WO2017150212A1 - Method for producing aluminum oxide film and production starting material for aluminum oxide film - Google Patents

Method for producing aluminum oxide film and production starting material for aluminum oxide film Download PDF

Info

Publication number
WO2017150212A1
WO2017150212A1 PCT/JP2017/005852 JP2017005852W WO2017150212A1 WO 2017150212 A1 WO2017150212 A1 WO 2017150212A1 JP 2017005852 W JP2017005852 W JP 2017005852W WO 2017150212 A1 WO2017150212 A1 WO 2017150212A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum oxide
oxide film
aluminum
producing
compound
Prior art date
Application number
PCT/JP2017/005852
Other languages
French (fr)
Japanese (ja)
Inventor
白井 昌志
央 二瓶
貴匡 宮崎
純一 向
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to JP2018503028A priority Critical patent/JPWO2017150212A1/en
Publication of WO2017150212A1 publication Critical patent/WO2017150212A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Definitions

  • the present invention relates to a method for producing an aluminum oxide film on a film formation target and a raw material for producing an aluminum oxide film.
  • an aluminum oxide film is known as a film useful as a gate insulating film or the like, and is widely applied in the semiconductor field. Therefore, in recent years, higher quality aluminum oxide films are being sought. For this reason, an aluminum compound (raw material for producing an aluminum oxide film) suitable for producing a high quality aluminum oxide film has been studied (see, for example, Patent Documents 1 to 3 and Non-Patent Document 3).
  • Patent Document 4 discloses an alkylaluminum dihalide compound as a polymerization catalyst.
  • Non-Patent Document 1 and Non-Patent Document 2 disclose measurement examples and synthesis examples of alkylaluminum dihalide compounds.
  • Non-Patent Document 1 Non-Patent Document 2 and Patent Document 4 have not described that the alkylaluminum dihalide compound is useful as a raw material for producing an aluminum oxide film.
  • Non-Patent Document 3 describes the production of an aluminum oxide film by a chemical vapor deposition method (hereinafter referred to as "CVD method"), but other film formation methods and film formation There were no studies on temperature etc.
  • CVD method chemical vapor deposition method
  • the alkylaluminum dihalide compound since the alkylaluminum dihalide compound is generally known to be self-combustible, it is difficult to handle and is not preferable as a raw material for producing an aluminum oxide film. Furthermore, when impurities, such as aluminum chloride and aluminum carbide, are also mixed at the time of film formation, it was not preferable in applications such as semiconductors. Therefore, the obtained aluminum oxide film needs to be chemically pure. Furthermore, in applications such as semiconductors, the thickness of the aluminum oxide film needs to be uniform.
  • the main object of the present invention is to produce a high quality aluminum oxide film by an industrially suitable method and to provide a raw material for producing an aluminum oxide film.
  • high quality indicates that the purity is high chemically and that the thickness of the obtained aluminum oxide film is uniform in the same film.
  • an aluminum compound represented by the following general formula (1) is supplied onto a film formation target heated to 300 to 550 ° C. to oxidize the aluminum oxide film. Form.
  • R represents a linear alkyl group having 1 to 6 carbon atoms
  • X represents a halogen group. Two X may be the same or different
  • the raw material for producing an aluminum oxide film according to the present invention comprises an aluminum compound represented by the following general formula (1).
  • R represents a linear alkyl group having 1 to 6 carbon atoms
  • X represents a halogen group. Two X may be the same or different
  • the present invention it is possible to provide a method for producing an aluminum oxide film capable of producing a high quality aluminum oxide film, and a raw material for producing an aluminum oxide film.
  • an aluminum compound represented by the following general formula (1) is supplied onto a film formation target heated to 300 ° C. to 550 ° C. to oxidize the aluminum oxide film. It is characterized by forming.
  • R represents a linear alkyl group having 1 to 6 carbon atoms
  • X represents a halogen group. Two X may be the same or different
  • the aluminum compound used in the method for producing an aluminum oxide film of the present invention is an alkylaluminum dihalide compound represented by the above general formula (1).
  • R in the general formula (1) is a linear alkyl group having 1 to 6 carbon atoms, preferably a linear alkyl group having 1 to 3 carbon atoms.
  • R include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group and an n-hexyl group. Among them, a methyl group and an ethyl group are preferable, and an ethyl group is more preferable.
  • the n-propyl group means a linear propyl group, and the same applies to other alkyl groups.
  • X in the general formula (1) is a halogen group, and examples thereof include a chloro group, a bromo group and an iodo group. Among them, chloro group is preferable.
  • two X's may be the same or different, but are preferably the same.
  • Preferred specific examples of the aluminum compound used in the method for producing an aluminum oxide film of the present invention include compounds represented by the following formulas (2) to (7). Among them, compounds represented by the following formulas (2) and (3) are preferable, and compounds represented by the following formula (3) are more preferably used.
  • Me, Et, n Pr, n Bu, n Pen, and n Hex are each methyl group, ethyl group, n- propyl group, n- butyl group, n- pentyl group, a n- hexyl group.
  • the aluminum compound is used as a raw material for producing an aluminum oxide film, and preferably used as a raw material for producing an aluminum oxide film by atomic layer deposition (hereinafter referred to as “ALD method”).
  • ALD method atomic layer deposition
  • an ALD method or a CVD method can be mentioned as a film forming method, but the ALD method is preferable in that it is easy to control the film thickness, has excellent step film property, and can form a uniform and dense film. Is preferred.
  • Chem. Mater. As described in the second paragraph on page 4845 of 2010, 22, 4844-4853, the materials used for the ALD method are much more limited than the CVD method, so search for materials that can be deposited by the ALD method. It is difficult.
  • the aluminum compound can also be deposited by ALD.
  • Deposition target examples include SiO 2 / Si, Si, TiN / Si, ZrO 2 / Si, Si 3 N 4 / SiO 2 / Si, and the like, with preference given to SiO 2 / Si.
  • the alkylaluminum dihalide compound used in the method for producing an aluminum oxide film of the present invention can be produced, for example, by a method in which trihalogenoaluminum and trialkylaluminum are reacted.
  • trihalogenoaluminum examples include trichloroaluminum, tribromoaluminum, triiodoaluminum and the like, preferably trichloroaluminum.
  • trialkylaluminum examples include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, trihexylaluminum and the like, preferably trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, more preferably trimethyl.
  • the amount of the trialkylaluminum used is preferably 0.1 to 1.0 mol, more preferably 0.2 to 0.7 mol, still more preferably 0.2 to 0 mol, per 1 mol of trihalogenoaluminum. 5 moles.
  • the reaction is preferably carried out in an organic solvent, and the organic solvent used is not particularly limited as long as it does not inhibit the reaction.
  • organic solvent used is not particularly limited as long as it does not inhibit the reaction.
  • aliphatic hydrocarbons such as hexane, heptane, cyclohexane, methylcyclohexane and ethylcyclohexane; aromatic hydrocarbons such as toluene and xylene; ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane and dioxane, etc. are preferable.
  • Is a mixed solvent of aliphatic hydrocarbons and aromatic hydrocarbons, or aliphatic hydrocarbons. These organic solvents may be used alone or in combination of two or more.
  • the amount of the organic solvent used is preferably 1 g to 100 g, more preferably 3 g to 50 g, still more preferably 3 g to 10 g, per 1 g of trihalogenoaluminum.
  • the reaction is performed, for example, by a method such as mixing and reacting trihalogenoaluminum, trialkylaluminum and an organic solvent.
  • the reaction temperature at that time is preferably ⁇ 100 ° C. to 100 ° C., more preferably ⁇ 80 ° C. to 40 ° C., and the reaction pressure is not particularly limited.
  • the desired product an alkylaluminum dihalide compound
  • the alkylaluminum dihalide compound is obtained by a known method such as extraction, filtration, concentration, distillation, sublimation, recrystallization, column chromatography, etc. May be isolated and purified.
  • alkylaluminum dihalide compounds and the trihalogenoaluminum compounds and trialkylaluminum compounds that are the raw materials for their production are often unstable with respect to moisture and oxygen in the atmosphere, they are under anhydrous conditions or under inert gas conditions.
  • the reaction operation of the reaction, post-treatment of the reaction solution, and the like are performed.
  • the alkyl aluminum dihalide compound is suitably used as a production raw material (production raw material) for producing an aluminum oxide film. It is preferable that the manufacturing raw material (raw material for manufacturing) for manufacturing an aluminum oxide film consists only of an alkyl aluminum dihalide compound. However, the above-mentioned production raw material (production raw material) may contain a small amount of impurities (aluminum compound etc.) other than the alkylaluminum dihalide compound within a range which does not greatly affect the quality of the formed aluminum oxide film.
  • Examples of the method of depositing the aluminum oxide film on the film formation target include the ALD method and the CVD method, but the ALD method is more preferably used.
  • the vapor of an alkylaluminum dihalide compound is supplied onto a film formation target heated with a reactive gas under normal pressure or reduced pressure, and aluminum oxide is oxidized by oxidizing the alkylaluminum dihalide compound.
  • a film may be formed.
  • the gas containing the vapor of the alkylaluminum dihalide compound (including the vaporized liquid) may be diluted with an inert gas or the like.
  • an aluminum oxide film can be deposited by plasma CVD using the same raw material supply.
  • reactive gases examples include oxidizing gases such as oxygen and ozone; water; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol and n-butanol, etc.
  • oxidizing gases such as oxygen and ozone
  • water alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol and n-butanol, etc.
  • a film it is preferably water, ozone, and more preferably water.
  • the alkylaluminum dihalide compound is oxidized by the reactive gas.
  • aluminum oxide is vapor-deposited on the film-forming object, and an aluminum oxide film is formed.
  • the reactive gas may be used as a single species or as a mixed gas.
  • the inert gas includes argon, nitrogen and helium.
  • the alkylaluminum dihalide compound In the CVD method, it is necessary to vaporize the alkylaluminum dihalide compound to form a thin film.
  • a method of vaporizing the alkylaluminum dihalide compound for example, not only a method of charging or transporting the alkylaluminum dihalide compound in the vaporizing chamber for vaporizing, but also the alkylaluminum dihalide compound can be used in an appropriate solvent (eg, hexane, cyclohexane) Aliphatic hydrocarbons such as methylcyclohexane, ethylcyclohexane, heptane and octane; aromatic hydrocarbons such as toluene, ethylbenzene and xylene; ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane and dioxane)
  • solvent eg, hexane, cyclo
  • the pressure in the reaction system when depositing an aluminum oxide film using an alkylaluminum dihalide compound is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa.
  • the film formation target temperature is preferably 250 ° C. to 580 ° C., more preferably 300 ° C. to 550 ° C., still more preferably 480 ° C. to 550 ° C. More preferably, it is 500 to 550.degree. In one embodiment, it is preferably 250 ° C. to 600 ° C., more preferably 300 ° C. to 500 ° C., still more preferably 300 ° C.
  • the temperature at which the alkylaluminum dihalide compound is vaporized is preferably 30 ° C. to 250 ° C., more preferably 60 ° C. to 200 ° C.
  • the content ratio of oxygen source (for example, oxidizing gas, water vapor or alcohol vapor, or mixed gas thereof) is preferably 3 to 99% by volume, and more preferably, to the total amount of gas when depositing the aluminum oxide film. It is 5 to 98% by volume.
  • the film forming method of the present invention is an industrially suitable method, and a high quality aluminum oxide compound can be obtained.
  • a high quality aluminum oxide film can be obtained by forming a film by the film forming method using a halide compound.
  • the aluminum oxide film of the present embodiment is formed on the film formation target by supplying the aluminum compound onto the heated film formation target and oxidizing the aluminum compound.
  • the aluminum oxide film has a thickness of, for example, 1 to 100 nm, preferably 10 to 80 nm, and more preferably 20 to 60 nm.
  • the aluminum oxide film of the present embodiment can be sufficiently reduced in impurity concentration to obtain good quality.
  • the content of aluminum oxide in the aluminum oxide film is, for example, 95% by mass or more, preferably 98% by mass or more, and more preferably 99% by mass or more.
  • Such high purity aluminum oxide films having high purity and small thickness are useful in the semiconductor field.
  • one having an aluminum oxide content of 90% by mass or more is referred to as an “aluminum oxide film”.
  • the variation in thickness of the aluminum oxide film is, for example, less than 10 nm.
  • the variation in thickness of the aluminum oxide film refers to the difference (maximum value-minimum value) in the film thickness measured at an arbitrarily selected point.
  • Example A1 (Synthesis of methylaluminum dichloride (compound of formula (2))) 13.0 g (97.5 mmol) of trichloroaluminum and 50 mL of toluene were added to a 100 mL flask equipped with a stirrer, a thermometer and a dropping funnel and cooled. Into the resulting solution, 3.50 g (48.8 mmol) of trimethylaluminum was slowly dropped so that the internal temperature became 0 to 6 ° C., and the mixture was stirred at room temperature (25 ° C.) for 15 hours.
  • methylaluminum dichloride is a compound shown by the following physical-property values. 1 H-NMR (C 6 D 6 , ⁇ (ppm)); -0.45 (3 H, s)
  • Example A2 (Synthesis of Ethyl Aluminum Dichloride (Compound of Formula (3))) 7.00 g (52.5 mmol) of trichloroaluminum and 30 mL of toluene were added to a flask with an internal volume of 100 mL equipped with a stirrer, a thermometer and a dropping funnel, and cooled. To the resulting solution, 3.00 g (26.3 mmol) of triethylaluminum was dropped slowly so that the internal temperature became 0 to 6 ° C., and the mixture was stirred at room temperature (25 ° C.) for 15 hours.
  • Ethyl aluminum dichloride is a compound represented by the following physical property values. 1 H-NMR (C 6 D 6 , ⁇ (ppm)); 0.21 (2 H, q), 0.93 (3 H, t)
  • Example B1 (Production of Aluminum Oxide Film) An aluminum oxide film was formed by an ALD method using ethylaluminum dichloride (the compound of the formula (3)) synthesized in Example A2. In addition, the film thickness of the formed aluminum oxide film was measured, and the composition was analyzed. The composition was analyzed using an XPS (X-ray photoelectron spectroscopy) measuring apparatus. Next, the production of the aluminum oxide film will be described more specifically.
  • XPS X-ray photoelectron spectroscopy
  • An aluminum oxide film was formed on the substrate by the ALD method using ethylaluminum dichloride synthesized in Example A2 as the aluminum compound, that is, the compound represented by the above formula (3).
  • the formation of the aluminum oxide film was performed using the apparatus shown in FIG.
  • the apparatus shown in FIG. 1 includes a vaporizer 1 (ample made of SUS) that vaporizes an aluminum compound 2, a vaporizer 6 (ample made of SUS) that vaporizes water 7 and supplies water vapor that is a reactive gas, and a substrate 15 And a heater 11 for heating the substrate 15, and a reactor 11 for reacting the aluminum compound 2 with water vapor to form an aluminum oxide film on the substrate 15.
  • a vacuum pump is connected to the reactor 11 via a flow path.
  • the flow path is provided with a pressure gauge 13, a pressure control valve 12, and a trap 16. By this, the pressure in the reactor 11 is adjusted to a predetermined range.
  • the gas derived from the reactor 11 is exhausted to the atmosphere via the trap 16 and a vacuum pump.
  • the aluminum compound 2 and the water 7 synthesized in Example A2 were accommodated in the vaporizer 1 and the vaporizer 6 provided with the heater 3 and the constant temperature bath 8, respectively.
  • the vaporizer 1 was supplied with argon gas whose flow rate was adjusted by the mass flow controller 4 and which was preheated by the preheater 5. As a result, argon gas containing the aluminum compound 2 was introduced into the reactor 11 from the vaporizer 1.
  • water vapor adjusted to a constant temperature by the constant temperature bath 8 and vaporized from the vaporizer 6 was introduced into the reactor 11.
  • the argon gas containing the aluminum compound 2 from the vaporizer 1 and the water vapor from the vaporizer 6 were alternately introduced into the reactor 11.
  • the amounts of introduced argon gas and water vapor containing the aluminum compound 2 were adjusted by the valve 17 and the valve 18, respectively.
  • the argon gas and the water vapor containing the aluminum compound 2 were respectively flow-regulated by the mass flow controller 9 and entrained in the dilution argon gas preheated by the preheater 10 and introduced into the reactor 11.
  • the aluminum compound 2 and the water 7 were alternately supplied to the reactor 11 to form an aluminum oxide film 20 on the substrate 15 heated to a predetermined temperature by the heater 14.
  • the operating conditions of the apparatus of FIG. 1 were as follows.
  • An aluminum oxide film 20 was formed on the substrate 15 under the conditions described above.
  • the thickness of the formed aluminum oxide film 20 was measured using a reflection spectrophotometer. Further, the composition of the aluminum oxide film 20 was analyzed using an XPS (X-ray photoelectron spectroscopy) measurement apparatus. The results of thickness and composition analysis were as shown in Table 1.
  • the thickness of the aluminum oxide film 20 was measured at five places arbitrarily selected, and the maximum value and the minimum value were obtained.
  • maximum value-minimum value ⁇ 10 nm the arithmetic mean value is shown in the table.
  • the maximum value-minimum value ⁇ 10 nm the maximum value and the minimum value were shown.
  • Examples B2 to B6, Comparative Examples 1 to 2 (Production of Aluminum Oxide Film) An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example B1, except that the temperature of the substrate 15 was changed as shown in Table 1. The analysis results of the thickness and composition of the formed aluminum oxide film 20 are as shown in Table 1.
  • All of the aluminum oxide films of Examples B1 to B6 had no variation in thickness and were excellent in uniformity of thickness. Further, it was confirmed that when the temperature of the substrate 15 is in the range of 300 to 550 ° C., the composition of the formed film is uniform, and the thickness of the aluminum oxide film does not change much. From this, it was confirmed that an aluminum oxide film can be stably formed by using the ethylaluminum dichloride synthesized in Example A2. The content of aluminum oxide in the aluminum oxide films of Examples B1 to B6 was 99% by mass or more, and the content of aluminum carbide was 1% by mass or less.
  • the aluminum compound represented by the formula (3) did not ignite spontaneously.
  • the aluminum compound of the present invention since the aluminum thin film is formed under the above conditions, the aluminum compound of the present invention has good reactivity with at least one of the thermally decomposable gas and the reactive gas, and contains the aluminum compound of the present invention It has also been found that the vapor is excellent in the adsorptivity to the substrate surface. Furthermore, as long as the temperature of the substrate is set to 300 ° C. to 550 ° C., the composition of the formed film is only aluminum oxide and no halogen atoms remain, so according to the manufacturing method of the present invention, the quality is improved. It turned out that a good aluminum oxide film can be manufactured.
  • a high quality aluminum oxide film can be manufactured by an industrially suitable method. Moreover, the manufacturing raw material suitably used for the said manufacturing method can be provided.

Abstract

A method for producing an aluminum oxide film, wherein an aluminum oxide film is formed by supplying an aluminum compound having a specific structure onto an object of film formation, which has been heated to 300-550°C, thereby oxidizing the aluminum compound.

Description

酸化アルミニウム膜の製造方法及び酸化アルミニウム膜の製造原料Method for producing aluminum oxide film and raw material for producing aluminum oxide film
 本発明は、成膜対象物上に酸化アルミニウム膜を製造する方法及び酸化アルミニウム膜の製造原料に関する。 The present invention relates to a method for producing an aluminum oxide film on a film formation target and a raw material for producing an aluminum oxide film.
 従来、酸化アルミニウム膜は、ゲート絶縁膜等として有用な膜として知られており、半導体分野において幅広く応用展開がなされている。そこで、近年、より高品質な酸化アルミニウム膜が求められつつある。このため、高品質な酸化アルミニウム膜を製造するために好適なアルミニウム化合物(酸化アルミニウム膜の製造原料)が検討されている(例えば、特許文献1~3、非特許文献3参照)。 Conventionally, an aluminum oxide film is known as a film useful as a gate insulating film or the like, and is widely applied in the semiconductor field. Therefore, in recent years, higher quality aluminum oxide films are being sought. For this reason, an aluminum compound (raw material for producing an aluminum oxide film) suitable for producing a high quality aluminum oxide film has been studied (see, for example, Patent Documents 1 to 3 and Non-Patent Document 3).
 また、特許文献4には、重合触媒としてアルキルアルミニウムジハライド化合物が開示されている。非特許文献1及び非特許文献2には、アルキルアルミニウムジハライド化合物の測定例や合成例が開示されている。 Patent Document 4 discloses an alkylaluminum dihalide compound as a polymerization catalyst. Non-Patent Document 1 and Non-Patent Document 2 disclose measurement examples and synthesis examples of alkylaluminum dihalide compounds.
WO2004/108985号公報WO 2004/108985 特許第4716193号公報Patent No. 4716193 gazette 特開2007-138296号公報JP 2007-138296 A WO2015/164972号公報WO 2015/164972
 非特許文献1、非特許文献2、及び特許文献4には、アルキルアルミニウムジハライド化合物が酸化アルミニウム膜の製造原料として有用である旨の記載はなかった。また、非特許文献3には、化学気相蒸着法(Chemical Vapor Deposition法;以下、「CVD法」と称する。)による酸化アルミニウム膜の製造について記載はあるが、他の成膜法や成膜温度等に関する検討はされていなかった。 Non-Patent Document 1, Non-Patent Document 2 and Patent Document 4 have not described that the alkylaluminum dihalide compound is useful as a raw material for producing an aluminum oxide film. In addition, Non-Patent Document 3 describes the production of an aluminum oxide film by a chemical vapor deposition method (hereinafter referred to as "CVD method"), but other film formation methods and film formation There were no studies on temperature etc.
 また、特許文献1に記載の通り、一般にアルキルアルミニウムジハライド化合物は自燃性があることが知られていることから、取扱いにくく、酸化アルミニウム膜製造用原料としては好ましくなかった。さらに、成膜時に塩化アルミニウムや炭化アルミニウム等の不純物も混入すると、半導体等の用途においては好ましくなかった。したがって、得られた酸化アルミニウム膜は化学的に純度が高い必要がある。さらに、半導体等の用途においては酸化アルミニウム膜の厚みが均一である必要がある。 Further, as described in Patent Document 1, since the alkylaluminum dihalide compound is generally known to be self-combustible, it is difficult to handle and is not preferable as a raw material for producing an aluminum oxide film. Furthermore, when impurities, such as aluminum chloride and aluminum carbide, are also mixed at the time of film formation, it was not preferable in applications such as semiconductors. Therefore, the obtained aluminum oxide film needs to be chemically pure. Furthermore, in applications such as semiconductors, the thickness of the aluminum oxide film needs to be uniform.
 そこで、本発明の主な課題は、工業的に好適な方法により高品位な酸化アルミニウム膜を製造すること、及び酸化アルミニウム膜の製造原料を提供することにある。 Therefore, the main object of the present invention is to produce a high quality aluminum oxide film by an industrially suitable method and to provide a raw material for producing an aluminum oxide film.
 本発明者等は、検討を重ねた結果、特定の構造を有するアルキルアルミニウムジハライド化合物が、非自燃性であり、ハロゲン原子等を有さない、高品位な酸化アルミニウム膜を製造し得る酸化アルミニウム膜の製造原料であることを見出し、本発明に到達した。 As a result of repeated investigations by the present inventors, aluminum oxide capable of producing a high quality aluminum oxide film in which an alkylaluminum dihalide compound having a specific structure is non-self-combustible and does not have a halogen atom etc. It has been found that it is a raw material for producing a membrane, and the present invention has been reached.
 なお、本発明において、高品位とは、化学的に純度が高いこと、及び得られた酸化アルミニウム膜の厚みが同一膜内で均一であることを示す。 In the present invention, high quality indicates that the purity is high chemically and that the thickness of the obtained aluminum oxide film is uniform in the same film.
 本発明に係る酸化アルミニウム膜の製造方法では、300~550℃に加熱された成膜対象物上に、下記一般式(1)で示されるアルミニウム化合物を供給し、酸化することにより酸化アルミニウム膜を形成する。 In the method for producing an aluminum oxide film according to the present invention, an aluminum compound represented by the following general formula (1) is supplied onto a film formation target heated to 300 to 550 ° C. to oxidize the aluminum oxide film. Form.
Figure JPOXMLDOC01-appb-C000003

(式中、Rは炭素原子数1~6の直鎖状のアルキル基を示し、Xはハロゲン基を示す。ふたつのXは同一又は異なっていてもよい)
Figure JPOXMLDOC01-appb-C000003

(Wherein, R represents a linear alkyl group having 1 to 6 carbon atoms, and X represents a halogen group. Two X may be the same or different)
 本発明に係る酸化アルミニウム膜の製造原料は、下記一般式(1)で示されるアルミニウム化合物からなる。 The raw material for producing an aluminum oxide film according to the present invention comprises an aluminum compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004

(式中、Rは炭素原子数1~6の直鎖状のアルキル基を示し、Xはハロゲン基を示す。ふたつのXは同一又は異なっていてもよい)
Figure JPOXMLDOC01-appb-C000004

(Wherein, R represents a linear alkyl group having 1 to 6 carbon atoms, and X represents a halogen group. Two X may be the same or different)
 本発明によれば、高品位な酸化アルミニウム膜を製造し得る酸化アルミニウム膜の製造方法、及び酸化アルミニウム膜の製造原料を提供することができる。 According to the present invention, it is possible to provide a method for producing an aluminum oxide film capable of producing a high quality aluminum oxide film, and a raw material for producing an aluminum oxide film.
実施例において使用した、アルミニウム化合物を用いて酸化アルミニウム膜を製造するための蒸着装置の構成を示す図である。It is a figure which shows the structure of the vapor deposition apparatus for manufacturing an aluminum oxide film using the aluminum compound used in the Example.
 本発明の酸化アルミニウム膜の製造方法は、300℃~550℃に加熱された成膜対象物上に、下記一般式(1)で示されるアルミニウム化合物を供給し、酸化することにより酸化アルミニウム膜を形成することを特徴とする。 According to the method for producing an aluminum oxide film of the present invention, an aluminum compound represented by the following general formula (1) is supplied onto a film formation target heated to 300 ° C. to 550 ° C. to oxidize the aluminum oxide film. It is characterized by forming.
Figure JPOXMLDOC01-appb-C000005

(式中、Rは炭素原子数1~6の直鎖状のアルキル基を示し、Xはハロゲン基を示す。ふたつのXは同一又は異なっていてもよい)
Figure JPOXMLDOC01-appb-C000005

(Wherein, R represents a linear alkyl group having 1 to 6 carbon atoms, and X represents a halogen group. Two X may be the same or different)
(アルミニウム化合物)
 本発明の酸化アルミニウム膜の製造方法において使用するアルミニウム化合物は、前記一般式(1)で示すアルキルアルミニウムジハライド化合物である。
(Aluminum compound)
The aluminum compound used in the method for producing an aluminum oxide film of the present invention is an alkylaluminum dihalide compound represented by the above general formula (1).
 一般式(1)中のRは炭素原子数1~6の直鎖状のアルキル基であり、好ましくは炭素原子数1~3の直鎖状のアルキル基である。Rとしては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基が挙げられる。中でも、メチル基、エチル基が好ましく、エチル基がより好ましい。なお、n-プロピル基とは直鎖状のプロピル基を示し、他のアルキル基についても同様である。 R in the general formula (1) is a linear alkyl group having 1 to 6 carbon atoms, preferably a linear alkyl group having 1 to 3 carbon atoms. Examples of R include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group and an n-hexyl group. Among them, a methyl group and an ethyl group are preferable, and an ethyl group is more preferable. The n-propyl group means a linear propyl group, and the same applies to other alkyl groups.
 一般式(1)中のXはハロゲン基であり、例えば、クロロ基、ブロモ基、ヨード基が挙げられる。中でも、クロロ基が好ましい。一般式(1)中、2つのXは同一でも異なっていてもよいが、同一であることが好ましい。 X in the general formula (1) is a halogen group, and examples thereof include a chloro group, a bromo group and an iodo group. Among them, chloro group is preferable. In general formula (1), two X's may be the same or different, but are preferably the same.
 本発明の酸化アルミニウム膜の製造方法で使用するアルミニウム化合物の好適な具体例としては、下記式(2)~(7)で示される化合物が挙げられる。中でも、下記式(2)、(3)で示される化合物が好ましく、下記式(3)で示される化合物がより好ましく用いられる。 Preferred specific examples of the aluminum compound used in the method for producing an aluminum oxide film of the present invention include compounds represented by the following formulas (2) to (7). Among them, compounds represented by the following formulas (2) and (3) are preferable, and compounds represented by the following formula (3) are more preferably used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、Me、Et、Pr、Bu、Pen、及びHexは、それぞれメチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基を示す。 Wherein, Me, Et, n Pr, n Bu, n Pen, and n Hex are each methyl group, ethyl group, n- propyl group, n- butyl group, n- pentyl group, a n- hexyl group.
 前記アルミニウム化合物は、酸化アルミニウム膜の製造原料として使用され、好ましくは原子層堆積法(Atomic Layer Deposition;以下、「ALD法」と称する。)による酸化アルミニウム膜の製造原料として使用される。 The aluminum compound is used as a raw material for producing an aluminum oxide film, and preferably used as a raw material for producing an aluminum oxide film by atomic layer deposition (hereinafter referred to as “ALD method”).
 成膜法としては、一般にALD法やCVD法が挙げられるが、膜厚を制御しやすく、良好な段差被膜性を有し、均一で緻密な膜を成膜できるという点で、ALD法の方が好ましい。しかし、Chem.Mater.2010,22,4844-4853の4845ページの第二段落に記載の通り、ALD法に用いられる材料はCVD法よりも非常に限られていることから、ALD法により成膜できる材料を探索することは困難である。ところが、前記アルミニウム化合物は、ALD法でも成膜することができる。 Generally, an ALD method or a CVD method can be mentioned as a film forming method, but the ALD method is preferable in that it is easy to control the film thickness, has excellent step film property, and can form a uniform and dense film. Is preferred. However, Chem. Mater. As described in the second paragraph on page 4845 of 2010, 22, 4844-4853, the materials used for the ALD method are much more limited than the CVD method, so search for materials that can be deposited by the ALD method. It is difficult. However, the aluminum compound can also be deposited by ALD.
(成膜対象物)
 成膜対象物としては、例えば、SiO/Si、Si、TiN/Si、ZrO/Si、Si/SiO/Siなどが挙げられ、好ましくはSiO/Siである。
(Deposition target)
Examples of the film formation target include SiO 2 / Si, Si, TiN / Si, ZrO 2 / Si, Si 3 N 4 / SiO 2 / Si, and the like, with preference given to SiO 2 / Si.
(アルキルアルミニウムジハライド化合物〔前記一般式(1)で示されるアルミニウム化合物〕の製造方法)
 本発明の酸化アルミニウム膜の製造方法において使用するアルキルアルミニウムジハライド化合物は、例えば、トリハロゲノアルミニウムとトリアルキルアルミニウムとを反応させる方法によって製造することができる。
(Method for Producing Alkyl Aluminum Dihalide Compound [Aluminum Compound Represented by the General Formula (1)])
The alkylaluminum dihalide compound used in the method for producing an aluminum oxide film of the present invention can be produced, for example, by a method in which trihalogenoaluminum and trialkylaluminum are reacted.
 前記トリハロゲノアルミニウムとしては、例えば、トリクロロアルミニウム、トリブロモアルミニウム、トリヨードアルミニウムなどが挙げられるが、好ましくはトリクロロアルミニウムである。 Examples of the trihalogenoaluminum include trichloroaluminum, tribromoaluminum, triiodoaluminum and the like, preferably trichloroaluminum.
 前記トリアルキルアルミニウムとしては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリヘキシルアルミニウムなどが挙げられるが、好ましくはトリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、より好ましくはトリメチルアルミニウム、トリエチルアルミニウム、更に好ましくはトリエチルアルミニウムである。 Examples of the trialkylaluminum include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, trihexylaluminum and the like, preferably trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, more preferably trimethyl. Aluminum, triethylaluminum, more preferably triethylaluminum.
 前記トリアルキルアルミニウムの使用量は、トリハロゲノアルミニウム1モルに対して、好ましくは0.1~1.0モル、より好ましくは0.2~0.7モル、更に好ましくは0.2~0.5モルである。 The amount of the trialkylaluminum used is preferably 0.1 to 1.0 mol, more preferably 0.2 to 0.7 mol, still more preferably 0.2 to 0 mol, per 1 mol of trihalogenoaluminum. 5 moles.
 前記反応は、有機溶媒中で行うことが望ましく、使用される有機溶媒としては、反応を阻害しないものならば特に限定されない。例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、ジオキサン等のエーテル類が挙げられ、好ましくは、脂肪族炭化水素類と芳香族炭化水素の混合溶媒、又は脂肪族炭化水素類である。なお、これらの有機溶媒は単独で使用してもよいし、二種以上を混合して使用してもよい。 The reaction is preferably carried out in an organic solvent, and the organic solvent used is not particularly limited as long as it does not inhibit the reaction. For example, aliphatic hydrocarbons such as hexane, heptane, cyclohexane, methylcyclohexane and ethylcyclohexane; aromatic hydrocarbons such as toluene and xylene; ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane and dioxane, etc. are preferable. Is a mixed solvent of aliphatic hydrocarbons and aromatic hydrocarbons, or aliphatic hydrocarbons. These organic solvents may be used alone or in combination of two or more.
 前記有機溶媒の使用量は、トリハロゲノアルミニウム1gに対して、好ましくは1g~100g、より好ましくは3g~50g、更に好ましくは3g~10gである。 The amount of the organic solvent used is preferably 1 g to 100 g, more preferably 3 g to 50 g, still more preferably 3 g to 10 g, per 1 g of trihalogenoaluminum.
 (合成方法)
 前記反応は、例えば、トリハロゲノアルミニウム、トリアルキルアルミニウム及び有機溶媒を混合し反応させる等の方法によって行われる。その際の反応温度は、好ましくは-100℃~100℃、更に好ましくは-80℃~40℃であり、反応圧力は特に制限されない。
(Composition method)
The reaction is performed, for example, by a method such as mixing and reacting trihalogenoaluminum, trialkylaluminum and an organic solvent. The reaction temperature at that time is preferably −100 ° C. to 100 ° C., more preferably −80 ° C. to 40 ° C., and the reaction pressure is not particularly limited.
 前記反応により目的物であるアルキルアルミニウムジハライド化合物が得られるが、反応終了後、抽出、濾過、濃縮、蒸留、昇華、再結晶、カラムクロマトグラフィー等の公知の方法によって、該アルキルアルミニウムジハライド化合物を単離・精製してもよい。 The desired product, an alkylaluminum dihalide compound, is obtained by the above reaction, but after completion of the reaction, the alkylaluminum dihalide compound is obtained by a known method such as extraction, filtration, concentration, distillation, sublimation, recrystallization, column chromatography, etc. May be isolated and purified.
 なお、アルキルアルミニウムジハライド化合物並びにその製造原料であるトリハロゲノアルミニウム化合物及びトリアルキルアルミニウム化合物は、大気中の水分や酸素に対して不安定な場合が多いため、無水条件下や不活性ガス条件下にて、前記反応の反応操作や反応液の後処理等を行うことが望ましい。 Since the alkylaluminum dihalide compounds and the trihalogenoaluminum compounds and trialkylaluminum compounds that are the raw materials for their production are often unstable with respect to moisture and oxygen in the atmosphere, they are under anhydrous conditions or under inert gas conditions. Preferably, the reaction operation of the reaction, post-treatment of the reaction solution, and the like are performed.
 アルキルアルミニウムジハライド化合物は、酸化アルミニウム膜を製造するための製造原料(製造用原料)として好適に使用される。酸化アルミニウム膜を製造するための製造原料(製造用原料)は、アルキルアルミニウムジハライド化合物のみからなることが好ましい。ただし、上記製造原料(製造用原料)は、形成される酸化アルミニウム膜の品質に大きな影響を及ぼさない範囲で、アルキルアルミニウムジハライド化合物以外の少量の不純物(アルミニウム化合物等)を含んでもよい。 The alkyl aluminum dihalide compound is suitably used as a production raw material (production raw material) for producing an aluminum oxide film. It is preferable that the manufacturing raw material (raw material for manufacturing) for manufacturing an aluminum oxide film consists only of an alkyl aluminum dihalide compound. However, the above-mentioned production raw material (production raw material) may contain a small amount of impurities (aluminum compound etc.) other than the alkylaluminum dihalide compound within a range which does not greatly affect the quality of the formed aluminum oxide film.
 (成膜方法)
 成膜対象物上への酸化アルミニウム膜の蒸着方法としては、例えば、ALD法やCVD法が挙げられるが、ALD法がより好ましく用いられる。
(Deposition method)
Examples of the method of depositing the aluminum oxide film on the film formation target include the ALD method and the CVD method, but the ALD method is more preferably used.
 具体的には、例えば、常圧又は減圧下にて、アルキルアルミニウムジハライド化合物の蒸気を反応性ガスと共に加熱した成膜対象物上に供給し、アルキルアルミニウムジハライド化合物を酸化させることにより酸化アルミニウム膜を形成してもよい。なお、アルキルアルミニウムジハライド化合物の蒸気を含むガス(気化した液体も含む)は不活性ガス等で希釈されていてもよい。又、同様な原料供給により、プラズマCVD法で酸化アルミニウム膜を蒸着させることも出来る。 Specifically, for example, the vapor of an alkylaluminum dihalide compound is supplied onto a film formation target heated with a reactive gas under normal pressure or reduced pressure, and aluminum oxide is oxidized by oxidizing the alkylaluminum dihalide compound. A film may be formed. The gas containing the vapor of the alkylaluminum dihalide compound (including the vaporized liquid) may be diluted with an inert gas or the like. Alternatively, an aluminum oxide film can be deposited by plasma CVD using the same raw material supply.
 反応性ガスとしては、酸素、オゾン等の酸化性ガス;水;メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブタノール等のアルコール類等が挙げられるが、ALD法により高品位な酸化アルミニウム膜を成膜できるという点において、好ましくは水、オゾンであり、より好ましくは水である。上記反応性ガスによって、アルキルアルミニウムジハライド化合物を酸化する。これによって、成膜対象物上に酸化アルミニウムが蒸着され、酸化アルミニウム膜が形成される。上記反応性ガスは単一種として用いても、混合ガスとして用いてもよい。
 不活性ガスとしては、アルゴン、窒素、ヘリウムが挙げられる。
Examples of reactive gases include oxidizing gases such as oxygen and ozone; water; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol and n-butanol, etc. In the point that a film can be formed, it is preferably water, ozone, and more preferably water. The alkylaluminum dihalide compound is oxidized by the reactive gas. By this, aluminum oxide is vapor-deposited on the film-forming object, and an aluminum oxide film is formed. The reactive gas may be used as a single species or as a mixed gas.
The inert gas includes argon, nitrogen and helium.
 CVD法においては、薄膜形成のためにアルキルアルミニウムジハライド化合物を気化させる必要がある。アルキルアルミニウムジハライド化合物を気化させる方法としては、例えば、アルキルアルミニウムジハライド化合物を気化室に充填又は搬送して気化させる方法だけでなく、アルキルアルミニウムジハライド化合物を適当な溶媒(例えば、ヘキサン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;トルエン、エチルベンゼン、キシレン等の芳香族炭化水素類;ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、ジオキサン等のエーテル類等が挙げられる。)に希釈した溶液を液体搬送用ポンプで気化室に導入して気化させる方法(溶液法)も挙げられる。 In the CVD method, it is necessary to vaporize the alkylaluminum dihalide compound to form a thin film. As a method of vaporizing the alkylaluminum dihalide compound, for example, not only a method of charging or transporting the alkylaluminum dihalide compound in the vaporizing chamber for vaporizing, but also the alkylaluminum dihalide compound can be used in an appropriate solvent (eg, hexane, cyclohexane) Aliphatic hydrocarbons such as methylcyclohexane, ethylcyclohexane, heptane and octane; aromatic hydrocarbons such as toluene, ethylbenzene and xylene; ethers such as diethyl ether, tetrahydrofuran, dimethoxyethane and dioxane) There is also a method (solution method) in which a solution diluted to the above is introduced into a vaporization chamber with a liquid transfer pump and vaporized.
 アルキルアルミニウムジハライド化合物を用いて酸化アルミニウム膜を蒸着するときの反応系内の圧力は、好ましくは1Pa~200kPa、更に好ましくは10Pa~110kPaである。アルキルアルミニウムジハライド化合物を用いて酸化アルミニウム膜を蒸着するときの成膜対象物温度は、好ましくは250℃~580℃、より好ましくは300℃~550℃、更に好ましくは480℃~550℃、より更に好ましくは500~550℃である。また、ある態様としては、例えば、低温合成又は膜厚低減の観点から、好ましくは250℃~600℃、より好ましくは300℃~500℃、更に好ましくは300℃~350℃である。アルキルアルミニウムジハライド化合物を気化させる温度は、好ましくは30℃~250℃、より好ましくは60℃~200℃である。 The pressure in the reaction system when depositing an aluminum oxide film using an alkylaluminum dihalide compound is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa. When depositing an aluminum oxide film using an alkylaluminum dihalide compound, the film formation target temperature is preferably 250 ° C. to 580 ° C., more preferably 300 ° C. to 550 ° C., still more preferably 480 ° C. to 550 ° C. More preferably, it is 500 to 550.degree. In one embodiment, it is preferably 250 ° C. to 600 ° C., more preferably 300 ° C. to 500 ° C., still more preferably 300 ° C. to 350 ° C., from the viewpoint of low temperature synthesis or thickness reduction. The temperature at which the alkylaluminum dihalide compound is vaporized is preferably 30 ° C. to 250 ° C., more preferably 60 ° C. to 200 ° C.
 なお、酸化アルミニウム膜を蒸着させる際の全ガス量に対する酸素源(例えば、酸化性ガス、水蒸気又はアルコール蒸気、もしくはこれらの混合ガス)の含有割合は、好ましくは3~99容量%、更に好ましくは5~98容量%である。 The content ratio of oxygen source (for example, oxidizing gas, water vapor or alcohol vapor, or mixed gas thereof) is preferably 3 to 99% by volume, and more preferably, to the total amount of gas when depositing the aluminum oxide film. It is 5 to 98% by volume.
 本発明の成膜方法は、工業的に好適な方法であり、高品位な酸化アルミニウム化合物を得ることができる。 The film forming method of the present invention is an industrially suitable method, and a high quality aluminum oxide compound can be obtained.
 また、J.Am.Chem.Soc.,1989,111(5),1634-1644においては、アルミニウム上のブチル基がβ水素脱離により分解し、酸化していないアルミニウム膜が成膜されることが記載されているが、アルキルアルミニウムジハライド化合物を用いて前記成膜方法により成膜することで、高品位な酸化アルミニウム膜を得ることができる。 Also, J.J. Am. Chem. Soc. In 1989, 111 (5), 1634-1644, it is described that the butyl group on aluminum is decomposed by β-hydrogen elimination and a non-oxidized aluminum film is formed. A high quality aluminum oxide film can be obtained by forming a film by the film forming method using a halide compound.
 本実施形態の酸化アルミニウム膜は、加熱されている成膜対象物上にアルミニウム化合物を供給し、当該アルミニウム化合物を酸化することにより成膜対象物上に形成される。酸化アルミニウム膜は、例えば、1~100nm、好ましくは10~80nm、より好ましくは20~60nmの厚みを有する。 The aluminum oxide film of the present embodiment is formed on the film formation target by supplying the aluminum compound onto the heated film formation target and oxidizing the aluminum compound. The aluminum oxide film has a thickness of, for example, 1 to 100 nm, preferably 10 to 80 nm, and more preferably 20 to 60 nm.
 本実施形態の酸化アルミニウム膜は不純物濃度を十分に低減して良好な品質にすることができる。酸化アルミニウム膜における酸化アルミニウムの含有量は、例えば95質量%以上であり、好ましくは98質量%以上であり、より好ましくは99質量%以上である。このように純度が高く且つ厚みの小さい高品位の酸化アルミニウム膜は、半導体分野において有用である。本明細書では、酸化アルミニウムの含有量が90質量%以上のものを、「酸化アルミニウム膜」という。酸化アルミニウム膜の厚みのばらつきは、例えば10nm未満である。なお、酸化アルミニウム膜の厚みのばらつきとは、任意に選択した箇所で測定される膜厚の差違(最大値-最小値)である。 The aluminum oxide film of the present embodiment can be sufficiently reduced in impurity concentration to obtain good quality. The content of aluminum oxide in the aluminum oxide film is, for example, 95% by mass or more, preferably 98% by mass or more, and more preferably 99% by mass or more. Such high purity aluminum oxide films having high purity and small thickness are useful in the semiconductor field. In the present specification, one having an aluminum oxide content of 90% by mass or more is referred to as an “aluminum oxide film”. The variation in thickness of the aluminum oxide film is, for example, less than 10 nm. The variation in thickness of the aluminum oxide film refers to the difference (maximum value-minimum value) in the film thickness measured at an arbitrarily selected point.
 次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 EXAMPLES The present invention will next be described by way of examples, which should not be construed as limiting the scope of the present invention.
 実施例A1(メチルアルミニウムジクロライド(式(2)の化合物)の合成)
 撹拌装置、温度計及び滴下漏斗を備えた内容積100mLのフラスコにトリクロロアルミニウム13.0g(97.5mmol)、トルエン50mLを加えて冷却した。得られた溶液にトリメチルアルミニウム3.50g(48.8mmol)を内温が0~6℃になるようにゆるやかに滴下し、室温(25℃)下において15時間撹拌した。反応終了後、その反応液を濃縮し、得られた濃縮物を減圧蒸留(オイルバス温度50℃、133.3Pa)して、白色固体のメチルアルミニウムジクロライド8.30g得た(単離収率;50%)。
 なお、メチルアルミニウムジクロライドは、以下の物性値で示される化合物である。
 H-NMR(C,δ(ppm));-0.45(3H,s)
Example A1 (Synthesis of methylaluminum dichloride (compound of formula (2)))
13.0 g (97.5 mmol) of trichloroaluminum and 50 mL of toluene were added to a 100 mL flask equipped with a stirrer, a thermometer and a dropping funnel and cooled. Into the resulting solution, 3.50 g (48.8 mmol) of trimethylaluminum was slowly dropped so that the internal temperature became 0 to 6 ° C., and the mixture was stirred at room temperature (25 ° C.) for 15 hours. After completion of the reaction, the reaction solution was concentrated, and the obtained concentrate was distilled under reduced pressure (oil bath temperature 50 ° C., 133.3 Pa) to obtain 8.30 g of methylaluminum dichloride as a white solid (isolated yield; 50%).
In addition, methyl aluminum dichloride is a compound shown by the following physical-property values.
1 H-NMR (C 6 D 6 , δ (ppm)); -0.45 (3 H, s)
 実施例A2(エチルアルミニウムジクロライド(式(3)の化合物)の合成)
 撹拌装置、温度計及び滴下漏斗を備えた内容積100mLのフラスコにトリクロロアルミニウム7.00g(52.5mmol)、トルエン30mLを加えて冷却した。得られた溶液にトリエチルアルミニウム3.00g(26.3mmol)を内温が0~6℃になるようにゆるやかに滴下し、室温(25℃)下において15時間撹拌した。反応終了後、その反応液を濃縮し、得られた濃縮物を減圧蒸留(オイルバス温度100℃、1333Pa)して、白色固体のエチルアルミニウムジクロライド9.1g得た(単離収率;91%)。
 なお、エチルアルミニウムジクロライドは、以下の物性値で示される化合物である。
 H-NMR(C,δ(ppm));0.21(2H,q),0.93(3H,t)
Example A2 (Synthesis of Ethyl Aluminum Dichloride (Compound of Formula (3)))
7.00 g (52.5 mmol) of trichloroaluminum and 30 mL of toluene were added to a flask with an internal volume of 100 mL equipped with a stirrer, a thermometer and a dropping funnel, and cooled. To the resulting solution, 3.00 g (26.3 mmol) of triethylaluminum was dropped slowly so that the internal temperature became 0 to 6 ° C., and the mixture was stirred at room temperature (25 ° C.) for 15 hours. After completion of the reaction, the reaction solution was concentrated, and the obtained concentrate was distilled under reduced pressure (oil bath temperature 100 ° C., 1333 Pa) to obtain 9.1 g of ethylaluminum dichloride as a white solid (isolated yield: 91%) ).
Ethyl aluminum dichloride is a compound represented by the following physical property values.
1 H-NMR (C 6 D 6 , δ (ppm)); 0.21 (2 H, q), 0.93 (3 H, t)
 実施例B1(酸化アルミニウム膜の製造)
 実施例A2において合成したエチルアルミニウムジクロライド(式(3)の化合物)を用いて、ALD法により酸化アルミニウム膜を成膜した。また、形成した酸化アルミニウム膜の膜厚を測定すると共に、組成を分析した。なお、組成の分析は、XPS(X線光電子分光)測定装置を用いて行った。
 次に、酸化アルミニウム膜の製造について、より具体的に説明する。
Example B1 (Production of Aluminum Oxide Film)
An aluminum oxide film was formed by an ALD method using ethylaluminum dichloride (the compound of the formula (3)) synthesized in Example A2. In addition, the film thickness of the formed aluminum oxide film was measured, and the composition was analyzed. The composition was analyzed using an XPS (X-ray photoelectron spectroscopy) measuring apparatus.
Next, the production of the aluminum oxide film will be described more specifically.
 アルミニウム化合物として、実施例A2において合成したエチルアルミニウムジクロライド、すなわち上記式(3)で表される化合物を用いて、ALD法により基板上に酸化アルミニウム膜を成膜した。酸化アルミニウム膜の成膜は、図1に示す装置を用いて行った。 An aluminum oxide film was formed on the substrate by the ALD method using ethylaluminum dichloride synthesized in Example A2 as the aluminum compound, that is, the compound represented by the above formula (3). The formation of the aluminum oxide film was performed using the apparatus shown in FIG.
 図1に示す装置は、アルミニウム化合物2を気化する気化器1(SUS製アンプル)と、水7を気化して反応性ガスである水蒸気を供給する気化器6(SUS製アンプル)と、基板15及び当該基板15を加熱するヒータ14を有し、アルミニウム化合物2と水蒸気とを反応させて基板15上に酸化アルミニウム膜を形成する反応器11と、を備える。反応器11には流路を介して真空ポンプが接続されている。当該流路には圧力計13、圧力調節バルブ12及びトラップ16が設けられている。これによって、反応器11内の圧力は所定の範囲に調節される。反応器11から導出されたガスは、トラップ16及び真空ポンプを経て、大気中に排気される。 The apparatus shown in FIG. 1 includes a vaporizer 1 (ample made of SUS) that vaporizes an aluminum compound 2, a vaporizer 6 (ample made of SUS) that vaporizes water 7 and supplies water vapor that is a reactive gas, and a substrate 15 And a heater 11 for heating the substrate 15, and a reactor 11 for reacting the aluminum compound 2 with water vapor to form an aluminum oxide film on the substrate 15. A vacuum pump is connected to the reactor 11 via a flow path. The flow path is provided with a pressure gauge 13, a pressure control valve 12, and a trap 16. By this, the pressure in the reactor 11 is adjusted to a predetermined range. The gas derived from the reactor 11 is exhausted to the atmosphere via the trap 16 and a vacuum pump.
 ヒータ3及び恒温槽8をそれぞれ備える気化器1及び気化器6に、上記実施例A2で合成されたアルミニウム化合物2及び水7をそれぞれ収容した。気化器1には、マスフローコントローラ4によって流量調節され、予熱器5によって予熱されたアルゴンガスを供給した。これによって、気化器1から、アルミニウム化合物2を含むアルゴンガスが、反応器11に導入された。 The aluminum compound 2 and the water 7 synthesized in Example A2 were accommodated in the vaporizer 1 and the vaporizer 6 provided with the heater 3 and the constant temperature bath 8, respectively. The vaporizer 1 was supplied with argon gas whose flow rate was adjusted by the mass flow controller 4 and which was preheated by the preheater 5. As a result, argon gas containing the aluminum compound 2 was introduced into the reactor 11 from the vaporizer 1.
 一方、気化器6から、恒温槽8によって一定温度に調整されて気化された水蒸気が、反応器11に導入された。気化器1からのアルミニウム化合物2を含むアルゴンガスと、気化器6からの水蒸気は、交互に反応器11に導入された。アルミニウム化合物2を含むアルゴンガス及び水蒸気の導入量は、バルブ17及びバルブ18によってそれぞれ調節した。アルミニウム化合物2を含むアルゴンガス及び水蒸気は、それぞれ、マスフローコントローラ9によって流量調節され、予熱器10によって予熱された希釈用のアルゴンガスに同伴されて反応器11に導入された。 On the other hand, water vapor adjusted to a constant temperature by the constant temperature bath 8 and vaporized from the vaporizer 6 was introduced into the reactor 11. The argon gas containing the aluminum compound 2 from the vaporizer 1 and the water vapor from the vaporizer 6 were alternately introduced into the reactor 11. The amounts of introduced argon gas and water vapor containing the aluminum compound 2 were adjusted by the valve 17 and the valve 18, respectively. The argon gas and the water vapor containing the aluminum compound 2 were respectively flow-regulated by the mass flow controller 9 and entrained in the dilution argon gas preheated by the preheater 10 and introduced into the reactor 11.
 アルミニウム化合物2及び水7を反応器11に交互に供給して、ヒータ14で所定の温度に加熱された基板15の上に酸化アルミニウム膜20を形成した。図1の装置の運転条件は、以下のとおりとした。 The aluminum compound 2 and the water 7 were alternately supplied to the reactor 11 to form an aluminum oxide film 20 on the substrate 15 heated to a predetermined temperature by the heater 14. The operating conditions of the apparatus of FIG. 1 were as follows.
 (成膜条件)
アルミニウム化合物2の気化温度(気化器1);70℃
Arキャリアー流量;5mL/min.(マスフローコントローラ4で調整)
アルミニウム化合物2の供給時間;1秒
アルミニウム化合物2のパージ時間;5秒
水7の気化温度;10℃
水7の供給時間;1秒
水7のパージ時間;5秒
希釈用のAr流量;50mL/min.
基板15の材料;SiO/Si
基板15のサイズ:縦×横=20mm×20mm
基板15の温度;300℃
反応器11内の圧力;1333Pa
サイクル回数:500回(アルミニウム化合物2を含むアルゴンガスの導入と、気化器6からの水蒸気の導入を500回繰り返した。)
(Deposition conditions)
Evaporation temperature of aluminum compound 2 (vaporizer 1); 70 ° C.
Ar carrier flow rate; 5 mL / min. (Adjusted with mass flow controller 4)
Supply time of aluminum compound 2; purge time of 1 second aluminum compound 2; vaporization temperature of water 5 for 5 seconds; 10 ° C
Water 7 supply time; 1 second Purge time of water 7; Ar flow rate for 5 seconds dilution; 50 mL / min.
Material of substrate 15; SiO 2 / Si
Size of substrate 15: length x width = 20 mm x 20 mm
Temperature of substrate 15; 300 ° C.
Pressure in the reactor 11; 1333 Pa
Number of cycles: 500 times (introduction of argon gas containing aluminum compound 2 and introduction of water vapor from the vaporizer 6 were repeated 500 times)
 上述の条件で基板15上に酸化アルミニウム膜20を形成した。形成した酸化アルミニウム膜20の厚みを、反射分光膜厚計を用いて測定した。また、XPS(X線光電子分光)測定装置を用いて酸化アルミニウム膜20の組成を分析した。厚み及び組成分析の結果は、表1に示すとおりであった。 An aluminum oxide film 20 was formed on the substrate 15 under the conditions described above. The thickness of the formed aluminum oxide film 20 was measured using a reflection spectrophotometer. Further, the composition of the aluminum oxide film 20 was analyzed using an XPS (X-ray photoelectron spectroscopy) measurement apparatus. The results of thickness and composition analysis were as shown in Table 1.
 酸化アルミニウム膜20の厚みは、任意に選択した5箇所について行い、最大値と最小値を求めた。最大値-最小値<10nmであった場合には、その算術平均値を表に示した。一方、最大値-最小値≧10nmであった場合には、最大値と最小値を示した。 The thickness of the aluminum oxide film 20 was measured at five places arbitrarily selected, and the maximum value and the minimum value were obtained. When maximum value-minimum value <10 nm, the arithmetic mean value is shown in the table. On the other hand, when the maximum value-minimum value ≧ 10 nm, the maximum value and the minimum value were shown.
 実施例B2~B6、比較例1~2(酸化アルミニウム膜の製造)
 基板15の温度を表1に示すとおりに変更したこと以外は、実施例B1と同様にして基板15上に酸化アルミニウム膜20を形成した。形成された酸化アルミニウム膜20の厚み及び組成の分析結果は、表1に示すとおりであった。
Examples B2 to B6, Comparative Examples 1 to 2 (Production of Aluminum Oxide Film)
An aluminum oxide film 20 was formed on the substrate 15 in the same manner as in Example B1, except that the temperature of the substrate 15 was changed as shown in Table 1. The analysis results of the thickness and composition of the formed aluminum oxide film 20 are as shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例B1~B6の酸化アルミニウム膜は、いずれも、厚みのばらつきがなく、厚みの均一性に優れていた。また、基板15の温度が300~550℃の範囲内であれば、形成された膜の組成は均一で、酸化アルミニウム膜の厚みはあまり変化しないことが確認された。このことから、実施例A2において合成したエチルアルミニウムジクロライドを用いることによって、酸化アルミニウム膜を安定して形成できることが確認された。実施例B1~B6の酸化アルミニウム膜における酸化アルミニウムの含有量は99質量%以上であり、炭化アルミニウムの含有量は1質量%以下であった。 All of the aluminum oxide films of Examples B1 to B6 had no variation in thickness and were excellent in uniformity of thickness. Further, it was confirmed that when the temperature of the substrate 15 is in the range of 300 to 550 ° C., the composition of the formed film is uniform, and the thickness of the aluminum oxide film does not change much. From this, it was confirmed that an aluminum oxide film can be stably formed by using the ethylaluminum dichloride synthesized in Example A2. The content of aluminum oxide in the aluminum oxide films of Examples B1 to B6 was 99% by mass or more, and the content of aluminum carbide was 1% by mass or less.
 以上の実施例において、前記式(3)で示されるアルミニウム化合物は、自然発火することはなかった。また、前記の条件で、アルミニウム薄膜を形成したことから、本発明のアルミニウム化合物は、熱分解性ガス及び反応性ガスの少なくとも一方との反応性が良いものであり、本発明のアルミニウム化合物を含有する蒸気が、基体表面への吸着性に優れることもわかった。さらに、基板の温度を300℃~550℃とする限りにおいては、形成された膜の組成が酸化アルミニウムのみで、ハロゲン原子の残存も無かったことから、本願発明の製造方法によれば、品質の良い酸化アルミニウム膜を製造することができることがわかった。 In the above examples, the aluminum compound represented by the formula (3) did not ignite spontaneously. In addition, since the aluminum thin film is formed under the above conditions, the aluminum compound of the present invention has good reactivity with at least one of the thermally decomposable gas and the reactive gas, and contains the aluminum compound of the present invention It has also been found that the vapor is excellent in the adsorptivity to the substrate surface. Furthermore, as long as the temperature of the substrate is set to 300 ° C. to 550 ° C., the composition of the formed film is only aluminum oxide and no halogen atoms remain, so according to the manufacturing method of the present invention, the quality is improved. It turned out that a good aluminum oxide film can be manufactured.
 工業的に好適な方法により高品位な酸化アルミニウム膜を製造することができる。また、当該製造方法に好適に用いられる製造原料を提供することができる。 A high quality aluminum oxide film can be manufactured by an industrially suitable method. Moreover, the manufacturing raw material suitably used for the said manufacturing method can be provided.
 1,6…気化器、2…アルミニウム化合物、3,14…ヒータ、4,9…マスフローコントローラ、5,10…予熱器、7…水、8…恒温槽、11…反応器、12…圧力調節バルブ、13…圧力計、15…基板、16…トラップ、17,18…バルブ,20…酸化アルミニウム膜 DESCRIPTION OF SYMBOLS 1, 6 ... Vaporizer, 2 ... Aluminum compound, 3, 14 ... Heater, 4, 9 ... Mass flow controller, 5, 10 ... Preheater, 7 ... Water, 8: Thermostatic bath, 11 ... Reactor, 12 ... Pressure control Valve, 13 ... pressure gauge, 15 ... substrate, 16 ... trap, 17, 18 ... valve, 20 ... aluminum oxide film

Claims (7)

  1.  300℃~550℃に加熱された成膜対象物上に、下記一般式(1)で示されるアルミニウム化合物を供給し、酸化することにより酸化アルミニウム膜を形成する、酸化アルミニウム膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは炭素原子数1~6の直鎖状のアルキル基を示し、Xはハロゲン基を示す。ふたつのXは同一又は異なっていてもよい)
    A method for producing an aluminum oxide film, wherein an aluminum compound represented by the following general formula (1) is supplied onto a film formation target heated to 300 ° C. to 550 ° C. to oxidize to form an aluminum oxide film.
    Figure JPOXMLDOC01-appb-C000001

    (Wherein, R represents a linear alkyl group having 1 to 6 carbon atoms, and X represents a halogen group. Two X may be the same or different)
  2.  前記成膜対象物の加熱温度が480℃~550℃である、請求項1に記載の酸化アルミニウム膜の製造方法。 The method for producing an aluminum oxide film according to claim 1, wherein a heating temperature of the film formation target is 480 ° C to 550 ° C.
  3.  前記酸化アルミニウム膜が原子層堆積法により形成される、請求項1又は2に記載の酸化アルミニウム膜の製造方法。 The method for producing an aluminum oxide film according to claim 1, wherein the aluminum oxide film is formed by atomic layer deposition.
  4.  前記一般式(1)で示されるアルミニウム化合物とともに、水及びオゾンから選択される少なくとも1種である反応性ガスを供給する、請求項1~3のいずれか一項に記載の酸化アルミニウム膜の製造方法。 The manufacturing of the aluminum oxide film as described in any one of Claims 1-3 which supplies reactive gas which is at least 1 sort (s) selected from water and ozone with the aluminum compound shown by said General formula (1). Method.
  5.  前記一般式(1)において、Rがエチル基であり、Xがクロロ基である、請求項1~4のいずれか一項に記載の酸化アルミニウム膜の製造方法。 The method for producing an aluminum oxide film according to any one of claims 1 to 4, wherein in the general formula (1), R is an ethyl group and X is a chloro group.
  6.  酸化アルミニウム膜の厚みが、10~80nmである、請求項1~5のいずれか一項に記載の酸化アルミニウム膜の製造方法。 The method for producing an aluminum oxide film according to any one of claims 1 to 5, wherein the thickness of the aluminum oxide film is 10 to 80 nm.
  7.  下記一般式(1)で示されるアルミニウム化合物からなる、原子層堆積法による酸化アルミニウム膜の製造原料。
    Figure JPOXMLDOC01-appb-C000002

    (式中、Rは炭素原子数1~6の直鎖状のアルキル基を示し、Xはハロゲン基を示す。ふたつのXは同一又は異なっていてもよい)
    Raw material for producing an aluminum oxide film formed by an atomic layer deposition method, comprising an aluminum compound represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000002

    (Wherein, R represents a linear alkyl group having 1 to 6 carbon atoms, and X represents a halogen group. Two X may be the same or different)
PCT/JP2017/005852 2016-03-01 2017-02-17 Method for producing aluminum oxide film and production starting material for aluminum oxide film WO2017150212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018503028A JPWO2017150212A1 (en) 2016-03-01 2017-02-17 Method for producing aluminum oxide film and raw material for producing aluminum oxide film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016038497 2016-03-01
JP2016-038497 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017150212A1 true WO2017150212A1 (en) 2017-09-08

Family

ID=59743902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005852 WO2017150212A1 (en) 2016-03-01 2017-02-17 Method for producing aluminum oxide film and production starting material for aluminum oxide film

Country Status (3)

Country Link
JP (1) JPWO2017150212A1 (en)
TW (1) TW201800605A (en)
WO (1) WO2017150212A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059016A (en) * 2001-05-11 2003-02-28 Asm Microchemistry Oy Method for depositing thin film for magnetic head
JP2003526218A (en) * 2000-03-07 2003-09-02 エーエスエム アメリカ インコーポレイテッド Graded thin film
JP2005011904A (en) * 2003-06-17 2005-01-13 Tokyo Electron Ltd Film formation method
JP2014022631A (en) * 2012-07-20 2014-02-03 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacturing method of the same
JP2015012179A (en) * 2013-06-28 2015-01-19 住友電気工業株式会社 Vapor phase growth method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526218A (en) * 2000-03-07 2003-09-02 エーエスエム アメリカ インコーポレイテッド Graded thin film
JP2003059016A (en) * 2001-05-11 2003-02-28 Asm Microchemistry Oy Method for depositing thin film for magnetic head
JP2005011904A (en) * 2003-06-17 2005-01-13 Tokyo Electron Ltd Film formation method
JP2014022631A (en) * 2012-07-20 2014-02-03 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacturing method of the same
JP2015012179A (en) * 2013-06-28 2015-01-19 住友電気工業株式会社 Vapor phase growth method

Also Published As

Publication number Publication date
JPWO2017150212A1 (en) 2019-01-31
TW201800605A (en) 2018-01-01

Similar Documents

Publication Publication Date Title
WO2012060428A1 (en) (amide amino alkane) metal compound, method of manufacturing metal-containing thin film using said metal compound
WO2013065806A1 (en) Tris (dialkylamide) aluminum compound, and method for producing aluminum-containing thin film using same
KR20070010022A (en) Low zirconium hafnium halide compositions
TWI776823B (en) Metal complexes containing cyclopentadienyl ligands and method of forming metal-containing film
JP2015224227A (en) Method of producing (acetylene)dicobalt hexacarbonyl compound
KR101476016B1 (en) Metal alkoxide compound and process for production of metal-containing thin film using the compound
WO2017150212A1 (en) Method for producing aluminum oxide film and production starting material for aluminum oxide film
WO2017030150A1 (en) Method for producing aluminum oxide film, material for producing aluminum oxide film and aluminum compound
JP5919882B2 (en) Cobalt compound mixture and method for producing cobalt-containing thin film using the cobalt compound mixture
JP3511228B2 (en) Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same
JP6565448B2 (en) Method for producing aluminum oxide film and raw material for producing aluminum oxide film
JP5825169B2 (en) Method for producing cobalt-containing thin film
JP5842687B2 (en) Cobalt film forming raw material and method for producing cobalt-containing thin film using the raw material
JP2018027921A (en) Method for producing dialkylaluminum compound having amidinate ligand
CN115279940B (en) Aluminum precursor compound, method for producing the same, and method for forming aluminum-containing film using the same
KR102491073B1 (en) Silicon precursor compound, composition for forming a silicon-containing film comprising the same, and method for forming a film using the composition
KR102232509B1 (en) Organic metal compound, composition for depositing semiconductor thin film, manufacturing method for thin film using thereof, and semiconductor device includinf thin film
Iwanaga et al. Development of Novel Silicon Precursors for Low-Temperature CVD/ALD Processes
JP2016108247A (en) Bis(silylamideaminoalkane) manganese compound and method for producing manganese-containing film using the manganese compound
JP5817727B2 (en) Magnesium bis (dialkylamide) compound and method for producing magnesium-containing thin film using the magnesium compound
JP2016222568A (en) Bis(silylamideaminoalkane)iron compound and manufacturing method of iron-containing film using the iron compound
JP3584097B2 (en) Calcium source material for CVD and film forming method using the same
JP2007070236A (en) Bis(ethylcyclopentadienyl)trihydrotantalum, method for producing the same and method for forming tantalum carbide film or tantalum carbonitride film using the same
JP2017110268A (en) Manufacturing material for aluminum oxide film, and manufacturing method for aluminum oxide film
US20100189898A1 (en) MANUFACTURING OF ADDUCT FREE ALKALINE-EARTH METAL Cp COMPLEXES

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503028

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759681

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759681

Country of ref document: EP

Kind code of ref document: A1