JP5776555B2 - Metal alkoxide compound and method for producing metal-containing thin film using the compound - Google Patents

Metal alkoxide compound and method for producing metal-containing thin film using the compound Download PDF

Info

Publication number
JP5776555B2
JP5776555B2 JP2011549020A JP2011549020A JP5776555B2 JP 5776555 B2 JP5776555 B2 JP 5776555B2 JP 2011549020 A JP2011549020 A JP 2011549020A JP 2011549020 A JP2011549020 A JP 2011549020A JP 5776555 B2 JP5776555 B2 JP 5776555B2
Authority
JP
Japan
Prior art keywords
metal
zirconium
alkoxide compound
compound
metal alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011549020A
Other languages
Japanese (ja)
Other versions
JPWO2011083820A1 (en
Inventor
巧 角田
巧 角田
千尋 長谷川
千尋 長谷川
央 二瓶
央 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011549020A priority Critical patent/JP5776555B2/en
Publication of JPWO2011083820A1 publication Critical patent/JPWO2011083820A1/en
Application granted granted Critical
Publication of JP5776555B2 publication Critical patent/JP5776555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/125Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02186Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Description

本発明は、ジルコニウム、ハフニウム又はチタニウム含有薄膜を形成させる際に使用可能なジルコニウムアルコキシド化合物、ハフニウムアルコキシド化合物又はチタニウムアルコキシド化合物に関する。本発明は、又、ジルコニウムアルコキシド化合物、ハフニウムアルコキシド化合物又はチタニウムアルコキシド化合物を用いて、化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法と称する)及び原子層蒸着法(Atomic Layer Deposition法;以下、ALD法と称する)により金属含有薄膜を製造する方法に関する。   The present invention relates to a zirconium alkoxide compound, a hafnium alkoxide compound or a titanium alkoxide compound that can be used in forming a zirconium-, hafnium- or titanium-containing thin film. The present invention also provides a chemical vapor deposition method (hereinafter referred to as a CVD method) and an atomic layer deposition method (atomic layer deposition method) using a zirconium alkoxide compound, a hafnium alkoxide compound or a titanium alkoxide compound; Hereinafter, the present invention relates to a method for producing a metal-containing thin film by the ALD method.

近年、DRAMに代表される半導体メモリー及びデバイスの微細化に伴って、高誘電体材料であるジルコニウム、ハフニウム又はチタニウム含有薄膜はキャパシタの分野で注目されている。また、強誘電体キャパシタ、絶縁膜などの電子材料の用途で活発に研究開発が行われている。   In recent years, with the miniaturization of semiconductor memories and devices typified by DRAMs, zirconium, hafnium or titanium-containing thin films, which are high dielectric materials, have attracted attention in the field of capacitors. In addition, active research and development is being conducted for applications of electronic materials such as ferroelectric capacitors and insulating films.

ジルコニウム、ハフニウム又はチタニウム含有薄膜の製造方法としては、例えば、スパッタ法やゾルゲル法が報告されている。しかし、優れた薄膜の均一性や組成制御、その量産性から、CVD法又はALD法での製造が現在の主流になっていると言える。   As a method for producing a zirconium, hafnium, or titanium-containing thin film, for example, a sputtering method or a sol-gel method has been reported. However, it can be said that the production by the CVD method or the ALD method has become the current mainstream because of excellent uniformity of thin film, composition control, and mass production.

従来、ジルコニウム化合物としては、例えば、ジルコニウムテトラクロリド(例えば、非特許文献1参照)、ジルコニウムナイトレート(例えば、非特許文献2参照)等の無機ジルコニウム化合物;テトラキス(t−ブトキシド)ジルコニウム(例えば、非特許文献3参照)、テトラキス(1−メトキシ−2−メチル−2−プロポキシ)ジルコニウム(例えば、非特許文献4参照)、テトラキス(ジメチルアミノエトキシド)ジルコニウム(例えば、非特許文献5参照)、テトラキス(2−メチル−3−ブテン−2−オキシド)ジルコニウム(例えば、特許文献1参照)等のジルコニウムアルコキシド化合物;テトラキス(エチルメチルアミノ)ジルコニウム(例えば、非特許文献6参照)等のジルコニウムアミド化合物;テトラキス(ジピバロイルメタナト)ジルコニウム(例えば、非特許文献7参照)等のβ−ジケトナトジルコニウム化合物;ビス(メチルシクロペンタジエニル)メチルメトキシドジルコニウム(例えば、非特許文献8及び特許文献2参照)等のジルコニウムシクロペンタジエニル化合物が開示されている。更に、ジルコニウムジイソプロポキシビステトラメチルヘプタンジオネート等も知られている(例えば、特許文献3参照)。   Conventionally, examples of the zirconium compound include inorganic zirconium compounds such as zirconium tetrachloride (for example, see Non-Patent Document 1) and zirconium nitrate (for example, see Non-Patent Document 2); tetrakis (t-butoxide) zirconium (for example, Non-patent document 3), tetrakis (1-methoxy-2-methyl-2-propoxy) zirconium (for example, refer to non-patent document 4), tetrakis (dimethylaminoethoxide) zirconium (for example, refer to non-patent document 5), Zirconium alkoxide compounds such as tetrakis (2-methyl-3-butene-2-oxide) zirconium (for example, see Patent Document 1); Zirconium amide compounds such as tetrakis (ethylmethylamino) zirconium (for example, see Non-Patent Document 6) ; Tetrakis (zipi Roylmethanato) β-diketonatozirconium compounds such as zirconium (for example, see Non-Patent Document 7); zirconium cyclones such as bis (methylcyclopentadienyl) methylmethoxide zirconium (for example, Non-Patent Document 8 and Patent Document 2) Pentadienyl compounds are disclosed. Furthermore, zirconium diisopropoxybistetramethylheptanedionate is known (for example, see Patent Document 3).

又、ハフニウム化合物としては、例えば、ビス(メチルシクロペンタジエニル)ハフニウムジメチルが知られている(例えば、特許文献4参照)。更に、ハフニウム化合物及びチタニウム化合物として、アルコキシアルキルメチル基を有するβ−ジケトナトとアルコキシを配位子とするハフニウム錯体及びチタニウム錯体が知られている(例えば、特許文献5参照)。   As a hafnium compound, for example, bis (methylcyclopentadienyl) hafnium dimethyl is known (see, for example, Patent Document 4). Furthermore, as a hafnium compound and a titanium compound, a hafnium complex and a titanium complex having a β-diketonate having an alkoxyalkylmethyl group and an alkoxy as a ligand are known (see, for example, Patent Document 5).

特開2008−69135号公報JP 2008-69135 A 特開2009−108402号公報JP 2009-108402 A 特開2009−073858号公報JP 2009-073858 A 特表2009−516078号公報Special table 2009-516078 特開2007−31283号公報JP 2007-31283 A

Journal of the Electrochemical Society,vol.155,(9),H633(2008)Journal of the Electrochemical Society, vol. 155, (9), H633 (2008) Journal of the Electrochemical Society,vol.147,(9),3472(2000)Journal of the Electrochemical Society, vol. 147, (9), 3472 (2000) Chemistry of Materials,vol.14,1269(2002)Chemistry of Materials, vol. 14, 1269 (2002) Journal of the Electrochemical Society,vol.151,(5),C283(2004)Journal of the Electrochemical Society, vol. 151, (5), C283 (2004) Journal of the Electrochemical Society,vol.149,(1),C23(2002)Journal of the Electrochemical Society, vol. 149, (1), C23 (2002) Journal of the Electrochemical Society,vol.156,(1),H71(2009)Journal of the Electrochemical Society, vol. 156, (1), H71 (2009) Journal of the Electrochemical Society,vol.152,(7),C498(2005)Journal of the Electrochemical Society, vol. 152, (7), C498 (2005) ECS transactions,Vol.11,(7),113(2007)ECS transactions, Vol. 11, (7), 113 (2007)

一般的にCVD法やALD法に使用される金属化合物は、高い蒸気圧を有し、低融点であること(室温で液状又はガス状であることがより望ましい)が、その物性として要求されている。   Generally, a metal compound used in a CVD method or an ALD method has a high vapor pressure and a low melting point (preferably liquid or gaseous at room temperature) as its physical properties. Yes.

仮に、低蒸気圧の金属化合物を使用した場合には、化合物を充填する容器、搬送する配管等を高温に保温することが必要となり、高エネルギーを費やすと共に、装置全体が高温仕様となることから高額化してしまうという問題が生じる。   If a low vapor pressure metal compound is used, it is necessary to keep the container filled with the compound, the piping to be transported, etc. at a high temperature, which consumes high energy and the entire device becomes a high temperature specification. There is a problem that it will be expensive.

一方、高融点の金属化合物を使用した場合には、通常、金属化合物の供給が不安定となり、目的とする金属含有膜の安定製造は困難となる。又、配管等の保温が不完全となると配管内閉塞をもたらし、メンテナンスに膨大な時間を費やすという問題が生じる。   On the other hand, when a metal compound having a high melting point is used, the supply of the metal compound usually becomes unstable, making it difficult to stably produce the target metal-containing film. Moreover, if the heat insulation of the piping or the like is incomplete, the piping is blocked, and there is a problem that a huge amount of time is spent for maintenance.

以上の観点から、現在までに報告されている金属化合物について考えてみると、無機金属化合物やβ−ジケトナト金属化合物は、いずれも低蒸気圧であるとともに高融点であるため、上記問題点を解決するに至っていなかった。   From the above viewpoints, considering the metal compounds reported to date, the inorganic metal compound and the β-diketonato metal compound both have a low vapor pressure and a high melting point. I did not come to do.

これに対して、金属アルコキシド化合物や金属アミド化合物では、高い蒸気圧を有する金属化合物もいくつか開示されているが、4配位を超える多座配位化や多量化することによって、高沸点化や高融点化するものもある。   On the other hand, metal alkoxide compounds and metal amide compounds have also disclosed several metal compounds having a high vapor pressure. However, a higher boiling point can be obtained by multidentate coordination or multimerization exceeding four coordinations. Some have higher melting points.

これらの金属化合物の中でも単量化を達成している化合物、即ち、高い蒸気圧および低融点を有する金属化合物が見出されている。しかしながら、これらの金属化合物は、熱安定性がいずれも低く、その合成時や金属薄膜の製造時に分解してしまうという問題、更には分解することで炭素が不純物として混入してしまう等の問題が生じていた。   Among these metal compounds, compounds that have achieved monomerization, that is, metal compounds having a high vapor pressure and a low melting point have been found. However, these metal compounds are both low in thermal stability and have a problem that they are decomposed during the synthesis or production of the metal thin film, and further, there are problems such as carbon being mixed as an impurity by decomposition. It was happening.

即ち、本発明の課題は、上記問題点を解決し、低融点、高蒸気圧を有し、熱に対しての安定性に優れるとともに、CVD法及びALD法による金属含有薄膜の製造に適した金属アルコキシド化合物を提供することにある。本発明の課題は、又、当該金属アルコキシド化合物を用いた金属含有薄膜の製造法を提供するものでもある。   That is, the object of the present invention is to solve the above problems, have a low melting point, a high vapor pressure, excellent heat stability, and suitable for the production of metal-containing thin films by CVD and ALD methods. The object is to provide a metal alkoxide compound. The subject of this invention is also providing the manufacturing method of the metal containing thin film using the said metal alkoxide compound.

本発明は以下の事項に関する。   The present invention relates to the following matters.

1. 一般式(1)   1. General formula (1)

Figure 0005776555
Figure 0005776555

(式中、Mはジルコニウム、ハフニウム又はチタニウムを示し、4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)、
で示される金属アルコキシド化合物。
(In the formula, M represents zirconium, hafnium or titanium, and four Rs may be the same or different, and each independently represents a linear or branched alkyl group having 2 to 6 carbon atoms. ),
A metal alkoxide compound represented by:

2. 上記1記載の金属アルコキシド化合物を用いた金属含有薄膜の製造法。   2. A method for producing a metal-containing thin film using the metal alkoxide compound according to 1 above.

3. 上記1記載の金属アルコキシド化合物又は上記1記載の金属アルコキシド化合物の溶液を金属供給源として用いた化学気相蒸着法による金属含有薄膜の製造法。   3. A method for producing a metal-containing thin film by chemical vapor deposition using the metal alkoxide compound according to 1 or a solution of the metal alkoxide compound according to 1 as a metal supply source.

4. 上記1記載の金属アルコキシド化合物又は上記1記載の金属アルコキシド化合物の溶液と、酸素源とを用いた化学気相蒸着法による金属含有薄膜の製造法。   4). A method for producing a metal-containing thin film by chemical vapor deposition using the metal alkoxide compound according to 1 or a solution of the metal alkoxide compound according to 1 and an oxygen source.

5. 上記1記載の金属アルコキシド化合物又は上記1記載の金属アルコキシド化合物の溶液と、窒素源とを用いた化学気相蒸着法による金属含有薄膜の製造法。   5. A method for producing a metal-containing thin film by chemical vapor deposition using the metal alkoxide compound according to 1 or a solution of the metal alkoxide compound according to 1 and a nitrogen source.

6. 上記1記載の金属アルコキシド化合物又は上記1記載の金属アルコキシド化合物の溶液と、不活性ガスとを用いた化学気相蒸着法による金属含有薄膜の製造法。   6). A method for producing a metal-containing thin film by chemical vapor deposition using the metal alkoxide compound according to 1 or a solution of the metal alkoxide compound according to 1 and an inert gas.

7. 前記金属アルコキシド化合物の溶液の溶媒が、脂肪族炭化水素類、芳香族炭化水素類及びエーテル類からなる群より選ばれる少なくとも1種である上記3乃至6記載の化学気相蒸着法による金属含有薄膜の製造法。   7). 7. The metal-containing thin film by chemical vapor deposition according to 3 to 6 above, wherein the solvent of the metal alkoxide compound solution is at least one selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons, and ethers. Manufacturing method.

本発明により、金属含有薄膜を形成させる際に有用な金属アルコキシド化合物を提供することが出来る。本発明の金属アルコキシド化合物は、低融点および高蒸気圧を有し、熱に対しての安定性にも優れており、特にCVD法またはALD法による金属含有薄膜の製造に適している。又、当該金属アルコキシド化合物を用いて、CVD法またはALD法により、良好な成膜特性で、金属含有薄膜を製造することが出来る。   According to the present invention, a metal alkoxide compound useful for forming a metal-containing thin film can be provided. The metal alkoxide compound of the present invention has a low melting point and a high vapor pressure, is excellent in heat stability, and is particularly suitable for the production of a metal-containing thin film by a CVD method or an ALD method. In addition, using the metal alkoxide compound, a metal-containing thin film can be produced with good film forming characteristics by a CVD method or an ALD method.

実施例において使用した蒸着装置の構成を示す図である。It is a figure which shows the structure of the vapor deposition apparatus used in the Example.

本発明の金属アルコキシド化合物は、前記の一般式(1)で示される。その一般式(1)において、Mはジルコニウム、ハフニウム又はチタニウムを示す。4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6、好ましくは2〜4、特に好ましくは2〜3の直鎖又は分枝状のアルキル基を示す。Rは、例えば、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基であり、好ましくはエチル基、n−プロピル基、イソプロピル基である。4つのRが同一である化合物は比較的容易に合成でき、その点では好ましい。   The metal alkoxide compound of the present invention is represented by the general formula (1). In the general formula (1), M represents zirconium, hafnium or titanium. Four R may be the same or different and each independently represents a linear or branched alkyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, particularly preferably 2 to 3 carbon atoms. R is, for example, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a pentyl group, or a hexyl group, preferably an ethyl group, an n-propyl group, or an isopropyl group. is there. A compound in which four R's are the same can be synthesized relatively easily and is preferable in that respect.

本発明の金属アルコキシド化合物の具体例としては、例えば、式(2)から式(10)で示される化合物が挙げられる。なお、式(2)〜式(10)中、Mはジルコニウム、ハフニウム又はチタニウムを示す。   Specific examples of the metal alkoxide compound of the present invention include compounds represented by formulas (2) to (10). In the formulas (2) to (10), M represents zirconium, hafnium, or titanium.

Figure 0005776555
Figure 0005776555

本発明の金属アルコキシド化合物は、公知の方法を参考にして、アルコキシ交換反応により製造することができる。   The metal alkoxide compound of the present invention can be produced by an alkoxy exchange reaction with reference to a known method.

CVD法及びALD法においては、金属含有薄膜形成のために金属アルコキシド化合物を気化させる必要があるが、本発明の金属アルコキシド化合物を気化させる方法としては、例えば、金属アルコキシド化合物自体を気化室に充填又は搬送して気化させる方法だけでなく、金属アルコキシド化合物を適当な溶媒(例えば、ヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン等の脂肪族炭化水素類;トルエン等の芳香族炭化水素類;テトラヒドロフラン、ジブチルエーテル等のエーテル類等が挙げられる。)に希釈した溶液を液体搬送用ポンプで気化室に導入して気化させる方法(溶液法)も使用出来る。   In the CVD method and the ALD method, it is necessary to vaporize the metal alkoxide compound in order to form the metal-containing thin film. As a method for vaporizing the metal alkoxide compound of the present invention, for example, the metal alkoxide compound itself is filled in the vaporization chamber. Alternatively, not only a method of transporting and vaporizing but also a metal alkoxide compound in an appropriate solvent (for example, aliphatic hydrocarbons such as hexane, methylcyclohexane, ethylcyclohexane, and octane; aromatic hydrocarbons such as toluene; (Ethers such as butyl ether can be used.) A method (solution method) in which a solution diluted in) is introduced into a vaporization chamber with a liquid transfer pump and vaporized can be used.

成膜対象物上への金属含有膜の蒸着方法としては、公知のCVD法及びALD法で行うことが出来、例えば、常圧又は減圧下にて、金属アルコキシド化合物を酸素源(例えば、酸素ガス、オゾンガス等)、あるいは、窒素源(例えば、アンモニアガス、窒素ガス等)と同時、もしくは交互に加熱した基板上に送り込んで金属含有膜を蒸着させる方法が使用出来る。又、不活性なガス(例えば、アルゴンガス、ヘリウムガス)とともに加熱した基板上に送り込んで金属含有薄膜を蒸着させる方法も使用できる。又、プラズマCVD法で金属含有膜を蒸着させる方法も使用出来る。   As a method for depositing a metal-containing film on an object to be formed, a known CVD method and ALD method can be used. For example, a metal alkoxide compound is converted into an oxygen source (for example, oxygen gas) under normal pressure or reduced pressure. , Ozone gas, etc.), or a nitrogen source (for example, ammonia gas, nitrogen gas, etc.) or a method of vapor-depositing a metal-containing film by feeding it onto a substrate heated alternately or alternately can be used. Alternatively, a method of depositing a metal-containing thin film by feeding it onto a substrate heated with an inert gas (for example, argon gas or helium gas) can be used. Moreover, the method of vapor-depositing a metal containing film | membrane by plasma CVD method can also be used.

酸素ガスを用いて金属含有薄膜を蒸着させる場合の全ガス量に対する酸素ガスの含有割合は、好ましくは0.1〜99容量%、更に好ましくは0.5〜95容量%である。   When the metal-containing thin film is deposited using oxygen gas, the content ratio of the oxygen gas to the total gas amount is preferably 0.1 to 99% by volume, more preferably 0.5 to 95% by volume.

本発明の金属アルコキシド化合物を用いて金属含有薄膜を蒸着させる場合、その蒸着条件としては、例えば、反応系内の圧力は、好ましくは1Pa〜200kPa、更に好ましくは10Pa〜110kPa、成膜対象物温度は、好ましくは150〜700℃、更に好ましくは200〜600℃、金属アルコキシド化合物を気化させる温度は、好ましくは20〜250℃、更に好ましくは40〜200℃である。   In the case of depositing a metal-containing thin film using the metal alkoxide compound of the present invention, as the deposition conditions, for example, the pressure in the reaction system is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa, and the film formation target temperature. Is preferably 150 to 700 ° C, more preferably 200 to 600 ° C, and the temperature for vaporizing the metal alkoxide compound is preferably 20 to 250 ° C, more preferably 40 to 200 ° C.

なお、本願発明の金属含有薄膜の製造法の好ましい態様としては以下の通りである。
(1)本願発明の金属アルコキシド化合物又は金属アルコキシド化合物の溶媒溶液と酸素源(特に、酸素ガス、オゾンガスが好ましい)とを用いてCVD法及びALD法により金属含有薄膜を製造する。
(2)本願発明の金属アルコキシド化合物又は金属アルコキシド化合物の溶媒溶液と窒素源(特に、アンモニアガス、窒素ガスが好ましい)とを用いてCVD法及びALD法により金属含有薄膜を製造する。
(3)本願発明の金属アルコキシド化合物又は金属アルコキシド化合物の溶媒溶液と不活性ガス(特に、アルゴンガス、ヘリウムガスが好ましい)とを用いてCVD法により金属含有薄膜を製造する。
In addition, as a preferable aspect of the manufacturing method of the metal containing thin film of this invention, it is as follows.
(1) A metal-containing thin film is produced by a CVD method and an ALD method using a metal alkoxide compound of the present invention or a solvent solution of a metal alkoxide compound and an oxygen source (especially oxygen gas and ozone gas are preferred).
(2) A metal-containing thin film is produced by a CVD method and an ALD method using a metal alkoxide compound of the present invention or a solvent solution of a metal alkoxide compound and a nitrogen source (particularly, ammonia gas and nitrogen gas are preferred).
(3) A metal-containing thin film is produced by a CVD method using the metal alkoxide compound of the present invention or a solvent solution of the metal alkoxide compound and an inert gas (especially, argon gas or helium gas is preferable).

次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。   Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.

実施例1(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体5.11g(13.17mmol)及び2,4−ジメチル−3−ペンタノール10.12g(88.61mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、12Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム5.73gを得た(単離収率;79%)。
Example 1 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4)))
In a 100-ml flask equipped with a stirrer and a thermometer, in an argon atmosphere, tetrakis (isopropoxy) zirconium-isopropanol adduct 5.11 g (13.17 mmol) and 2,4-dimethyl-3-pentanol 10 .12 g (88.61 mmol) was added, the liquid temperature was raised to 170 ° C., and the reaction was carried out at the same temperature for 30 minutes while distilling off the produced isopropanol. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the concentrate was distilled under reduced pressure (150 ° C., 12 Pa) to obtain 5.73 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid. (Isolated yield; 79%).

なお、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。   Tetrakis (2,4-dimethyl-3-pentoxy) zirconium is a novel compound represented by the following physical property values.

H−NMR(CDCl,δ(ppm));0.90(48H,d)、1.70(8H,m)、3.30(4H,d)
元素分析:C2860Zr
測定値 C:60.5%、H:11.1%、Zr:16.5%
理論値 C:60.9%、H:11.0%、Zr:16.5%
1 H-NMR (CDCl 3 , δ (ppm)); 0.90 (48H, d), 1.70 (8H, m), 3.30 (4H, d)
Elemental analysis: C 28 H 60 O 4 Zr
Measurement value C: 60.5%, H: 11.1%, Zr: 16.5%
Theoretical value C: 60.9%, H: 11.0%, Zr: 16.5%

実施例2(M=Zr,R=エチル基;テトラキス(2−メチル−3−ペントキシ)ジルコニウムの合成(式(2)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体4.42g(11.41mmol)及び2−メチル−3−ペンタノール7.29g(71.36mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(140℃、17Pa)し、白色固体として、テトラキス(2−メチル−3−ペントキシ)ジルコニウム4.18gを得た(単離収率;74%)。
Example 2 (M = Zr, R = ethyl group; synthesis of tetrakis (2-methyl-3-pentoxy) zirconium (zirconium compound of formula (2)))
In a 100 ml flask equipped with a stirrer and a thermometer, 4.42 g (11.41 mmol) of tetrakis (isopropoxy) zirconium isopropanol adduct and 7.29 g of 2-methyl-3-pentanol were added in an argon atmosphere. (71.36 mmol) was added, the liquid temperature was raised to 170 ° C., and the reaction was carried out at the same temperature for 30 minutes while distilling off the produced isopropanol. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the concentrate was distilled under reduced pressure (140 ° C., 17 Pa) to obtain 4.18 g of tetrakis (2-methyl-3-pentoxy) zirconium as a white solid (simple (Separation yield; 74%).

なお、テトラキス(2−メチル−3−ペントキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。   Tetrakis (2-methyl-3-pentoxy) zirconium is a novel compound represented by the following physical property values.

H−NMR(CDCl,δ(ppm));0.92(36H,m)、1.50(8H,m)、1.66(4H,m)、3.29(4H,q)
元素分析:C2452Zr
測定値 C:58.3%、H:10.4%、Zr:18.4%
理論値 C:58.1%、H:10.6%、Zr:18.4%
1 H-NMR (CDCl 3 , δ (ppm)); 0.92 (36H, m), 1.50 (8H, m), 1.66 (4H, m), 3.29 (4H, q)
Elemental analysis: C 24 H 52 O 4 Zr
Measurement C: 58.3%, H: 10.4%, Zr: 18.4%
Theoretical value C: 58.1%, H: 10.6%, Zr: 18.4%

実施例3(M=Zr,R=n−プロピル基;テトラキス(2−メチル−3−ヘキソキシ)ジルコニウムの合成(式(3)のジルコニウム化合物の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体4.32g(11.15mmol)及び2−メチル−3−ヘキサノール9.17g(78.91mmol)を加え、液温を200℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、12Pa)し、低粘性の透明液体として、テトラキス(2−メチル−3−ヘキソキシ)ジルコニウム4.20gを得た(単離収率;68%)。
Example 3 (M = Zr, R = n-propyl group; synthesis of tetrakis (2-methyl-3-hexoxy) zirconium (synthesis of zirconium compound of formula (3))
In a 100-ml flask equipped with a stirrer and a thermometer, in an argon atmosphere, tetrakis (isopropoxy) zirconium-isopropanol adduct 4.32 g (11.15 mmol) and 2-methyl-3-hexanol 9.17 g ( 78.91 mmol) was added, the liquid temperature was raised to 200 ° C., and the resulting isopropanol was distilled off, followed by reaction at the same temperature for 30 minutes. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and then the concentrate was distilled under reduced pressure (150 ° C., 12 Pa) to obtain 4.20 g of tetrakis (2-methyl-3-hexoxy) zirconium as a low-viscosity transparent liquid. (Isolation yield; 68%).

なお、テトラキス(2−メチル−3−ヘキソキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。   Tetrakis (2-methyl-3-hexoxy) zirconium is a novel compound represented by the following physical property values.

H−NMR(CDCl,δ(ppm));0.68(36H,m)、1.35(12H,m)、1.57(8H,m)3.60(4H,q)
元素分析:C2860Zr
測定値 C:60.7%、H:11.3%、Zr:16.5%
理論値 C:60.9%、H:11.0%、Zr:16.5%
1 H-NMR (CDCl 3 , δ (ppm)); 0.68 (36H, m), 1.35 (12H, m), 1.57 (8H, m) 3.60 (4H, q)
Elemental analysis: C 28 H 60 O 4 Zr
Measurement value C: 60.7%, H: 11.3%, Zr: 16.5%
Theoretical value C: 60.9%, H: 11.0%, Zr: 16.5%

実施例4〜6及び比較例1〜5(熱安定性の比較1)
実施例1〜3で得られた式(2)〜(4)の本発明のジルコニウム化合物と、比較として合成した式(11)〜(15)のジルコニウム化合物について、それぞれの熱安定性を確認するため、一度蒸留を行った各化合物について再度蒸留を行い、その回収率を確認した。その結果を表1に示す。なお、化合物の構造を下記式に示す。但し、式中、Mはジルコニウム(Zr)を示す。
Examples 4-6 and Comparative Examples 1-5 (Comparison 1 of thermal stability)
The thermal stability of each of the zirconium compounds of the present invention of the formulas (2) to (4) obtained in Examples 1 to 3 and the zirconium compounds of the formulas (11) to (15) synthesized for comparison is confirmed. Therefore, each compound once distilled was distilled again to confirm the recovery rate. The results are shown in Table 1. The structure of the compound is shown in the following formula. However, in the formula, M represents zirconium (Zr).

Figure 0005776555
Figure 0005776555

Figure 0005776555
Figure 0005776555

式(11)〜(15)のジルコニウム化合物(比較例1〜5)は再蒸留では熱分解して回収できなかったのに対して、本発明のジルコニウムアルコキシド化合物(式(2)〜(4)のジルコニウム化合物)は再蒸留回収率が97〜99%であり、熱安定性に優れていることが分かる。更に、本発明のジルコニウムアルコキシド化合物は、分子量に関わらず、いずれも低い温度且つ低い減圧度で蒸留でき、このことから、ジルコニウム含有薄膜の製造に適していることが分かる。   The zirconium compounds of the formulas (11) to (15) (Comparative Examples 1 to 5) could not be recovered by pyrolysis by redistillation, whereas the zirconium alkoxide compounds of the present invention (formulas (2) to (4)) The zirconium compound) has a redistillation recovery rate of 97 to 99%, which indicates that it is excellent in thermal stability. Furthermore, regardless of the molecular weight, the zirconium alkoxide compound of the present invention can be distilled at a low temperature and a low degree of vacuum, which indicates that it is suitable for the production of a zirconium-containing thin film.

実施例7及び比較例6(熱安定性の比較2;加熱処理試験)
実施例1で得られた式(4)のジルコニウム化合物と、テトラキス(t−ブトキシド)ジルコニウム(非特許文献3のジルコニウムアルコキシド化合物)について、熱安定性の比較試験を行った。それぞれの化合物を、アルゴン雰囲気で250℃にて10時間加熱した後、熱処理後のジルコニウムアルコキシド化合物について、H−NMRにより分解具合を観察し、また、再蒸留を行い、その回収率を確認し、それぞれの結果を比較した。その結果を表2に示した。
Example 7 and Comparative Example 6 (thermal stability comparison 2; heat treatment test)
A thermal stability comparison test was performed on the zirconium compound of the formula (4) obtained in Example 1 and tetrakis (t-butoxide) zirconium (zirconium alkoxide compound of Non-Patent Document 3). After each compound was heated at 250 ° C. for 10 hours in an argon atmosphere, the degree of decomposition of the zirconium alkoxide compound after the heat treatment was observed by 1 H-NMR and redistilled to confirm the recovery rate. Each result was compared. The results are shown in Table 2.

Figure 0005776555
Figure 0005776555

本発明のジルコニウムアルコキシド化合物(式(4)のジルコニウム化合物)は、熱処理後においても色の変化がなく、H−NMRのスペクトルパターンでも変化は観られなかった。又、再蒸留での回収率も98%であった。The zirconium alkoxide compound of the present invention (zirconium compound of the formula (4)) did not change in color even after the heat treatment, and no change was observed in the spectrum pattern of 1 H-NMR. The recovery rate by redistillation was 98%.

一方、テトラキス(t−ブトキシド)ジルコニウムは、熱処理後すぐに褐色に変色し、再蒸留での回収率も低く、又、蒸留残渣として釜の中に褐色固体(分解物)が残っていた。   On the other hand, tetrakis (t-butoxide) zirconium turned brown immediately after the heat treatment, and the recovery rate by redistillation was low, and a brown solid (decomposed product) remained in the kettle as a distillation residue.

以上のことから、本発明のジルコニウムアルコキシド化合物が熱に対して高い安定性を有していることが分かった。   From the above, it was found that the zirconium alkoxide compound of the present invention has high stability to heat.

通常、ALD法では、基板への化合物吸着、反応ガス(例えば、酸素ガス、オゾンガス)との反応を繰り返して成膜が行われる。この基板への化合物の吸着の際、基板温度で化合物が熱分解しないことが求められる。本発明のジルコニウムアルコキシド化合物(式(4)のジルコニウム化合物)は、加熱処理試験の結果より、アルゴンガス雰囲気(不活性ガス雰囲気)での熱安定性が高いことから、基板上で熱分解しないことが示唆されており、ALD法でより好適に使用できることがわかる。一方、テトラキス(t−ブトキシド)ジルコニウム(非特許文献3のジルコニウムアルコキシド化合物)は加熱処理試験において変質、分解物が見られることから、基板上で容易に熱分解することが示唆され、ALD法には不向きであることがわかる。   In general, in the ALD method, film formation is performed by repeating compound adsorption on a substrate and reaction with a reaction gas (for example, oxygen gas or ozone gas). When the compound is adsorbed on the substrate, it is required that the compound is not thermally decomposed at the substrate temperature. The zirconium alkoxide compound of the present invention (zirconium compound of the formula (4)) has a high thermal stability in an argon gas atmosphere (inert gas atmosphere) from the result of the heat treatment test, and therefore does not thermally decompose on the substrate. This suggests that it can be used more favorably in the ALD method. On the other hand, since tetrakis (t-butoxide) zirconium (zirconium alkoxide compound of Non-Patent Document 3) is altered and decomposed in the heat treatment test, it is suggested that it is easily pyrolyzed on the substrate. Is unsuitable.

実施例8〜9(蒸着実験;ジルコニウム含有薄膜の製造)
実施例1及び3で得られた式(4)及び(3)のジルコニウムアルコキシド化合物を用いて、CVD法による蒸着実験を行い、成膜特性を評価した。
Examples 8 to 9 (deposition experiment; production of zirconium-containing thin film)
Using the zirconium alkoxide compounds of the formulas (4) and (3) obtained in Examples 1 and 3, a vapor deposition experiment by the CVD method was performed to evaluate the film forming characteristics.

評価試験には、図1に示す装置を使用した。気化器3(ガラス製アンプル)にあるジルコニウムアルコキシド化合物20は、ヒーター10Bで加熱されて気化し、マスフローコントローラー1Aを経て予熱器10Aで予熱後導入されたヘリウムガスに同伴し気化器3を出る。気化器3を出たガスは、マスフローコントローラー1B、ストップバルブ2を経て導入された酸素ガスとともに反応器4に導入される。反応系内圧力は、真空ポンプ手前のバルブ6の開閉により、所定圧力にコントロールされ、圧力計5によってモニターされる。反応器の中央部はヒーター10Cで加熱可能な構造となっている。反応器に導入されたジルコニウムアルコキシド化合物は、反応器内中央部にセットされ、ヒーター10Cで所定の温度に加熱された被蒸着基板21の表面上で酸化熱分解し、基板21上にジルコニウム含有薄膜が析出する。反応器4を出たガスは、トラップ7、真空ポンプを経て、大気中に排気される構造となっている。   The apparatus shown in FIG. 1 was used for the evaluation test. The zirconium alkoxide compound 20 in the vaporizer 3 (glass ampoule) is heated and vaporized by the heater 10B, exits the vaporizer 3 along with the helium gas introduced after preheating by the preheater 10A via the mass flow controller 1A. The gas exiting the vaporizer 3 is introduced into the reactor 4 together with the oxygen gas introduced through the mass flow controller 1B and the stop valve 2. The pressure in the reaction system is controlled to a predetermined pressure by opening and closing the valve 6 in front of the vacuum pump, and is monitored by the pressure gauge 5. The central part of the reactor has a structure that can be heated by a heater 10C. The zirconium alkoxide compound introduced into the reactor is set at the center in the reactor, and is oxidized and pyrolyzed on the surface of the deposition substrate 21 heated to a predetermined temperature by the heater 10C, and a zirconium-containing thin film is formed on the substrate 21. Precipitates. The gas exiting the reactor 4 is exhausted to the atmosphere via a trap 7 and a vacuum pump.

蒸着条件及び蒸着結果(膜特性)を表3に示す。なお、被蒸着基板としては、6mm×20mmサイズの矩形のものを使用した。   The deposition conditions and deposition results (film characteristics) are shown in Table 3. Note that a 6 mm × 20 mm rectangular substrate was used as the deposition substrate.

Figure 0005776555
Figure 0005776555

その結果、本発明のジルコニウムアルコキシド化合物(式(3)及び(4)の化合物)は、酸素雰囲気にて、優れた成膜特性を示すことが分かった。   As a result, it was found that the zirconium alkoxide compounds of the present invention (compounds of formulas (3) and (4)) exhibited excellent film forming characteristics in an oxygen atmosphere.

実施例10(M=Hf,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムの合成(式(4)のハフニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ハフニウム・イソプロパノール付加体5.15g(10.84mmol)及び2,4−ジメチル−3−ペンタノール10.00g(86.06mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、17Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウム4.94gを得た(単離収率;71.3%)。
Example 10 (M = Hf, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) hafnium (synthesis of hafnium compound of formula (4))
In a 100-ml flask equipped with a stirrer and a thermometer, in an argon atmosphere, 5.15 g (10.84 mmol) of tetrakis (isopropoxy) hafnium / isopropanol adduct and 2,4-dimethyl-3-pentanol 10 0.000 g (86.06 mmol) was added, the temperature of the solution was raised to 170 ° C., and the resulting isopropanol was distilled off and reacted at the same temperature for 30 minutes. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and then the concentrate was distilled under reduced pressure (150 ° C., 17 Pa) to give 4.94 g of tetrakis (2,4-dimethyl-3-pentoxy) hafnium as a low-viscosity transparent liquid. (Isolated yield; 71.3%).

なお、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムは、以下の物性値で示される新規な化合物である。   Tetrakis (2,4-dimethyl-3-pentoxy) hafnium is a novel compound represented by the following physical property values.

H−NMR(CDCl,δ(ppm));0.90(48H,d)、1.70(8H,m)、3.39(4H,d)
元素分析:C2860Hf
測定値 C:53.0%、H:9.7%、Hf:27.7%
理論値 C:52.6%、H:9.5%、Hf:27.9%
1 H-NMR (CDCl 3 , δ (ppm)); 0.90 (48H, d), 1.70 (8H, m), 3.39 (4H, d)
Elemental analysis: C 28 H 60 O 4 Hf
Measurement value C: 53.0%, H: 9.7%, Hf: 27.7%
Theoretical value C: 52.6%, H: 9.5%, Hf: 27.9%

実施例11(熱安定性;加熱処理試験)
実施例10で得られた式(4)のハフニウム化合物(本発明)の熱安定性を確認するために再度蒸留を行い、その回収率を確認した。また、アルゴン雰囲気で250℃にて10時間加熱した後、熱処理後のハフニウム化合物について、H−NMRにより分解具合を観察し、また、再蒸留を行い、その回収率を確認した。その結果は以下の通りであった。
Example 11 (thermal stability; heat treatment test)
Distillation was performed again to confirm the thermal stability of the hafnium compound of the formula (4) obtained in Example 10 (present invention), and the recovery rate was confirmed. Moreover, after heating at 250 degreeC for 10 hours in argon atmosphere, about the hafnium compound after heat processing, the decomposition condition was observed by < 1 > H-NMR, and re-distillation was performed, and the recovery rate was confirmed. The results were as follows.

初回蒸留;150℃(17Pa)
再蒸留回収率;99%
熱処理前;無色透明液体
熱処理後;無色透明液体
熱処理後の再蒸留回収率;97%
熱処理後のH−NMR(CDCl,δ(ppm));変化なし
Initial distillation: 150 ° C. (17 Pa)
Redistillation recovery rate: 99%
Before heat treatment; after heat treatment of colorless and transparent liquid; redistillation recovery rate after heat treatment of colorless and transparent liquid; 97%
1 H-NMR after heat treatment (CDCl 3 , δ (ppm)); no change

以上の結果より、本発明の金属アルコキシド化合物が、優れた熱安定性を有するとともに、特にCVD法またはALD法により金属含有膜を製造する際に有用な化合物であることが分かる。   From the above results, it can be seen that the metal alkoxide compound of the present invention has excellent thermal stability and is particularly useful when producing a metal-containing film by a CVD method or an ALD method.

実施例12(M=Ti,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムの合成(式(4)のチタニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)チタニウム5.00g(17.59mmol)及び2,4−ジメチル−3−ペンタノール10.00g(86.06mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(160℃、21Pa)し、無色透明固体として、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウム6.50gを得た(単離収率;72.6%)。
Example 12 (M = Ti, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) titanium (synthesis of titanium compound of formula (4))
In a 100-ml flask equipped with a stirrer and a thermometer, in an argon atmosphere, 5.00 g (17.59 mmol) of tetrakis (isopropoxy) titanium and 10.00 g (86 of 2,4-dimethyl-3-pentanol) 0.06 mmol) was added, the liquid temperature was raised to 170 ° C., and the resulting isopropanol was distilled off, and the mixture was reacted at the same temperature for 30 minutes. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the concentrate was distilled under reduced pressure (160 ° C., 21 Pa) to obtain 6.50 g of tetrakis (2,4-dimethyl-3-pentoxy) titanium as a colorless transparent solid. (Isolated yield; 72.6%).

なお、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムは、以下の物性値で示される新規な化合物である。   Tetrakis (2,4-dimethyl-3-pentoxy) titanium is a novel compound represented by the following physical property values.

融点:65〜75℃
H−NMR(CDCl,δ(ppm));0.93(48H,m)、1.71(8H,m)、3.70(4H,m)
元素分析:C2860Ti
測定値 C:66.3%、H:12.2%、Ti:9.3%
理論値 C:66.1%、H:11.9%、Ti:9.4%
Melting point: 65-75 ° C
1 H-NMR (CDCl 3 , δ (ppm)); 0.93 (48H, m), 1.71 (8H, m), 3.70 (4H, m)
Elemental analysis: C 28 H 60 O 4 Ti
Measurement C: 66.3%, H: 12.2%, Ti: 9.3%
Theoretical value C: 66.1%, H: 11.9%, Ti: 9.4%

実施例13(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.02g(17.25mmol)及びメチルシクロヘキサン50mlを秤量し、水冷下でイソプロピルアミン12ml(140.08mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、13Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.71gを得た(単離収率;81.0%)。
Example 13 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 100-ml flask equipped with a stirrer and a thermometer, 4.02 g (17.25 mmol) of zirconium tetrachloride and 50 ml of methylcyclohexane were weighed in an argon atmosphere, and 12 ml (140.08 mmol) of isopropylamine under water cooling. Was dripped. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 13 Pa) to obtain 7.71 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 81.0%). .

実施例14(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積50mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.12g(17.68mmol)及びメチルシクロヘキサン25mlを秤量し、水冷下でsec−ブチルアミン13ml(128.51mmol)を滴下した。この溶液を2,4−ジメチル−3−ペンタノール9.88g(85.03mmol)及びメチルシクロヘキサン25mlを仕込んだ攪拌装置及び温度計を備えた内容積100mlのフラスコに滴下して1時間反応させた。反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、15Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム8.05gを得た(単離収率;82.5%)。
Example 14 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 50-ml flask equipped with a stirrer and a thermometer, 4.12 g (17.68 mmol) of zirconium tetrachloride and 25 ml of methylcyclohexane were weighed in an argon atmosphere, and 13 ml (128.51 mmol) of sec-butylamine under water cooling. ) Was added dropwise. This solution was dropped into a 100-ml flask equipped with a stirrer and a thermometer charged with 9.88 g (85.03 mmol) of 2,4-dimethyl-3-pentanol and 25 ml of methylcyclohexane and reacted for 1 hour. . The reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 15 Pa) to obtain 8.05 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 82.5%). .

実施例15(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン23.5ml(224.91mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、10Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.69gを得た(単離収率;77.3%)。
Example 15 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 100 ml-volume flask equipped with a stirrer and a thermometer, 4.20 g (18.02 mmol) of zirconium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 23.5 ml (224.22 ml) of tert-butylamine under water cooling. 91 mmol) was added dropwise. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 10 Pa) to obtain 7.69 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 77.3%). .

実施例16(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、水冷下でジエチルアミン16.5ml(157.92mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の淡黄色透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.76gを得た(単離収率;76.7%)。
Example 16 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 100 ml flask equipped with a stirrer and a thermometer, 4.20 g (18.02 mmol) of zirconium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 16.5 ml (157.92 mmol) of diethylamine under water cooling. Was dripped. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 11 Pa) to obtain 7.76 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity pale yellow transparent liquid (isolated yield; 76.7). %).

実施例17(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、系内を−10℃以下となるようにジエチルアミン16.0ml(153.13mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.92gを得た(単離収率;79.6%)。
Example 17 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 100 ml flask equipped with a stirrer and a thermometer, 4.20 g (18.02 mmol) of zirconium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and diethylamine was adjusted so that the temperature in the system was −10 ° C. or lower. 16.0 ml (153.13 mmol) was added dropwise. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 11 Pa), and 7.92 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium was obtained as a low-viscosity transparent liquid (isolated yield; 79.6%). .

実施例18(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、系内を−10℃以下となるようにジメチルアミン11.61g(257.54mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.81gを得た(単離収率;76.3%)。
Example 18 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4)))
In a 100-ml flask equipped with a stirrer and a thermometer, 4.20 g (18.02 mmol) of zirconium tetrachloride and 50 ml of toluene are weighed in an argon atmosphere, and dimethyl dimethyl ether so that the temperature in the system is -10 ° C. or lower. 11.61 g (257.54 mmol) of amine was added dropwise. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 11 Pa) to obtain 7.81 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 76.3%). .

実施例19(M=Hf,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムの合成(式(4)のハフニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ハフニウム5.03g(15.71mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン10ml(95.71mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール10ml(71.34mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(170℃、19Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウム3.50gを得た(単離収率;34.9%)。
Example 19 (M = Hf, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) hafnium (synthesis of hafnium compound of formula (4)))
In a 100-ml flask equipped with a stirrer and a thermometer, 5.03 g (15.71 mmol) of hafnium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 10 ml (95.71 mmol) of tert-butylamine under water cooling. Was dripped. Next, 10 ml (71.34 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (170 ° C., 19 Pa) to obtain 3.50 g of tetrakis (2,4-dimethyl-3-pentoxy) hafnium as a low-viscosity transparent liquid (isolated yield; 34.9%). .

実施例20(M=Ti,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムの合成(式(4)の化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化チタン5.85g(30.84mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン16ml(153.13mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール17.5ml(124.85mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、17Pa)し、透明固体として、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウム8.81gを得た(単離収率;56.2%)。
Example 20 (M = Ti, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) titanium (synthesis of compound of formula (4))
In a 100 ml flask equipped with a stirrer and a thermometer, 5.85 g (30.84 mmol) of titanium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 16 ml (153.13 mmol) of tert-butylamine under water cooling. Was dripped. Next, 17.5 ml (124.85 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 17 Pa) to obtain 8.81 g of tetrakis (2,4-dimethyl-3-pentoxy) titanium as a transparent solid (isolated yield; 56.2%).

本発明により、特にCVD法またはALD法により金属含有薄膜を形成させる際に有用な金属アルコキシド化合物を提供することが出来る。又、当該金属アルコキシド化合物を用いて金属含有薄膜を製造する方法も提供することが出来る。   According to the present invention, it is possible to provide a metal alkoxide compound that is useful when a metal-containing thin film is formed by a CVD method or an ALD method. Moreover, the method of manufacturing a metal containing thin film using the said metal alkoxide compound can also be provided.

1A マスフローコントローラー
1B マスフローコントローラー
2 ストップバルブ
3 気化器
4 反応器
5 圧力計
6 バルブ
7 トラップ
8 ストップバルブ
10A 予熱器
10B 気化器ヒーター
10C 反応器ヒーター
20 金属アルコキシド化合物
21 基板
1A mass flow controller 1B mass flow controller 2 stop valve 3 vaporizer 4 reactor 5 pressure gauge 6 valve 7 trap 8 stop valve 10A preheater 10B vaporizer heater 10C reactor heater 20 metal alkoxide compound 21 substrate

Claims (6)

一般式(1)
Figure 0005776555
(式中、Mはジルコニウム、又はハフニウムを示し、4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)
で示される金属アルコキシド化合物。
General formula (1)
Figure 0005776555
(In the formula, M represents zirconium or hafnium , and four Rs may be the same or different, and each independently represent a linear or branched alkyl group having 2 to 6 carbon atoms. )
A metal alkoxide compound represented by:
一般式(1)
Figure 0005776555
(式中、Mはジルコニウム、ハフニウム又はチタニウムを示し、4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)
で示される金属アルコキシド化合物又はこの金属アルコキシド化合物の溶液を金属供給源として用いた化学気相蒸着法による金属含有薄膜の製造法。
General formula (1)
Figure 0005776555
(In the formula, M represents zirconium, hafnium or titanium, and four Rs may be the same or different, and each independently represents a linear or branched alkyl group having 2 to 6 carbon atoms. .)
Preparation of the metal-containing thin film by chemical vapor deposition solution was used as the metal source in the metal alkoxide compound or the metal alkoxide compound represented in.
一般式(1)
Figure 0005776555
(式中、Mはジルコニウム、ハフニウム又はチタニウムを示し、4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)
で示される金属アルコキシド化合物又はこの金属アルコキシド化合物の溶液と、酸素源とを用いた請求項2記載の化学気相蒸着法による金属含有薄膜の製造法。
General formula (1)
Figure 0005776555
(In the formula, M represents zirconium, hafnium or titanium, and four Rs may be the same or different, and each independently represents a linear or branched alkyl group having 2 to 6 carbon atoms. .)
Preparation of the metal-containing thin film by the solution and the oxygen source and the chemical vapor deposition method according to claim 2, wherein using a metal alkoxide compound or the metal alkoxide compound represented in.
一般式(1)
Figure 0005776555
(式中、Mはジルコニウム、ハフニウム又はチタニウムを示し、4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)
で示される金属アルコキシド化合物又はこの金属アルコキシド化合物の溶液と、窒素源とを用いた請求項2記載の化学気相蒸着法による金属含有薄膜の製造法。
General formula (1)
Figure 0005776555
(In the formula, M represents zirconium, hafnium or titanium, and four Rs may be the same or different, and each independently represents a linear or branched alkyl group having 2 to 6 carbon atoms. .)
Preparation of the metal-containing thin film by chemical vapor deposition of the solution and, according to claim 2, wherein using a nitrogen source of the metal alkoxide compound or the metal alkoxide compound represented in.
一般式(1)
Figure 0005776555
(式中、Mはジルコニウム、ハフニウム又はチタニウムを示し、4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)
で示される金属アルコキシド化合物又はこの金属アルコキシド化合物の溶液と、不活性ガスとを用いた請求項2記載の化学気相蒸着法による金属含有薄膜の製造法。
General formula (1)
Figure 0005776555
(In the formula, M represents zirconium, hafnium or titanium, and four Rs may be the same or different, and each independently represents a linear or branched alkyl group having 2 to 6 carbon atoms. .)
Solution and method for producing a metal-containing thin film by chemical vapor deposition according to claim 2, wherein with the inert gas of the metal alkoxide compound or the metal alkoxide compound represented in.
前記金属アルコキシド化合物の溶液の溶媒が、脂肪族炭化水素類、芳香族炭化水素類及びエーテル類からなる群より選ばれる少なくとも1種である請求項2乃至5記載の化学気相蒸着法による金属含有薄膜の製造法。   6. The metal content by chemical vapor deposition according to claim 2, wherein a solvent of the metal alkoxide compound solution is at least one selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons and ethers. Thin film manufacturing method.
JP2011549020A 2010-01-07 2011-01-06 Metal alkoxide compound and method for producing metal-containing thin film using the compound Expired - Fee Related JP5776555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011549020A JP5776555B2 (en) 2010-01-07 2011-01-06 Metal alkoxide compound and method for producing metal-containing thin film using the compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010002312 2010-01-07
JP2010002312 2010-01-07
JP2010236797 2010-10-21
JP2010236797 2010-10-21
JP2011549020A JP5776555B2 (en) 2010-01-07 2011-01-06 Metal alkoxide compound and method for producing metal-containing thin film using the compound
PCT/JP2011/050117 WO2011083820A1 (en) 2010-01-07 2011-01-06 Metal alkoxide compound and process for production of metal-containing thih film using the compound

Publications (2)

Publication Number Publication Date
JPWO2011083820A1 JPWO2011083820A1 (en) 2013-05-16
JP5776555B2 true JP5776555B2 (en) 2015-09-09

Family

ID=44305557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011549020A Expired - Fee Related JP5776555B2 (en) 2010-01-07 2011-01-06 Metal alkoxide compound and method for producing metal-containing thin film using the compound

Country Status (4)

Country Link
JP (1) JP5776555B2 (en)
KR (1) KR101476016B1 (en)
TW (1) TW201139720A (en)
WO (1) WO2011083820A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201629A (en) * 2011-03-25 2012-10-22 Ube Industries Ltd High purity zirconium alkoxide raw material and production method of the same, and analysis method of the raw material
US20200017962A1 (en) * 2017-03-29 2020-01-16 Ih Ip Holdings Limited Methods for Increasing Hydrogen Trapping Vacancies in Materials
EP4249631A1 (en) * 2020-11-19 2023-09-27 Adeka Corporation Method for manufacturing thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219969A (en) * 1999-02-01 2000-08-08 Mitsubishi Materials Corp Organic tantalum compound, raw material for organo- metallic chemical vapor deposition containing this and tantalum-containing thin film made therefrom
JP2003221672A (en) * 2002-01-29 2003-08-08 Dainippon Printing Co Ltd Titanium oxide thin-film, manufacturing method therefor, and laminate of titanium oxide thin-film
WO2005116292A1 (en) * 2004-05-26 2005-12-08 Adeka Corporation Material for chemical vapor deposition and thin film forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219969A (en) * 1999-02-01 2000-08-08 Mitsubishi Materials Corp Organic tantalum compound, raw material for organo- metallic chemical vapor deposition containing this and tantalum-containing thin film made therefrom
JP2003221672A (en) * 2002-01-29 2003-08-08 Dainippon Printing Co Ltd Titanium oxide thin-film, manufacturing method therefor, and laminate of titanium oxide thin-film
WO2005116292A1 (en) * 2004-05-26 2005-12-08 Adeka Corporation Material for chemical vapor deposition and thin film forming method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014041862; Inorganica Chimica Acta Vol.359, 2006, p.4159-4167 *

Also Published As

Publication number Publication date
KR101476016B1 (en) 2014-12-23
KR20120105046A (en) 2012-09-24
JPWO2011083820A1 (en) 2013-05-16
TW201139720A (en) 2011-11-16
WO2011083820A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
EP1849789B1 (en) Metal complexes of polydentate beta-ketoiminates
EP2535343B1 (en) Organoaminosilane precursors and methods for making and using same
JP5857970B2 (en) (Amidoaminoalkane) metal compound and method for producing metal-containing thin film using the metal compound
KR101533844B1 (en) Raw material for forming a strontium-containing thin film and process for preparing the raw material
TW200907091A (en) Organometallic compounds
JP4312006B2 (en) Rare earth metal complex, raw material for thin film formation, and method for producing thin film
TW200528574A (en) Metal compound, material for forming thin film and method for preparing thin film
JP5698161B2 (en) Metal complexes for metal-containing film deposition
CN110073474A (en) Zirconium precursors, hafnium precursors, titanium precursor and the film for containing the 4th race using its deposition
JP5776555B2 (en) Metal alkoxide compound and method for producing metal-containing thin film using the compound
WO1999055712A1 (en) Group ii mocvd source reagents, and method of forming group ii metal-containing films utilizing same
JP5260148B2 (en) Method for forming strontium-containing thin film
WO2018088078A1 (en) Compound, thin-film-forming raw material, thin-film-forming raw material for atomic-layer deposition method, and process for producing thin film
JP4823069B2 (en) Metal compound, thin film forming raw material, and thin film manufacturing method
WO2018042871A1 (en) Diazadienyl compound, raw material for forming thin film, and method for producing thin film
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
CN115279940B (en) Aluminum precursor compound, method for producing the same, and method for forming aluminum-containing film using the same
JPWO2017030150A1 (en) Aluminum oxide film manufacturing method, aluminum oxide film manufacturing raw material, and aluminum compound
JP2007290993A (en) STRONTIUM COMPLEX WITH ISOPROPYL OR ISOBUTYL GROUP-BEARING beta- DIKETONATO AS LIGAND, AND METHOD FOR PRODUCING METAL-CONTAINING THIN FILM USING THE STRONTIUM COMPLEX
JP4859098B2 (en) Niobium tetraalkoxydiisobutyrylmethanate and raw material solution for forming Pb (Zr, Ti, Nb) O3 film using the same
WO2017150212A1 (en) Method for producing aluminum oxide film and production starting material for aluminum oxide film
JP2009137862A (en) Mixture of organic ruthenium complexes, and method for producing thin film comprising metallic ruthenium using the same
JP2005060358A (en) BISMUTH ALKOXIDE, ITS PRODUCTION METHOD, AND METHOD FOR PRODUCTION OF Bi-LAYERED FERROELECTRIC THIN FILM USING THE ALKOXIDE
KR20040077324A (en) Organometallic complex and the preparation thereof
JP2009127082A (en) Organic ruthenium complex, and method for producing metal ruthenium-containing thin film using the complex

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees