JP6630415B2 - High purity cyclohexasilane - Google Patents
High purity cyclohexasilane Download PDFInfo
- Publication number
- JP6630415B2 JP6630415B2 JP2018166232A JP2018166232A JP6630415B2 JP 6630415 B2 JP6630415 B2 JP 6630415B2 JP 2018166232 A JP2018166232 A JP 2018166232A JP 2018166232 A JP2018166232 A JP 2018166232A JP 6630415 B2 JP6630415 B2 JP 6630415B2
- Authority
- JP
- Japan
- Prior art keywords
- distillation
- cyclohexasilane
- silane compound
- hydrogenated silane
- distillation step
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Silicon Compounds (AREA)
Description
本発明は、高純度の水素化シラン化合物(特にシクロヘキサシラン)に関するものである。 The present invention relates to a high-purity hydrogenated silane compound (particularly cyclohexasilane).
シクロヘキサシランに代表される水素化シラン化合物の合成方法としては、ジフェニルジクロロシランを原料に用いて、環化、ハロゲン化、還元工程を経る古くから公知の方法(Hengge法、非特許文献1)や、トリクロロシランとポリアミンを原料として、ジアニオン錯体を合成し還元する方法(特許文献1)、ハロシランとアンモニウム塩とを反応させて環状シラン中間体を得、この環状シラン中間体を還元する方法(特許文献2)等で合成できることが知られている。 As a method for synthesizing a hydrogenated silane compound represented by cyclohexasilane, a long-known method using diphenyldichlorosilane as a raw material and undergoing a cyclization, halogenation and reduction step (Hengge method, Non-Patent Document 1) Alternatively, a method of synthesizing and reducing a dianion complex using trichlorosilane and polyamine as raw materials (Patent Document 1), a method of reacting halosilane with an ammonium salt to obtain a cyclic silane intermediate, and reducing the cyclic silane intermediate ( It is known that it can be synthesized in Patent Document 2) and the like.
上記水素化シラン化合物は、半導体分野や電池分野に使用できる可能性が高まっており、精製によって高純度品を用意する必要があるが、これまで水素化シラン化合物の精製方法はほとんど知られていない。 The above-mentioned hydrogenated silane compound has a high possibility of being used in the semiconductor field and the battery field, and it is necessary to prepare a high-purity product by purification.However, a method of purifying the hydrogenated silane compound has not been known so far. .
そこで、本発明では、半導体分野や電池分野に適用可能な高純度の水素化シラン化合物を提供することを課題として掲げた。 Therefore, an object of the present invention is to provide a high-purity hydrogenated silane compound applicable to the semiconductor field and the battery field.
上記課題を解決した本発明は、金属元素の含有量が0.01〜100ppbである高純度シクロヘキサシランにかかるものである。この場合において、ナトリウムの含有量が0.01〜100ppbであることが好ましい。 The present invention, which has solved the above problems, relates to a high-purity cyclohexasilane having a metal element content of 0.01 to 100 ppb. In this case, the content of sodium is preferably 0.01 to 100 ppb.
また、本発明の製造方法は、不純物を含む水素化シラン化合物から金属元素の含有量が0.01〜100ppbである高純度水素化シラン化合物を得る製造方法であって、高純度水素化シラン化合物が、下記式(1)
(SiH2)n …(1)
(式(1)中、nは3〜6である。)
または下記式(2)
SimH2m+2 …(2)
(式(2)中、mは3〜6である。)
で表され、少なくとも、条件の異なる蒸留工程を2回以上行うところに特徴を有する。
Further, the production method of the present invention is a method for obtaining a high-purity hydrogenated silane compound having a metal element content of 0.01 to 100 ppb from a hydrogenated silane compound containing impurities, the method comprising: Is the following formula (1)
(SiH 2 ) n ... (1)
(In the formula (1), n is 3 to 6.)
Or the following equation (2)
Si m H 2m + 2 ... ( 2)
(In the formula (2), m is 3 to 6.)
And characterized in that at least two or more distillation steps under different conditions are performed.
短行程蒸留、薄膜式蒸留、分子蒸留のいずれかによる第1蒸留工程と、蒸留塔での第2蒸留工程を行うことが好ましく、第1蒸留工程を25〜80℃で行い、第2蒸留工程を第1蒸留工程より高温で、かつ、50〜100℃で行うことも好ましい態様である。さらに、第1蒸留工程を3kPa〜10Paで行うことも本発明法の好ましい態様である。 It is preferable to perform a first distillation step by any of short-stroke distillation, thin-film distillation, and molecular distillation and a second distillation step in a distillation column. The first distillation step is performed at 25 to 80 ° C., and the second distillation step is performed. It is also a preferable embodiment to carry out the reaction at a temperature higher than that of the first distillation step and at 50 to 100 ° C. Further, performing the first distillation step at 3 kPa to 10 Pa is also a preferred embodiment of the method of the present invention.
本発明によれば、金属元素の含有量が少なく、長期保管を行ってもシクロヘキサシランの重合体の生成が抑制されている高純度シクロヘキサシランを提供できた。 ADVANTAGE OF THE INVENTION According to this invention, the content of the metal element was small, and the high-purity cyclohexasilane which could suppress generation | occurrence | production of the polymer of cyclohexasilane even after long-term storage was able to be provided.
本発明者らは、粗シクロヘキサシランの精製効率がよくなる圧力域と温度域について検討を行い、粗シクロヘキサシランを少なくとも2kPa以下の絶対圧力下で蒸留することとし、蒸留時に粗シクロヘキサシランにかかる温度を特定範囲に制御するか、もしくは更に低圧領域(例えば0.1〜100Paの中真空領域ないし0.00001〜0.1Paの高真空領域)で蒸留するのに適した特定の蒸留装置を採用したシクロヘキサシランの製造方法を見出し、既に出願した(特願2012−281489号)。 The present inventors have studied the pressure range and temperature range in which the purification efficiency of crude cyclohexasilane is improved, and decided to distill the crude cyclohexasilane under an absolute pressure of at least 2 kPa or less. A specific distillation apparatus suitable for controlling such a temperature in a specific range or further distilling in a low pressure region (for example, a medium vacuum region of 0.1 to 100 Pa to a high vacuum region of 0.00001 to 0.1 Pa). A method for producing the adopted cyclohexasilane was found, and a patent application was filed (Japanese Patent Application No. 2012-281489).
そして本発明者等は、上記方法で得られるシクロヘキサシランよりもさらに高純度な水素化シラン化合物を良好な収率で製造することを目的として検討した結果、条件の異なる蒸留を2回以上行うことで、得られる水素化シラン化合物中の不純物の低減に成功した。以下、本発明を説明する。 Then, the present inventors have studied for the purpose of producing a hydrogenated silane compound having a higher purity than cyclohexasilane obtained by the above method with a good yield. As a result, distillation under different conditions is performed twice or more. Thus, the impurities in the obtained hydrogenated silane compound were successfully reduced. Hereinafter, the present invention will be described.
[高純度水素化シラン化合物、特にシクロヘキサシラン]
本発明の高純度水素化シラン化合物は、不純物である金属元素の含有量が0.01〜100ppb(質量基準)であるところに特徴を有する。後述する精製方法を採用した製造方法で水素化シラン化合物を製造した結果、金属元素を上記範囲にまで低減させることができた。金属元素を上記範囲に低減することで、水素化シラン化合物を長期間保管する場合の重合体成分の増量も抑制できた。なお、金属元素としては、アルミニウム、ナトリウム、カリウム、リチウム、鉄、カルシウム、マグネシウム、チタン、クロム、銅等の還元剤や反応原料由来のものが挙げられる。この中でも、ナトリウムを0.01〜100ppbに低減させた高純度水素化シラン化合物であることが好ましい。ナトリウムは製法や工程によらず、混入の可能性が高い金属元素であり、ナトリウムを低減することは工業上有用だからである。
[High-purity hydrogenated silane compound, especially cyclohexasilane]
The high-purity hydrogenated silane compound of the present invention is characterized in that the content of a metal element as an impurity is 0.01 to 100 ppb (by mass). As a result of producing the hydrogenated silane compound by a production method employing a purification method described later, the metal element could be reduced to the above range. By reducing the metal element to the above range, an increase in the amount of the polymer component when the hydrogenated silane compound is stored for a long period of time could be suppressed. Examples of the metal element include those derived from a reducing agent or a reaction raw material such as aluminum, sodium, potassium, lithium, iron, calcium, magnesium, titanium, chromium, and copper. Among them, a high-purity hydrogenated silane compound in which sodium is reduced to 0.01 to 100 ppb is preferable. This is because sodium is a metal element that is highly likely to be mixed irrespective of the production method and process, and it is industrially useful to reduce sodium.
なお、本発明の高純度水素化シラン化合物としては、特にシクロヘキサシランが有用であるため、金属元素(好ましくはナトリウム)の含有量が0.01〜100ppbである高純度シクロヘキサシランが含まれる。また、金属元素がごく微量であっても混入しているシクロヘキサシランは、高純度シクロヘキサシラン組成物ということもでき、上記含有量は、シクロヘキサシラン組成物中の含有量であるということもできる。以下の説明においても、金属元素の含有量や重合体の含有量については、組成物という言葉を省略していることもあるが、「組成物中の含有量」という意味である。 As the high-purity hydrogenated silane compound of the present invention, since cyclohexasilane is particularly useful, a high-purity cyclohexasilane having a metal element (preferably sodium) content of 0.01 to 100 ppb is included. . In addition, even if the metal element is very small, cyclohexasilane which is mixed can be said to be a high-purity cyclohexasilane composition, and the above content is the content in the cyclohexasilane composition. You can also. In the following description, as for the content of the metal element and the content of the polymer, the term “composition” may be omitted, but it means “content in the composition”.
上記高純度シクロヘキサシラン中、アルミニウム、ナトリウム、カリウム、リチウム、鉄、カルシウム、マグネシウム、チタン、クロム、銅の各含有量は10ppb以下にそれぞれ低減されていることが好ましく、5ppb以下がより好ましく、2ppb以下がさらに好ましく、1ppb以下が特に好ましい。下限はゼロ(N.D)であることが最も好ましいが、技術的に困難であるので、0.01ppb程度が好ましい。 In the high-purity cyclohexasilane, each content of aluminum, sodium, potassium, lithium, iron, calcium, magnesium, titanium, chromium, and copper is preferably reduced to 10 ppb or less, more preferably 5 ppb or less, It is more preferably at most 2 ppb, particularly preferably at most 1 ppb. The lower limit is most preferably zero (ND), but because it is technically difficult, the lower limit is preferably about 0.01 ppb.
本発明の高純度シクロヘキサシランは、後述する方法によって、重合体成分の含有量が少ないものとなる。具体的には、シクロヘキサシラン中、重合体成分の含有量が0〜5000ppm(質量基準)であることが好ましく、0〜1000ppmがより好ましく、0〜500ppmがさらに好ましく、0〜100ppmが特に好ましく、最も好ましくは0(N.D)である。 The high-purity cyclohexasilane of the present invention has a low polymer component content by the method described below. Specifically, in cyclohexasilane, the content of the polymer component is preferably 0 to 5000 ppm (by mass), more preferably 0 to 1000 ppm, still more preferably 0 to 500 ppm, and particularly preferably 0 to 100 ppm. , Most preferably 0 (ND).
本発明の高純度シクロヘキサシランは、金属元素および重合体成分の含有量が少ないこと等から、保管安定性に優れる。例えば、金属製の容器であって内壁をフッ素系樹脂等の樹脂材料でコーティングした容器内において、窒素雰囲気下25℃で30日間保管したときの重合体の増加量が、好ましくは0〜5000ppmであり、より好ましくは0〜1000ppm、さらに好ましくは0〜500ppm、特に好ましくは0〜100ppm、最も好ましくは0(N.D)である。また、窒素雰囲気下25℃で30日間保管したときの重合体の含有量そのものも、好ましくは0〜5000ppmであり、より好ましくは0〜1000ppm、さらに好ましくは0〜500ppm、特に好ましくは0〜100ppm、最も好ましくは0(N.D)である。 The high-purity cyclohexasilane of the present invention has excellent storage stability due to the small content of the metal element and the polymer component. For example, in a container made of metal and having an inner wall coated with a resin material such as a fluororesin, the amount of increase in the polymer when stored at 25 ° C. for 30 days under a nitrogen atmosphere is preferably 0 to 5000 ppm. And more preferably 0 to 1000 ppm, further preferably 0 to 500 ppm, particularly preferably 0 to 100 ppm, and most preferably 0 (ND). Further, the content of the polymer itself when stored at 25 ° C. for 30 days under a nitrogen atmosphere is also preferably 0 to 5000 ppm, more preferably 0 to 1000 ppm, still more preferably 0 to 500 ppm, and particularly preferably 0 to 100 ppm. , Most preferably 0 (ND).
上記本発明の高純度シクロヘキサシランは、後述する本発明の製造方法で製造することができる。ただし、本発明の製造方法で製造される高純度水素化シラン化合物には、シクロヘキサシランに加えて他の水素化シラン化合物が含まれていてもよく、これらの水素化シラン化合物は、下記式(1)
(SiH2)n …(1)
(式(1)中、nは3〜6である。)
または下記式(2)
SimH2m+2 …(2)
(式(2)中、mは3〜6である。)
で表される。以下の説明において、水素化シラン化合物、あるいは高純度水素化シラン化合物というときは、上記(1)と(2)で表される化合物が含まれる。
The high-purity cyclohexasilane of the present invention can be produced by the production method of the present invention described later. However, the high-purity hydrogenated silane compound produced by the production method of the present invention may contain other hydrogenated silane compounds in addition to cyclohexasilane, and these hydrogenated silane compounds are represented by the following formula: (1)
(SiH 2 ) n ... (1)
(In the formula (1), n is 3 to 6.)
Or the following equation (2)
Si m H 2m + 2 ... ( 2)
(In the formula (2), m is 3 to 6.)
Is represented by In the following description, the term “hydrogenated silane compound” or “high-purity hydrogenated silane compound” includes the compounds represented by the above (1) and (2).
式(1)で表される環状シラン化合物としては、シクロトリシラン、シクロテトラシラン、シクロペンタシラン、シリルシクロペンタシラン、シクロヘキサシラン等が挙げられ、式(2)で表される鎖状シラン化合物としては、トリシラン、テトラシラン、イソテトラシラン、ペンタシラン、ネオペンタシラン、イソペンタシラン、ヘキサシラン等が挙げられる。これらの水素が、アルキル基やアリール基等に置換されている置換体等であってもよい。これらのなかでも環状シラン化合物が好ましく、特に重合を起こしやすいシクロヘキサシランが、本発明の製造方法の適用により、精製工程中の重合体の生成を抑制でき、精製収率の顕著な向上が可能となり、かつ、金属元素の低減効果が現れやすいことから、好ましい環状シラン化合物として挙げられる。 Examples of the cyclic silane compound represented by the formula (1) include cyclotrisilane, cyclotetrasilane, cyclopentasilane, silylcyclopentasilane, and cyclohexasilane, and a chain silane represented by the formula (2). Examples of the compound include trisilane, tetrasilane, isotetrasilane, pentasilane, neopentasilane, isopentasilane, hexasilane and the like. Substitutes in which these hydrogens are substituted with an alkyl group, an aryl group, or the like may be used. Of these, cyclic silane compounds are preferred, and cyclohexasilane, which is particularly susceptible to polymerization, can suppress the production of a polymer during the purification step by applying the production method of the present invention, and can significantly improve the purification yield. , And the effect of reducing the metal element is likely to appear.
[第1蒸留工程]
還元工程を経て得られる水素化シラン化合物には、不純物として、水素化シラン化合物(特に環状シラン化合物である場合)の重合体成分が数%〜十数%、また、還元剤由来の金属元素が数百〜数千ppm程度が含まれているため、このような不純物を含む水素化シラン化合物(特にシクロヘキサシラン)をいきなり高温で蒸留すると、さらに水素化シラン化合物の重合体が増量してしまうことが見出された。これは、不純物として水素化シラン化合物に含まれていた水素化シラン化合物の重合体成分や金属元素が、高温の蒸留塔等で行われる減圧蒸留の際に、水素化シラン化合物の重合を促進する重合促進剤的な作用を有するためであると考えられた。なお、重合体とは、目的の水素化シラン化合物の二量体およびそれ以上の多量体を指す。
[First distillation step]
The hydrogenated silane compound obtained through the reduction step contains, as impurities, a polymer component of the hydrogenated silane compound (particularly in the case of a cyclic silane compound) of several percent to several tens percent, and a metal element derived from a reducing agent. Since several hundreds to several thousand ppm are contained, if the hydrogenated silane compound (especially cyclohexasilane) containing such impurities is suddenly distilled at a high temperature, the amount of the polymer of the hydrogenated silane compound further increases. Was found. This is because the polymer component or metal element of the hydrogenated silane compound contained in the hydrogenated silane compound as an impurity promotes the polymerization of the hydrogenated silane compound during vacuum distillation performed in a high-temperature distillation tower or the like. It is thought that this is because it has a function as a polymerization accelerator. The polymer refers to a dimer of the target hydrogenated silane compound and a multimer thereof.
そこで本発明では、第1蒸留工程において、上記重合体量を増大させることなく、不純物(特に重合体成分)を速やかに除去することを主目的とする。よって、第1蒸留工程の温度は、25〜80℃で行うことが好ましい。温度が低すぎると、蒸発速度が遅いだけでなく、気化した水素化シラン化合物を確実に凝縮させるために凝縮器の温度を低温にする必要があり、凝縮器に固体の水素化シラン化合物が付着してラインが閉塞するおそれがある。凝縮器の温度を固体の水素化シラン化合物が析出しない程度に上げると、蒸発器と凝縮器の温度差が小さくなり、凝縮されない水素化シラン化合物が増え、蒸留収率が悪化する。一方、水素化シラン化合物の加熱温度が高すぎると、重合が進行して、第1蒸留工程で重合体量が増えてしまい、続く第2蒸留工程での重合体量も増加するため、好ましくない。より好ましい第1蒸留工程の温度は30〜70℃で、35〜65℃がさらに好ましく、40〜60℃が特に好ましい。 Therefore, in the present invention, it is a main object of the first distillation step to quickly remove impurities (particularly, polymer components) without increasing the amount of the polymer. Therefore, the temperature of the first distillation step is preferably performed at 25 to 80 ° C. If the temperature is too low, not only the evaporation rate is slow, but also the temperature of the condenser must be lowered to ensure that the vaporized hydrogenated silane compound is condensed, and the solid hydrogenated silane compound adheres to the condenser. And the line may be blocked. If the temperature of the condenser is raised to such an extent that the solid hydrogenated silane compound does not precipitate, the temperature difference between the evaporator and the condenser becomes smaller, the amount of the non-condensed hydrogenated silane compound increases, and the distillation yield deteriorates. On the other hand, if the heating temperature of the hydrogenated silane compound is too high, the polymerization proceeds, the amount of the polymer increases in the first distillation step, and the amount of the polymer in the subsequent second distillation step also increases, which is not preferable. . The temperature of the first distillation step is more preferably 30 to 70 ° C, still more preferably 35 to 65 ° C, and particularly preferably 40 to 60 ° C.
第1蒸留工程へ導入される未精製の水素化シラン化合物は、溶媒に溶解させた溶液であってもよい。このとき、溶液中の未精製水素化シラン化合物の濃度は、蒸留効率の観点から、50〜100質量%が好ましい。蒸留の前段階である水素化シラン化合物の合成反応を反応溶媒中で行った場合は、上記濃度範囲になるように、予め、溶媒を除去して濃縮しておけばよい。 The crude hydrogenated silane compound introduced into the first distillation step may be a solution dissolved in a solvent. At this time, the concentration of the unpurified hydrogenated silane compound in the solution is preferably from 50 to 100% by mass from the viewpoint of distillation efficiency. When the synthesis reaction of the hydrogenated silane compound, which is a stage prior to the distillation, is performed in a reaction solvent, the solvent may be removed and concentrated in advance so that the concentration is within the above-mentioned range.
第1蒸留工程では、水素化シラン化合物の重合体量を増大させないことがポイントであるので、蒸留塔での蒸留ではなく、短時間で熱履歴のかかりにくい蒸留装置での蒸留方法を選択することが好ましい。例えば、短行程蒸留装置、薄膜式蒸留装置、分子蒸留装置等である。厳密な定義によれば、分子蒸留とは、高真空(例えば10-1Pa〜10-5Pa程度)下で行われ、ベーパー分子の平均自由行程よりも蒸発面、凝縮面間の距離を短くする蒸留を指すが、本明細書では用語「分子蒸留」を、本技術分野での通称としての分子蒸留の意味、すなわち高真空(例えば10-1Pa〜10-5Pa程度)下で行われてさえいれば、蒸発面、凝縮面間の距離がベーパー分子の平均自由行程を超えているか否かを問わない意味で使用する。この様な分子蒸留によれば、理想的には、蒸発した全てのベーパー分子が蒸発面から凝集面に到達するまでに他のベーパー分子や壁面に衝突せず、全ての分子が凝縮器内に凝集される。しかし、真空度が高すぎて、大きなスケールでの実施は困難である。 In the first distillation step, the point is not to increase the amount of the polymer of the hydrogenated silane compound. Therefore, instead of distillation in the distillation column, select a distillation method using a distillation apparatus in which heat history is not easily applied in a short time. Is preferred. For example, a short-path distillation apparatus, a thin-film distillation apparatus, a molecular distillation apparatus, and the like. According to a strict definition, molecular distillation is performed under a high vacuum (for example, about 10 -1 Pa to 10 -5 Pa), and the distance between the evaporation surface and the condensation surface is shorter than the mean free path of the vapor molecule. In the present specification, the term “molecular distillation” is used in the art to mean molecular distillation, that is, performed under a high vacuum (for example, about 10 −1 Pa to about 10 −5 Pa). As long as the distance between the evaporating surface and the condensing surface is larger than the mean free path of the vapor molecule, it is used. According to such molecular distillation, ideally, all vapor molecules that have evaporated do not collide with other vapor molecules or wall surfaces until they reach the aggregation surface from the evaporation surface, and all the molecules remain in the condenser. Agglomerated. However, the degree of vacuum is too high to implement on a large scale.
一方、短行程蒸留装置は、大きなスケールでは若干困難な分子蒸留装置を改善したもので、中真空(例えば102Pa〜10-1Pa程度)下で行われ、蒸発面と凝縮面とがベーパー分子の平均自由行程レベルの近い位置に相対して配置されている点に特徴がある。薄膜蒸留装置は、低真空から中真空(例えば3×103Pa〜10-1Pa程度、好ましくは103Pa〜10-1Pa程度)下で行い、凝縮器を蒸発器外に配置する点で、短行程蒸留装置とは異なる。 On the other hand, a short-path distillation apparatus is an improvement of a molecular distillation apparatus that is slightly difficult on a large scale, and is performed under a medium vacuum (for example, about 10 2 Pa to 10 −1 Pa), and the evaporation surface and the condensation surface are vaporized. It is characterized in that it is located relative to a position near the level of the mean free path of the molecule. The thin film distillation apparatus is operated under a low vacuum to a medium vacuum (for example, about 3 × 10 3 Pa to 10 −1 Pa, preferably about 10 3 Pa to 10 −1 Pa), and the condenser is disposed outside the evaporator. And is different from a short stroke distillation apparatus.
本発明では、第1蒸留工程は、3kPa以下の減圧度(絶対圧力)で行うことが好ましく、より好ましくは1kPa以下、さらに好ましくは500Pa以下、特に好ましくは200Pa以下である。第1蒸留工程の圧力が高すぎると、水素化シラン化合物に熱履歴がかかり重合体量が増大するおそれがあるためである。第1蒸留工程の減圧度の加減は特に限定されないが、実操業上、1Pa以上が好ましく、10Pa以上がより好ましい。 In the present invention, the first distillation step is preferably performed at a reduced pressure (absolute pressure) of 3 kPa or less, more preferably 1 kPa or less, further preferably 500 Pa or less, particularly preferably 200 Pa or less. This is because if the pressure in the first distillation step is too high, the hydrogenated silane compound may be subjected to heat history and the amount of polymer may be increased. The degree of reduction in the degree of pressure reduction in the first distillation step is not particularly limited, but is preferably 1 Pa or more, more preferably 10 Pa or more, in actual operation.
上記蒸留装置は、いずれも薄膜式蒸発器を利用するものであることが好ましい。薄膜式蒸発器は、蒸発面に蒸発原料の薄膜を形成し、熱を供給して蒸発させるものである。この蒸発面を備えた蒸発器としては、例えば、板状体(例えば、矩形板、円板等)、筒状体、有底容器等が挙げられ、板状体の表面、筒状体の内面または外面、容器内面等が前記蒸発面となり得る。蒸発原料を薄膜化して蒸発させる観点からは、板状体、筒状体等の蒸発器が好ましい。薄膜化して蒸発させることで、蒸発原料の沸点に至らなくても、蒸発原料の蒸発を促進し精製効率を高めることができ、しかも蒸発原料の発泡や沸騰を抑制して蒸発原料にかかる熱履歴を小さく抑えることができる。蒸発器が板状体、筒状体である場合、強制薄膜化手段をも備えてもよい。強制薄膜化手段としては、例えば、板状体表面、あるいは筒状体の内面または外面に添って稼働するワイパーエレメントや、円板や筒状体を回転させて遠心力を発生させ得る強制回転手段等が使用できる。板状体または筒状体に、強制薄膜化手段としてワイパーエレメントまたは強制回転手段を具備させると、ワイパー型薄膜式蒸発器、遠心型薄膜式蒸発器となる。なお、強制薄膜化手段を有さない板状体または筒状体であっても、蒸発面を鉛直に配置し、上部から蒸発原料を少しずつ流下させれば、流下型薄膜式蒸発器となる。特に好ましくは、遠心型薄膜式蒸発器、流下型薄膜式蒸発器である。 It is preferable that all of the above-mentioned distillation apparatuses use a thin-film evaporator. The thin-film evaporator forms a thin film of an evaporation raw material on an evaporation surface and supplies heat to evaporate. Examples of the evaporator having the evaporating surface include a plate-like body (for example, a rectangular plate, a disk, or the like), a tubular body, a bottomed container, and the like. The surface of the plate-like body, the inner surface of the tubular body Alternatively, the outer surface, the inner surface of the container, or the like may be the evaporation surface. From the viewpoint of thinning and evaporating the evaporation raw material, an evaporator such as a plate-like body or a cylindrical body is preferable. By thinning and evaporating, even if the boiling point of the evaporating material is not reached, the evaporation of the evaporating material can be promoted and the purification efficiency can be increased. In addition, the heat history of the evaporating material can be suppressed by suppressing the bubbling and boiling of the evaporating material. Can be kept small. When the evaporator is a plate-like body or a cylindrical body, a forced thinning means may be provided. As the forced thinning means, for example, a wiper element that operates along the surface of the plate-like body, or the inner or outer surface of the cylindrical body, or a forced rotating means that can generate a centrifugal force by rotating a disk or a cylindrical body Etc. can be used. When a plate-like body or a cylindrical body is provided with a wiper element or a forced rotation means as a forced thinning means, a wiper type thin film evaporator or a centrifugal thin film evaporator is obtained. In addition, even if it is a plate-like body or a cylindrical body which does not have a forced thinning means, if the evaporation surface is arranged vertically and the evaporation raw material is allowed to flow little by little from the upper part, it becomes a falling thin film evaporator. . Particularly preferred are a centrifugal thin film evaporator and a falling thin film evaporator.
分子蒸留装置や短行程蒸留装置では、凝縮器は蒸発器内部に配置される。薄膜蒸留装置では凝縮器は蒸発器外部に配置される。いずれにおいても、凝縮器は、蒸発器で蒸発させたベーパー分子と接触して、ベーパー分子を冷却するための凝縮面を備える。短行程蒸留装置においては、前記凝縮器の凝縮面は、前記蒸発器の蒸発面に相対して配置される。分子蒸留装置においても、蒸発面と凝縮面が相対して配されることが好ましいが、これに限定されるものではなく、分子蒸留に該当し得る範囲で種々の配置を取ることができる。蒸発面と凝縮面とが装置内に相対して配置される蒸留装置としては、例えば、外筒と内筒とから構成される二重管構造を有し、外筒の内面を蒸発面あるいは凝縮面とし、内筒の外面を凝縮面あるいは蒸発面とする装置が挙げられる。蒸発面と凝縮面が相対するとき、凝縮面の面積は蒸発面の面積と同等以上であることが好ましい。 In a molecular distillation apparatus or a short-path distillation apparatus, a condenser is disposed inside an evaporator. In the thin-film distillation apparatus, the condenser is arranged outside the evaporator. In any case, the condenser is provided with a condensing surface for cooling the vapor molecules in contact with the vapor molecules evaporated in the evaporator. In a short-stroke distillation apparatus, the condensation surface of the condenser is arranged opposite to the evaporation surface of the evaporator. In the molecular distillation apparatus as well, it is preferable that the evaporation surface and the condensation surface are arranged opposite to each other, but the present invention is not limited to this, and various arrangements can be made within a range applicable to molecular distillation. As a distillation apparatus in which the evaporation surface and the condensation surface are disposed opposite to each other in the device, for example, the distillation device has a double-pipe structure including an outer cylinder and an inner cylinder, and the inner surface of the outer cylinder is formed as an evaporation surface or a condensation surface. And an outer surface of the inner cylinder as a condensing surface or an evaporating surface. When the evaporating surface and the condensing surface are opposed to each other, the area of the condensing surface is preferably equal to or more than the area of the evaporating surface.
分子蒸留装置や短行程蒸留装置と薄膜蒸留装置では凝縮器の配置は上述のように異なっているが、これらの蒸留装置は、好ましくは、遠心型薄膜式蒸留装置、同心円管式蒸留装置、ライボルト混合薄膜蒸留装置、流下膜式蒸留装置等に分類される。 Although the arrangement of the condenser is different between the molecular distillation apparatus and the short-path distillation apparatus and the thin-film distillation apparatus as described above, these distillation apparatuses are preferably a centrifugal thin-film distillation apparatus, a concentric tube-type distillation apparatus, and a ryebolt. It is classified into a mixed thin film distillation device, a falling film distillation device, and the like.
薄膜式蒸発器の蒸発面上に形成される薄膜の厚さは、蒸発速度等を勘案して適宜設定すればよいが、10〜100μmであることが好ましく、より好ましくは20〜90μm、さらに好ましくは30〜80μmである。また、蒸発面積は装置の規模によって決まるため、蒸発させるべき水素化シラン化合物の量に応じて、適宜選択すればよい。 The thickness of the thin film formed on the evaporation surface of the thin film evaporator may be appropriately set in consideration of the evaporation rate and the like, but is preferably 10 to 100 μm, more preferably 20 to 90 μm, and still more preferably. Is 30 to 80 μm. In addition, since the evaporation area is determined by the scale of the apparatus, it may be appropriately selected according to the amount of the hydrogenated silane compound to be evaporated.
第1蒸留工程では、蒸発させた水素化シラン化合物は、−5℃〜30℃で凝縮させることが好ましい。凝縮温度は、より好ましくは−2℃〜20℃、さらに好ましくは0℃〜15℃である。凝縮温度がこの範囲であれば、水素化シラン化合物が固化して装置内の閉塞を招くといったこともなく、良好な作業性を維持することが可能になる。 In the first distillation step, the evaporated hydrogenated silane compound is preferably condensed at -5C to 30C. The condensation temperature is more preferably -2 ° C to 20 ° C, still more preferably 0 ° C to 15 ° C. When the condensation temperature is within this range, it is possible to maintain good workability without causing the hydrogenated silane compound to be solidified and blocking the inside of the apparatus.
なお、本発明において、第1蒸留工程にかかる一連の操作(具体的には、精製前の水素化シラン化合物を仕込むところから、第1蒸留の凝縮物の取り出しまでの操作)は、大気曝露することなく行うことが好ましい。例えば、精製前の水素化シラン化合物の収容容器、蒸留装置(蒸発器、凝縮器等)、および第1蒸留の凝縮物の収容容器の全てを一つの防爆ブース内に収容し、さらにこの防爆ブース内を窒素等の不活性ガス雰囲気に制御する等してもよいし、精製前の液の仕込みや蒸留後のガスの移送や凝縮物の取出し等を、窒素ガス等の不活性ガスで圧送し、密閉装置内で蒸留を行うことで大気曝露を防止するようにしてもよい。 In the present invention, a series of operations relating to the first distillation step (specifically, operations from charging a hydrogenated silane compound before purification to taking out a condensate of the first distillation) are exposed to the air. It is preferred to do without. For example, the container for the hydrogenated silane compound before purification, the distillation apparatus (evaporator, condenser, etc.), and the container for the condensate of the first distillation are all contained in one explosion-proof booth. The inside may be controlled to an atmosphere of an inert gas such as nitrogen, etc., or the preparation of the liquid before purification, the transfer of the gas after the distillation, and the removal of condensate, etc., may be performed by pressure feeding with an inert gas such as a nitrogen gas. Alternatively, distillation may be performed in a closed device to prevent exposure to the atmosphere.
第1蒸留工程では、採用する蒸留装置や蒸留条件にもよるが、第1蒸留の凝縮物中の重合体成分をほぼゼロに、金属元素を数〜十数ppm以下程度に、低減することが好ましい。重合体成分の定量は1H−NMRで、金属元素の定量はICPまたはICP−MSを用いて行うことができる。 In the first distillation step, the polymer component in the condensate of the first distillation can be reduced to almost zero, and the metal element can be reduced to about several to several tens of ppm or less, depending on the distillation apparatus and distillation conditions employed. preferable. The quantification of the polymer component can be performed by 1 H-NMR, and the quantification of the metal element can be performed by ICP or ICP-MS.
[第2蒸留工程]
第2蒸留工程では、公知の蒸留塔での減圧蒸留を行う。第1蒸留によって、水素化シラン化合物の重合を促進すると考えられる水素化シラン化合物の重合体成分がほぼゼロにまで、また金属元素が数〜十数ppm程度にまで、低減されているため、第1蒸留工程よりも高温で第2蒸留工程を行っても、水素化シラン化合物の重合体成分が増量してしまうおそれがない。よって、第2蒸留工程は、50〜100℃(第1蒸留工程で採用した温度よりも高温が望ましい)で行うことができる。より好ましくは60〜90℃であり、さらに好ましくは70〜85℃である。
[Second distillation step]
In the second distillation step, vacuum distillation is performed in a known distillation column. By the first distillation, the polymer component of the hydrogenated silane compound, which is considered to promote the polymerization of the hydrogenated silane compound, is reduced to almost zero, and the metal element is reduced to about several to several tens of ppm. Even if the second distillation step is performed at a higher temperature than the first distillation step, there is no possibility that the amount of the polymer component of the hydrogenated silane compound increases. Therefore, the second distillation step can be performed at 50 to 100 ° C. (preferably higher than the temperature employed in the first distillation step). The temperature is more preferably 60 to 90 ° C, and still more preferably 70 to 85 ° C.
第2蒸留工程は、5kPa以下の減圧度(絶対圧力)で行うことが好ましく、より好ましくは2kPa以下、さらに好ましくは1kPa以下、特に好ましくは200Pa以下である。第2蒸留工程の圧力が高すぎると、せっかく第1蒸留工程で水素化シラン化合物の重合体成分を低減したのに、第2蒸留工程で新たに生成するおそれがあるためである。第2蒸留工程の減圧度の下限は特に限定されないが、実操業上、5Pa以上が好ましく、10Pa以上がより好ましい。 The second distillation step is preferably performed at a reduced pressure (absolute pressure) of 5 kPa or less, more preferably 2 kPa or less, further preferably 1 kPa or less, particularly preferably 200 Pa or less. If the pressure in the second distillation step is too high, the polymer component of the hydrogenated silane compound may be reduced in the first distillation step, but may be newly formed in the second distillation step. The lower limit of the degree of reduced pressure in the second distillation step is not particularly limited, but is preferably 5 Pa or more, more preferably 10 Pa or more, in actual operation.
第2蒸留工程後の精製水素化シラン化合物は、水素化シラン化合物の重合体成分がゼロ(N.D)に、金属元素(合計量)が100ppb以下に、それぞれ低減されていることが好ましい。精製(高純度)水素化シラン化合物中の金属元素は50ppb以下がより好ましく、20ppb以下がさらに好ましく、10ppb以下が特に好ましい。下限はゼロ(N.D)であることが最も好ましいが、技術的に困難であるので、0.01ppb程度が好ましい。さらに、アルミニウム、ナトリウム、カリウム、リチウム、鉄、カルシウム、マグネシウム、チタン、クロム、銅の各含有量は10ppb以下にそれぞれ低減されていることが好ましく、5ppb以下がより好ましく、2ppb以下がさらに好ましく、1ppb以下が特に好ましい。下限はゼロ(N.D)であることが最も好ましいが、技術的に困難であるので、0.01ppb程度が好ましい。これらの金属元素の含有量が上記範囲よりも多い水素化シラン化合物を用いて形成されたシリコン膜は、移動度が低いため、半導体として使用する際、性能の悪化を招くため、好ましくない。また、該金属元素がクロムや銅の場合、特に好ましくない。 In the purified hydrogenated silane compound after the second distillation step, the polymer component of the hydrogenated silane compound is preferably reduced to zero (ND) and the metal element (total amount) is preferably reduced to 100 ppb or less. The metal element in the purified (high-purity) hydrogenated silane compound is more preferably 50 ppb or less, further preferably 20 ppb or less, and particularly preferably 10 ppb or less. The lower limit is most preferably zero (ND), but because it is technically difficult, the lower limit is preferably about 0.01 ppb. Furthermore, the content of each of aluminum, sodium, potassium, lithium, iron, calcium, magnesium, titanium, chromium, and copper is preferably reduced to 10 ppb or less, more preferably 5 ppb or less, and still more preferably 2 ppb or less. Particularly preferred is 1 ppb or less. The lower limit is most preferably zero (ND), but because it is technically difficult, the lower limit is preferably about 0.01 ppb. A silicon film formed using a hydrogenated silane compound in which the content of these metal elements is higher than the above range is not preferable because it has low mobility and causes deterioration in performance when used as a semiconductor. Further, when the metal element is chromium or copper, it is not particularly preferable.
[蒸留工程を3回以上行う場合]
本発明では、これまで説明した第1蒸留工程の次に、上記第2蒸留工程を行うことで、精製水素化シラン化合物中の水素化シラン化合物の重合体成分をゼロ(N.D)に、金属元素を100ppb以下に低減することができるので、さらに蒸留を行う必要はないが、適宜、第1蒸留工程と第2蒸留工程の間に、第1蒸留工程と同程度の条件で行う蒸留工程や、第2蒸留工程後のさらなる蒸留工程等を行っても構わない。
[When the distillation step is performed three or more times]
In the present invention, the polymer component of the hydrogenated silane compound in the purified hydrogenated silane compound is reduced to zero (ND) by performing the second distillation step following the first distillation step described above. Since the metal element can be reduced to 100 ppb or less, there is no need to perform further distillation, but if necessary, a distillation step performed under the same conditions as the first distillation step between the first distillation step and the second distillation step Alternatively, a further distillation step or the like after the second distillation step may be performed.
[その他の精製方法]
また、蒸留以外の精製方法として、水、有機溶媒、およびこれらの混合溶媒での生成物の洗浄、生成物を酸化剤と接触させる酸化剤処理や、吸着精製法、再沈殿法、分液抽出法、再結晶法、晶析法、クロマトグラフィー等による精製等、従来公知の精製方法を組み合わせても構わない。
[Other purification methods]
In addition, purification methods other than distillation include washing of the product with water, an organic solvent, and a mixed solvent thereof, oxidizing agent treatment in which the product is brought into contact with an oxidizing agent, adsorption purification method, reprecipitation method, liquid separation extraction A conventionally known purification method such as a purification method, a recrystallization method, a crystallization method, purification by chromatography or the like may be combined.
[未精製の水素化シラン化合物]
本発明において、第1蒸留工程に供する未精製の水素化シラン化合物の合成方法は特に制限されるものではなく、公知の合成方法を適宜採用することができる。例えば、水素化シラン化合物がシクロヘキサシランである場合、ジフェニルジクロロシランを原料に、アルカリ金属を用いて環化させ、6員環を単離し、塩化アルミニウム存在下で塩酸ガスと接触させてケイ素上を塩素化し、次いで得られたシクロヘキサシランのハロゲン化物を水素化リチウムアルミニウム等の金属水素化物と接触させて還元する方法で得られた反応混合物を、未精製のシクロヘキサシラン(粗シクロヘキサシラン)として用いることができる。また、本発明者らが見出した後述の合成例2に記載の方法、すなわちトリクロロシラン等のハロシラン化合物を、ホスフィンの存在下で環化させ、得られたシクロヘキサシランのハロゲン化物を還元する方法で得られた反応混合物を粗シクロヘキサシランとして用いることもできる。
[Unpurified hydrogenated silane compound]
In the present invention, the method for synthesizing the unpurified hydrogenated silane compound to be subjected to the first distillation step is not particularly limited, and a known synthesis method can be appropriately employed. For example, when the hydrogenated silane compound is cyclohexasilane, diphenyldichlorosilane is used as a raw material, cyclization is performed using an alkali metal, a 6-membered ring is isolated, and contacted with hydrochloric acid gas in the presence of aluminum chloride to form a solution on silicon. Of the resulting cyclohexasilane, and then contacting the resulting cyclohexasilane halide with a metal hydride such as lithium aluminum hydride to reduce the resulting reaction mixture to crude cyclohexasilane (crude cyclohexasilane). ) Can be used. Further, a method described in Synthesis Example 2 described below, which is found by the present inventors, that is, a method in which a halosilane compound such as trichlorosilane is cyclized in the presence of phosphine, and the obtained cyclohexasilane halide is reduced. Can be used as crude cyclohexasilane.
なお、例えば本発明の好ましい態様では、第1蒸留工程は3kPa以下での真空で行われるので、第1蒸留工程に供する未精製水素化シラン化合物は、軽沸点成分の含有量が少ないことが望ましく、第1蒸留工程に供する前に予め、溶媒等の軽沸点成分を取り除いておくことが好ましい。具体的には、例えば、常圧乃至2kPa超の減圧の下で溶媒留去するなどしておけばよい。 In addition, for example, in a preferred embodiment of the present invention, since the first distillation step is performed under a vacuum of 3 kPa or less, the unpurified hydrogenated silane compound to be subjected to the first distillation step desirably has a low content of light boiling components. It is preferable that light-boiling components such as a solvent are removed in advance before being subjected to the first distillation step. Specifically, for example, the solvent may be distilled off under normal pressure or a reduced pressure of more than 2 kPa.
[シクロヘキサシランに限定されない高純度水素化シラン化合物]
本発明の製造方法によれば、通常80%以上、さらに好ましくは90%以上の高い精製収率で、水素化シラン化合物の重合体成分を含まず(N.D)、また金属元素(特にナトリウム)が0.01〜100ppbの範囲に低減された高純度水素化シラン化合物を得ることが可能になる。特にシクロヘキサシランは、金属元素の存在量が多くなると重合反応が進行しやすいが、金属元素の含有量を上記範囲とすることにより、重合反応の進行を抑え、安定に保存することが可能となる。そして、シクロヘキサシランは、製膜時の成長速度が速い点において、より低次の水素化シラン化合物よりも優れており、有用性が高い。
[High-purity hydrogenated silane compound not limited to cyclohexasilane]
According to the production method of the present invention, a polymer component of a hydrogenated silane compound is not contained (ND) in a high purification yield of usually 80% or more, more preferably 90% or more, and a metal element (particularly sodium) ) Is reduced to the range of 0.01 to 100 ppb, so that a high-purity hydrogenated silane compound can be obtained. In particular, cyclohexasilane can easily proceed with the polymerization reaction when the amount of the metal element increases, but by setting the content of the metal element within the above range, it is possible to suppress the progress of the polymerization reaction and to store the metal element stably. Become. Cyclohexasilane is superior to lower-order hydrogenated silane compounds in that the growth rate during film formation is high, and has high utility.
本発明の高純度水素化シラン化合物は、上記の通り、重合体成分の含有量が少ないものとなる。具体的には、水素化シラン化合物中、重合体成分の含有量が0〜5000ppmであることが好ましく、0〜1000ppmがより好ましく、0〜500ppmがさらに好ましく、0〜100ppmが特に好ましく、最も好ましくは0(N.D)である。 As described above, the high-purity hydrogenated silane compound of the present invention has a low content of the polymer component. Specifically, in the hydrogenated silane compound, the content of the polymer component is preferably 0 to 5000 ppm, more preferably 0 to 1000 ppm, still more preferably 0 to 500 ppm, particularly preferably 0 to 100 ppm, and most preferably. Is 0 (ND).
本発明の高純度水素化シラン化合物は、金属元素および重合体成分の含有量が少ないこと等から、保管安定性に優れる。例えば、金属製の容器であって内壁をフッ素系樹脂等の樹脂材料でコーティングした容器内において、窒素雰囲気下25℃で30日間保管したときの重合体の増加量が、好ましくは0〜5000ppmであり、より好ましくは0〜1000ppm、さらに好ましくは0〜500ppm、特に好ましくは0〜100ppm、最も好ましくは0(N.D)である。また、窒素雰囲気下25℃で30日間保管したときの重合体の含有量そのものも、好ましくは0〜5000ppmであり、より好ましくは0〜1000ppm、さらに好ましくは0〜500ppm、特に好ましくは0〜100ppm、最も好ましくは0(N.D)である。 The high-purity hydrogenated silane compound of the present invention has excellent storage stability due to the small content of the metal element and the polymer component. For example, in a container made of metal and having an inner wall coated with a resin material such as a fluororesin, the amount of increase in the polymer when stored at 25 ° C. for 30 days under a nitrogen atmosphere is preferably 0 to 5000 ppm. And more preferably 0 to 1000 ppm, further preferably 0 to 500 ppm, particularly preferably 0 to 100 ppm, and most preferably 0 (ND). Further, the content of the polymer itself when stored at 25 ° C. for 30 days under a nitrogen atmosphere is also preferably 0 to 5000 ppm, more preferably 0 to 1000 ppm, still more preferably 0 to 500 ppm, and particularly preferably 0 to 100 ppm. , Most preferably 0 (ND).
本発明の高純度水素化シラン化合物は、例えば太陽電池や半導体等に用いられるシリコン原料として有用である。 The high-purity hydrogenated silane compound of the present invention is useful, for example, as a silicon raw material used for solar cells, semiconductors, and the like.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples, and may be appropriately modified within a range that can be adapted to the purpose of the preceding and the following. It is of course possible to carry out them, and all of them are included in the technical scope of the present invention.
シクロヘキサシランの純度(収率)は、キャピラリーカラム(J&W SCIENTIFIC社製「DB−1MS」;0.25mm×50m)を装着したガスクロマトグラフ装置(島津製作所社製「GC2014」)にて分析することにより求めた。
また、金属成分量は、ICP−MS(Agilent Technologies社製の「Agilent 7700S」)で、5質量%の希硝酸で500倍に希釈した状態で測定した。
The purity (yield) of cyclohexasilane is analyzed by a gas chromatograph ("GC2014" manufactured by Shimadzu Corporation) equipped with a capillary column ("DB-1MS" manufactured by J & W SCIENTIFIC; 0.25 mm x 50 m). I asked.
The amount of the metal component was measured by ICP-MS (“Agilent 7700S” manufactured by Agilent Technologies) in a state of being diluted 500 times with 5% by mass of diluted nitric acid.
シクロヘキサシランの重合体の存在は、1H−NMR(Varian社製「Unity plus 400」)を用いて、重ベンゼン中で3〜4ppm(TMS基準)にブロードなピークが観測されるか否かで判断し、観測された場合そのピークの積分比から定量した。 The presence of a polymer of cyclohexasilane is determined by using 1 H-NMR (“Unity plus 400” manufactured by Varian) whether a broad peak is observed at 3 to 4 ppm (TMS standard) in heavy benzene. And, when observed, quantified from the integral ratio of the peak.
合成例1
Angew. Chem. Int. Ed. Engl., 1977, 16, 403に記載の方法でシクロヘキサシランを合成した。未精製の状態のシクロヘキサシラン中の重合体量、金属元素量を表1に示した。なお、表1中、%は質量%であり、ppm、ppbはいずれも質量基準である。
Synthesis Example 1
The cyclohexasilane was synthesized by the method described in Angew. Chem. Int. Ed. Engl., 1977, 16, 403. Table 1 shows the amount of the polymer and the amount of the metal element in the unpurified cyclohexasilane. In Table 1,% is% by mass, and ppm and ppb are based on mass.
実施例1
フィンテック社から入手した短行程蒸留装置(ドイツU・I・C社製、KDL1型)を用いて、上記合成例1で得られたシクロヘキサシランの第1蒸留工程を行った。KDL1型短行程蒸留装置の蒸発面積は0.017m2である。第1蒸留工程での減圧度は100Pa、加熱温度は40℃、凝縮器の温度は5℃とした。また、粗シクロヘキサシランのフィード速度は1.5g/minとした。
この第1蒸留工程での収率、得られたシクロヘキサシラン中の重合体量および金属元素量を表1に示した。
Example 1
The first distillation step of the cyclohexasilane obtained in Synthesis Example 1 was performed using a short-path distillation apparatus (KDL1 type, manufactured by U.I.C., Germany) obtained from Fintech. The evaporation area of the KDL1 short stroke distillation apparatus is 0.017 m 2 . The degree of pressure reduction in the first distillation step was 100 Pa, the heating temperature was 40 ° C., and the temperature of the condenser was 5 ° C. The feed rate of the crude cyclohexasilane was 1.5 g / min.
Table 1 shows the yield in the first distillation step, the amount of the polymer in the obtained cyclohexasilane, and the amount of the metal element.
続いて、第1蒸留工程で得られたシクロヘキサシランの第2蒸留工程を行った。第2蒸留工程は、一般的なガラス製の減圧蒸留装置(ナスフラスコ、連結管、蒸留連結管(三叉)、冷却管、受器)を用いて、減圧度800Pa、加熱温度80℃、冷却部5℃として蒸留した。第2蒸留工程の収率は95質量%であり、第1および第2蒸留工程でのトータル収率は89質量%であった。得られた精製シクロヘキサシラン中の重合体量および金属元素量を表1に示した。 Subsequently, a second distillation step of the cyclohexasilane obtained in the first distillation step was performed. The second distillation step is performed using a general vacuum distillation apparatus made of glass (eg, an eggplant flask, a connecting pipe, a distillation connecting pipe (three-pronged), a cooling pipe, and a receiver), at a reduced pressure of 800 Pa, a heating temperature of 80 ° C., and a cooling unit. Distillation was performed at 5 ° C. The yield in the second distillation step was 95% by mass, and the total yield in the first and second distillation steps was 89% by mass. Table 1 shows the amounts of polymer and metal element in the obtained purified cyclohexasilane.
また、得られた精製シクロヘキサシランを窒素雰囲気下25℃で30日保管した。保管後のシクロヘキサシラン中の重合体成分の存在を確認したところ、重合体成分は認められなかった。 Further, the obtained purified cyclohexasilane was stored at 25 ° C. for 30 days in a nitrogen atmosphere. When the presence of the polymer component in the cyclohexasilane after storage was confirmed, no polymer component was recognized.
比較例
上記合成例1で得られたシクロヘキサシランを、第1蒸留工程を行うことなく、上記第2蒸留工程と同じ減圧蒸留装置で同じ蒸留条件で蒸留した。収率は60質量%であり、かなりのシクロヘキサシランが重合体となってしまったと考えられるが、重合体は気化しないため検出できなかった。得られた精製シクロヘキサシラン中の金属元素量を表1に示した。また、実施例1と同様に、精製シクロヘキサシランを30日保管したところ、重合体成分が2質量%生成したことが確認できた。長期保存時にも水素化シラン化合物の純度を高度に維持するためには、金属元素量を高度に低減する必要があることがわかった。
Comparative Example The cyclohexasilane obtained in Synthesis Example 1 was distilled under the same distillation conditions with the same vacuum distillation apparatus as in the second distillation step without performing the first distillation step. The yield was 60% by mass, and it is considered that a considerable amount of cyclohexasilane was converted into a polymer. However, the polymer was not vaporized and could not be detected. Table 1 shows the amounts of metal elements in the obtained purified cyclohexasilane. When purified cyclohexasilane was stored for 30 days in the same manner as in Example 1, it was confirmed that 2% by mass of the polymer component was produced. It was found that in order to maintain the purity of the hydrogenated silane compound at a high level even during long-term storage, it is necessary to reduce the amount of metal elements to a high degree.
合成例2
温度計、コンデンサー、滴下ロートおよび攪拌装置を備えた3L四つ口フラスコ内を窒素ガスで置換した後、ホスフィンとしてトリフェニルホスフィン129g(0.49mol)と、塩基性化合物としてジイソプロピルエチルアミン382g(2.95mol)と、溶媒として1,2−ジクロロエタン1.2Lとを入れた。続いてフラスコ内の溶液を攪拌しながら、25℃条件下において滴下ロートより、ハロシラン化合物としてトリクロロシラン400g(2.95mol)をゆっくりと滴下した。滴下終了後、60℃で6時間加熱攪拌することにより反応させた。得られた反応液を濃縮・洗浄して、非イオン性のドデカクロロシクロヘキサシラン含有化合物([Ph3P]2[Si6Cl12])を白色固体として得た。
Synthesis Example 2
After replacing the inside of a 3 L four-necked flask equipped with a thermometer, a condenser, a dropping funnel and a stirring device with nitrogen gas, 129 g (0.49 mol) of triphenylphosphine as phosphine and 382 g of diisopropylethylamine (2. 95 mol) and 1.2 L of 1,2-dichloroethane as a solvent. Subsequently, 400 g (2.95 mol) of trichlorosilane as a halosilane compound was slowly dropped from the dropping funnel at 25 ° C. while stirring the solution in the flask. After completion of the dropwise addition, the mixture was reacted by heating and stirring at 60 ° C. for 6 hours. The obtained reaction solution was concentrated and washed to obtain a nonionic dodecachlorocyclohexasilane-containing compound ([Ph 3 P] 2 [Si 6 Cl 12 ]) as a white solid.
滴下ロートおよび攪拌装置を備えた100mL二つ口フラスコに、得られた白色固体2.44g(ドデカクロロシクロヘキサシラン含有化合物2.18mmol)を入れて減圧乾燥させた。次いでフラスコ内をアルゴンガスで置換した後、溶媒としてシクロペンチルメチルエーテル30mLを加えた。続いてフラスコ内の懸濁液を攪拌しながら、−20℃条件下において滴下ロートより、還元剤として水素化リチウムアルミニウムのジエチルエーテル溶液(濃度:約1.0mol/L)10mLを徐々に滴下し、次いで−20℃で5時間攪拌することにより反応させた。反応後、反応液を窒素ガス雰囲気下において濾過し、生成した塩を取り除いた。得られた濾液から減圧下で溶媒を留去して、無色透明液体の粗シクロヘキサシランを得た。 In a 100 mL two-necked flask equipped with a dropping funnel and a stirrer, 2.44 g of the obtained white solid (2.18 mmol of dodecachlorocyclohexasilane-containing compound) was placed and dried under reduced pressure. Next, after the inside of the flask was replaced with argon gas, 30 mL of cyclopentyl methyl ether was added as a solvent. Subsequently, while stirring the suspension in the flask, 10 mL of a diethyl ether solution of lithium aluminum hydride (concentration: about 1.0 mol / L) as a reducing agent was gradually dropped from the dropping funnel under the condition of −20 ° C. Then, the mixture was reacted by stirring at -20 ° C for 5 hours. After the reaction, the reaction solution was filtered under a nitrogen gas atmosphere to remove generated salts. The solvent was distilled off from the obtained filtrate under reduced pressure to obtain a colorless transparent liquid crude cyclohexasilane.
実施例2
上記合成例2で得られた粗シクロヘキサシランを用いて、実施例1と同様にして第1蒸留工程および第2蒸留工程を行い、精製シクロヘキサシランを得た。
得られた精製シクロヘキサシランを窒素雰囲気下25℃で30日保管し、保管後のシクロヘキサシラン中の重合体成分の存在を確認したところ、重合体成分は認められなかった。
Example 2
Using the crude cyclohexasilane obtained in Synthesis Example 2 above, the first distillation step and the second distillation step were performed in the same manner as in Example 1 to obtain purified cyclohexasilane.
The purified cyclohexasilane obtained was stored at 25 ° C. for 30 days under a nitrogen atmosphere, and the presence of the polymer component in the cyclohexasilane after storage was confirmed. As a result, no polymer component was recognized.
本発明は、金属元素や重合体といった不純物量の少ない高純度シクロヘキサシランを提供できた。また、本発明法は、高純度シクロヘキサシランを始めとする高純度水素化シラン化合物を、効率よく簡便に製造することができる。本発明の高純度水素化シラン化合物は、太陽電池や半導体等の用途におけるシリコン原料として好適に利用される。 The present invention has provided high-purity cyclohexasilane having a small amount of impurities such as a metal element and a polymer. Further, the method of the present invention can efficiently and easily produce high-purity hydrogenated silane compounds such as high-purity cyclohexasilane. The high-purity hydrogenated silane compound of the present invention is suitably used as a silicon raw material in applications such as solar cells and semiconductors.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013185100 | 2013-09-06 | ||
JP2013185100 | 2013-09-06 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014181852A Division JP6403192B2 (en) | 2013-09-06 | 2014-09-08 | Method for producing high-purity hydrogenated silane compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019001714A JP2019001714A (en) | 2019-01-10 |
JP6630415B2 true JP6630415B2 (en) | 2020-01-15 |
Family
ID=53014214
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014181852A Active JP6403192B2 (en) | 2013-09-06 | 2014-09-08 | Method for producing high-purity hydrogenated silane compound |
JP2018166232A Active JP6630415B2 (en) | 2013-09-06 | 2018-09-05 | High purity cyclohexasilane |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014181852A Active JP6403192B2 (en) | 2013-09-06 | 2014-09-08 | Method for producing high-purity hydrogenated silane compound |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP6403192B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7022512B2 (en) * | 2017-03-09 | 2022-02-18 | 株式会社日本触媒 | Cyclohexasilane with low halogen element content |
TWI783027B (en) * | 2017-08-28 | 2022-11-11 | 日商日本觸媒股份有限公司 | Hydrosilane composition |
JP7055674B2 (en) * | 2018-03-15 | 2022-04-18 | 株式会社日本触媒 | Method for Producing Polysilane Composition and Heteroatom-Introduced Polysilane Composition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005120029A (en) * | 2003-10-17 | 2005-05-12 | Jsr Corp | Method of purifying silane compound |
EP2069368A4 (en) * | 2006-10-06 | 2011-06-22 | Kovio Inc | Silicon polymers, methods of polymerizing silicon compounds, and methods of forming thin films from such silicon polymers |
DE102010063823A1 (en) * | 2010-12-22 | 2012-06-28 | Evonik Degussa Gmbh | Process for the preparation of hydridosilanes |
JP5808646B2 (en) * | 2011-10-31 | 2015-11-10 | 株式会社日本触媒 | Method for producing cyclic silane intermediate and method for producing cyclic hydrogenated silane or cyclic organosilane |
-
2014
- 2014-09-08 JP JP2014181852A patent/JP6403192B2/en active Active
-
2018
- 2018-09-05 JP JP2018166232A patent/JP6630415B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019001714A (en) | 2019-01-10 |
JP2015071530A (en) | 2015-04-16 |
JP6403192B2 (en) | 2018-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6630415B2 (en) | High purity cyclohexasilane | |
JP6483226B2 (en) | Cyclohexasilane | |
JP4722504B2 (en) | N-alkylborazine and process for producing the same | |
US20180044358A1 (en) | Method for producing dialkylaminosilane | |
WO2020166632A1 (en) | Fluorolactone and method for producing same | |
JP7007555B2 (en) | Purification method and production method of unsaturated bond-containing silane compound | |
JP2006213683A (en) | Method for producing n-alkylborazine | |
TWI689486B (en) | Production method of fluorinated alkane, separation and recovery method of amidine, and method of using recovered amidine | |
JP6086163B2 (en) | Method for producing 2'-trifluoromethyl group-substituted aromatic ketone | |
JP2018520134A5 (en) | ||
TW201910262A (en) | Process for preparing pentachlorodioxane and purified reaction product comprising pentachlorodioxane | |
JP5001526B2 (en) | Method for producing borazine compound | |
JP2013001632A (en) | Method for purifying chlorosilanes | |
JP5919882B2 (en) | Cobalt compound mixture and method for producing cobalt-containing thin film using the cobalt compound mixture | |
JP2015134799A (en) | High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material | |
JPWO2018173863A1 (en) | Method for producing fluorinated hydrocarbon | |
JP5546723B2 (en) | Method for producing N-alkylborazine | |
JP5215600B2 (en) | Method for producing N-alkylborazine | |
US20170327944A1 (en) | Aluminum precursors for thin-film deposition, preparation method and use thereof | |
JP6673845B2 (en) | Silane polymerization inhibitor | |
JP5373265B2 (en) | Method for producing N-alkylborazine | |
KR20160042263A (en) | Method for purifying organic materials using ionic liquid | |
JP4795318B2 (en) | Method for producing N-alkylborazine | |
JP4904126B2 (en) | Process for producing purified borazine compound, and purified borazine compound | |
JP4915159B2 (en) | Method for producing 1,3-cyclohexadiene compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190709 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6630415 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |