JP6626743B2 - 燃焼装置及びガスタービン - Google Patents

燃焼装置及びガスタービン Download PDF

Info

Publication number
JP6626743B2
JP6626743B2 JP2016040951A JP2016040951A JP6626743B2 JP 6626743 B2 JP6626743 B2 JP 6626743B2 JP 2016040951 A JP2016040951 A JP 2016040951A JP 2016040951 A JP2016040951 A JP 2016040951A JP 6626743 B2 JP6626743 B2 JP 6626743B2
Authority
JP
Japan
Prior art keywords
fuel
flow path
injection hole
injection holes
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016040951A
Other languages
English (en)
Other versions
JP2017156033A (ja
JP2017156033A5 (ja
Inventor
宮本 健司
健司 宮本
慶 井上
慶 井上
慎 加藤
慎 加藤
朋 川上
朋 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016040951A priority Critical patent/JP6626743B2/ja
Priority to US16/080,877 priority patent/US20190093570A1/en
Priority to CN201780014987.4A priority patent/CN108700298B/zh
Priority to PCT/JP2017/007026 priority patent/WO2017150364A1/ja
Publication of JP2017156033A publication Critical patent/JP2017156033A/ja
Priority to SA518392299A priority patent/SA518392299B1/ar
Publication of JP2017156033A5 publication Critical patent/JP2017156033A5/ja
Application granted granted Critical
Publication of JP6626743B2 publication Critical patent/JP6626743B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/40Control of fuel supply specially adapted to the use of a special fuel or a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/32Control of fuel supply characterised by throttling of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • F23R3/14Air inlet arrangements for primary air inducing a vortex by using swirl vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/286Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply having fuel-air premixing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/36Supply of different fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/20Purpose of the control system to optimize the performance of a machine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Nozzles For Spraying Of Liquid Fuel (AREA)

Description

本開示は燃焼装置及びガスタービンに関する。
ガスタービン等に用いられる燃焼装置において、運転状況等に応じて、異なる性状を有する燃料を燃焼させることがある。
例えば、特許文献1には、燃焼室に燃料を噴出するための主燃料ノズルと、燃焼室に導入される前の空気中に燃料を噴出するための副燃料ノズルと、主燃料ノズル及び副燃料ノズルに供給される燃料の流量を調整するための流量調整手段とを備えるガスタービン燃焼器が開示されている。このガスタービン燃焼器では、燃料を安定に燃焼させるため、燃料の性状に応じた適正量の燃料を燃焼室に供給するようになっている。すなわち、主燃料ノズル及び副燃料ノズルに供給される燃料の性状(例えば発熱量)に応じて、主燃料ノズル及び副燃料ノズルに供給される燃料の流量が調整されるようになっている。
特開2007−46843号公報
ところで、ある燃焼装置において所定の燃焼熱を得ようとするときに、不活性成分含有量が比較的多く発熱量が比較的小さい燃料(以降において低カロリー燃料と称する)を用いる場合と、不活性成分含有量が比較的少なく発熱量が比較的大きい燃料(以降において高カロリー燃料と称する)を用いる場合とがある。
低カロリー燃料を用いる場合、所定の燃焼熱を得るために必要な供給量(流量)を得るためには燃料の流速を比較的大きくする必要がある。このため、低カロリー燃料を用いる場合には、配管等における圧力損失を低減するために、配管径やノズル孔径等を比較的大きくする必要がある。
一方、高カロリー燃料を用いる場合、低カロリー燃料を用いる場合と同等の燃焼熱を得るために必要な燃料供給量(流量)は低カロリー燃料の場合よりも小さいため、燃料の流速を比較的小さくする必要がある。よって、低カロリー燃料に適した大きさの径を有する配管やノズルに高カロリー燃料を適用する場合には、低カロリー燃料を用いる場合に比べて燃料の流速が小さくなるため、燃料を噴射するノズルの前後での差圧が小さくなり、このため燃焼器(燃焼装置)において燃焼振動が生じることがある。
上述の事情に鑑みて、本発明の少なくとも一実施形態は、性状が異なる燃料を適用した場合であっても、燃料噴射前後の差圧を維持しやすい燃焼装置を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る燃焼装置は、
軸方向流路を規定するノズルケーシングと、
前記軸方向流路内に設けられた少なくとも1つのノズルと、を備え、
前記少なくとも1つのノズルは、
前記軸方向流路に沿って延在する筒形状のノズル本体と、
前記ノズル本体の径方向にて前記ノズル本体から径方向外方に突出し、前記軸方向流路を流れる流体を旋回させるように構成されたスワラベーンと、
前記ノズル本体又は前記スワラベーンの表面に開口する少なくとも1つの第1噴射孔と、
前記ノズル本体又は前記スワラベーンの表面に開口する少なくとも1つの第2噴射孔と、
前記ノズル本体の内部を延び、前記少なくとも1つの第1噴射孔に連通した第1燃料流路と、
前記ノズル本体の内部を前記第1燃料流路とは別々に延び、前記少なくとも1つの第2噴射孔と連通した第2燃料流路と、を含む。
上記(1)の構成では、燃料を噴射する第1噴射孔及び第2噴射孔にそれぞれ連通した第1燃料流路及び第2燃料流路を別々に設けたので、第1燃料流路及び第1噴射孔の設計を、第1燃料流路を流通する燃料の性状に適したものとすることができるとともに、第2燃料流路及び第2噴射孔の設計を、第2燃料流路を流通する燃料の性状に適したものとすることができる。
(2)幾つかの実施形態では、上記(1)の構成において、前記第1噴射孔の総面積は、前記第2噴射孔の総面積よりも大きい。
上記(2)の構成では、第1噴射孔の総面積(例えば、開口面積の総和又は流路面積の総和)を第2噴射孔の総面積に比べて大きくしたので、第2噴射孔よりも第1噴射孔から噴射される燃料の流量が比較的大きくなる。このため、第1噴射孔から燃料が噴射される場合、第1噴射孔の前後の差圧が維持されやすい。一方、第2噴射孔の総面積を第1噴射孔の総面積に比べて小さくしたので、第2噴射孔から噴射される燃料の流量が比較的小さいにもかかわらず、第2噴射孔の前後の差圧を維持しやすい。よって、上記(2)の構成によれば、燃焼装置において燃料噴射前後の差圧が維持されやすい。
(3)幾つかの実施形態では、上記(2)の構成において、前記第1燃料流路の流路面積は、前記第2燃料流路の流路面積よりも大きい。
上記(3)の構成では、第1燃料流路の流路面積を第2燃料流路の流路面積に比べて大きくしたので、第2噴射孔よりも第1噴射孔から噴射される燃料の流量が比較的大きくなる。このため、第1噴射孔から燃料が噴射される場合、第1噴射孔の前後において差圧が維持されやすい。一方、第2燃料流路の流路面積を第1燃料流路の流路面積に比べて小さくしたので、第2噴射孔から噴射される燃料の流量が比較的小さいにもかかわらず、第2噴射孔の前後の差圧を維持しやすい。よって、上記(3)の構成によれば、燃焼装置において燃料噴射前後の差圧が維持されやすい。
(4)幾つかの実施形態では、上記(3)の構成において、前記第1燃料流路の流路面積と前記第2燃料流路の流路面積との比である流路面積比と、前記第1噴射孔の総面積と前記第2噴射孔の総面積との比である噴射孔総面積比との比(前記流路面積比/前記噴射孔総面積比)が0.8以上1.2以下である。
上記(4)の構成によれば、流路面積比と噴射孔総面積比との比を1に近くしたので、第1燃料流路及び第2燃料流路における圧力損失を低減することができ、このため燃焼装置において、燃料噴射前後の差圧が維持されやすい。
(5)幾つかの実施形態では、上記(1)〜(4)の何れかの構成において、前記第1噴射孔は、前記軸方向流路での前記流体の流れ方向にて前記第2噴射孔よりも上流側に設けられている。
第1噴射孔及び第2噴射孔から噴射される燃料は、軸方向流路の上流側から流れてくる空気と混合された後に燃焼する。上記(5)の構成によれば、第1噴射孔を第2噴射孔よりも上流側に設けたので、第1噴射孔から噴射される燃料は、第2噴射孔から噴出される燃料に比べて、第1噴射孔と第2噴射孔の間の距離の分だけ、軸方向流路を上流側から流れてくる空気との混合距離を長くすることができる。このため、第1噴射孔から噴射される燃料と空気との混合(予混合)をより促進させることができ、燃焼装置において良好な燃焼効率を得ることができる。
(6)幾つかの実施形態では、上記(1)〜(5)の何れかの構成において、
前記ノズル本体又は前記スワラベーンは、少なくとも2つの前記第1噴射孔又は少なくとも2つの前記第2噴射孔を有し、
前記少なくとも2つの第1噴射孔又は前記少なくとも2つの第2噴射孔は、前記ノズル本体の径方向において互いに異なる位置に配置される。
上記(6)の構成によれば、少なくとも2つの第1噴射孔又第2噴射孔を、ノズル本体の径方向において互いに異なる位置に配置したので、第1燃料流路又は第2燃料流路における燃料の流れが円滑になる。このため、第1噴射孔又は第2燃料流路から燃料を円滑に供給することができる。
(7)幾つかの実施形態では、上記(6)の構成において、前記少なくとも2つの第1噴射孔又は前記少なくとも2つの第2噴射孔のうち、前記径方向において外側に配置された外側噴射孔は、前記径方向において内側に配置された内側噴射孔よりも、前記軸方向流路での前記流体の流れ方向にて上流側に配置される。
軸方向流路内においては、より外周側において空気の流れる流路面積が広くなる。よって、上記(7)の構成によれば、軸方向流路内においてより外周側に設けられた外側噴射孔で噴出された燃料の空気との混合がより促進されるため、より良好な燃焼効率が得られる。
(8)幾つかの実施形態では、上記(6)又は(7)の構成において、前記少なくとも2つの第1噴射孔又は前記少なくとも2つの第2噴射孔のうち、前記径方向において外側に配置された外側噴射孔の孔径は、前記径方向において内側に配置された内側噴射孔の孔径よりも大きい。
上記(8)の構成によれば、外側噴射孔から噴射される燃料の流量がより大きくなるため、より多くの燃料を外側噴射孔から噴射して空気との混合を促進することができるため、より良好な燃焼効率が得られる。
(9)幾つかの実施形態では、上記(1)〜(8)の何れかの構成において、
前記第1燃料流路に第1燃料を供給可能な第1供給流路と、
前記第2燃料流路に、前記第1燃料とは異なる第2燃料を供給可能な第2供給流路と、
をさらに備え、
前記第1燃料は、前記第2燃料よりも発熱量が小さい。
上記(9)の構成によれば、発熱量の異なる第1燃料及び第2燃料が、それぞれ別の燃料流路及び噴射孔を介して供給される。よって、第1燃料流路及び第1噴射孔は比較的発熱量が小さい第1燃料(低カロリー燃料)の性状に適した設計とすることができるとともに、第2燃料流路及び第2噴射孔は比較的発熱量が大きい第2燃料(高カロリー燃料)の性状に適した設計とすることができる。
また、第1噴射孔の総面積が第2噴射孔の総面積よりも大きい場合には、第1噴射孔から噴射される第1燃料(低カロリー燃料)の流量が比較的大きくなるとともに、第2噴射孔の総面積が比較的小さいため、流量が比較的小さい第2燃料(高カロリー燃料)が噴射される第2噴射孔の前後の差圧が維持されやすい。このため、燃焼装置において燃料噴射前後の差圧が維持されやすい。
また、第1噴射孔を第2噴射孔よりも上流側に設ける場合には、第1噴射孔から噴射される比較的大流量の第1燃料(低カロリー燃料)について、第2噴射孔から噴出される比較的小流量の第2燃料(高カロリー)に比べて、第1噴射孔と第2噴射孔の間の距離の分だけ、軸方向流路を上流側から流れてくる空気との混合距離を長くすることができる。このため、第1噴射孔から噴射される比較的大流量の第1燃料(低カロリー燃料)と空気との混合(予混合)をより促進させることができ、燃焼装置全体として良好な燃焼効率を得ることができる。
(10)幾つかの実施形態では、上記(9)の構成において、前記第1噴射孔の総面積と前記第2噴射孔の総面積との比は、前記第1燃料の発熱量と前記第2燃料の発熱量との比に応じて決定されている。
上記(10)の構成によれば、第1燃料(低カロリー燃料)の発熱量と第2燃料(高カロリー燃料)の発熱量との比に応じて前記第1噴射孔の総面積と前記第2噴射孔の総面積との比を決定するようにしたので、第1燃料(低カロリー燃料)使用時と第2燃料(高カロリー燃料)使用時との間における燃焼熱の変動を低減できる。このため、第1燃料(低カロリー燃料)と第2燃料(高カロリー燃料)とを切り替えて用いる場合であっても、安定して燃料を燃焼させることができる。
(11)幾つかの実施形態では、上記(1)〜(8)の何れかの構成において、前記燃焼装置は、
発熱量が相互に異なる第1燃料と第2燃料を混合して混合燃料を生成可能な混合器と、
前記混合燃料を前記第1燃料流路に供給可能な第1供給流路と、
前記混合燃料を前記第2燃料流路に供給可能な第2供給流路と、
前記第2供給流路に介装され、前記第2燃料流路に供給される前記混合燃料の流量を調整可能な第2バルブと、をさらに備える。
上記(11)の構成では、混合燃料を第1燃料流路及び第2燃料流路に供給可能とし、第2燃料流路に供給される混合燃料を第2バルブにより調整可能とした。よって、第2バルブで第2燃料流路における混合燃料の流量を調節することにより、混合燃料全体の流量を調節することができる。
(12)幾つかの実施形態では、上記(11)の構成において、前記燃焼装置は、
前記混合器によって生成された前記混合燃料を加熱可能なヒータをさらに備え、
前記第1供給流路は、前記ヒータによって加熱された前記混合燃料を前記第1燃料流路に供給するように構成され、
前記第2供給流路は、前記ヒータによって加熱された前記混合燃料を前記第2燃料流路に供給するように構成される。
上記(12)の構成では、第1燃料と第2燃料とを混合して得られる混合燃料を第1燃料流路及び第2燃料流路に供給するようにしたので、燃料を加熱するためのヒータは、混合後の燃料を加熱するように設ければよい。このため、上記(12)の構成によれば、第1燃料及び第2燃料のそれぞれに対して個別にヒータを設ける場合に比べて、コストを削減することができる。
(13)幾つかの実施形態では、上記(11)又は(12)の構成において、
前記混合燃料における前記第1燃料と前記第2燃料との混合比に応じて前記第2バルブの開度が調節されるように構成される。
上記(13)の構成によれば、第1燃料と第2燃料との混合比に応じて第2バルブの開度を調整可能としたので、該混合比に応じて、混合燃料全体の流量を適切に調節することができる。
例えば、混合燃料中の第1燃料の含有量が多く、混合燃料の発熱量が比較的小さい場合には、大流量を得るため、第2バルブの開度を大きくして第1燃料流路及び第2燃料流路の両方に混合燃料を供給することができる。また、混合燃料中の第2燃料の含有量が多く、混合燃料の発熱量が比較的大きい場合には、流量を比較的少なくするため、第2バルブの開度を小さくして第2燃料流路の流量を減少させ、主に第1燃料流路に混合燃料を供給する。
(14)本発明の少なくとも一実施形態に係るガスタービンは、
圧縮空気を生成するための圧縮機と、
前記圧縮機からの前記圧縮空気により前記少なくとも第1燃料噴射孔及び前記少なくとも1つの第2燃料噴射孔のうち少なくとも一方から噴射された燃料を燃焼させて燃焼ガスを発生させるように構成された上記(乃至13の何れか一項に記載の燃焼装置と、
前記燃焼装置からの前記燃焼ガスによって駆動されるように構成されたタービンと、
を備える。
上記(14)の構成では、燃料を噴射する第1噴射孔及び第2噴射孔にそれぞれ連通した第1燃料流路及び2燃料流路を別々に設けたので、第1燃料流路及び第1噴射孔の設計を、第1燃料流路を流通する燃料の性状に適したものとすることができるとともに、第2燃料流路及び第2噴射孔の設計を、第2燃料流路を流通する燃料の性状に適したものとすることができる。
本発明の少なくとも一実施形態によれば、性状が異なる燃料を適用した場合であっても、燃焼振動を低減可能な燃焼装置が提供される。
本発明の一実施形態に係るガスタービンを示す概略構成図である。 一実施形態に係る燃焼器(燃焼装置)を示す概略図である。 一実施形態に係る燃焼器(燃焼装置)を示す断面図である。 一実施形態に係る燃焼器(燃焼装置)の要部断面図である。 図4に示される燃焼器(燃焼装置)のA方向矢視図である。 一実施形態に係るノズルの軸方向に沿った部分断面図である。 図6に示されるノズルのVII−VII断面図である。 図6に示されるノズルのVIII−VIII断面図である。 一実施形態に係るノズルの軸方向に沿った部分断面図である。 図9に示されるノズルのX−X断面図である。 一実施形態に係る燃焼器(燃焼装置)の燃料供給系統の構成を示す図である。 一実施形態に係る燃焼器(燃焼装置)の燃料供給系統の構成を示す図である。
以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
まず、幾つかの実施形態に係る燃焼装置の適用先の一例であるガスタービンについて、図1を参照して説明する。図1は、本発明の一実施形態に係るガスタービン1を示す概略構成図である。
図1に示すように、一実施形態に係るガスタービン1は、酸化剤としての圧縮空気を生成するための圧縮機2と、圧縮空気及び燃料を用いて燃焼ガスを発生させるための燃焼器4(燃焼装置100)と、燃焼ガスによって回転駆動されるように構成されたタービン6と、を備える。発電用のガスタービン1の場合、タービン6には不図示の発電機が連結され、タービン6の回転エネルギーによって発電が行われるようになっている。
ガスタービン1における各部位の具体的な構成例について説明する。
圧縮機2は、圧縮機車室10と、圧縮機車室10の入口側に設けられ、空気を取り込むための空気取入口12と、圧縮機車室10及び後述するタービン車室22を共に貫通するように設けられたロータ8と、圧縮機車室10内に配置された各種の翼と、を備える。各種の翼は、空気取入口12側に設けられた入口案内翼14と、圧縮機車室10側に固定された複数の静翼16と、静翼16に対して交互に配列されるようにロータ8に植設された複数の動翼18と、を含む。なお、圧縮機2は、不図示の抽気室等の他の構成要素を備えていてもよい。このような圧縮機2において、空気取入口12から取り込まれた空気は、複数の静翼16及び複数の動翼18を通過して圧縮されることで高温高圧の圧縮空気となる。そして、高温高圧の圧縮空気は圧縮機2から後段の燃焼器4に送られる。
燃焼器4は、ケーシング20内に配置される。図1に示すように、燃焼器4は、ケーシング20内にロータ8を中心として環状に複数配置されていてもよい。燃焼器4には燃料と圧縮機2で生成された圧縮空気とが供給され、燃料を燃焼させることによって、タービン6の作動流体である燃焼ガスを発生させる。そして、燃焼ガスは燃焼器4から後段のタービン6に送られる。なお、燃焼器4の詳細な構成例については後述する。
タービン6は、タービン車室22と、タービン車室22内に配置された各種の翼と、を備える。各種の翼は、タービン車室22側に固定された複数の静翼24と、静翼24に対して交互に配列されるようにロータ8に植設された複数の動翼26と、を含む。なお、タービン6は、出口案内翼等の他の構成要素を備えていてもよい。タービン6においては、燃焼ガスが複数の静翼24及ぶ複数の動翼26を通過することでロータ8が回転駆動する。これにより、ロータ8に連結された発電機が駆動されるようになっている。
タービン車室22の下流側には、排気車室28を介して排気室30が連結されている。タービン6を駆動した後の燃焼ガスは、排気車室28及び排気室30を介して外部へ排出される。
次に、図2及び図3を参照して、一実施形態に係る燃焼器4(燃焼装置100)の詳細な構成について説明する。図2は、一実施形態に係る燃焼器4(燃焼装置100)を示す概略図である。図3は、一実施形態に係る燃焼器4(燃焼装置100)の一部を示す断面図である。
図2及び図3に示すように、一実施形態に係る燃焼器4(燃焼装置100)は、ロータ8を中心として環状に複数配置されている(図1参照)。各燃焼器4は、ケーシング20により画定される燃焼器車室40に設けられた燃焼器ライナ46と、燃焼器ライナ46内にそれぞれ配置された第2燃焼バーナ50及び複数の第1燃焼バーナ60と、を含む。なお、燃焼器4は、燃焼ガスをバイパスさせるためのバイパス管(不図示)等の他の構成要素を備えていてもよい。
例えば、燃焼器ライナ46は、第2燃焼バーナ50及び複数の第1燃焼バーナ60の周囲に配置される内筒46aと、内筒46aの先端部に連結された尾筒46bと、を有している。
第2燃焼バーナ50は、燃焼器ライナ46の中心軸に沿って配置されている。そして、第2燃焼バーナ50を囲むように、複数の第1燃焼バーナ60が互いに離間して配列されている。
第2燃焼バーナ50は、燃料ポート52に連結された第2ノズル(ノズル)54と、第2ノズル54を囲むように配置されたコーン56と、第2ノズル54の外周に設けられたスワラ58と、を有している。
第1燃焼バーナ60は、燃料ポート62に連結された第1ノズル(ノズル)63と、第1ノズル63を囲むように配置されたバーナ筒(ノズルケーシング)66と、バーナ筒66と燃焼器ライナ46(例えば内筒46a)をつなぐ延長管65と、第1ノズル63の外周に設けられたスワラ70と、を有している。燃料ポート62は、少なくとも2つの燃料ポート62a,62bを含む。燃料ポート62a及び62bには、それぞれ、燃料を供給するための第1供給流路及び第2供給流路(不図示)と接続されており、第1供給流路からの燃料は燃料ポート62aを介して、第2供給流路からの燃料は燃料ポート62bを介して、それぞれ第1ノズル63に対して燃料を供給可能となっている。なお、第1燃焼バーナ60の具体的な構成については後述する。
なお、図3に示すように、延長管65は、バーナ筒66に接続される上流側端面から下流側端面(延長管出口65a)まで延在している。また、図3には、延長管出口65aの中心位置を通過する流路中心線O’を示している。
以下に説明するように、第2燃焼バーナ50は拡散燃焼火炎を発生させるためのバーナであるとともに、第2ノズル54は拡散燃焼用の燃料を噴射するためのノズルであってもよい。また、第1燃焼バーナ60は、予混合気を燃焼させるためのバーナであるとともに、第1ノズル63は、予混合燃料を噴射するためのノズルであってもよい。
すなわち、上記構成を有する燃焼器4において、圧縮機2で生成された高温高圧の圧縮空気は車室入口42から燃焼器車室40内に供給され、さらに燃焼器車室40からバーナ筒66内に流入する。そして、この圧縮空気と、燃料ポート62から供給された燃料とがバーナ筒66内で予混合される。この際、予混合気はスワラ70により主として旋回流を形成し、燃焼器ライナ46内に流れ込む。また、圧縮空気と、燃料ポート52を介して第2燃焼バーナ50から噴射された燃料とが燃焼器ライナ46内で混合され、図示しない種火により着火されて燃焼し、燃焼ガスが発生する。このとき、燃焼ガスの一部が火炎を伴って周囲に拡散することで、各第1燃焼バーナ60から燃焼器ライナ46内に流れ込んだ予混合気に着火されて燃焼する。すなわち、第2燃焼バーナ50から噴射された拡散燃焼用燃料による拡散燃焼火炎によって、第1燃焼バーナ60からの予混合気(予混合燃料)の安定燃焼を行うための保炎を行うことができる。その際、燃焼領域は例えば内筒46aに形成される。
次に、図4〜図10を参照して、一実施形態に係る燃焼器4(燃焼装置100)の要部の構成について、一例として上述した第1燃焼バーナ60を用いて説明する。
なお、本発明に係る燃焼バーナは、第1燃焼バーナ60に限定されるものではなく、ノズルの周囲の軸方向流路にスワラ(スワラベーン)が設けられた燃焼バーナであればどのタイプの燃焼バーナに対しても本発明の実施形態に係る構成を適用可能である。例えば、一実施形態において、燃焼バーナは、ガスタービン1の燃焼器4に設けられる第2燃焼バーナ50のように主として拡散燃焼するタイプの燃焼バーナであってもよいし、あるいはガスタービン1以外の機器に設けられる燃焼バーナであってもよい。
すなわち、本発明に係るノズルは、第1ノズル63に限定されるものではない。一実施形態では、ノズルは、複数の第1ノズル63に取り囲まれるように設けられた第2ノズル54であってもよい。また、本発明に係るノズルは、予混合燃料を噴射するためのノズルであってもよいし、拡散燃焼用の燃料を噴射するためのノズルであってもよい。
図4は、一実施形態に係る燃焼器4(燃焼装置100)の第1燃焼バーナ60を含む要部断面図であり、図5は、図4に示される燃焼器4(燃焼装置100)のA方向矢視図である。
図4及び図5に示すように、一実施形態に係る燃焼器4において、第1燃焼バーナ60は、バーナ筒(ノズルケーシング)66と、第1ノズル63とを備えている。バーナ筒66は、その内周面によって、第1ノズル63の軸方向に沿った軸方向流路68を画定しており、第1ノズル63は、該軸方向流路68内に設けられている。第1ノズル63は、軸方向流路68に沿って延在する筒形状のノズル本体64と、少なくとも1枚のスワラベーン72を含むスワラ70と、を含む。
ここで、筒形状とは、厳密な円筒形を意味するものとは限らない。すなわち、ノズル本体64は、例えば、少なくとも一部において円筒形を有しており、該円筒形の中心軸方向において、径が変化する形状を有してもよい。例えば、ノズル本体64は、図4に示すように、円筒形において、中心軸方向の一端部が先細った形状を有していてもよい。
バーナ筒66は、ノズル本体64に対して同心状に、且つノズル本体64及びスワラベーン72を含む第1ノズル63を囲むように配置されている。すなわち、バーナ筒66の軸はノズル本体64の軸Oと略一致し、且つバーナ筒66の径は第1ノズル63の径よりも大きい。
バーナ筒66の内周面によって確定される軸方向流路68には、その上流側(図4において左側)から下流側(図4において右側)に向かって、圧縮空気等の気体(流体)Gが流通する。
第1ノズル63は、例えば上述したように燃料ポート62(62a,62b)(図2及び図3参照)に連結され、燃料ポート62(62a,62b)から燃料が供給される。燃料は、気体であっても液体であってもよく、その種類も特に限定されない。また、第2ノズル54に供給される燃料と第1ノズル63に供給される燃料とを異ならせてもよく、例えば、第2ノズル54に油燃料が供給され、第1ノズル63に天然ガス等のガス燃料が供給されてもよい。
スワラ70は、軸方向流路68を流通する気体を旋回させるように構成され、少なくとも一枚のスワラベーン72を含む。なお、図4及び図5に示すスワラ70は、ノズル本体64を中心として放射状に6枚のスワラベーン72が設けられた場合を例示したものである。ただし、図4では、便宜上、周方向に沿う角度0度と角度180度の位置に配置した2枚のスワラベーン72のみを示している(図4の状態では、実際には合計で4枚のスワラベーン72が見える)。
スワラベーン72は、ノズル本体64の周囲においてノズル本体64の軸方向(軸O方向)に沿って延在する軸方向流路68において、ノズル本体64の径方向にてノズル本体64から径方向外方に突出するように設けられ、軸方向流路68を流通する気体を旋回させるように構成されている。スワラベーン72は、圧力面である腹面81と、負圧面である背面82と、気体の流通方向(ノズル本体64の軸方向)における上流側の端部である前縁83と、気体の流通方向(第1ノズル63の軸方向)における下流側の端部である後縁84と、を有している。
スワラベーン72及び/又はノズル本体64には、燃料を噴射するための複数の噴射孔が形成されている。複数の噴射孔は、スワラベーン72の表面に開口する少なくとも1つの第1噴射孔74と、スワラベーン72又はノズル本体64の表面に開口する少なくとも1つの第2噴射孔76と含む。図4〜図5に示す例では、第1噴射孔74として、スワラベーン72の腹面81に第1噴射孔74a,74bが、スワラベーン72の背面82に第1噴射孔74c,74dが形成されており、第2噴射孔76として、スワラベーン72の腹面81に第2噴射孔76a,76bが、スワラベーン72の背面82に第2噴射孔76c,76dが形成されている。
これらの第1噴射孔74及び第2噴射孔76は、ノズル本体64の内部に設けられた第1燃料流路78及び第2燃料流路79(図6及び図9参照。後で説明する。)にそれぞれ連通している。そして、第1噴射孔74及び第2噴射孔76から噴射された燃料は、気体(例えば酸化剤としての圧縮空気)と混合されて予混合気(燃料ガス)となり、燃焼器ライナ46に送られて燃焼することとなる。
図6及び図9は、それぞれ、一実施形態に係るノズルの軸方向に沿った部分断面図であり、図7は図6に示されるノズルのVII−VII断面図であり、図8は図6に示されるノズルのVIII−VIII断面図であり、図10は図9に示されるノズルのX−X断面図である。
図6〜図8に示す実施形態では、図4〜図5に示す例と同様に、第1噴射孔74として、スワラベーン72の腹面81に第1噴射孔74a,74bが、スワラベーン72の背面82に第1噴射孔74c,74dが形成されており、第2噴射孔76として、スワラベーン72の腹面81に第2噴射孔76a,76bが、スワラベーン72の背面82に第2噴射孔76c,76dが形成されている。
また、図9〜図10に示す実施形態では、第1噴射孔74として、スワラベーン72の腹面81に2つの第1噴射孔74a,74bが、スワラベーン72の背面82に2つの第1噴射孔74c,74dが形成されており、第2噴射孔76として、ノズル本体に3つの第2噴射孔76eが形成されている。図9及び図10に示すように、3つの第2噴射孔76eは、ノズル本体64の周方向に沿って略等間隔に設けられている。すなわち、軸方向直交断面(図10参照)において、軸中心O周りに約120度ずつの間隔で設けられている。
なお、以降において、第1噴射孔74a〜74dを代表して第1噴射孔74と表記し、第2噴射孔76a〜76eを代表して第1噴射孔74と表記する。
図6及び図9に示すように、ノズル本体64の内部には、それぞれノズル本体64の軸方向に沿って延在する第1燃料流路78及び第2燃料流路79が別々に設けられている。第1燃料流路78及び第2燃料流路79は、例えば図6に示されるように、その一部がスワラベーン72の内部をノズル本体64の径方向に延びていてもよい。
そして、第1燃料流路78は各第1噴射孔74に連通しており、第2燃料流路79は各第2噴射孔76に連通している。
なお、第1燃料流路78及び第2燃料流路79には、同一の燃料が供給されてもよく、あるいは、互いに異なる種類の燃料が供給されてもよい。また、第1燃料流路78及び第2燃料流路79には、燃料が気体として供給されてもよく、あるいは液体として供給されてもよい。第1燃料流路78及び第2燃料流路79の両方に気体燃料が供給されてもよく、第1燃料流路78及び第2燃料流路79の両方に液体燃料が供給されてもよく、あるいは、第1燃料流路78及び第2燃料流路79の一方に気体燃料が供給され、他方に液体燃料が供給されるようになっていてもよい。
このように、燃料を噴射する第1噴射孔74及び第2噴射孔76にそれぞれ連通した第1燃料流路78及び第2燃料流路79を別々に設けているので、第1燃料流路78及び第1噴射孔74の設計を、第1燃料流路78を流通する燃料の性状に適したものとすることができるとともに、第2燃料流路79及び第2噴射孔76の設計を、第2燃料流路79を流通する燃料の性状に適したものとすることができる。
幾つかの実施形態では、第1噴射孔74の総面積は、第2噴射孔76の総面積よりも大きい。ここで、第1噴射孔74の総面積とは、全ての第1噴射孔74の開口面積又は流路面積の総和であり、第2噴射孔76の総面積とは、全ての第2噴射孔76の開口面積又は流路面積の総和である。
例えば、図6に示す実施形態では、スワラベーン72に設けられた4つの第1噴射孔74a〜74dの開口面積の合計は、スワラベーン72に設けられた4つの第2噴射孔76a〜76dの開口面積の合計よりも大きい。また、図9に示す実施形態では、スワラベーン72に設けられた4つの第1噴射孔74a〜74dの開口面積の合計は、ノズル本体64に設けられた3つの第2噴射孔76eの開口面積の合計よりも大きい。
このように、第1噴射孔74の総面積が第2噴射孔76の総面積よりも大きいので、第2噴射孔76よりも第1噴射孔74から噴射される燃料の流量が比較的大きくなる。このため、第1噴射孔74から燃料が噴射される場合、第1噴射孔の前後の差圧が維持されやすい。一方、第2噴射孔76の総面積を第1噴射孔74の総面積に比べて小さくしたので、第2噴射孔76から噴射される燃料の流量が比較的小さいにもかかわらず、第2噴射孔76の前後の差圧を維持しやすい。よって、燃焼装置100において燃料噴射前後の差圧が維持されやすい。
幾つかの実施形態では、第1燃料流路78の流路面積は、第2燃料流路79の流路面積よりも大きい。
例えば、図6に示す実施形態では、軸方向流路68(図4参照)での流体の流れ方向にてスワラベーン72よりも上流側のノズル本体64において、ノズル本体64の軸に直交する断面(図7参照)における第1燃料流路78の流路面積は、第2燃料流路79の流路面積よりも大きい。図9に示す実施形態でも、同様に、ノズル本体64において、第1燃料流路78の流路面積は、第2燃料流路79の流路面積よりも大きい。
また、図6に示す実施形態では、スワラベーン72において、ノズル本体64の軸方向に沿った断面(図8参照)における第1燃料流路78の流路面積は、第2燃料流路79の流路面積よりも大きい。
このように、第1燃料流路78の流路面積が第2燃料流路79の流路面積に比べて大きいので、第2噴射孔76よりも第1噴射孔74から噴射される燃料の流量が比較的大きくなる。このため、第1噴射孔74から燃料が噴射される場合、第1噴射孔の前後において差圧が維持されやすい。一方、第2燃料流路79の流路面積を第1燃料流路78の流路面積に比べて小さくしたので、第2噴射孔76から噴射される燃料の流量が比較的小さいにもかかわらず、第2噴射孔76の前後の差圧を維持しやすい。よって、燃焼装置100において燃料噴射前後の差圧が維持されやすい。
幾つかの実施形態では、第1燃料流路78の流路面積と第2燃料流路79の流路面積との比である流路面積比と、第1噴射孔74の総面積と第2噴射孔76の総面積との比である噴射孔総面積比との比(流路面積比/噴射孔総面積比)が0.8以上1.2以下である。
例えば、図6に示す実施形態において、第1噴射孔74(74a〜74d)の総面積と第2噴射孔76(76a〜76d)の総面積との比である噴射孔総面積比(第1噴射孔74の総面積/第2噴射孔76の総面積)が2であれば、第1燃料流路78の流路面積と第2燃料流路79の流路面積との比である流路面積比(第1燃料流路78の流路面積/第2燃料流路79の流路面積)が、1.6〜2.4となるように、第1噴射孔74及び第2噴射孔76の孔径や、第1燃料流路78及び第2燃料流路79の流路径等が設定される。
このように、流路面積比と噴射孔総面積比との比を1に近くしたので、第1燃料流路78及び第2燃料流路79における圧力損失を低減することができ、このため燃焼装置100において、燃料噴射前後の差圧が維持されやすい。
幾つかの実施形態では、図4〜図6、図8及び図9に示すように、第1噴射孔74は、軸方向流路68での流体の流れ方向にて第2噴射孔76よりも上流側に設けられている。
このように、第1噴射孔74を第2噴射孔76よりも上流側に設けた場合、第1噴射孔74から噴射される燃料は、第2噴射孔76から噴出される燃料に比べて、第1噴射孔74と第2噴射孔76との間の距離の分だけ、軸方向流路68を上流側から流れてくる空気との混合距離を長くすることができる。このため、第1噴射孔74から噴射される燃料と空気との混合(予混合)をより促進させることができ、燃焼装置100において良好な燃焼効率を得ることができる。
ノズル本体64又はスワラベーン72に複数の第1噴射孔74又は複数の第2噴射孔76が形成されている実施形態において、複数の第1噴射孔74及び/又は複数の第2噴射孔76は、ノズル本体64の軸方向や径方向において互いに異なる位置に配置されていてもよい。なお、以降において、ノズル本体64の軸方向及びノズル本体64の径方向を、それぞれ、単に軸方向及び径方向と称することがある。
幾つかの実施形態では、複数の第1噴射孔74のうちの少なくとも1つと、複数の第2噴射孔76のうちの少なくとも1つは、径方向位置が略同一であってもよい。
例えば、図4又は図6に示す例では、複数の第1噴射孔74のうち、比較的外径側に位置する第1噴射孔74a,74cと、複数の第2噴射孔76のうち、比較的外径側に位置する第2噴射孔76a,76cとは、径方向位置が略同一である(すなわち、ノズル本体64の中心軸からの距離が略同一である)。また、同例において、複数の第1噴射孔74のうち、比較的内径側に位置する第1噴射孔74b,74dと、複数の第2噴射孔76のうち、比較的内径側に位置する第2噴射孔76b,76dとは、径方向位置が略同一である(即ち、ノズル本体64の中心軸からの距離が略同一である)。
図6及び図9に示す実施形態では、上述したように、スワラベーン72は、腹面81に形成された第1噴射孔74a,74b及び背面82に形成された第1噴射孔74c,74dを含む合計4つの第1噴射孔74を有する。そして、腹面81に形成された2つの第1噴射孔74a,74bのうち、第1噴射孔74aは径方向において外側に配置され、第1噴射孔74bは径方向において内側に配置される。また、背面82形成された2つの第1噴射孔74c,74dのうち、第1噴射孔74cは径方向において外側に配置され、第1噴射孔74dは径方向において内側に配置される。第1噴射孔74aと第1噴射孔74cとは、径方向において同一の位置に配置されてもよい。また、第1噴射孔74bと第1噴射孔74dとは、径方向において同一の位置に配置されてもよい。
なお、図6に示す実施形態では、スワラベーン72に形成された複数の第2噴射孔76a,76b及び76c,76dについても、第1噴射孔74a,74b及び74c,74dと同様に、それぞれ、径方向において異なる位置に配置されている。
このように、複数の第1噴射孔74又は複数の第2噴射孔76を、ノズル本体64の径方向において互いに異なる位置に配置することで、第1燃料流路78における燃料の流れが円滑になる。このため、第1噴射孔74から燃料を円滑に供給することができる。
また、ノズル本体64又はスワラベーン72に複数の第1噴射孔74又は複数の第2噴射孔76が形成されている実施形態において、複数の第1噴射孔74及び/又は複数の第2噴射孔76のうち、径方向において外側に配置された外側噴射孔は、径方向において内側に配置された内側噴射孔よりも、軸方向流路68(図4参照)での気体Gの流れ方向にて上流側(すなわち、図4、図6及び図9において左手側)に配置されていてもよい。
図6及び図9に示す実施形態では、スワラベーン72の腹面81に形成された第1噴射孔74a,74bのうち、外側噴射孔である第1噴射孔74aは、内側噴射孔である第1噴射孔74bよりも軸方向流路68(図4参照)での気体Gの流れ方向にて上流側に配置される。また、スワラベーン72の背面82に形成された第1噴射孔74c,74dのうち、外側噴射孔である第1噴射孔74cは、内側噴射孔である第1噴射孔74dよりも軸方向流路68(図4参照)での気体Gの流れ方向にて上流側に配置される。
なお、図6に示す実施形態では、スワラベーン72に形成された複数の第2噴射孔76a,76b及び76c,76dについても、第1噴射孔74a,74b及び74c,74dと同様に、それぞれ、軸方向において異なる位置に配置されている。
このように、複数の第1噴射孔74又は複数の第2噴射孔76のうち、外側噴射孔を内側噴射孔よりも軸方向流路68での気体Gの流れ方向にて上流側に配置することで、軸方向流路68内において、空気の流路面積が比較的広い外周側に設けられた外側噴射孔から噴出された燃料の空気との混合がより促進されるため、より良好な燃焼効率が得られる。
また、ノズル本体64又はスワラベーン72に複数の第1噴射孔74又は複数の第2噴射孔76が形成されている実施形態において、複数の第1噴射孔74及び/又は複数の第2噴射孔76のうち、径方向において外側に配置された外側噴射孔の孔径は、径方向において内側に配置された内側噴射孔の孔径よりも大きくてもよい。
図6及び図9に示す実施形態では、スワラベーン72の腹面81に形成された第1噴射孔74a,74bのうち、外側噴射孔である第1噴射孔74aの孔径d1は、内側噴射孔である第1噴射孔74bの孔径d2よりも大きい。また、スワラベーン72の背面82に形成された第1噴射孔74c,74dのうち、外側噴射孔である第1噴射孔74cの孔径d3は、内側噴射孔である第1噴射孔74dの孔径d4よりも大きい。
なお、図6に示す実施形態では、スワラベーンに形成された複数の第2噴射孔76a,76b及び76c,76dについても、外側噴射孔である第2噴射孔76aの孔径d5及び第2噴射孔76cの孔径d7は、内側噴射孔である第2噴射孔76bの孔径d6及び第2噴射孔76dの孔径d8よりも、それぞれ大きい。
このように、複数の第1噴射孔74又は複数の第2噴射孔76のうち、外側噴射孔の孔径を内側噴射孔の孔径よりも大きくすることで、外側噴射孔から噴射される燃料の流量がより大きくなるため、より多くの燃料を外側噴射孔から噴射して空気との混合を促進することができるため、より良好な燃焼効率が得られる。
次に、図11及び図12を参照して、一実施形態に係る燃焼器4(燃焼装置100)の燃料供給系統の構成について説明する。図11及び図12は、それぞれ、一実施形態に係る燃焼器4(燃焼装置100)の燃料供給系統の構成を示す図であり、これらの図には、第1ノズル63に供給される燃料の供給系統が示されている。
幾つかの実施形態では、図11及び図12に示すように、燃焼器4を含む燃焼装置100は、第1ノズル63の第1燃料流路78に接続される第1供給流路86と、第1ノズル63の第2燃料流路79に接続される第2供給流路88と、を含む。第1供給流路86及び第2供給流路88は、第1燃料タンク96及び/又は第2燃料タンク98からの第1燃料及び/又は第2燃料が流通可能となっている。
第1供給流路86には、第1供給流路86を流れる燃料の流量を調節可能な流量調節バルブ92が設けられており、該流量調節バルブ92を介して、任意の流量の燃料を第1燃料流路78に供給可能になっている。また、第2供給流路88には、第2供給流路88を流通する燃料の流量を調節可能な流量調節バルブ94が設けられており、該流量調節バルブ94を介して、任意の流量の燃料を第2燃料流路79に供給可能になっている。
なお、第1供給流路86及び第2供給流路88には、流量計93,95が設けられている。
図11に示す実施形態では、第1供給流路86には燃料ヒータ101が設けられており、第1燃料は、燃料ヒータ(FGH)101によって所定温度に加熱された後、第1供給流路86を流れて、例えば燃料ポート62a(図2及び図3参照)を介して第1ノズル63の第1燃料流路78に供給されるようになっている。また、第2供給流路88には燃料ヒータ(FGH)102が設けられており、第2燃料は、燃料ヒータ102によって所定温度に加熱された後、第2供給流路88を流れて、例えば燃料ポート62b(図2及び図3参照)を介して第1ノズル63の第2燃料流路79に供給されるようになっている。
なお、第1供給流路86及び第2供給流路88から燃料ポート62a,62bを介して第1ノズル63の第1燃料流路78及び第2燃料流路79に供給される燃料は、図2における「予混合燃料」に相当する。
幾つかの実施形態では、第1燃料流路78に供給される第1燃料は、第2燃料流路79に供給される第2燃料よりも発熱量が小さい。
この場合、第1ノズル63の第1燃料流路78及び第1噴射孔74は、比較的発熱量が小さい第1燃料(低カロリー燃料)の性状に適した設計とすることができるとともに、第2燃料流路79及び第2噴射孔76は比較的発熱量が大きい第2燃料(高カロリー燃料)の性状に適した設計とすることができる。
例えば、第1噴射孔74の総面積を第2噴射孔76の総面積よりも大きくしてもよい。この場合、第1噴射孔74から噴射される第1燃料(低カロリー燃料)の流量が比較的大きくなるとともに、第2噴射孔76の総面積が比較的小さいため、流量が比較的小さい第2燃料(高カロリー燃料)が噴射される第2噴射孔76の前後の差圧が維持されやすい。このため、燃焼装置100において燃料噴射前後の差圧が維持されやすい。
なお、第1噴射孔74の総面積と第2噴射孔76の総面積との比である総面積比を、第1燃料の発熱量と第2燃料の発熱量との比である発熱量比に応じて決定してもよい。例えば、総面積比が発熱量比の逆数となるように第1噴射孔74の総面積及び第2噴射孔76の総面積を決定してもよい。
これにより、第1燃料(低カロリー燃料)使用時と第2燃料(高カロリー燃料)使用時との間における燃焼熱の変動を低減でき、第1燃料(低カロリー燃料)と第2燃料(高カロリー燃料)とを切り替えて用いる場合であっても、安定して燃料を燃焼させることができる。
また、例えば、第1噴射孔74を第2噴射孔76よりも上流側に設けてもよい。この場合、第1噴射孔74から噴射される比較的大流量の第1燃料(低カロリー燃料)について、第2噴射孔76から噴出される比較的小流量の第2燃料(高カロリー)に比べて、第1噴射孔74と第2噴射孔76の間の距離の分だけ、軸方向流路68を上流側から流れてくる空気との混合距離を長くすることができる。このため、第1噴射孔74から噴射される比較的大流量の第1燃料(低カロリー燃料)と空気との混合(予混合)をより促進させることができ、燃焼装置100全体として良好な燃焼効率を得ることができる。
図12に示す実施形態では、第1供給流路86及び第2供給流路88の各々は、混合燃料ライン116を介して混合器(MIXER)91と接続されている。混合器91には第1燃料及び第2燃料が流入するようになっており、混合器91にて、第1燃料及び第2燃料が混合されて混合燃料が生成される。
混合燃料ライン116には燃料ヒータ104が設けられており、混合器91で生成された混合燃料は、混合燃料ライン116において燃料ヒータ104によって所定温度に加熱された後、第1供給流路86を流れて、例えば燃料ポート62a(図2及び図3参照)を介して第1ノズル63の第1燃料流路78に供給されるとともに、第2供給流路88を流れて、例えば燃料ポート62b(図2及び図3参照)を介して第1ノズル63の第2燃料流路79に供給されるようになっている。
なお、混合燃料ライン116において混合器91と燃料ヒータ104との間には、混合器91から燃料ヒータ104に流れる混合燃料の発熱量を計測するための熱量計115が設けられている。
ここで、第1供給流路86及び第2供給流路88に設けられた流量調節バルブ92及び流量調節バルブ(第2バルブ)94は、第1燃料流路78及び第2燃料流路79に供給される混合燃料の流量をそれぞれ調節可能なバルブである。
この実施形態では、第1燃料と第2燃料とを混合した混合燃料が第1燃料流路78及び第2燃料流路79に供給可能となっており、第2燃料流路79に供給される混合燃料の流量は流量調節バルブ(第2バルブ)94により調整可能である。よって、流量調節バルブ(第2バルブ)94で第2燃料流路79における混合燃料の流量を調節することにより、混合燃料全体の流量を調節することができる。
ここで、第1燃料と第2燃料とは、発熱量が互いに異なっていてもよい。この場合、混合燃料における第1燃料と第2燃料との混合比に応じて流量調節バルブ(第2バルブ)94の開度が調節されるようになっていてもよい。
この場合、第1燃料と第2燃料との混合比に応じて、混合燃料全体の流量を適切に調節することができる。
なお、混合燃料の混合比は、流量調節バルブ等によって混合器91に流入する第1燃料及び第2燃料の流量を調節することによって調節されてもよい。あるいは、熱量計115の計測結果によって混合燃料の混合比を把握するようにしてもよい。
例えば、混合燃料中の第1燃料の含有量が多く、混合燃料の発熱量が比較的小さい場合には、大流量を得るため、流量調節バルブ(第2バルブ)94の開度を大きくして第1燃料流路78及び第2燃料流路79の両方に混合燃料を供給することができる。また、混合燃料中の第2燃料の含有量が多く、混合燃料の発熱量が比較的大きい場合には、流量を比較的少なくするため、流量調節バルブ(第2バルブ)94の開度を小さくして第2燃料流路79の流量を減少させ、主に第1燃料流路78に混合燃料を供給する。
この場合において、第1噴射孔74が、軸方向流路68での流体の流れ方向にて第2噴射孔76よりも上流側に設けられている場合、混合燃料の混合比によらず、流量調節バルブ92の開度を維持して、第1燃料流路78に対して常に混合燃料が供給されるようにしてもよい。この場合、混合燃料の混合比によらず常に噴射される混合燃料(即ち第1噴射孔74から噴射される混合燃料)について、軸方向流路68を上流側から流れてくる空気との混合距離を比較的長く確保することができるので、燃料と空気との混合(予混合)をより促進させることができる。
また、図12に示す実施形態では、第1燃料と第2燃料とを混合して得られる混合燃料を第1燃料流路78及び第2燃料流路79に供給するようにしたので、燃料を加熱するためのヒータは、混合後の燃料を加熱するように設ければよい。すなわち、混合燃料を加熱するためのヒータは、混合燃料ライン116に設けられた燃料ヒータ104のみで足りる。このため、第1燃料及び第2燃料のそれぞれに対して個別にヒータを設ける場合に比べて、コストを削減することができる。
幾つかの実施形態では、第1燃料及び第2燃料は、第1ノズル63に供給されるとともに、第1ノズル63以外のノズルに対して供給されるようになっていてもよい。
例えば、一実施形態では、第1燃料及び第2燃料は、第1ノズル63に供給されるとともに、第2ノズル54(図2及び図3参照)に対しても供給されるようになっている。
あるいは、一実施形態では、第1燃料及び第2燃料は、第1ノズル63に供給されるとともに、第1ノズル及び第2ノズルとは異なるノズルである第3ノズル(例えばトップハットノズル(不図示)等)に対しても供給されるようになっていてもよい。
なお、図11及び図12に示す実施形態では、第2ノズル54(図2及び図3参照)に対して、第1燃料及び第2燃料が拡散燃焼用燃料として供給されるようになっている。
図11に示す例では、第1供給流路86及び第2供給流路88から分岐した分岐ライン118,119に混合器90が設けられており、混合器90と第2ノズル54とは、拡散燃焼燃料供給流路120を介して接続されている。なお、分岐ライン118,119上には、混合器90に流す第1燃料及び第2燃料の流量を調節するためのバルブ106,107が設けられている。また、拡散燃焼燃料供給流路120には、混合器90から第2ノズル54に供給する拡散燃焼用燃料の流量を調節するためのバルブ108及び流量計109が設けられている。
第1燃料タンク96及び第2燃料タンク98からの第1燃料及び第2燃料は、燃料ヒータ101,102により加熱された後、分岐ライン118,119を通って混合器90に流入し、混合器90にて混合されて、混合燃料となる。このようにして得られた混合燃料が、拡散燃焼燃料供給流路120から、例えば燃料ポート52を介して第2ノズル54に供給される。
図12に示す例では、混合燃料ライン116と第2ノズル54とが、拡散燃焼燃料供給流路120を介して接続されている。混合燃料ライン116を流れる混合燃料(第1燃料と第2燃料の混合物)が、拡散燃焼燃料供給流路120を介して第2ノズル54に供給されるようになっている。なお、拡散燃焼燃料供給流路120には、混合燃料ライン116から第2ノズル54に供給する拡散燃焼燃料の流量を調節するためのバルブ108及び流量計109が設けられている。
幾つかの実施形態では、第2ノズル54又は第3ノズル(トップハットノズル等の第1ノズル63及び第2ノズル54以外のノズル)に対して、第1燃料または第2燃料の何れかを単独で供給できるようになっていてもよく、あるいは、第1燃料及び第2燃料とは異なる別の燃料を供給できるようになっていてもよい。
以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1 ガスタービン
2 圧縮機
4 燃焼器
6 タービン
8 ロータ
10 圧縮機車室
12 空気取入口
14 入口案内翼
16 静翼
18 動翼
20 ケーシング
22 タービン車室
24 静翼
26 動翼
28 排気車室
30 排気室
40 燃焼器車室
42 車室入口
46 燃焼器ライナ
46a 内筒
46b 尾筒
50 第2燃焼バーナ
52 燃料ポート
54 第2ノズル
56 コーン
58 スワラ
60 第1燃焼バーナ
62 燃料ポート
63 第1ノズル
64 ノズル本体
65 延長管
65a 延長管出口
66 バーナ筒
68 軸方向流路
70 スワラ
72 スワラベーン
74,74a〜74d 第1噴射孔
76,76a〜76e 第2噴射孔
78 第1燃料流路
79 第2燃料流路
81 腹面
82 背面
83 前縁
84 後縁
86 第1供給流路
88 第2供給流路
90 混合器
91 混合器
92 流量調節バルブ
93 流量計
94 流量調節バルブ
95 流量計
100 燃焼装置
101 燃料ヒータ
102 燃料ヒータ
104 燃料ヒータ
106 バルブ
107 バルブ
108 バルブ
109 流量計
115 熱量計
116 混合燃料ライン
118 分岐ライン
119 分岐ライン
120 拡散燃焼燃料供給流路

Claims (11)

  1. 軸方向流路を規定するノズルケーシングと、
    前記軸方向流路内に設けられたノズルと、を備え、
    前記ノズルは、
    前記軸方向流路に沿って延在する筒形状のノズル本体と、
    前記ノズル本体の径方向にて前記ノズル本体から径方向外方に突出し、前記軸方向流路を流れる流体を旋回させるように構成されたスワラベーンと、
    前記ノズル本体又は前記スワラベーンの表面に開口する少なくとも1つの第1噴射孔と、
    前記ノズル本体又は前記スワラベーンの表面に開口する少なくとも1つの第2噴射孔と、
    前記ノズル本体の内部を延び、前記少なくとも1つの第1噴射孔に連通した第1燃料流路と、
    前記ノズル本体の内部を前記第1燃料流路とは別々に延び、前記少なくとも1つの第2噴射孔と連通した第2燃料流路と、を含む燃焼装置であって、
    前記第1燃料流路に第1燃料を供給可能な第1供給流路と、
    前記第2燃料流路に、前記第1燃料とは異なる第2燃料を供給可能な第2供給流路と、
    をさらに備え、
    前記第1燃料は、前記第2燃料よりも発熱量が小さく、
    前記第1噴射孔の総面積と前記第2噴射孔の総面積との比は、前記第1燃料の発熱量と前記第2燃料の発熱量との比に応じて決定されている
    ことを特徴とする燃焼装置。
  2. 前記第1噴射孔の総面積は、前記第2噴射孔の総面積よりも大きいことを特徴とする請求項1に記載の燃焼装置。
  3. 前記第1燃料流路の流路面積は、前記第2燃料流路の流路面積よりも大きい
    ことを特徴とする請求項2に記載の燃焼装置。
  4. 前記第1燃料流路の流路面積と前記第2燃料流路の流路面積との比である流路面積比と、前記第1噴射孔の総面積と前記第2噴射孔の総面積との比である噴射孔総面積比との比(前記流路面積比/前記噴射孔総面積比)が0.8以上1.2以下であることを特徴とする請求項3に記載の燃焼装置。
  5. 前記第1噴射孔は、前記軸方向流路での前記流体の流れ方向にて前記第2噴射孔よりも上流側に設けられたことを特徴とする請求項1乃至4の何れか一項に記載の燃焼装置。
  6. 前記ノズル本体又は前記スワラベーンは、少なくとも2つの前記第1噴射孔又は少なくとも2つの前記第2噴射孔を有し、
    前記少なくとも2つの第1噴射孔又は前記少なくとも2つの第2噴射孔は、前記ノズル本体の径方向において互いに異なる位置に配置される
    ことを特徴とする請求項1乃至5の何れか一項に記載の燃焼装置。
  7. 前記少なくとも2つの第1噴射孔又は前記少なくとも2つの第2噴射孔のうち、前記径方向において外側に配置された外側噴射孔は、前記径方向において内側に配置された内側噴射孔よりも、前記軸方向流路での前記流体の流れ方向にて上流側に配置された
    ことを特徴とする請求項6に記載の燃焼装置。
  8. 前記少なくとも2つの第1噴射孔又は前記少なくとも2つの第2噴射孔のうち、前記径方向において外側に配置された外側噴射孔の孔径は、前記径方向において内側に配置された内側噴射孔の孔径よりも大きい
    ことを特徴とする請求項6又は7に記載の燃焼装置。
  9. 軸方向流路を規定するノズルケーシングと、
    前記軸方向流路内に設けられたノズルと、を備え、
    前記ノズルは、
    前記軸方向流路に沿って延在する筒形状のノズル本体と、
    前記ノズル本体の径方向にて前記ノズル本体から径方向外方に突出し、前記軸方向流路を流れる流体を旋回させるように構成されたスワラベーンと、
    前記ノズル本体又は前記スワラベーンの表面に開口する少なくとも1つの第1噴射孔と、
    前記ノズル本体又は前記スワラベーンの表面に開口する少なくとも1つの第2噴射孔と、
    前記ノズル本体の内部を延び、前記少なくとも1つの第1噴射孔に連通した第1燃料流路と、
    前記ノズル本体の内部を前記第1燃料流路とは別々に延び、前記少なくとも1つの第2噴射孔と連通した第2燃料流路と、を含み、
    発熱量が相互に異なる第1燃料と第2燃料を混合して混合燃料を生成可能な混合器と、
    前記混合燃料を前記第1燃料流路に供給可能な第1供給流路と、
    前記混合燃料を前記第2燃料流路に供給可能な第2供給流路と、
    前記第2供給流路に介装され、前記第2燃料流路に供給される前記混合燃料の流量を調整可能な第2バルブと、
    前記混合器によって生成された前記混合燃料を加熱可能なヒータと、
    をさらに備え
    前記第1供給流路は、前記ヒータによって加熱された前記混合燃料を前記第1燃料流路に供給するように構成され、
    前記第2供給流路は、前記ヒータによって加熱された前記混合燃料を前記第2燃料流路に供給するように構成された
    ことを特徴とする燃焼装置。
  10. 前記混合燃料における前記第1燃料と前記第2燃料との混合比に応じて前記第2バルブの開度が調節されるように構成された
    ことを特徴とする請求項に記載の燃焼装置。
  11. 圧縮空気を生成するための圧縮機と、
    前記圧縮機からの前記圧縮空気により前記少なくとも第1燃料噴射孔及び前記少なくとも1つの第2燃料噴射孔のうち少なくとも一方から噴射された燃料を燃焼させて燃焼ガスを発生させるように構成された請求項1乃至10の何れか一項に記載の燃焼装置と、
    前記燃焼装置からの前記燃焼ガスによって駆動されるように構成されたタービンと、
    を備えることを特徴とするガスタービン。
JP2016040951A 2016-03-03 2016-03-03 燃焼装置及びガスタービン Active JP6626743B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016040951A JP6626743B2 (ja) 2016-03-03 2016-03-03 燃焼装置及びガスタービン
US16/080,877 US20190093570A1 (en) 2016-03-03 2017-02-24 Combustion device and gas turbine
CN201780014987.4A CN108700298B (zh) 2016-03-03 2017-02-24 燃烧装置及燃气轮机
PCT/JP2017/007026 WO2017150364A1 (ja) 2016-03-03 2017-02-24 燃焼装置及びガスタービン
SA518392299A SA518392299B1 (ar) 2016-03-03 2018-08-29 جهاز احتراق وتربين غازي

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016040951A JP6626743B2 (ja) 2016-03-03 2016-03-03 燃焼装置及びガスタービン

Publications (3)

Publication Number Publication Date
JP2017156033A JP2017156033A (ja) 2017-09-07
JP2017156033A5 JP2017156033A5 (ja) 2019-04-11
JP6626743B2 true JP6626743B2 (ja) 2019-12-25

Family

ID=59742955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016040951A Active JP6626743B2 (ja) 2016-03-03 2016-03-03 燃焼装置及びガスタービン

Country Status (5)

Country Link
US (1) US20190093570A1 (ja)
JP (1) JP6626743B2 (ja)
CN (1) CN108700298B (ja)
SA (1) SA518392299B1 (ja)
WO (1) WO2017150364A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180135532A1 (en) * 2016-11-15 2018-05-17 General Electric Company Auto-thermal fuel nozzle flow modulation
KR102164619B1 (ko) * 2019-04-08 2020-10-12 두산중공업 주식회사 연소기 및 이를 포함하는 가스터빈
JP7200077B2 (ja) * 2019-10-01 2023-01-06 三菱重工業株式会社 ガスタービン燃焼器及びその運転方法
CN110878941A (zh) * 2019-12-02 2020-03-13 上海迎韦热能设备有限公司 一种超低氮燃气燃烧器
CN111121012A (zh) * 2020-01-14 2020-05-08 上海迎韦热能设备有限公司 一种低氮燃油燃烧器
JP7349403B2 (ja) * 2020-04-22 2023-09-22 三菱重工業株式会社 バーナー集合体、ガスタービン燃焼器及びガスタービン
CN113251439B (zh) * 2021-06-24 2021-11-16 成都中科翼能科技有限公司 一种用于双燃料燃气轮机的双级同旋式头部装置
CN113701194B (zh) * 2021-08-16 2022-11-22 中国航发沈阳发动机研究所 一种燃气轮机燃烧室预混装置
KR102522144B1 (ko) * 2021-09-16 2023-04-13 두산에너빌리티 주식회사 연소기용 연료공급 시스템
KR102522143B1 (ko) * 2021-09-16 2023-04-13 두산에너빌리티 주식회사 연소기용 연료공급 시스템
CN114738796A (zh) * 2022-03-09 2022-07-12 西北工业大学 内含旋转油管的空气雾化喷嘴
DE102022207492A1 (de) * 2022-07-21 2024-02-01 Rolls-Royce Deutschland Ltd & Co Kg Düsenvorrichtung zur Zugabe zumindest eines gasförmigen Kraftstoffes und eines flüssigen Kraftstoffes, Set, Zuleitungssystem und Gasturbinenanordnung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680766A (en) * 1996-01-02 1997-10-28 General Electric Company Dual fuel mixer for gas turbine combustor
JP3742722B2 (ja) * 1998-03-16 2006-02-08 財団法人電力中央研究所 ガスタービン燃焼器
CA2453532C (en) * 2001-07-10 2009-05-26 Mitsubishi Heavy Industries, Ltd. Premixing nozzle, combustor,and gas turbine
JP4719059B2 (ja) * 2006-04-14 2011-07-06 三菱重工業株式会社 ガスタービンの予混合燃焼バーナー
KR100820233B1 (ko) * 2006-10-31 2008-04-08 한국전력공사 연소기 및 이를 포함하는 멀티 연소기, 그리고 연소방법
KR100872841B1 (ko) * 2007-09-28 2008-12-09 한국전력공사 디엠이 연료용 가스터빈 연소기의 연료노즐과 이의 설계방법
US8661779B2 (en) * 2008-09-26 2014-03-04 Siemens Energy, Inc. Flex-fuel injector for gas turbines
US20110005189A1 (en) * 2009-07-08 2011-01-13 General Electric Company Active Control of Flame Holding and Flashback in Turbine Combustor Fuel Nozzle
JP2011099654A (ja) * 2009-11-09 2011-05-19 Mitsubishi Heavy Ind Ltd ガスタービン用燃焼バーナ
JP5926641B2 (ja) * 2012-07-24 2016-05-25 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
JP2016504523A (ja) * 2012-12-28 2016-02-12 ゼネラル・エレクトリック・カンパニイ 極低温燃料システムを含むタービンエンジンアセンブリ
JP6285807B2 (ja) * 2014-06-04 2018-02-28 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
CN204358774U (zh) * 2014-09-03 2015-05-27 西门子公司 具有至少一个燃烧器的燃气轮机、燃烧器和燃料喷嘴

Also Published As

Publication number Publication date
WO2017150364A1 (ja) 2017-09-08
CN108700298B (zh) 2021-03-19
US20190093570A1 (en) 2019-03-28
CN108700298A (zh) 2018-10-23
JP2017156033A (ja) 2017-09-07
SA518392299B1 (ar) 2022-03-23

Similar Documents

Publication Publication Date Title
JP6626743B2 (ja) 燃焼装置及びガスタービン
KR101792453B1 (ko) 가스 터빈 연소기, 가스 터빈, 제어 장치 및 제어 방법
EP2693123B1 (en) Nozzle, gas turbine combustor and gas turbine
JP5629321B2 (ja) 燃焼装置用の入口予混合器
JP2006112776A (ja) 低コスト二元燃料燃焼器及び関連する方法
JP2009052877A (ja) 半径方向の多段流路を備えたガスタービン予混合器及びガスタービンにおける空気とガスの混合方法
JP2017072361A (ja) 予混合燃料ノズル組立体カートリッジ
US10823420B2 (en) Pilot nozzle with inline premixing
EP3102877B1 (en) Combustor
JP2017172953A (ja) 軸方向多段型燃料噴射器アセンブリ
JP6723768B2 (ja) バーナアセンブリ、燃焼器、及びガスタービン
JP2012032144A (ja) 燃料ノズル及びこれを含む組立体並びにガスタービン
CA3010044C (en) Combustor for a gas turbine
JP7184477B2 (ja) 液体燃料先端を有するデュアルフュエル燃料ノズル
JP7285623B2 (ja) ガスタービン燃焼器及びそれを備えるガスタービン、並びに、ガスタービン燃焼器の燃焼振動抑制方法
JP7202084B2 (ja) 気体燃料および液体燃料の機能を有する二重燃料燃料ノズル
JP6417620B2 (ja) 燃焼器、ガスタービン
WO2024116966A1 (ja) ガスタービンの運転方法
WO2024116963A1 (ja) ガスタービンの運転方法
US20230243502A1 (en) Turbine engine fuel mixer
KR102096579B1 (ko) 액체 연료 노즐 및 이를 포함하는 가스 터빈 연소기
JP7193962B2 (ja) 燃焼器及びこれを備えたガスタービン

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6626743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150