having a diameter smaller than that of the cooling hole inserted into the vicinity of the closed end of the cooling hole with the tip of the injection nozzle being inserted. 6. The method according to claim 5, wherein the injection of the shot is continued.
前記冷却孔内で前記ノズルの先端を揺動させることを特徴とする請求項3又は6記載の金型冷却孔の表面処理方法。   The surface treatment method of a mold cooling hole according to claim 3 or 6, wherein the tip of the nozzle is swung within the cooling hole. 窒化又は軟窒化処理がされた前記冷却孔の表面を処理対象とする請求項1〜7いずれか1項記載の金型冷却孔の表面処理方法。   The surface treatment method of a mold cooling hole according to any one of claims 1 to 7, wherein a surface of the cooling hole which has been nitrided or soft nitrided is treated. 冷却用の冷媒を導入する冷却孔が形成された金型において,
前記冷却孔の表面に,Sn元素が拡散された表面改質層が形成されていることを特徴とする金型。
In a mold in which a cooling hole for introducing a refrigerant for cooling is formed,
A surface-modified layer in which Sn is diffused is formed on the surface of the cooling hole.
前記表面改質層に圧縮残留応力が付与されていることを特徴とする請求項9記載の金型。   The mold according to claim 9, wherein compressive residual stress is applied to the surface modified layer. 前記冷却孔が表面に窒化層又は軟窒化層を備え,前記表面改質層が,前記窒化層又は軟窒化層に形成されていることを特徴とする請求項9又は10記載の金型。

11. The mold according to claim 9, wherein the cooling hole has a nitrided layer or a soft nitrided layer on the surface, and the surface modified layer is formed in the nitrided layer or the soft nitrided layer.

JP2018079846A 2017-04-19 2018-04-18 Mold cooling hole surface treatment method and mold Active JP6644334B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017082818 2017-04-19
JP2017082818 2017-04-19

Publications (2)

Publication Number Publication Date
JP2018176282A true JP2018176282A (en) 2018-11-15
JP6644334B2 JP6644334B2 (en) 2020-02-12

Family

ID=64282015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018079846A Active JP6644334B2 (en) 2017-04-19 2018-04-18 Mold cooling hole surface treatment method and mold

Country Status (1)

Country Link
JP (1) JP6644334B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016894A (en) * 2019-07-24 2021-02-15 Rtm 株式会社 Surface treatment method for cooling hole of mold
JP7198316B1 (en) 2021-07-27 2022-12-28 パンチ工業株式会社 Die casting mold parts and method for manufacturing die casting mold parts

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158974A (en) * 1999-12-03 2001-06-12 Fuji Seisakusho:Kk Corrosion prevention method
JP2002085981A (en) * 2000-09-14 2002-03-26 Fuji Kihan:Kk Oxidized metal coating film having oxygen deficient inclination structure
JP2008085981A (en) * 2006-08-31 2008-04-10 Ntt Docomo Inc Irreversible circuit element
JP2009072798A (en) * 2007-09-19 2009-04-09 Rtm 株式会社 Die
JP2009270176A (en) * 2008-05-09 2009-11-19 Fuji Kihan:Kk Method for forming surface-strengthening film and surface-strengthened product
WO2013099411A1 (en) * 2011-12-26 2013-07-04 新東工業株式会社 Shot processing method and shot processing device
WO2013175660A1 (en) * 2012-05-24 2013-11-28 新東工業株式会社 Shot peening method
JP2015016489A (en) * 2013-07-11 2015-01-29 大同特殊鋼株式会社 Mold crack generation prevention method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158974A (en) * 1999-12-03 2001-06-12 Fuji Seisakusho:Kk Corrosion prevention method
JP2002085981A (en) * 2000-09-14 2002-03-26 Fuji Kihan:Kk Oxidized metal coating film having oxygen deficient inclination structure
JP2008085981A (en) * 2006-08-31 2008-04-10 Ntt Docomo Inc Irreversible circuit element
JP2009072798A (en) * 2007-09-19 2009-04-09 Rtm 株式会社 Die
JP2009270176A (en) * 2008-05-09 2009-11-19 Fuji Kihan:Kk Method for forming surface-strengthening film and surface-strengthened product
WO2013099411A1 (en) * 2011-12-26 2013-07-04 新東工業株式会社 Shot processing method and shot processing device
WO2013175660A1 (en) * 2012-05-24 2013-11-28 新東工業株式会社 Shot peening method
JP2015016489A (en) * 2013-07-11 2015-01-29 大同特殊鋼株式会社 Mold crack generation prevention method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016894A (en) * 2019-07-24 2021-02-15 Rtm 株式会社 Surface treatment method for cooling hole of mold
JP7198316B1 (en) 2021-07-27 2022-12-28 パンチ工業株式会社 Die casting mold parts and method for manufacturing die casting mold parts
JP2023018566A (en) * 2021-07-27 2023-02-08 パンチ工業株式会社 Die-cast metal mold part and method of making die-cast metal mold part

Also Published As

Publication number Publication date
JP6644334B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
US8471168B2 (en) Methods of treating metal articles and articles made therefrom
EP2484493B1 (en) Shot peening treatment method for steel product
JP2008195994A (en) Surface modification method for titanium product, and surface modified titanium product
WO2009107288A1 (en) Material for projecting material for shot-peening, finished wire, production process, and projecting material for shot-peening
JPH1029160A (en) Highly hard metal product shot peening method and highly hard metal product
JP6644334B2 (en) Mold cooling hole surface treatment method and mold
JP2009072798A (en) Die
JP6649991B2 (en) Surface treatment method for mold molding surface
US8332998B2 (en) Shot-peening process
JP5225596B2 (en) Method for strengthening alloy steel for hot mold and alloy steel for hot mold formed by suppressing generation of thermal fatigue crack by the method
JP2007191755A (en) Method for improving fatigue strength of metallic material
Chang et al. Enhancement of erosion resistance on AISI H13 tool steel by oxynitriding treatment
US20220403901A1 (en) Method to produce cast iron brake discs with high corrosion and wear resistance
KR20180016453A (en) Method for producing tool
JP6416735B2 (en) Nitride component manufacturing method and nitride component
JPH10100069A (en) Shot peening method and treated article
CN102226290B (en) Method for densifying electroplating hard chromium layer
JP6638288B2 (en) Die casting mold
Tomlinson et al. The effect of shot peening on the cavitation erosion of pure iron and austenitic stainless steel in distilled and 1% salt waters
JP6818207B1 (en) Surface treatment method for cooling holes in molds
JPH08267400A (en) Method for treating material surface with different layer by water jet
JP2002069565A (en) High strength steel having excellent delayed fracture resistance and its production method
JP6605322B2 (en) Tool surface modification method
JPH04269166A (en) Reinforcing method for cemented part
KARUNATHILAKA et al. Effect of Mechanical Surface Treatment and Post-Treatment Polishing on Tensile Strength and Fatigue Life of High-Speed Tool Steel.

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191220

R150 Certificate of patent or registration of utility model

Ref document number: 6644334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350