JP6636860B2 - 抵抗値測定回路 - Google Patents

抵抗値測定回路 Download PDF

Info

Publication number
JP6636860B2
JP6636860B2 JP2016111146A JP2016111146A JP6636860B2 JP 6636860 B2 JP6636860 B2 JP 6636860B2 JP 2016111146 A JP2016111146 A JP 2016111146A JP 2016111146 A JP2016111146 A JP 2016111146A JP 6636860 B2 JP6636860 B2 JP 6636860B2
Authority
JP
Japan
Prior art keywords
resistor
voltage
circuit
terminal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016111146A
Other languages
English (en)
Other versions
JP2017215303A (ja
Inventor
孝宣 佐竹
孝宣 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Engineering Co Ltd
Original Assignee
Mitsubishi Electric Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Engineering Co Ltd filed Critical Mitsubishi Electric Engineering Co Ltd
Priority to JP2016111146A priority Critical patent/JP6636860B2/ja
Publication of JP2017215303A publication Critical patent/JP2017215303A/ja
Application granted granted Critical
Publication of JP6636860B2 publication Critical patent/JP6636860B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、抵抗値測定回路に関し、特に断線検出機能を有する三端子法(以下、三線式という。)又は四端子法(以下、四線式という。)による抵抗値測定回路に関するものである。
三線式又は四線式の抵抗値測定回路では、定電流回路により生成した測定用電流を、測定対象となる抵抗体に流し、この抵抗体の両端に発生する電圧を、演算増幅器及びフィルタなどから成る入力回路で増幅し、オームの法則から抵抗値を算出することが一般的である。
このような抵抗値測定回路において、断線検出機能を付加するため、従来では、三端子又は四端子接続の任意の点の電圧を測定するか、測定対象となる抵抗体を抵抗体の発生する電圧測定を行う演算増幅器の帰還回路に含ませ、断線時に演算増幅器の出力を電源電圧のプラス側電圧又はマイナス側電圧に飽和させることで異常な断線状態であることを検出するものがある(例えば特許文献1参照)。
すなわち、この特許文献1では、測定電流経路の断線を定電流回路の両端電圧から比較器を用いて検出している。また、測定電圧経路の断線は、測定対象となる抵抗体の電圧経路から電流経路間を演算増幅器の帰還回路に含ませ、断線時に負帰還により演算増幅器の出力を電源電圧のプラス側電圧に飽和させる。更に、電圧経路のみが断線した場合、プルアップ抵抗と断線検出用定電流回路において、演算増幅器の出力を電源電圧のプラス側電圧に飽和させることにより断線検出を行っていた。
また、別の技術として、電子スイッチなどで測定対象となる抵抗体の各端子間の導通を検出し、どの箇所が断線しているかを調べるものがあった(例えば特許文献2参照)。
すなわち、特許文献2では、電子スイッチなどにより三線式又は四線式の各端子間を切り替えて測定電流を流し、電子スイッチなどにより選択された抵抗体の両端に発生する起電力から、どの箇所の断線かを検出していた。
さらには、測定電圧の下限値又は上限値の2つの閾値を設定し、A/Dコンバータにより得られた変換値を、前記閾値と比較して閾値の下限値よりも変換値が低い場合、又は閾値の上限値よりも変換値が高い場合に断線を検出するものがあった(例えば特許文献3参照)。
特開2000−235053号公報 特開2005−156193号公報 特開2012−168105号公報
しかしながら、上記の特許文献には、以下のような課題があった。
特許文献1は、電圧経路の断線検出として、測定対象となる抵抗体を抵抗体の発生する電圧測定を行う演算増幅器の帰還回路に含ませている。従って、白金抵抗体のように長い配線がなされる場合には、配線の容量負荷が大きくなり演算増幅器の位相余裕が少なくなるので、精度の良い断線検出をする為には前記白金抵抗体の配線長や演算増幅器の周波数特性を低くする必要があった。また、測定対象となる抵抗体にノイズなどの外乱が印加された場合、負帰還により、演算増幅器の出力信号の振動が収束するまで演算増幅器の出力信号が不安定になってしまう可能性があった。
また、一般的に特性を考慮して部品を選定する。定電流回路の両端電圧から電流経路の断線検出を行う場合、断線検出用定電流回路や比較器等の周辺回路を構成する電気・電子部品の定格値の基準温度と基準湿度における誤差、並びに使用される周囲環境における温度や湿度などの変化による誤差、の両方(以下、この両方誤差を電気的特性誤差と称する)が、断線検出精度に大きく影響していた。
特許文献2では、スイッチにより三端子又は四端子の任意の端子間を選択してそれぞれの断線を検出するため、測定周期が長くなってしまう。従って、スイッチの切り替えに入力回路を追従させるためには時定数の大きいフィルタを設けることができないため、前記スイッチにより任意の端子間を選択している時に断線検出回路部にノイズが混入してしまった場合、誤検出を起こしてしまい易くなるなど、外乱に弱かった。
また、特許文献1及び特許文献2の何れにおいても、断線検出用の定電流回路や入力切り替え回路などの回路構成の中で、使用される部品の電気的特性が大きく影響するため、部品の電気的特性誤差を一定の範囲内に収まるように考慮せざるを得ない部品数が多くなるために検出精度を向上させることが難しかった。
さらに、特許文献3においては、断線検出を断線検出回路から出力される電圧に下限値又は上限値の2つの閾値を設定し、A/Dコンバータの変換値から前記閾値を検出するので、前記下限値よりも低い、又は上限値よりも高い電圧を検出する必要があり、正常時の抵抗値測定電圧が前記A/Dコンバータのフルスケール分の分解能を使用できず、ビット当たりの分解能を高くできなかった。
本発明は、上記のような課題を解決するものになされたものであり、測定精度に影響する電気的特性の優れた部品を少なくし、且つ外乱の影響も受け難い、断線検出機能を有する抵抗値測定回路を提供することを目的とする。
上記の目的を達成するため、本発明に係る抵抗値測定回路は、測定対象となる抵抗体の一方の端子に接続され前記抵抗体に測定用定電流を流す定電流回路と、前記抵抗体の他方の端子に接続され、設定されたバイアス電圧を前記抵抗体に印加するためのバイアス抵抗と、前記バイアス抵抗と前記抵抗体との接続点に接続され、前記バイアス電圧を入力し、この入力電圧に応じて電流経路の断線検出信号を出力する比較器と、前記抵抗体の両端子間に接続された差動入力端子にプルアップ抵抗及びプルダウン抵抗を配置し、断線が生じていない正常時には、前記抵抗体の起電力を示す電圧値を測定値として出力する差動増幅器とを有するものである。
また、上記の目的を達成するため、本発明に係る抵抗値測定回路は、測定対象となる抵抗体の一方の端子に接続され前記抵抗体に測定用定電流を流す定電流回路と、前記抵抗体の他方の端子に接続され、設定されたバイアス電圧を前記抵抗体に印加するためのバイアス抵抗と、前記抵抗体の両端子間に接続された差動入力端子にプルアップ抵抗及びプルダウン抵抗を配置し、断線が生じていない正常時には、前記抵抗体の起電力を示す電圧値を測定値として出力する差動増幅器と、前記差動増幅器の出力電圧を入力し、この入力電圧に応じて電圧経路の断線検出信号を出力する比較器とを有するものである。
さらに、上記の目的を達成するため、本発明に係る抵抗値測定回路は、測定対象となる抵抗体の一方の端子に接続され前記抵抗体に測定用定電流を流す定電流回路と、前記抵抗体の他方の端子に接続され、設定されたバイアス電圧を前記抵抗体に印加するためのバイアス抵抗と、前記バイアス抵抗と前記抵抗体との接続点に接続され、前記バイアス電圧を入力し、この入力電圧に応じて電流経路の断線検出信号を出力する第1の比較器と、前記抵抗体の両端子間に接続された差動入力端子にプルアップ抵抗及びプルダウン抵抗を配置し、断線が生じていない正常時には、前記抵抗体の起電力を示す電圧値を測定値として出力する差動増幅器と、前記差動増幅器の出力電圧を入力し、この入力電圧に応じて電圧経路の断線検出信号を出力する第2の比較器とを有するものである。
本発明によれば、測定対象となる抵抗体に測定用定電流を流して、設定されたバイアス電圧を抵抗体に印加させ、このバイアス電圧に応じて電流経路の断線検出を行うか、又は抵抗体の両端子間電圧を入力して電圧経路の断線検出を行うか、或いは、これらの断線検出を同時に行うように構成したので、測定対象となる抵抗体を演算増幅器などの帰還回路に含めない回路を有するものである。
従って、外来ノイズなどの外乱の影響を受けにくく、測定対象となる抵抗体への配線長の影響が少なく、また測定精度に影響する高精度な部品を少なくでき、安定、且つ精度の良い断線検出機能を実現することができる。
また、スイッチによる回路の切り替えがないため、抵抗測定や断線検出の高速化が可能となる。
本発明に係る抵抗値測定回路が四線式の場合の回路図である。 図1に示した本発明に係る抵抗値測定回路の電流経路断線検出回路部分の等価回路図である。 本発明に係る抵抗値測定回路に使用される比較器にバイポーラトランジスタを使用した具体例を示す回路図である。 本発明に係る抵抗値測定回路が三線式の場合の回路図である。 一次遅れフィルタ構成例を示した回路図である。 本発明に係る抵抗値測定回路において、断線時における測定続行の具体的な実施例を示した回路図である。 図1に示す抵抗値測定回路の具体的な実施例を示した回路図である。
本発明に係る抵抗値測定回路の実施の形態を、以下に図面を用いて説明する。なお、図中、同一の符号は同一の構成要素を示す。
実施の形態1.
図1は、抵抗値測定回路における断線検出回路が四線式を採用している場合を例示している。すなわち、測定対象となる抵抗体rを有する抵抗体装置1は、4つの端子a点〜d点を有し、端子a点と抵抗体rとの電流経路101と、端子b点と抵抗体rとの電圧経路103と、端子c点と電圧経路104と、端子d点と抵抗体rとの電流経路102とを含んで、四線式抵抗体装置1を形成している。そして、端子a点はバイアス抵抗4を経由して正側電源VCC1に接続され、端子b点は、差動増幅器2の非反転入力端子に接続され、端子c点は、差動増幅器2の反転入力端子に接続され、そして、端子d点は、定電流回路3を介して負側電源VEE1に接続されている。この定電流回路3により、抵抗体装置1に流す測定電流を生成する。
また、端子a点は比較器8の一方の入力端子が接続されている。比較器8の他方の入力端子は基準電圧回路7に接続されており、出力端子からは、電流経路断線検出信号106が発生する。
バイアス抵抗4は、定電流回路3により抵抗体装置1、すなわち抵抗体rに測定電流を流した時、抵抗体装置1とバイアス抵抗4で生ずる電圧差によって、抵抗体装置1の電圧に所定のバイアス電圧を掛けるためのものである。また、バイアス抵抗4は、誤って抵抗体装置1の各端子間を短絡した時の電流制限手段としても機能する。抵抗体装置1の測定電流の精度は、定電流回路3により決まるため、バイアス抵抗4は、定電流回路3に設定した定電流を流すことができればよく、その電気的特性誤差は問わない。
バイアス抵抗4により、差動増幅器2が飽和しないよう抵抗体装置1をバイアスする。このときの差動増幅器2の理想的な動作点を、例えば正側電源VCC2と負側電源VEE2との中点とすると、プルアップ抵抗5及びプルダウン抵抗6に流れる電流を互いに等しくすることができる。動作点は、電源VCC2とVEE2の中点でなくてもよい。例えば、差動増幅器又は演算増幅器のクロスオーバ歪を避けるため意図的に中点を避けてもよいし、回路の電源構成に合わせて任意に設定してもよい。
差動増幅器2の差動入力端子に、電圧経路103及び電圧経路104を、それぞれ端子b点及びc点を介して接続することで、抵抗体装置1に流した測定電流と抵抗体rの抵抗値を掛け算して得られる電圧を増幅し、クランプ回路9でクランプした後、抵抗値rに対応する測定出力信号105を得る。
ここで、電流経路101及び電流経路102の断線検出は、バイアス抵抗4による電圧降下の有無を比較器8により検出することで実現する。すなわち、電流経路101及び電流経路102が断線していなければ、バイアス抵抗4による電圧降下が生じ、VCC1からこの電圧降下分を差し引いた電圧値(仮にVC1とする)が比較器8の一方の入力端子に与えられる。
一方、電流経路101又は電流経路102が断線していれば、バイアス抵抗4による電圧降下が生じず、VCC1の電圧値がそのまま比較器8の一方の入力端子に加わる。
従って、比較器8の一方の入力電圧を、基準電圧回路7による基準電圧と比較することで、電流経路101又は102の断線を検出することができる。
なお、基準電圧回路7の電圧はVCC1の電圧値とVCC1からバイアス抵抗の電圧降下分を差し引いた電圧値(VC1)の間であれば良い。
図2は、このときのバイアス抵抗4、抵抗体装置1、定電流回路3、及び比較器8による等価回路を示す。定電流回路3に流入する電流Ic、抵抗体装置1に流れる電流Is、バイアス抵抗4に流れる電流Irb、及び比較器8が有する入力バイアス電流をIibとしたとき、キルヒホッフの電流則より、Ic=Is=Irb+Iibが成立する。
すなわち、いかなる場合でも定電流回路3と抵抗体rに流れる電流は等しい。従って、バイアス抵抗4の抵抗値に電気的特性誤差があったり、また、比較器8のバイアス電流Iibに電気的特性誤差があったとしても、定電流回路3に設定した電流が不足しない限り、比較器8を断線検出回路としても測定電流に影響せず、定電流回路3の電気的精度がそのまま測定電流の精度となる。
このように、電流経路101及び102の断線検出用に付加した比較器8が測定精度に影響しないため、図3に示すように安価なトランジスタ8−1などの個別半導体素子による電子スイッチを使用することもできる。トランジスタ8−1のプルアップ抵抗8−2、トランジスタ8−1のベース−エミッタ間のダイオードを経由する電流経路Iidが付加されるが、図2と同じく、キルヒホッフの電流則から、定電流回路3の精度に依存する。
なお、比較器8は、基準電圧回路7を使用せずとも任意の点の電圧が印加されることにより比較器として機能させる回路を用いることもできる。例えば、リードリレーなどの機械スイッチを使用し、前記リードリレーに印加された電圧により回路の開閉を行わせてもよい。
一方、電圧経路103又は電圧経路104の断線検出は、プルアップ抵抗5と差動増幅器2とプルダウン抵抗6と比較器10とによって実現する。すなわち、抵抗体装置1に測定電流を流した時、抵抗体装置1の両端に発生する電圧を、差動増幅器2により所望の利得で増幅する。
このとき、まず、電圧経路103が断線した場合を説明する。端子bからの電圧経路103が断線した場合、差動増幅器2の非反転側入力端子にはプルアップ抵抗5を介し、VCC2の電圧値が入力される。従って、差動増幅器2の出力電圧はほぼVCC1と同じとなり、飽和する。
この時の差動増幅器2の出力電圧と基準電圧回路11の電圧が比較器10で比較され、差動増幅器2の出力電圧が基準電圧回路11の電圧よりも大きくなっていた場合には、比較器10の出力電圧である、電圧経路断線検出信号107が反転し、電圧経路103の断線を検出する。
同様に、端子cからの電圧経路104が断線した場合は、差動増幅器2の反転側入力端子にはプルダウン抵抗6を介し、負の電圧値であるVEE2の電圧値が入力される。従って、差動増幅器2の出力電圧は負の電圧を反転させた正の電圧である、VCC1とほぼ等しくなり、飽和する。以降、電圧経路103が断線した場合と同じように比較器10で基準電圧回路11と比較され、電圧経路断線検出信号107が反転し、電圧経路104の断線を検出する。
なお、プルアップ抵抗5及びプルダウン抵抗6の接続先である電源電圧は、差動増幅器2の正側電源をVCC1とし、負側電源をVEE1としたとき、VCC1=VCC2及びVEE1=VEE2でなくてもよい。例えば、プルアップ抵抗5及びプルダウン抵抗6から測定対象となる抵抗体rに流入又は流出する電流を最小限とするため、断線時に比較器8で検出できる電圧となるよう、電源VCC2及びVEE2を低く抑えてもよいし、回路の簡略化のために、VCC1=VCC2及びVEE1=VEE2としてもよい。
また、測定出力信号105をA/Dコンバータなどに接続する場合など、クランプ回路9により出力電圧範囲を固定する。電圧経路103及び電圧経路104の断線検出は、クランプ回路9によりクランプする前の信号から、差動増幅器2の出力が振り切れていること、すなわち断線状態に有ることを比較器10によって、電圧経路断線検出信号107として出力する。
以上のように本発明において特に精度を要求されるものは、定電流回路3と差動増幅器2である。付加した断線検出回路であるバイアス抵抗4及び比較器8、10が、電気的特性誤差があっても、得られる測定出力信号105の精度には影響しない。
下記の表1は、図1に示した本実施の形態における電流経路及び電圧経路が断線した場合の差動増幅器2の出力電圧及び断線検出信号106、107の信号パターンをまとめたものである。なお、この表に示す如く、各経路の断線検出は別々に行うことが可能である。なお、表1では断線検出信号106、107の状態がL、Hレベルで表されているが、レベルはこの逆でも構わない。
Figure 0006636860
実施の形態2.
図4は、図1を三線式接続にした場合の抵抗体装置1を有する抵抗値測定回路を示している。
上記の実施の形態1に示した回路のうち、定電流回路3側の電圧経路104と電流経路102、すなわち端子c点と端子d点とを短絡して共通の端子c点とすることで、三線式接続として使用できる。
下記の表2は、図4に示した本実施の形態における電流経路及び電圧経路が断線した場合の差動増幅器2の出力電圧及び断線検出信号106、107の信号パターンをまとめたものである。なお、表2では断線検出信号106、107の状態がL、Hレベルで表されているが、レベルはこの逆でも構わない。
Figure 0006636860
実施の形態3.
図5に、フィルタの実施例を示す。本発明においては、断線検出回路と入力回路が独立しているため、例えば抵抗及びコンデンサから成る一次遅れフィルタ14を、演算増幅器15の入力部に設けることで、各回路、すなわち、実施の形態1における定電流回路3、バイアス抵抗4、及び比較器8の少なくとも一つに一次遅れ要素を付加して過渡応答性を持たせることができ、また、実施の形態2における定電流回路3、バイアス抵抗4、差動増幅器2、及び比較器8、10の少なくとも一つに一次遅れ要素を付加して過渡応答性を持たせることができる。
なお、本フィルタを設ける場所及び構成は、一実施例に過ぎない。例えば、演算増幅器15の入力でなくとも、例えば、演算増幅器15の帰還回路や、出力に設けても良い。
実施の形態4.
本実施の形態では、断線時に測定対象となる抵抗体装置1からの電圧経路か電流経路のどちらが断線したかを判別することができる。この場合、三端子及び四端子のいずれも回路構成は同一である。
実施の形態5.
図1の四線子接続又は図4の三線子接続の形態において、電流経路101又は電流経路102が断線に至った場合、図1の端子a点とb点又は端子c点とd点を短絡することで、導線抵抗の誤差を許容すれば測定を継続することができる。
本実施の形態は、図6に示すように、予め図1の端子a点とb点、又は端子c点とd点を短絡できるように、CPU30によって制御されるスイッチ19−1及び19−2を配設する。これらのスイッチ19−1及び19−2は、電子式スイッチ又は機械式スイッチのいずれでもよい。
すなわち、電流経路101、電流経路102、電圧経路103、及び電圧経路104のいずれかが断線に至った場合、電流経路断線検出信号106又は電圧経路断線検出信号107により、CPU30などでスイッチ19−1及び19−2を短絡し、断線した経路をバイパスさせることで抵抗値の測定が続行可能となる。
<実施例>
本発明は、上記のとおり、三端子又は四端子接続によって抵抗値を計測する回路に適用可能である。使用例として、測温抵抗体による温度測定回路、ひずみ測定回路、微小抵抗値測定回路など様々な回路に適用できる。
図7は、図1に示した実施の形態1のより具体的な実施例を示しており、特に、演算増幅器15−1を用いて定電流回路3を構成し、比較器8、10の基準電圧回路7、11を抵抗分割によって構成した例を示す。
定電流回路3は、電源VEE1に接続したシャントレギュレータ16と基準抵抗17を演算増幅器15−1の負帰還によって制御する。MOS−FET18に流れる電流を基準抵抗17で電圧に変換し、前記電圧とシャントレギュレータ16の電圧とを比較することにより、MOS−FET18のゲート電圧を制御し、MOS−FET18に流れる電流を制御する。この例の場合は、NチャンネルMOS−FETを使用している。
定電流回路3の構成方法は一例であり、形態は問わない。例えば、制御素子はバイポーラトランジスタを使用してもよいし、演算増幅器15−1の後段に制御素子を介さなくてもよいし、基準電圧源としてシャントレギュレータ16の他、ツェナダイオード等の定電圧源を用いてもよい。
電圧経路断線検出信号107は、差動増幅器2の出力から比較器10に入力し、基準電圧回路11によって与えられる所定の出力電圧範囲を超えたか否かを判定する。一方、測定出力信号105は、後段に接続するアナログ回路やA/Dコンバータなどに合わせ、ツェナダイオード20などでクランプし、演算増幅器15−2によるボルテージフォロアを介して出力する。
クランプ回路9の構成は一例であり、形態は問わない。例えば、測定出力信号105の後段の回路が十分高い入力インピーダンスを有する場合は、演算増幅器15−2によるボルテージフォロアを省略してもよい。
比較器8、10の出力は、電子スイッチ、機械スイッチ、リレーなど様々な接続が可能である。論理ICで構成されたバッファ回路に接続する場合は、クランプ回路9と同様にツェナダイオード21、22などでクランプすることで、H及びLの論理信号を構成できる。
これらの本発明の構成は、各回路の構成要素が独立し、かつ帰還回路が測定対象となる抵抗体装置1を経由しないことが特徴である。特に、定電流回路3の帰還回路に、測定対象となる抵抗体装置1を含まないため、抵抗体装置1の配線長による容量負荷による演算増幅器15の位相余裕低下を考慮しなくてもよい。従って、帰還回路にノイズなどの外乱が印加され難い。また、差動増幅器2、比較器8及び10、演算増幅器15−1及び15−2など、回路内の各演算増幅器の応答周波数帯域を個別に設定できるため、外乱の影響を最小限とすることができる。
また、各回路の周波数特性を調整することができるため、外乱に対しての収束を高速化し、断線検出信号のみに一次遅れを付加するなどの対応が可能である。
応用例として、測定出力信号105を出力するクランプ回路9における演算増幅器15−2に一次遅れ要素を付加し、クランプ回路9の後段にサンプルホールド回路を接続し、断線検出に用いる比較器8を高速動作させ、上記サンプルホールド回路において断線直前の測定出力信号105を保持させる。このように、比較器8により断線が解消されたことを検知したとき、上記サンプルホールド回路をリセットすることで、断線時においても断線直前の測定出力信号105を維持させることができる。
なお、上記の実施の形態4における電流経路断線時の測定継続により信頼性を向上できる。例えば、FA機器における炉の温度異常監視や、自動車におけるエンジンや電気自動車用バッテリの温度異常監視など、信頼性を要求される用途において、測定系をロバスト設計とすることができる。
r 抵抗体
1 抵抗体装置
2 差動増幅器
3 定電流回路
4 バイアス抵抗
5 プルアップ抵抗
6 プルダウン抵抗
7、11 基準電圧回路
8、10 比較器
9 クランプ回路
14 フィルタ
15、15−1、15−2 演算増幅器
16 シャントレギュレータ
17 基準抵抗
18 NチャンネルMOS−FET
19−1、19−2 スイッチ
30 CPU
101、102 電流経路
103、104 電圧経路
105 測定出力信号
106 電流経路断線検出信号
107 電圧経路断線検出信号
108 測定継続信号

Claims (12)

  1. 測定対象となる抵抗体の一方の端子に接続され前記抵抗体に測定用定電流を流す定電流回路と、
    前記抵抗体の他方の端子に接続され、設定されたバイアス電圧を前記抵抗体に印加するためのバイアス抵抗と、
    前記バイアス抵抗と前記抵抗体との接続点に接続され、前記バイアス電圧を入力し、この入力電圧に応じて電流経路の断線検出信号を出力する比較器と、
    前記抵抗体の両端子間に接続された差動入力端子にプルアップ抵抗及びプルダウン抵抗を配置し、断線が生じていない正常時には、前記抵抗体の起電力を示す電圧値を測定値として出力する差動増幅器とを有する
    抵抗値測定回路。
  2. 測定対象となる抵抗体の一方の端子に接続され前記抵抗体に測定用定電流を流す定電流回路と、
    前記抵抗体の他方の端子に接続され、設定されたバイアス電圧を前記抵抗体に印加するためのバイアス抵抗と、
    前記抵抗体の両端子間に接続された差動入力端子にプルアップ抵抗及びプルダウン抵抗を配置し、断線が生じていない正常時には、前記抵抗体の起電力を示す電圧値を測定値として出力する差動増幅器と、
    前記差動増幅器の出力電圧を入力し、この入力電圧に応じて電圧経路の断線検出信号を出力する比較器とを有する
    抵抗値測定回路。
  3. 測定対象となる抵抗体の一方の端子に接続され前記抵抗体に測定用定電流を流す定電流回路と、
    前記抵抗体の他方の端子に接続され、設定されたバイアス電圧を前記抵抗体に印加するためのバイアス抵抗と、
    前記バイアス抵抗と前記抵抗体との接続点に接続され、前記バイアス電圧を入力し、この入力電圧に応じて電流経路の断線検出信号を出力する第1の比較器と、
    前記抵抗体の両端子間に接続された差動入力端子にプルアップ抵抗及びプルダウン抵抗を配置し、断線が生じていない正常時には、前記抵抗体の起電力を示す電圧値を測定値として出力する差動増幅器と、
    前記差動増幅器の出力電圧を入力し、この入力電圧に応じて電圧経路の断線検出信号を出力する第2の比較器とを有する
    抵抗値測定回路。
  4. 前記比較器は、前記入力電圧と基準電圧とを比較することにより前記断線検出信号を出力するものである
    請求項1から3のいずれか1項に記載の抵抗値測定回路。
  5. 前記比較器は、前記入力電圧により作動する電子スイッチ又は機械スイッチである
    請求項1から3のいずれか1項に記載の抵抗値測定回路。
  6. 前記定電流回路、前記バイアス抵抗、及び前記比較器の少なくとも一つに一次遅れ要素を付加して過渡応答性を持たせた
    請求項1に記載の抵抗値測定回路。
  7. 前記定電流回路、前記バイアス抵抗、前記差動増幅器、及び前記比較器の少なくとも一つに一次遅れ要素を付加して過渡応答性を持たせた
    請求項2に記載の抵抗値測定回路。
  8. 前記定電流回路、前記バイアス抵抗、前記差動増幅器、並びに前記第1及び第2の比較器の少なくとも一つに一次遅れ要素を付加して過渡応答性を持たせた
    請求項3に記載の抵抗値測定回路。
  9. 前記抵抗体の一方の端子と前記差動増幅器の差動入力端子の非反転入力端子との間、及び前記抵抗体の他方の端子と前記差動増幅器の差動入力端子の反転入力端子との間がそれぞれ電圧経路になっている四線式の
    請求項1から3のいずれか1項に記載の抵抗値測定回路。
  10. 前記抵抗体の一方の端子と前記差動増幅器の差動入力端子の非反転入力端子との間、及び前記抵抗体の他方の端子と前記定電流回路及び前記差動増幅器の差動入力端子の反転入力端子との間がそれぞれ接続されている三線式の
    請求項1から3のいずれか1項に記載の抵抗値測定回路。
  11. 前記差動増幅器の後段に、前記抵抗体の電圧値によって示される断線前の前記測定値を保持し、前記断線検出信号が解除されたとき、前記測定値の保持を解除して測定の継続を可能とした回路をさらに備えた
    請求項1から3のいずれか1項に記載の抵抗値測定回路。
  12. 前記断線検出信号から断線経路を特定したとき、前記特定した断線箇所の電圧経路と電流経路を短絡することで測定の継続を可能としたスイッチをさらに備えた
    請求項1から3のいずれか1項に記載の抵抗値測定回路。
JP2016111146A 2016-06-02 2016-06-02 抵抗値測定回路 Active JP6636860B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016111146A JP6636860B2 (ja) 2016-06-02 2016-06-02 抵抗値測定回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016111146A JP6636860B2 (ja) 2016-06-02 2016-06-02 抵抗値測定回路

Publications (2)

Publication Number Publication Date
JP2017215303A JP2017215303A (ja) 2017-12-07
JP6636860B2 true JP6636860B2 (ja) 2020-01-29

Family

ID=60575639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016111146A Active JP6636860B2 (ja) 2016-06-02 2016-06-02 抵抗値測定回路

Country Status (1)

Country Link
JP (1) JP6636860B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388526B1 (en) 2018-04-20 2019-08-20 Semiconductor Components Industries, Llc Semiconductor wafer thinning systems and related methods
US10896815B2 (en) 2018-05-22 2021-01-19 Semiconductor Components Industries, Llc Semiconductor substrate singulation systems and related methods
US11121035B2 (en) 2018-05-22 2021-09-14 Semiconductor Components Industries, Llc Semiconductor substrate processing methods
US20190363018A1 (en) 2018-05-24 2019-11-28 Semiconductor Components Industries, Llc Die cleaning systems and related methods
US11830771B2 (en) 2018-05-31 2023-11-28 Semiconductor Components Industries, Llc Semiconductor substrate production systems and related methods
US10468304B1 (en) 2018-05-31 2019-11-05 Semiconductor Components Industries, Llc Semiconductor substrate production systems and related methods
JP7542982B2 (ja) 2020-04-09 2024-09-02 ミネベアミツミ株式会社 故障検出回路および検出システム
CN111766447B (zh) * 2020-06-19 2024-10-11 珠海市运泰利自动化设备有限公司 一种采用跨导分流结构实现直流阻抗测量的电路及方法
CN114137308B (zh) * 2021-11-30 2023-10-20 国网黑龙江省电力有限公司电力科学研究院 一种基于电气设备最高温度值获取设备回路电阻的方法
KR102596731B1 (ko) * 2023-04-11 2023-11-02 주식회사 수산이앤에스 릴레이 검사 시스템
CN117054817B (zh) * 2023-08-30 2024-10-11 广州泰达创盈电气有限公司 高压隔离变送装置和高压隔离变送系统
CN117075003B (zh) * 2023-10-19 2024-08-27 青岛锐捷智能仪器有限公司 一种四端子测试线接触检测方法及系统

Also Published As

Publication number Publication date
JP2017215303A (ja) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6636860B2 (ja) 抵抗値測定回路
JP4296811B2 (ja) 物理量センサ装置
US20090312970A1 (en) Current measuring device and processing unit comprising one such device
US10365329B2 (en) Measurements in switch devices
AU2017219678B2 (en) Test device for testing a control unit of a switching apparatus of a switchgear
US10998913B2 (en) Switching circuit for checking an analog input circuit of an A/D converter
CN108054728A (zh) 一种电流保护装置、压缩机电路及其电流保护方法
JP6339890B2 (ja) 電流センサ
JP5022377B2 (ja) 測定回路及び試験装置
CN110676804B (zh) 检测电路与使用其的开关模块
JP3628948B2 (ja) 電流/電圧変換回路
JP4451415B2 (ja) 電流/電圧変換回路
JP2006349466A (ja) 温度検出装置
US10393607B2 (en) Semiconductor sensing device
US11079409B2 (en) Assembly with at least two redundant analog input units for a measurement current
AU2017221058B2 (en) Testing device and method for testing a control unit of a switching device of a switchgear installation
CN109564139B (zh) 传感器装置
CN207967917U (zh) 一种电流保护装置及压缩机电路
JP5500333B2 (ja) 直流試験装置及び半導体試験装置
KR20140108161A (ko) 연산 증폭기
JP5457152B2 (ja) インバータ装置
JP2020167860A (ja) 処理回路および電源装置
US20170356954A1 (en) Circuit arrangement
JP4803161B2 (ja) パワートランジスタ回路
JP2010152596A (ja) 電流入出力装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191219

R150 Certificate of patent or registration of utility model

Ref document number: 6636860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250