JP6641592B2 - 繊維強化プラスチックの製造方法 - Google Patents

繊維強化プラスチックの製造方法 Download PDF

Info

Publication number
JP6641592B2
JP6641592B2 JP2015252417A JP2015252417A JP6641592B2 JP 6641592 B2 JP6641592 B2 JP 6641592B2 JP 2015252417 A JP2015252417 A JP 2015252417A JP 2015252417 A JP2015252417 A JP 2015252417A JP 6641592 B2 JP6641592 B2 JP 6641592B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
lower mold
base resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015252417A
Other languages
English (en)
Other versions
JP2017114010A (ja
Inventor
紀行 馬場
紀行 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015252417A priority Critical patent/JP6641592B2/ja
Publication of JP2017114010A publication Critical patent/JP2017114010A/ja
Application granted granted Critical
Publication of JP6641592B2 publication Critical patent/JP6641592B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、熱可塑性のベース樹脂が連続長繊維の強化繊維束層に含浸されてなる繊維強化プラスチックの製造方法に関する。
近年、連続長繊維の強化繊維束層に含浸されてなる繊維強化プラスチックの自動車部品や工作機械部品等への適用が検討されている。例えば炭素繊維層を含有する繊維強化プラスチックとして、熱硬化性樹脂を使用したいわゆるCFRTS材(Carbon Fiber Reinforced Thermosets)に比べて加工性や経済性に優れた、熱可塑性樹脂を用いたCFRTP材(Carbon Fiber Reinforced Thermoplastics)が普及しつつある。
例えば、特許文献1は、炭素繊維をテンション調整用ロールで張った状態でクロスヘッド金型内に連続的に送り、当該繊維を熱可塑性樹脂からなるマトリックス樹脂で連続的に被覆することによって繊維強化プラスチック製テープを製造することを開示している。
特開2013−104056号公報
熱可塑性樹脂は、熱硬化性樹脂に比べて量産性やリサイクル性に優れる反面、溶融粘度が高く強化繊維束層に含浸することが難しい。そのため、繊維体積含有率(Vf:Volume fraction of fiber)が低く、一般的に強度・剛性が劣る傾向にある。そこで、強化繊維束層に十分に含浸させるために低分子量のベース樹脂が使用されることが多い。
しかしながら、低分子量の樹脂では機械的強度の向上に限界がある。一方、機械的強度の向上を優先して高分子量の樹脂を使用すると、従来の手法では強化繊維束層に良好に含浸できず、内部に未含浸領域やボイドが発生して物性低下の要因となる。従来の手法の一例として、例えば、特許文献1に記載のように、繊維強化プラスチック製テープの積層物を1MPa程度の圧力で押圧する手法があるが、この程度の圧力では、高分子量の樹脂を十分に含浸できるとは言えない。
そこで、高加圧で高分子量の樹脂を含浸させることが考えられるが、背反として、加圧時に高粘度の樹脂が流動し、強化繊維束のうねりが発生するおそれがある。
本発明の目的は、連続長繊維のうねりの発生を抑制しつつ、高分子量の樹脂を高い繊維体積含有率(高Vf)で強化繊維束層に含浸させることができる繊維強化プラスチックの製造方法を提供することである。
本発明の繊維強化プラスチック(30)の製造方法は、20000以上の数平均分子量Mnを有する熱可塑性のベース樹脂(2)が連続長繊維(25)の強化繊維束層(3)に含浸されてなる繊維強化プラスチックの製造方法であって、前記強化繊維束層および前記ベース樹脂を下型(6)の底面(14)上に積層配置する工程と、前記強化繊維束層および前記ベース樹脂を前記下型に対応する上型(5)で圧縮することによって、過剰な前記ベース樹脂(22)を前記強化繊維束層に対して垂直方向に前記下型から排出する工程とを含む(請求項1)。
本発明の繊維強化プラスチックの製造方法では、前記下型は、前記底面に垂直な壁部(15)を有し、前記上型を前記下型にインロー嵌合することによって、前記過剰なベース樹脂を前記壁部に沿って前記下型から排出してもよい(請求項2)。
本発明の繊維強化プラスチックの製造方法では、前記下型の壁部には、前記底面に垂直な溝部(17)が選択的に形成されていてもよい(請求項3)。
本発明の繊維強化プラスチックの製造方法では、前記上型として、前記下型にインロー嵌合したときに前記壁部の全周にわたって30μm〜100μmのクリアランス(23)を形成できる上型を使用してもよい(請求項4)。
本発明の繊維強化プラスチックの製造方法では、JIS K 7210に準拠して測定される前記ベース樹脂のメルトフローレート(MFR)が10g/10min未満であり、このベース樹脂の加圧時のメルトフローレート(MFR)が100g/10min以上となる条件で、前記強化繊維束層および前記ベース樹脂を前記上型で加圧してもよい(請求項5)。
なお、上記において、括弧内の数字等は、後述する実施形態における対応構成要素の参照符号を表すものであるが、これらの参照符号により特許請求の範囲を限定する趣旨ではない。
この方法によれば、圧縮時に過剰なベース樹脂が強化繊維束層の面内から水平方向に流れ出るが、その流れ出る樹脂の下型からの排出方向を強化繊維束層に対して垂直方向にすることによって、強化繊維束層の面内における樹脂の流れを抑制することができる。そのため、20000以上の高い分子量のベース樹脂を高い圧力で含浸させても、強化繊維束層の各連続長繊維のうねりの発生を抑制することができる。したがって、上型による圧縮時の温度および圧力を調節して圧縮時のベース樹脂の流動性を適切に制御することによって、高分子量の樹脂を高い繊維体積含有率(高Vf)で強化繊維束層に含浸させることができる。
図1A〜図1Cは、本発明の一実施形態に係る繊維強化プラスチックの製造方法を説明するための図である。 図2は、前記製造方法に使用される上型の模式的な斜視図である。 図3は、前記製造方法に使用される下型の模式的な斜視図である。 図4は、溝部の形成位置を説明するための模式的な図である。 図5は、上型と下型との間のクリアランスの形状を説明するための模式的な図である。 図6は、上型による圧縮時の圧力と溶融樹脂のMFRとの関係を示すグラフである。 図7は、繊維強化プラスチックの曲げ強さを樹脂の種類および圧縮条件ごとに示す図である。
以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
図1A〜図1Cは、本発明の一実施形態に係る繊維強化プラスチック30の製造方法を説明するための図である。図2は、その製造方法に使用される上型5の模式的な斜視図である。図3は、その製造方法に使用される下型6の模式的な斜視図である。
繊維強化プラスチック30を製造するには、まず、図1Aに示すように、プレス成形機(図示せず)の金型1に、本発明のベース樹脂の一例としての樹脂シート2および本発明の強化繊維束層の一例としての連続長繊維シート3を用いて積層体4が設置される。
樹脂シート2の原料としては、20000以上の数平均分子量Mnを有する熱可塑性樹脂が使用され、例えば、当該数平均分子量Mnを有するポリアミド樹脂が挙げられる。より具体的には、PA6、PA66、PA12、PA612、PA610、PA11等の脂肪族ポリアミド、PA6T、PA9T、PPA等の芳香族ポリアミド等のポリアミド系樹脂が挙げられる。また、樹脂シート2の原料の圧縮前のメルトフローレート(MFR)は、10g/10min未満(例えば2.0g/10min〜8.0g/10min)である。
連続長繊維シート3を構成する連続長繊維としては、例えば、炭素繊維、ガラス繊維、アラミド繊維等が挙げられる。また、連続長繊維の形態としては、連続長繊維を経糸(たていと)と緯糸(よこいと)に交互に配向(織る)させたクロス材であってもよいし、連続長繊維を一方向に配向させたUD(Uni Direction)材であってもよい。また、クロス材の織り方としては、平織、綾織、朱子織、からみ織、模紗織、斜紋織等、一般的に知られている織り方が挙げられるが、樹脂を含浸できるものであればこれらに限られない。これらのうち、好ましくは、炭素繊維が使用され、より好ましくは、炭素繊維のUD材(つまり、炭素繊維UD)が使用される。
ここで、図2および図3を参照して、金型1の構造を詳細に説明する。金型1は、上型5および下型6を含む。
上型5は、図2に示すように、下型6との対向面7に選択的に突出した凸部8を有している。凸部8は、この実施形態では、直方体形状に形成されており、頂面9および頂面9を取り囲む壁部10を有している。凸部8の各部の寸法は、例えば、幅W1=75mm程度、長さL1=155mm程度および高さH1=10mm程度である。また、対向面7において、凸部8の周囲にはガイドピンブッシュ11が形成されている。例えば、凸部8の各角部に一つずつ対応するように、合計4つのガイドピンブッシュ11が形成されている。
下型6は、図3に示すように、上型5との対向面12に選択的に窪んだ凹部13を有している。凹部13は、凸部8に対応する形状に形成されており、この実施形態では、直方体形状に形成されている。凹部13は、底面14および底面14を取り囲む壁部15を有している。底面14および壁部15は、上型5および下型6を互いに嵌合したときに、それぞれ、上型5の頂面9および壁部10に対向する面である。凹部13の各部の寸法は、凸部8の寸法に比べて若干大きくされており、例えば、幅W2=75mm程度、長さL2=155mm程度および高さH2=11mm程度である。
下型6には、さらに、複数の溝部16が形成されている。溝部16は、例えば1mm〜3mmの径で形成されており、凹部13の底面14に対して垂直方向に沿って壁部15に形成された第1溝部17と、壁部15から下型6の外面19に延び、当該外面19で開放された第2溝部18とを含み、これらが互いに連通している。第1溝部17は、凹部13の深さ方向途中部から形成されていてもよいが、好ましくは、底面14から凹部13の開口端まで形成されている。
また、各溝部16の形成位置は、特に制限されない。すなわち、溝部16は、図4に示すように、凹部13の角部に形成されていてもよく(破線で示された溝部16)、壁部15の長さ(幅)方向における中央領域(角部から一定の間隔を空けた位置)に形成されていてもよい(実線で示された溝部16)。ただし、連続長繊維シート3がUD材である場合には、連続長繊維シート3を構成する連続長繊維25の配向方向に沿う壁部15の中央領域に形成されていることが好ましい。これにより、後述する工程(図5参照)でクリアランス23から溝部16に向かう流れが生じても、連続長繊維25の端部が溝部16の近傍にないことから、排出される溶融樹脂22の流れに連続長繊維25が引き込まれることを防止することができる。これにより、連続長繊維25がうねることを抑制することができる。
また、対向面12において凹部13の周囲には、エアベント20およびガイドピン21が形成されている。
エアベント20は、壁部15から下型6の外面19に延びている点では第2溝部18と共通しているが、エアベント20の凹部13側端部には第1溝部17のような溝が形成されておらず、エアベント20は溝部16とは独立して形成されている。
ガイドピン21は、ガイドピンブッシュ11に嵌合されるものであり、例えば、凹部13の各角部に一つずつ対応するように、合計4つ形成されている。
図1Aを再び参照して、積層体4の形成工程では、複数枚の樹脂シート2および連続長繊維シート3が、下型6の凹部13の底面14上に交互に積層される。樹脂シート2および連続長繊維シート3の積層枚数は、目的とする繊維強化プラスチック30に応じて調整される。また、樹脂シート2の量は、目的とする繊維強化プラスチック30の製造に必要な量よりも多く(例えば、当該必要量の105%〜150%)する。
次に、ガイドピン21とガイドピンブッシュ11とを位置合わせし、図1Bに示すように、上型5を下型6にインロー嵌合することによって、積層体4が圧縮される。このときの圧縮条件(上型5による加圧条件:圧力、(金型)温度)は、圧縮によって流動する樹脂シート2由来の溶融樹脂22のメルトフローレート(MFR)が100g/10min以上(例えば110g/10min〜300g/10min)となる条件に設定される。このMFRは、樹脂シート2本来のMFRではなく、樹脂シート2が溶融し、その溶融樹脂22の流動性を示すものである。より具体的な圧縮条件は、樹脂シート2の種類や数平均分子量Mnによって異なるが、数平均分子量Mnが大きいほど溶融粘度が高いので、より良好に連続長繊維シート3に含浸させるために、圧力および温度ともに高める必要がある。
例えば、数平均分子量Mnが20000〜30000のPA66の場合は2MPaおよび280℃以上とし、数平均分子量Mnが40000〜60000のPA66の場合は5MPaおよび280℃以上とし、数平均分子量Mnが60000以上のPA66の場合は8MPaおよび280℃以上とすればよい。ただし、これらの一例はあくまでも目安であり、個々の圧縮工程に応じて圧力および温度を制御することによって、溶融樹脂22のMFRを100g/10min以上に変化させればよい。
この圧縮工程では、前述のように凹部13の各部の寸法が凸部8の寸法に比べて若干大きい程度であるから、図5に示すように、凹部13の壁部15の全周にわたって、当該壁部15と凸部8の壁部10との間に小さいクリアランス23が形成される。クリアランス23は、例えば30μm〜100μmである。このように小さいクリアランス23を形成することで、樹脂シート2および連続長繊維シート3の表面に沿う方向への溶融樹脂22の逃げ場を制限して金型1内の内圧を高めることができるので、溶融樹脂22に対して外方からも圧力を加えることができる。これにより、連続長繊維シート3に対して溶融樹脂22を良好に含浸させることができる。
