JP2015134799A - High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material - Google Patents

High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material Download PDF

Info

Publication number
JP2015134799A
JP2015134799A JP2015045356A JP2015045356A JP2015134799A JP 2015134799 A JP2015134799 A JP 2015134799A JP 2015045356 A JP2015045356 A JP 2015045356A JP 2015045356 A JP2015045356 A JP 2015045356A JP 2015134799 A JP2015134799 A JP 2015134799A
Authority
JP
Japan
Prior art keywords
raw material
zirconium alkoxide
aqueous solution
purity zirconium
alkoxide raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015045356A
Other languages
Japanese (ja)
Inventor
千尋 長谷川
Chihiro Hasegawa
千尋 長谷川
白井 昌志
Masashi Shirai
昌志 白井
弘之 桜井
Hiroyuki Sakurai
弘之 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2015045356A priority Critical patent/JP2015134799A/en
Publication of JP2015134799A publication Critical patent/JP2015134799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a high-purity zirconium alkoxide raw material, whose high purification is specifically attained, that is, whose halogen and metal impurities are reduced.SOLUTION: Provided is a high-purity zirconium alkoxide raw material having, as measured by the following analytical methods, a halogen content of less than 1 mass ppm or less, each content of iron, chromium, and copper of less than 0.1 mass ppm, and a nickel content of less than 0.4 mass ppm. Analytical method of halogens: to a high-purity zirconium alkoxide raw material, as is or after being dissolved in an organic solvent, is added a basic aqueous solution; after removing precipitates, the aqueous solution portion of a solution, from which precipitates have been removed, is analyzed by ion chromatography for a halogen content in the high-purity zirconium alkoxide raw material. Analytical method of metal contents: to a high-purity zirconium alkoxide raw material, as is or after being dissolved in an organic solvent, is added an acidic aqueous solution; an aqueous solution part of this acidic solution is analyzed by inductive coupling plasma mass spectrometry (ICP-MS), inductive coupling plasma emission spectral analysis (ICP-AES), or a combination of these for contents of iron, chromium, copper, and nickel in the high-purity zirconium alkoxide raw material.

Description

本発明は、ジルコニウム含有薄膜を形成させる際に使用可能な高純度ジルコニウムアルコキシド原料に関する。   The present invention relates to a high-purity zirconium alkoxide raw material that can be used in forming a zirconium-containing thin film.

近年、DRAMに代表される半導体メモリー及びデバイスの微細化に伴って、高誘電体材料であるジルコニウム含有薄膜はキャパシタの分野で注目されている。又、強誘電体キャパシタ、絶縁膜等の電子材料の用途として活発に研究開発が行われている。   In recent years, with the miniaturization of semiconductor memories and devices represented by DRAMs, zirconium-containing thin films, which are high dielectric materials, have attracted attention in the field of capacitors. In addition, active research and development is being conducted for applications of electronic materials such as ferroelectric capacitors and insulating films.

ジルコニウム含有薄膜の製造方法としては、例えば、スパッタ法やゾルゲル法が報告されている。しかし、優れた薄膜の均一性や組成制御、その量産性から、化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法と称する)及び原子層蒸着法(Atomic Layer Deposition法;以下、ALD法と称する)での製造が現在の主流になっていると言える。   As a method for producing a zirconium-containing thin film, for example, a sputtering method or a sol-gel method has been reported. However, due to excellent thin film uniformity and composition control, and mass production, chemical vapor deposition (Chemical Vapor Deposition method; hereinafter referred to as CVD method) and atomic layer deposition (Atomic Layer deposition method; hereinafter referred to as ALD method) It can be said that the manufacturing method is now mainstream.

従来、ジルコニウムCVD法又はALD法の原料に使用される高純度ジルコニウム原料が求められているところ、熱安定性に優れた、特殊な骨格を有する1−アルキルイソブチルアルコールを配位子として有するテトラ(1−アルキルイソブチルアルコキシド)ジルコニウムが提案されている(例えば、特許文献1参照)。   Conventionally, a high-purity zirconium raw material used as a raw material for a zirconium CVD method or an ALD method has been demanded, and a tetra- (1) -alkylisobutyl alcohol having a special skeleton having excellent thermal stability as a ligand ( 1-alkylisobutylalkoxide) zirconium has been proposed (see, for example, Patent Document 1).

特願2010−236797号明細書Japanese Patent Application No. 2010-236797

本発明の課題は、具体的に高純度化が達成された、即ち、ハロゲンや金属不純物の含有量が低減された高純度ジルコニウムアルコキシド原料を効率的に製造する方法を提供することにある。   An object of the present invention is to provide a method for efficiently producing a high-purity zirconium alkoxide raw material in which high purity is specifically achieved, that is, the content of halogen and metal impurities is reduced.

本発明の課題は、又、特別な精製を必要とすることなく、高純度ジルコニウムアルコキシド原料を製造する方法を提供することにもある。   Another object of the present invention is to provide a method for producing a high purity zirconium alkoxide raw material without requiring special purification.

本発明の課題は、更に、高純度ジルコニウムアルコキシド原料中のハロゲンや金属不純物の含有量を特定できる分析方法を提供することでもある。   Another object of the present invention is to provide an analytical method capable of specifying the content of halogen and metal impurities in a high-purity zirconium alkoxide raw material.

本発明の課題は、下記分析法で測定されるハロゲンの含有量が1質量ppm未満、鉄、クロム及び銅それぞれの含有量が0.1質量ppm未満であり、ニッケルの含有量が0.4質量ppm未満である、一般式(1)   The problem of the present invention is that the halogen content measured by the following analysis method is less than 1 ppm by mass, the content of each of iron, chromium and copper is less than 0.1 ppm by mass, and the content of nickel is 0.4 Less than ppm by mass, general formula (1)

(式中、Rは炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)
で示される高純度ジルコニウムアルコキシド原料によって解決される。
ハロゲンの分析法;
高純度ジルコニウムアルコキシド原料を、そのまま又は有機溶媒に溶解した後、これと塩基性水溶液とを混合して、沈殿物を除去した溶液の水溶液部分をイオンクロマトグラフィーにより高純度ジルコニウムアルコキシド原料中のハロゲン含有量を分析する。
金属含量の分析法;
高純度ジルコニウムアルコキシド原料を、そのまま又は有機溶媒に溶解した後、これと酸性水溶液とを混合して、この酸性水溶液の水溶液部分を誘導結合プラズマ質量分析(ICP−MS)、誘導結合プラズマ発光分光分析(ICP−AES)又はそれらを組み合わせて高純度ジルコニウムアルコキシド原料中の鉄、クロム、銅及びニッケル含有量を分析する。
(In the formula, R represents a linear or branched alkyl group having 2 to 6 carbon atoms.)
This is solved by a high-purity zirconium alkoxide raw material represented by:
Analytical method of halogen;
After the high-purity zirconium alkoxide raw material is dissolved as it is or in an organic solvent, this is mixed with a basic aqueous solution, and the aqueous solution portion of the solution from which the precipitate is removed is ion-chromatized to contain halogen in the high-purity zirconium alkoxide raw material. Analyze the amount.
Analysis of metal content;
A high-purity zirconium alkoxide raw material is dissolved as it is or in an organic solvent, and then mixed with an acidic aqueous solution, and the aqueous solution portion of the acidic aqueous solution is subjected to inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectroscopy. (ICP-AES) or a combination thereof is used to analyze the contents of iron, chromium, copper and nickel in the high purity zirconium alkoxide raw material.

本発明により、金属含有薄膜を形成させる際に有用な高純度ジルコニウムアルコキシド原料の効率的な製造方法を提供することが出来る。   According to the present invention, an efficient method for producing a high-purity zirconium alkoxide raw material useful for forming a metal-containing thin film can be provided.

(高純度ジルコニウムアルコキシド原料)
本発明の高純度ジルコニウムアルコキシド原料は、前記の一般式(1)で示され、後述の分析方法で測定して、そのハロゲン含有量は1ppm未満、鉄、クロム及び銅の含有量が0.1質量ppm未満であり、ニッケルの含有量が0.4質量ppm未満である。その一般式(1)において、Rは炭素原子数2〜6の直鎖又は分枝状のアルキル基を示すが、例えば、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基であり、好ましくはエチル基、n−プロピル基、イソプロピル基である。
(High purity zirconium alkoxide raw material)
The high-purity zirconium alkoxide raw material of the present invention is represented by the general formula (1) and has a halogen content of less than 1 ppm and an iron, chromium, and copper content of 0.1 as measured by the analysis method described later. The content is less than ppm by mass, and the nickel content is less than 0.4 ppm by mass. In the general formula (1), R represents a linear or branched alkyl group having 2 to 6 carbon atoms, and examples thereof include an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. , T-butyl group, pentyl group and hexyl group, preferably ethyl group, n-propyl group and isopropyl group.

(高純度ジルコニウムアルコキシド原料の製造方法)
本発明の反応で使用するテトラハロゲノジルコニウムは、前記の一般式(2)で示される。その一般式(2)において、Xはフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を示し、4つのXは同一でも互いに異なっていても良い。なお、テトラハロゲノジルコニウムは、同一の金属を有するものであれば、単独又は二種以上を混合して使用しても良い。
(Method for producing high-purity zirconium alkoxide raw material)
The tetrahalogenozirconium used in the reaction of the present invention is represented by the general formula (2). In the general formula (2), X represents a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, and the four Xs may be the same or different from each other. In addition, if tetrahalogenozirconium has the same metal, you may use it individually or in mixture of 2 or more types.

本発明の反応で使用する1−アルキルイソブチルアルコールは、前記の一般式(3)で示される。その一般式(3)において、Rは前記と同義である。   The 1-alkylisobutyl alcohol used in the reaction of the present invention is represented by the general formula (3). In the general formula (3), R is as defined above.

前記1−アルキルイソブチルアルコールの使用量は、テトラハロゲノジルコニウム1モルに対して、3.0〜8.0モル、更に好ましくは3.5〜6.0モルである。   The amount of the 1-alkylisobutyl alcohol to be used is 3.0 to 8.0 mol, more preferably 3.5 to 6.0 mol, per 1 mol of tetrahalogenozirconium.

本発明で使用するジアルキルアミンは、前記の一般式(4)で示される。その一般式(4)において、R及びRは、同一又は異なっていても良く、水素原子又は炭素原子数1〜6の直鎖又は分岐状のアルキル基を示すが、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基である。なお、R及びRは、互いに結合して環を形成していても良い。 The dialkylamine used in the present invention is represented by the general formula (4). In the general formula (4), R 1 and R 2 may be the same or different and each represents a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, such as a methyl group, An ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a pentyl group, and a hexyl group. R 1 and R 2 may be bonded to each other to form a ring.

使用されるジアルキルアミンの具体例としては、ジメチルアミン、エチル(メチル)アミン、イソプロピル(メチル)アミン、n−プロピル(メチル)アミン、ジエチルアミン、エチル(イソプロピル)アミン、エチル(n−プロピル)アミン、ジ(イソプロピル)アミン、ジ(n−プロピル)アミン、イソプロピル(n−プロピル)アミン、ジ(n−ブチル)アミン、ジペンチルアミン、ジヘキシルアミン、ピロリジン、ピペリジン、1−メチルピロリジンが挙げられるが、好ましくはジメチルアミン、エチル(メチル)アミン、イソプロピル(メチル)アミン、n−プロピル(メチル)アミン、ジエチルアミンが使用される。なお、これらのアミン化合物は、単独又は二種以上を混合して使用しても良い。   Specific examples of the dialkylamine used include dimethylamine, ethyl (methyl) amine, isopropyl (methyl) amine, n-propyl (methyl) amine, diethylamine, ethyl (isopropyl) amine, ethyl (n-propyl) amine, Di (isopropyl) amine, di (n-propyl) amine, isopropyl (n-propyl) amine, di (n-butyl) amine, dipentylamine, dihexylamine, pyrrolidine, piperidine, 1-methylpyrrolidine are preferred, Dimethylamine, ethyl (methyl) amine, isopropyl (methyl) amine, n-propyl (methyl) amine, and diethylamine are used. In addition, you may use these amine compounds individually or in mixture of 2 or more types.

前記アミン化合物の使用量は、テトラハロゲノジルコニウム1モルに対して、3.5〜20.0モル、更に好ましくは4.0〜15.0モルである。   The amount of the amine compound used is 3.5 to 20.0 mol, more preferably 4.0 to 15.0 mol, with respect to 1 mol of tetrahalogenozirconium.

本発明の反応において使用される炭化水素溶媒は、ハロゲンで置換されている炭化水素類をも含み、反応を阻害しないものならば特に限定されないが、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;クロロシクロヘキサン等のハロゲン化脂肪族炭化水素類;クロロベンゼン等のハロゲン化芳香族炭化水素類が挙げられるが、好ましくはn−ヘキサン、n−ヘプタン、シクロヘキサン、メチルシクロヘキサン、トルエン、キシレンが使用される。なお、これらの炭化水素溶媒は、単独又は二種以上を混合して使用しても良い。   The hydrocarbon solvent used in the reaction of the present invention includes hydrocarbons substituted with halogen and is not particularly limited as long as it does not inhibit the reaction, but n-pentane, n-hexane, n-heptane, n-octane, isooctane, cyclohexane, methylcyclohexane, ethylcyclohexane and other aliphatic hydrocarbons; benzene, toluene, xylene and other aromatic hydrocarbons; chlorocyclohexane and other halogenated aliphatic hydrocarbons; chlorobenzene, etc. halogenated Although aromatic hydrocarbons are mentioned, n-hexane, n-heptane, cyclohexane, methylcyclohexane, toluene and xylene are preferably used. In addition, you may use these hydrocarbon solvents individually or in mixture of 2 or more types.

本発明の反応は、例えば、テトラハロゲノジルコニウム、1−アルキルイソブチルアルコール、ジアルキルアミン及び炭化水素溶媒を混合して、攪拌しながら反応させる等の方法によって行われる。その際の反応温度は、使用される炭化水素溶媒とアミン化合物の組み合わせによって異なるが、好ましくは−70〜100℃、更に好ましくは−50〜80℃であり、反応圧力は特に制限されない。   The reaction of the present invention is performed by, for example, a method of mixing tetrahalogenozirconium, 1-alkylisobutyl alcohol, dialkylamine and a hydrocarbon solvent and reacting them while stirring. Although the reaction temperature in that case changes with combinations of the hydrocarbon solvent and amine compound to be used, Preferably it is -70-100 degreeC, More preferably, it is -50-80 degreeC, and reaction pressure in particular is not restrict | limited.

本発明の反応によって得られたジルコニウムアルコキシドは、反応終了後、中和、抽出、濾過、濃縮、蒸留、昇華、再結晶、カラムクロマトグラフィー等による一般的な方法によって単離・精製される。   After completion of the reaction, the zirconium alkoxide obtained by the reaction of the present invention is isolated and purified by a general method such as neutralization, extraction, filtration, concentration, distillation, sublimation, recrystallization, column chromatography and the like.

(高純度ジルコニウムアルコキシド原料の分析方法及び金属不純物特定方法)
得られた高純度ジルコニウムアルコキシド原料は、特有の分析方法により、ハロゲン及び金属不純物を定量することができ、その結果により高純度原料として合格品とされる。
(High purity zirconium alkoxide raw material analysis method and metal impurity identification method)
The obtained high-purity zirconium alkoxide raw material can quantify halogen and metal impurities by a specific analysis method, and as a result, it is accepted as a high-purity raw material.

ハロゲンの定量は、以下の手法で行う。
高純度ジルコニウムアルコキシド原料を、そのまま又は有機溶媒に溶解した後、これと塩基性水溶液とを混合して、沈殿物を除去した溶液の水溶液部分をイオンクロマトグラフィーにより高純度ジルコニウムアルコキシド原料中のハロゲン含有量を分析する、高純度ジルコニウムアルコキシド原料の分析方法。
The halogen is quantified by the following method.
After the high-purity zirconium alkoxide raw material is dissolved as it is or in an organic solvent, this is mixed with a basic aqueous solution, and the aqueous solution portion of the solution from which the precipitate is removed is ion-chromatized to contain halogen in the high-purity zirconium alkoxide raw material. A method for analyzing a high-purity zirconium alkoxide raw material for analyzing the amount.

前記分析の際に使用する有機溶媒としては、例えば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;クロロシクロヘキサン等のハロゲン化脂肪族炭化水素類;クロロベンゼン等のハロゲン化芳香族炭化水素類が挙げられるが、好ましくは芳香族炭化水素類、更に好ましくはトルエン、キシレンが使用される。なお、これらの有機溶媒は、単独又は二種以上を混合して使用しても良い。   Examples of the organic solvent used in the analysis include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, n-octane, isooctane, cyclohexane, methylcyclohexane, and ethylcyclohexane; benzene, toluene, Aromatic hydrocarbons such as xylene; Halogenated aliphatic hydrocarbons such as chlorocyclohexane; Halogenated aromatic hydrocarbons such as chlorobenzene, etc., preferably aromatic hydrocarbons, more preferably toluene, xylene Is used. In addition, you may use these organic solvents individually or in mixture of 2 or more types.

前記有機溶媒の使用量は、高純度ジルコニウムアルコキシド原料を完全に溶解させて溶液を均一にする量ならば特に制限はない。   The amount of the organic solvent used is not particularly limited as long as the high purity zirconium alkoxide raw material is completely dissolved to make the solution uniform.

前記分析の際に使用する塩基性水溶液の塩基は、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物;水酸化マグネシウム、水酸化カルシウム等のアルカリ土類金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸カルシウム等のアルカリ金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素カルシウム等のアルカリ金属水素炭酸塩;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt−ブトキシド、カリウムメトキシド、カリウムn−ブトキシド等のアルカリ金属アルコキシド等が挙げられるが、好ましくはアルカリ金属水酸化物、更に好ましくは水酸化ナトリウム、水酸化カリウムが使用される。なお、これらの塩基は、単独又は二種以上を混合して使用しても良い。   Examples of the base of the basic aqueous solution used for the analysis include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide. Products; alkali metal carbonates such as sodium carbonate, potassium carbonate, calcium carbonate; alkali metal hydrogen carbonates such as sodium hydrogen carbonate, potassium hydrogen carbonate, calcium hydrogen carbonate; sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium Alkali metal alkoxides such as methoxide and potassium n-butoxide are exemplified, and alkali metal hydroxides are preferably used, and sodium hydroxide and potassium hydroxide are more preferably used. In addition, you may use these bases individually or in mixture of 2 or more types.

前記塩基性水溶液の量は特に制限されず、含有すると想定されるハロゲンイオンの量に対して過剰量加えれば良く、ハロゲンイオンは原料のテトラハロゲノジルコニウム由来であるため、テトラハロゲノジルコニウムの使用量(モル)に対して4倍モル加えれば良い(大半のハロゲンはジアルキルアミンが塩とする)。   The amount of the basic aqueous solution is not particularly limited, and may be added in excess with respect to the amount of halogen ions assumed to be contained. Since the halogen ions are derived from the raw material tetrahalogenozirconium, the amount of tetrahalogenozirconium used ( 4 moles to mole) (most halogens are dialkylamine salts).

前記分析においては、塩基性水溶液を添加し、沈殿物が析出した後に、得られた均一の溶液をイオンクロマトグラフィーにより分析することでハロゲンの含有量が定量される。その際のイオンクロマトグラフィーの分析条件は、通常の水溶液中のハロゲンイオンを分析する条件において行うことができる。   In the said analysis, after adding basic aqueous solution and depositing a deposit, content of halogen is quantified by analyzing the obtained uniform solution by ion chromatography. The analysis conditions for ion chromatography at that time can be performed under the conditions for analyzing halogen ions in a normal aqueous solution.

金属不純物の定量は、以下の手法で行う。
高純度ジルコニウムアルコキシド原料を、そのまま又は有機溶媒に溶解した後、これと酸性水溶液とを混合して、この酸性水溶液を誘導結合プラズマ質量分析(ICP−MS)、誘導結合プラズマ発光分光分析(ICP−AES)又はそれらを組み合わせて高純度ジルコニウムアルコキシド原料中の鉄、クロム、銅及びニッケル含有量を分析する、高純度ジルコニウムアルコキシド原料の分析方法。
The metal impurities are quantified by the following method.
A high-purity zirconium alkoxide raw material is dissolved as it is or in an organic solvent, and then mixed with an acidic aqueous solution, and this acidic aqueous solution is subjected to inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectroscopy (ICP-). AES) or a combination thereof to analyze the content of iron, chromium, copper and nickel in a high purity zirconium alkoxide raw material.

前記分析の際に使用する有機溶媒としては、例えば、n−ペンタン、n−ヘキサン、n−ヘプタン、n−オクタン、イソオクタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;クロロシクロヘキサン等のハロゲン化脂肪族炭化水素類;クロロベンゼン等のハロゲン化芳香族炭化水素類が挙げられるが、好ましくは芳香族炭化水素類、更に好ましくはトルエン、キシレンが使用される。なお、これらの有機溶媒は、単独又は二種以上を混合して使用しても良い。   Examples of the organic solvent used in the analysis include aliphatic hydrocarbons such as n-pentane, n-hexane, n-heptane, n-octane, isooctane, cyclohexane, methylcyclohexane, and ethylcyclohexane; benzene, toluene, Aromatic hydrocarbons such as xylene; Halogenated aliphatic hydrocarbons such as chlorocyclohexane; Halogenated aromatic hydrocarbons such as chlorobenzene, etc., preferably aromatic hydrocarbons, more preferably toluene, xylene Is used. In addition, you may use these organic solvents individually or in mixture of 2 or more types.

前記有機溶媒の使用量は、高純度ジルコニウムアルコキシド原料を完全に溶解させて溶液を均一にする量ならば特に制限はない。   The amount of the organic solvent used is not particularly limited as long as the high purity zirconium alkoxide raw material is completely dissolved to make the solution uniform.

前記分析の際に使用する酸性水溶液としては、例えば、フッ化水素酸、塩酸、硝酸、硫酸、リン酸等の無機酸;ギ酸、酢酸、クロロ酢酸等の有機酸が挙げられるが、好ましくは無機酸、更に好ましくは硝酸が使用される。この酸性水溶液の濃度は、特に制限されないが、通常、0.1〜50%の濃度のものを使用する。なお、酸性水溶液の使用量は特に制限されない。   Examples of the acidic aqueous solution used for the analysis include inorganic acids such as hydrofluoric acid, hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid; organic acids such as formic acid, acetic acid, and chloroacetic acid. An acid, more preferably nitric acid, is used. The concentration of the acidic aqueous solution is not particularly limited, but usually a concentration of 0.1 to 50% is used. The amount of acidic aqueous solution used is not particularly limited.

前記分析においては、酸性水溶液を混合した後に、この酸性水溶液を誘導結合プラズマ質量分析(ICP−MS)、誘導結合プラズマ発光分光分析(ICP−AES)又はそれらを組み合わせて高純度ジルコニウムアルコキシド原料中の鉄、クロム、銅及びニッケル含有量を分析することで金属含有量が定量される。その際の分析条件は、水溶液中の金属を分析する条件の中でも、金属の分析に適した標準添加法を用いて行った。即ち、複数の標準添加液資料を作成した上で、定量用の検量線を作成し、これをもとにしてそれぞれの金属の定量を行う。   In the said analysis, after mixing acidic aqueous solution, this acidic aqueous solution is inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectroscopic analysis (ICP-AES), or a combination thereof in a high purity zirconium alkoxide raw material. The metal content is quantified by analyzing the iron, chromium, copper and nickel content. The analysis conditions at that time were the standard addition method suitable for the analysis of the metal among the conditions for analyzing the metal in the aqueous solution. That is, after preparing a plurality of standard additive solution data, a calibration curve for determination is prepared, and based on this, each metal is determined.

以上の方法により分析して合格品とされた高純度ジルコニウムアルコキシド原料を製品(ジルコニウム含有薄膜製造用原料)とすることができる。   A high-purity zirconium alkoxide raw material analyzed by the above method and regarded as an acceptable product can be used as a product (a raw material for producing a zirconium-containing thin film).

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.

実施例1(R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.25g(18.24mmol)及びトルエン50mlを秤量し、−40〜−20℃でジエチルアミン16.0ml(154.22mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液を濾過し、濾液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム8.08gを得た(単離収率;80.3%)。
Example 1 (R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium)
In a 100 ml flask equipped with a stirrer and a thermometer, 4.25 g (18.24 mmol) of zirconium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 16.0 ml of diethylamine at −40 to −20 ° C. 154.22 mmol) was added dropwise. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 11 Pa) to obtain 8.08 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 80.3%). .

得られたテトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムを、キシレンに溶解した後、これと水酸化ナトリウム水溶液とを混合して、濾過により沈殿物を除去したアルカリ水溶液をイオンクロマトグラフで分析した。その結果、塩素の含有量は1ppm未満であった。
又、得られたテトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムを、キシレンに溶解した後、これと硝酸とを混合して、この硝酸水溶液を誘導結合プラズマ質量分析(ICP−MS)で分析したその結果、金属不純物である鉄、クロム及び銅の含有量が0.1質量ppm未満であり、ニッケルの含有量が0.4質量ppm未満であった。
The resulting tetrakis (2,4-dimethyl-3-pentoxy) zirconium is dissolved in xylene, and this is mixed with an aqueous sodium hydroxide solution, and the aqueous alkali solution from which the precipitate has been removed by filtration is ion chromatographed. analyzed. As a result, the chlorine content was less than 1 ppm.
Further, after the obtained tetrakis (2,4-dimethyl-3-pentoxy) zirconium is dissolved in xylene, this is mixed with nitric acid, and this aqueous nitric acid solution is subjected to inductively coupled plasma mass spectrometry (ICP-MS). As a result of analysis, the contents of metal impurities such as iron, chromium, and copper were less than 0.1 mass ppm, and the content of nickel was less than 0.4 mass ppm.

実施例2〜6及び比較例1〜2(R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成)
実施例1において、各種反応条件を変えたこと以外、実施例1と同様に反応を行った。その結果を表1に示す。
Examples 2 to 6 and Comparative Examples 1 and 2 (R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium)
In Example 1, the reaction was performed in the same manner as in Example 1 except that various reaction conditions were changed. The results are shown in Table 1.

以上の結果から、得られたテトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムは、ジルコニウム含有薄膜製造用原料として最適な高純度テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム原料となりうることが分かった。   From the above results, the obtained tetrakis (2,4-dimethyl-3-pentoxy) zirconium can be a high-purity tetrakis (2,4-dimethyl-3-pentoxy) zirconium raw material optimal as a raw material for producing a zirconium-containing thin film. I understood that.

本発明により、ジルコニウム含有薄膜を形成させる際に使用可能な高純度ジルコニウムアルコキシド原料を提供することが出来る。   According to the present invention, a high-purity zirconium alkoxide raw material that can be used when forming a zirconium-containing thin film can be provided.

Claims (6)

下記分析法で測定されるハロゲンの含有量が1質量ppm未満、鉄、クロム及び銅それぞれの含有量が0.1質量ppm未満であり、ニッケルの含有量が0.4質量ppm未満である、一般式(1)
(式中、Rは炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)
で示される高純度ジルコニウムアルコキシド原料。
ハロゲンの分析法;
高純度ジルコニウムアルコキシド原料を、そのまま又は有機溶媒に溶解した後、これと塩基性水溶液とを混合して、沈殿物を除去した溶液の水溶液部分をイオンクロマトグラフィーにより高純度ジルコニウムアルコキシド原料中のハロゲン含有量を分析する。
金属含量の分析法;
高純度ジルコニウムアルコキシド原料を、そのまま又は有機溶媒に溶解した後、これと酸性水溶液とを混合して、この酸性水溶液の水溶液部分を誘導結合プラズマ質量分析(ICP−MS)、誘導結合プラズマ質量分析(ICP−AES)又はそれらを組み合わせて高純度ジルコニウムアルコキシド原料中の鉄、クロム、銅及びニッケル含有量を分析する。
The halogen content measured by the following analysis method is less than 1 ppm by mass, the content of each of iron, chromium and copper is less than 0.1 ppm by mass, and the content of nickel is less than 0.4 ppm by mass, General formula (1)
(In the formula, R represents a linear or branched alkyl group having 2 to 6 carbon atoms.)
A high purity zirconium alkoxide raw material represented by
Analytical method of halogen;
After the high-purity zirconium alkoxide raw material is dissolved as it is or in an organic solvent, this is mixed with a basic aqueous solution, and the aqueous solution portion of the solution from which the precipitate is removed is ion-chromatized to contain halogen in the high-purity zirconium alkoxide raw material. Analyze the amount.
Analysis of metal content;
After the high purity zirconium alkoxide raw material is dissolved as it is or in an organic solvent, this is mixed with an acidic aqueous solution, and the aqueous solution portion of this acidic aqueous solution is subjected to inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma mass spectrometry ( ICP-AES) or a combination thereof to analyze the iron, chromium, copper and nickel contents in the high purity zirconium alkoxide raw material.
塩基性水溶液がアルカリ金属水酸化物の水溶液である請求項1記載の高純度ジルコニウムアルコキシド原料。   The high-purity zirconium alkoxide raw material according to claim 1, wherein the basic aqueous solution is an aqueous solution of an alkali metal hydroxide. 酸性水溶液が、硝酸である請求項1記載の高純度ジルコニウムアルコキシド原料。   The high purity zirconium alkoxide raw material according to claim 1, wherein the acidic aqueous solution is nitric acid. 一般式(2)
(式中、Xはハロゲン原子を示す。なお、4つのXは同一でも互いに異なっていても良い。)
で示されるテトラハロゲノジルコニウムと一般式(3)
(式中、Rは炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)
で示される1−アルキルイソブチルアルコールとを、一般式(4)
(式中、R及びRは、同一又は異なっていても良く、炭素原子数1〜6の直鎖又は分岐状のアルキル基を示す。)
で示されるジアルキルアミンの存在下、炭化水素溶媒中で反応させることを特徴とする、一般式(1)
(式中、は前記と同義である。)
で示される請求項1記載の高純度ジルコニウムアルコキシド原料の製造方法。
General formula (2)
(In the formula, X represents a halogen atom. The four Xs may be the same or different from each other.)
Tetrahalogenozirconium represented by the general formula (3)
(In the formula, R represents a linear or branched alkyl group having 2 to 6 carbon atoms.)
1-alkylisobutyl alcohol represented by the general formula (4)
(In the formula, R 1 and R 2 may be the same or different, and represent a linear or branched alkyl group having 1 to 6 carbon atoms.)
The reaction is carried out in a hydrocarbon solvent in the presence of a dialkylamine represented by the general formula (1)
(Wherein is as defined above.)
The manufacturing method of the high purity zirconium alkoxide raw material of Claim 1 shown by these.
高純度ジルコニウムアルコキシド原料を、そのまま又は有機溶媒に溶解した後、これと塩基性水溶液とを混合して、沈殿物を除去した溶液の水溶液部分をイオンクロマトグラフィーにより高純度ジルコニウムアルコキシド原料中のハロゲン含有量を分析する、高純度ジルコニウムアルコキシド原料の分析方法。   After the high-purity zirconium alkoxide raw material is dissolved as it is or in an organic solvent, this is mixed with a basic aqueous solution, and the aqueous solution portion of the solution from which the precipitate is removed is ion-chromatized to contain halogen in the high-purity zirconium alkoxide raw material. A method for analyzing a high-purity zirconium alkoxide raw material for analyzing the amount. 高純度ジルコニウムアルコキシド原料を、そのまま又は有機溶媒に溶解した後、これと酸性水溶液とを混合して、この酸性水溶液の水溶液部分を誘導結合プラズマ質量分析(ICP−MS)、誘導結合プラズマ質量分析(ICP−AES)又はそれらを組み合わせて高純度ジルコニウムアルコキシド原料中の鉄、クロム、銅及びニッケル含有量を分析する、高純度ジルコニウムアルコキシド原料の分析方法。   After the high purity zirconium alkoxide raw material is dissolved as it is or in an organic solvent, this is mixed with an acidic aqueous solution, and the aqueous solution portion of this acidic aqueous solution is subjected to inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma mass spectrometry ( ICP-AES) or a combination thereof to analyze the content of iron, chromium, copper and nickel in a high purity zirconium alkoxide raw material.
JP2015045356A 2015-03-06 2015-03-06 High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material Pending JP2015134799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045356A JP2015134799A (en) 2015-03-06 2015-03-06 High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045356A JP2015134799A (en) 2015-03-06 2015-03-06 High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011067657A Division JP2012201629A (en) 2011-03-25 2011-03-25 High purity zirconium alkoxide raw material and production method of the same, and analysis method of the raw material

Publications (1)

Publication Number Publication Date
JP2015134799A true JP2015134799A (en) 2015-07-27

Family

ID=53766904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045356A Pending JP2015134799A (en) 2015-03-06 2015-03-06 High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material

Country Status (1)

Country Link
JP (1) JP2015134799A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596700A (en) * 2016-12-10 2017-04-26 西北有色金属研究院 Method for determination of content of trace impurity elements in high-purity chromium by acylating chlorination separation/ICP-MS method
CN115825042A (en) * 2022-11-28 2023-03-21 湖北兴福电子材料股份有限公司 Method for detecting trace metal elements in phenylurea

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273305A (en) * 1997-03-28 1998-10-13 Mitsubishi Chem Corp Metal oxide powder and its production
JP2004359636A (en) * 2003-06-06 2004-12-24 Hokko Chem Ind Co Ltd Method for purifying metal alkoxide
JP2007314437A (en) * 2006-05-24 2007-12-06 Adeka Corp Organozirconium compound useful as precursor for forming thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273305A (en) * 1997-03-28 1998-10-13 Mitsubishi Chem Corp Metal oxide powder and its production
JP2004359636A (en) * 2003-06-06 2004-12-24 Hokko Chem Ind Co Ltd Method for purifying metal alkoxide
JP2007314437A (en) * 2006-05-24 2007-12-06 Adeka Corp Organozirconium compound useful as precursor for forming thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596700A (en) * 2016-12-10 2017-04-26 西北有色金属研究院 Method for determination of content of trace impurity elements in high-purity chromium by acylating chlorination separation/ICP-MS method
CN115825042A (en) * 2022-11-28 2023-03-21 湖北兴福电子材料股份有限公司 Method for detecting trace metal elements in phenylurea

Similar Documents

Publication Publication Date Title
JP5857970B2 (en) (Amidoaminoalkane) metal compound and method for producing metal-containing thin film using the metal compound
JPWO2013065806A1 (en) Tris (dialkylamide) aluminum compound and method for producing aluminum-containing thin film using the aluminum compound
JP5440555B2 (en) High purity trialkylaluminum and process for producing the same
JP5440556B2 (en) High-purity trialkylgallium and its production method
WO2016152226A1 (en) Method for producing dialkylaminosilane
CN116897158A (en) Method for preparing organic tin compound
WO2018225668A1 (en) Raw material for chemical vapor deposition, and light-blocking container having raw material chemical vapor deposition contained therein and method for producing same
JP2015134799A (en) High-purity zirconium alkoxide raw material and production method of the same, and analytical method of raw material
KR101629696B1 (en) Novel indium derivatives, its preparation method and the thin film using the same
JP2012201629A (en) High purity zirconium alkoxide raw material and production method of the same, and analysis method of the raw material
JP2007254408A (en) High-purity bis(cyclopentadienyl)magnesium and method for producing the same
JP5732962B2 (en) Method for producing zirconium amide compound
JP5776555B2 (en) Metal alkoxide compound and method for producing metal-containing thin film using the compound
JP6086163B2 (en) Method for producing 2'-trifluoromethyl group-substituted aromatic ketone
JP2012201630A (en) Method for producing metal tetra(1-alkylisobutyl alkoxide)
JP2008050268A (en) High-purity trialkylgallium and method for producing the same
JP5348186B2 (en) High-purity trialkylgallium and its production method
JP2001261599A (en) Method for purifying gallium alkoxide
JP2014214152A (en) Method for producing asymmetric dialkylamine compound
JP2013107908A (en) High-purity diisopropylzinc and process for producing the same
WO2017030150A1 (en) Method for producing aluminum oxide film, material for producing aluminum oxide film and aluminum compound
JP5348202B2 (en) High purity bis (cyclopentadienyl) magnesium and process for producing the same
JP6107389B2 (en) Method for producing tris (dialkylamido) aluminum compound
JP2010001222A (en) Method for producing alcohol
US9284249B2 (en) Method for extracting asymmetric β-diketone compound from β-diketone compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160809