そして、クリアランス23に押し出された過剰な溶融樹脂22は、図1Cおよび図5(矢印24参照)に示すように、クリアランス23から第1溝部17および第2溝部18を通って外部に排出される。
この後、積層体4が金型1から取り外されることによって、繊維強化プラスチック30が得られる。
以上の方法によれば、上型5による圧縮時に過剰な溶融樹脂22が連続長繊維シート3の面内から水平方向に流れ出るが、その流れ出る溶融樹脂22の下型6からの排出流路を連続長繊維シート3に対して垂直方向に形成された第1溝部17とすることによって、連続長繊維シート3の面内における溶融樹脂22の流れを抑制することができる。さらに、上型5と下型6とのクリアランス23を小さくして溶融樹脂22の逃げ場を制限することで、連続長繊維シート3の面内から流れ出た溶融樹脂22を第1溝部17に優先的に流し、溶融樹脂22を垂直方向に良好に排出することができる。
これにより、20000以上の高い分子量の樹脂シート2(ベース樹脂)を高い圧力で含浸させても、連続長繊維シート3の各連続長繊維のうねりの発生を抑制することができる。したがって、上型5による圧縮時の温度および圧力を調節して溶融樹脂22の流動性(MFR)を100g/10min以上に制御することによって、高分子量の溶融樹脂22を高い繊維体積含有率(高Vf)で連続長繊維シート3に含浸させることができる。
したがって、上記の方法によれば、例えば、数平均分子量Mnが20000以上のベース樹脂に60%以上(例えば60%〜75%)の体積割合で連続長繊維を含む繊維強化プラスチック30を得ることができる。
以上、本発明の一実施形態を説明したが、本発明は他の形態で実施することもできる。
本発明の繊維強化プラスチックは、車両部品の他、例えば、鉄道車両、船舶、航空機、ユニットバス、浄化槽、プリント基板、遊具、スキー板等、各種分野で使用される部品や本体に使用することができる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
以下では、圧縮条件(圧力、(金型)温度)を変化させることによって、その圧縮によって溶融する樹脂のMFRがどのように変化するかを調べた。
まず、旭化成社製のポリアミド66(1402S:Mn=23000、1502S:Mn=31000、1702S:Mn=40000)それぞれについて、高い繊維体積含有率(高Vf)にするために好ましい溶融樹脂のMFRの目安を110g/10min以上と設定した。そして、様々な加圧条件(温度および圧力)における各ポリアミド66のMFRをフローメーターで測定した。結果を図6に示す。
図6に示すように、ポリアミド66の加圧温度および圧力を調節すれば、ポリアミド66の数平均分子量Mnに関わらず、溶融樹脂のMFRを110g/10min以上にできることが分かった。例えば、1402Sでは280℃、3MPaの条件、1502Sでは280℃、7MPaの条件、1702Sでは280℃、13MPaの条件であれば、それぞれ、確実に110g/10min以上のMFRを得ることができる。
次に、ポリアミド66(旭化成社製)の樹脂フィルム60μm(必要量に対して110%)と、炭素繊維シート(SHINDO社製 N150CB)とを交互に積層し、図2および図3に示した上型5および下型6を使用して圧縮工程を10分間実行した。加圧条件については、図6のA〜Fで示した条件を採用した。
そして、得られた繊維強化プラスチックシートのサンプルの曲げ強さ(JIS K 7171準拠)を測定したところ、図7に示す結果を得た。すなわち、サンプルA〜Fのうち、溶融樹脂のMFRが110g/10min以上であったA,B,CおよびFについては、1000MPa以上の優れた曲げ強さを実現できた。
サンプルFについては、その他の機械的強度として引張強さおよび引張弾性率(共にJIS K 7161準拠)を測定した。結果は、引張強さが1160MPaであり、引張弾性率が73GPaであり、いずれも実用上十分な値であった。また、サンプルFの単位体積当たりに占める炭素繊維の体積割合(繊維体積含有率(Vf))を測定したところ63.5%であり、高Vfの炭素繊維強化シートを達成できた。
さらに、サンプルFの断面を観察したが、ボイドや炭素繊維のうねりは発生していなかった。つまり、サンプルFのように8MPaという高い圧力条件での圧縮によっても、炭素繊維のうねりは発生していなかった。
2…樹脂シート、3…連続長繊維シート、5…上型、6…下型、14…底面、15…壁部、17…第1溝部、22…溶融樹脂、23…クリアランス、30…繊維強化プラスチック

Claims (5)

  1. 20000以上の数平均分子量Mnを有する熱可塑性のベース樹脂が連続長繊維の強化繊維束層に含浸されてなる繊維強化プラスチックの製造方法であって、
    前記強化繊維束層および前記ベース樹脂を下型の底面上に積層配置する工程と、
    前記強化繊維束層および前記ベース樹脂を前記下型に対応する上型で圧縮することによって、過剰な前記ベース樹脂を前記強化繊維束層に対して垂直方向に前記下型から排出する工程とを含む、繊維強化プラスチックの製造方法。
  2. 前記下型は、前記底面に垂直な壁部を有し、
    前記上型を前記下型にインロー嵌合することによって、前記過剰なベース樹脂を前記壁部に沿って前記下型から排出する、請求項1に記載の繊維強化プラスチックの製造方法。
  3. 前記下型の壁部には、前記底面に垂直な溝部が選択的に形成されている、請求項2に記載の繊維強化プラスチックの製造方法。
  4. 前記上型として、前記下型にインロー嵌合したときに前記壁部の全周にわたって30μm〜100μmのクリアランスを形成できる上型を使用する、請求項2または3に記載の繊維強化プラスチックの製造方法。
  5. JIS K 7210に準拠して測定される前記ベース樹脂のメルトフローレート(MFR)が10g/10min未満であり、このベース樹脂の加圧時のメルトフローレート(MFR)が100g/10min以上となる条件で、前記強化繊維束層および前記ベース樹脂を前記上型で加圧する、請求項1〜4のいずれか一項に記載の繊維強化プラスチックの製造方法。
JP2015252417A 2015-12-24 2015-12-24 繊維強化プラスチックの製造方法 Expired - Fee Related JP6641592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015252417A JP6641592B2 (ja) 2015-12-24 2015-12-24 繊維強化プラスチックの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015252417A JP6641592B2 (ja) 2015-12-24 2015-12-24 繊維強化プラスチックの製造方法

Publications (2)

Publication Number Publication Date
JP2017114010A JP2017114010A (ja) 2017-06-29
JP6641592B2 true JP6641592B2 (ja) 2020-02-05

Family

ID=59232812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252417A Expired - Fee Related JP6641592B2 (ja) 2015-12-24 2015-12-24 繊維強化プラスチックの製造方法

Country Status (1)

Country Link
JP (1) JP6641592B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886233B1 (ko) * 2017-10-31 2018-08-08 한국이엠 주식회사 연속섬유를 이용한 수지시트 제조장치
KR101901959B1 (ko) * 2017-10-31 2018-09-27 한국이엠 주식회사 연속섬유에 수지를 함침하기 위한 함침유니트
JP6789518B1 (ja) * 2020-05-02 2020-11-25 株式会社The MOT Company プレス装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140066171A (ko) * 2011-08-31 2014-05-30 데이진 가부시키가이샤 입면을 갖는 성형체, 및 그 제조 방법
JP6107154B2 (ja) * 2012-01-20 2017-04-05 東レ株式会社 プリプレグ
JP6021256B2 (ja) * 2012-12-03 2016-11-09 株式会社名機製作所 繊維複合成形品のプレス成形方法、繊維複合成形品のプレス成形装置、および繊維複合成形品の金型
JP6459475B2 (ja) * 2013-12-25 2019-01-30 三菱ケミカル株式会社 プリプレグ、及び成形品の製造方法

Also Published As

Publication number Publication date
JP2017114010A (ja) 2017-06-29

Similar Documents

Publication Publication Date Title
US8741198B2 (en) Process for producing fiber reinforced resin
US20230271389A1 (en) Composite-material aircraft part and method of manufacturing same
CN103269845B (zh) 由增强纤维束制成且含单向纤维带的纤维预制件以及复合件
JP6641592B2 (ja) 繊維強化プラスチックの製造方法
US11312090B2 (en) Fiber-reinforced resin molded article and method for manufacturing fiber-reinforced resin molded article
US20140227474A1 (en) Multi-layer fabric, use thereof and method for producing composites
WO2018051445A1 (ja) 複合材料の成形方法および複合材料
CN109071838B (zh) 纤维增强树脂中间材料、纤维增强树脂成形体以及纤维增强树脂中间材料的制造方法
JP2006213059A (ja) Frp複合物を製造する方法
JP2001064406A (ja) 繊維強化複合材用プリフォームおよびこれを用いてなる繊維強化複合材ならびにこれらの製造方法
JP2013072055A (ja) 繊維強化樹脂製構造体の製造方法。
CN108621531B (zh) 复合构造体的制造方法
KR101689569B1 (ko) 프리폼 성형을 위한 섬유 강화 복합재의 성형방법
US20160237227A1 (en) Fiber reinforced thermoplastic resin member
JP2005262818A (ja) 強化繊維基材、プリフォームおよび強化繊維基材の製造方法
CN110549649B (zh) 制造由复合材料制成的部件的方法
JP7382757B2 (ja) プリフォーム、繊維強化樹脂複合材料及び繊維強化樹脂複合材料の製造方法
CN110116522B (zh) 包含主层和加强层的预浸渍部件
JP2016112779A (ja) 連続繊維強化樹脂部材および連続繊維強化樹脂部材の製造方法
JP2016112782A (ja) 射出成形部材の製造方法
JP7220004B2 (ja) 繊維強化樹脂複合成形体とその製造方法
US20240190103A1 (en) Sheet-type fiber-reinforced composite having heterogeneous properties and mehtod for manufacturing the same
KR102531610B1 (ko) 열가소성 수지 파우더를 이용한 섬유강화 복합재료 제조방법 및 이로부터 제조된 섬유강화 복합재료
KR20230133086A (ko) 섬유 강화 플라스틱 힌지 및 그 제조방법
JP2004277955A (ja) 一方向性強化布帛、プリフォームおよび複合材料

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191211

R150 Certificate of patent or registration of utility model

Ref document number: 6641592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees