JP6624266B2 - 電力制御装置 - Google Patents

電力制御装置 Download PDF

Info

Publication number
JP6624266B2
JP6624266B2 JP2018203986A JP2018203986A JP6624266B2 JP 6624266 B2 JP6624266 B2 JP 6624266B2 JP 2018203986 A JP2018203986 A JP 2018203986A JP 2018203986 A JP2018203986 A JP 2018203986A JP 6624266 B2 JP6624266 B2 JP 6624266B2
Authority
JP
Japan
Prior art keywords
power
renewable
absorbed
value
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018203986A
Other languages
English (en)
Other versions
JP2019033669A (ja
Inventor
耕治 工藤
耕治 工藤
康将 本間
康将 本間
龍 橋本
龍 橋本
鈴木 勝也
勝也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2018203986A priority Critical patent/JP6624266B2/ja
Publication of JP2019033669A publication Critical patent/JP2019033669A/ja
Application granted granted Critical
Publication of JP6624266B2 publication Critical patent/JP6624266B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力制御装置に関する。
太陽光発電装置や風力発電装置などの再生可能エネルギーを用いて発電する発電装置(以下「再エネ電源」とも称する)が知られている。そして、電力会社が再エネ電源にて発電された電力を固定価格で買い取ることを義務づけたFIT(固定価格買取)が始まったことも一因となって、電力系統に接続された再エネ電源が急激に増えてきている。
電力系統に接続された再エネ電源が増えると、電力供給が電力需要に対して過多となる状況が想定される。この状況を回避する手法として、再エネ電源の発電電力を上限値以下に抑制する手法が考えられる。
特許文献1には、再エネ電源から電力系統(電力網)へ逆潮流される電力を抑制する発電システムが記載されている。この発電システムは、再エネ電源の出力電圧が上限閾値を超えないように、再エネ電源の出力電力を抑制する。そして、この発電システムは、出力電力の抑制が必要な余剰電力を蓄電池に蓄えることができる。
特開2013−5537号公報
再エネ電源の発電は、自然環境(例えば、太陽光や風)の影響を受けるため、再エネ電源の発電電力は自然環境の変化に応じた短い周期で変動する可能性がある。よって、再エネ電源に起因する余剰電力も、自然環境の変化に応じた短い周期で変動する可能性がある。
このため、特許文献1に記載の発電システムでは、再エネ電源の発電電力の短い周期の変動に合わせて蓄電池に蓄える余剰電力を調整する場合、短い周期は、蓄電池が充電する充電可能特性よりも短いことも往々にしてある。そのため再エネ電源の出力変動に追従して蓄電池を適切に充電することができないという問題があった。
本発明の目的は、上記課題を解決可能な電力制御装置を提供することである。
本発明の電力制御装置は、再生可能エネルギーを用いて発電する発電装置の所定の出力抑制時間帯における予測発電電力値と前記発電装置の発電電力の許容上限値とに基づいて、電力系統を介して前記発電装置と接続され、前記発電装置と異なる場所に設置された電気機器に吸収させる吸収電力を決定する第1決定部と、
前記吸収電力に関する情報を含む運転情報を前記電気機器へ送信することで、前記出力抑制時間帯における前記電気機器の消費電力を前記吸収電力にする電力吸収処理を前記電気機器に実行させ、
さらに前記予測発電電力値及び発電抑制処理に関する情報を前記発電装置に送信することで、前記出力抑制時間帯における前記発電装置の実際の発電電力を前記予測発電電力値以下にする前記発電抑制処理を前記発電装置に実行させる通信部と、を有する。
本発明によれば、発電抑制が必要な余剰電力を適切に蓄電池やHP給湯器等の電気機器を用いて吸収(消費)させることが可能になる。
本発明の第1実施形態の電力制御装置100を示した図である。 発電抑制が実行される再エネ電源での、予測発電電力値Aと、許容上限値Bと、実際の発電電力Cと、吸収電力Dと、逆潮流電力Eとの一例を示した図である。 第1実施形態の動作を説明するためのフローチャートである。 本発明の第2実施形態の再エネ電源100を示した図である。 再エネ電源200の動作を説明するためのフローチャートである。 蓄電池300が再エネ電源200に対して遠隔に存在する場合を示した図である。 図5Bに示した再エネ電源200の動作を説明するための図である。 蓄電池300が再エネ電源200に併設されている場合を示した図である。 本発明の第3実施形態の電力システム1を示した図である。 電力制御装置100Aの動作を説明するためのフローチャートである。 発電抑制の当日の蓄電池301、HP給湯器302、蓄電池303の動作を説明するためのフローチャートである。 発電抑制の当日の再エネ電源200A(n)の動作を説明するためのフローチャートである。 抑制時間帯Tでの予測発電電力値Aが時間の経過と共に変化する場合での本実施形態の動作例を示した図である。 抑制時間帯Tでの予測発電電力値Aが一定値である場合の本実施形態の動作例を示した図である。 許容上限値が変動する一例を示した図である。
(第1実施形態)
図1は、本発明の第1実施形態の電力制御装置100を示した図である。
電力制御装置100は、第1決定部101と、第2決定部102と、を含む。
第1決定部101は、再生可能エネルギーを用いて発電する再エネ電源の予測発電電力値(以下、単に「予測発電電力値」と称する)と、再エネ電源の発電電力の許容上限値(以下、単に「許容上限値」と称する)と、を受信する。再エネ電源は、電力系統に接続されている。
第1決定部101は、予測発電電力値を、例えば、発電電力予測装置(不図示)から受信する。発電電力予測装置は、再エネ電源の発電履歴や気象予測情報を用いて、再エネ電源の発電電力を予測する。この予測された再エネ電源の発電電力の値が「予測発電電力値」となる。発電電力予測装置は、予測発電電力値を電力制御装置100に送信する。第1決定部101は、発電電力予測装置以外の装置から、予測発電電力値を受信してもよい。また、第1決定部101は、発電電力予測装置を内蔵してもよいし、第1決定部101が、再エネ電源の発電履歴や気象予測情報を用いて、再エネ電源の発電電力を予測してもよい。
第1決定部101は、許容上限値を、例えば、電力会社が管理する装置から受信する。第1決定部101は、電力会社が管理する装置以外の装置から、許容上限値を受信してもよい。
第1決定部101は、予測発電電力値と許容上限値とに基づいて、蓄電池に吸収(充電)させる吸収電力を決定する。以下では、第1決定部101は、予測発電電力値から許容上限値を差し引いた結果を、吸収電力として決定するとする。蓄電池は、電力系統に接続されている。蓄電池は、電気機器やエネルギー蓄積装置の一例である。蓄電池は、再エネ電源の実際の発電電力(以下「実際の発電電力」とも称する)の一部を、吸収電力として吸収する。
第2決定部102は、実際の発電電力と吸収電力とに基づいて、再エネ電源から電力系統に逆潮流した逆潮流電力を決定する。以下では、第2決定部102は、実際の発電電力から吸収電力を差し引いた結果を、逆潮流電力として決定するとする。第2決定部102は、実際の発電電力の値を、再エネ電源から直接受信してもよいし、第1決定部101を介して受信してもよい。
図2は、発電抑制が実行される再エネ電源での、予測発電電力値Aと、許容上限値Bと、実際の発電電力Cと、吸収電力Dと、逆潮流電力Eとの一例を示した図である。
出力抑制時間帯(以下「抑制時間帯」と称する)Tにおいて、実際の発電電力Cは、予測発電電力値A以下となっている。このため、蓄電池が、再エネ電源の実際の発電電力Cのうち、予測発電電力値Aから許容上限値Bを差し引いた値である吸収電力Dを充電することで、実際の発電電力Cから吸収電力Dを差し引いた逆潮流電力Eは、許容上限値B以下となる。
再エネ電源の実際の発電電力Cのうち電力系統に実効的に逆潮流される電力(逆潮流電力E)は、以下の式および図2からも明らかなように、実際の発電電力Cから吸収電力Dを差し引くことで簡単に求めることができる。
「逆潮流電力E」=「再エネ電源の実際の発電電力C」−「吸収電力D」
また、逆潮流電力Eを実際の発電電力Cから吸収電力Dを差し引いた値とすることで、蓄電池に充電される電力(吸収電力D)の中に、電力会社の供給する電力が含まれないようにすることができる。これにより、蓄電池が吸収電力を充電する際に、電力会社から電力を購入してしまうことを回避可能となる。
吸収電力Dは、実際の発電電力Cから許容上限値Bを差し引いた電力D1と、予測発電電力値Aから実際の発電電力Cを差し引いた電力D2と、の和となる。電力D1は、実際の発電抑制の対象となる電力である。一方、電力D2は、発電抑制に対して必要以上に充電された再生可能エネルギー由来の電力である。このため、例えば、第2決定部102は、電力D1と電力D2に対して、異なる価格を付けることができる。
特許文献1に記載の技術のように、再エネ電源の出力変動に応じて、許容上限値を超えた部分の電力を蓄電池に充電するのであれば、逆潮流電力Eは許容上限値Bの一定値となるので、逆潮流電力Eから売電価格を設定しやすい。
しかし、再エネ電源の出力変動に応じて、許容上限値を超えた部分の電力を蓄電池に充電する制御は、短い周期で変動する発電量にあわせて蓄電池の充電制御を行う必要がある。例えば、蓄電池の充電応答特性が、再エネ電源の出力変動についていけないと、蓄電池は、再エネ電源の出力変動に追従して、許容上限値を超えた部分の電力を充電することはできない。
そこで、本実施形態では、予測した発電電力値と許容上限値とに基づいて、事前に蓄電池に充電する電力を設定する。
この場合、充電する充電量を事前に設定できるが、その代わり売電する逆潮流電力が、再エネ電源の出力変動に合わせて変動する。そこで、再エネ電源における実際の発電電力から充電電力(吸収電力)を差し引くことで逆潮流電力を求める(決定する)ことができる。
なお、予測発電電力量に基づいて充電量(吸収電力)を設定するため、本来であれば逆潮流により売電できるはずの電力(D2)も蓄電池に充電してしまう。そのため、例えば、第2決定部102は、蓄電池に充電された電力をD1とD2とに分け、D2の電力量に対して、本来であればFITなどで逆潮流により売電できたと見做した価格の設定を行う。
ここで、D1は、実際の発電電力から許容上限値を差し引いた値である。D2は、予測発電電力値から実際の発電量を差し引いた値である。
次に、本実施形態の動作について説明する。
図3は、本実施形態の動作を説明するためのフローチャートである。
第1決定部101は、予測発電電力値と許容上限値を受信する(ステップS301)。
続いて、第1決定部101は、予測発電電力値から許容上限値を差し引いた値を、吸収電力として決定する(ステップS302)。予測発電電力値が許容上限値よりも低い場合は、吸収電力は0とする。続いて、第1決定部101は、抑制時間帯において、吸収電力を蓄電池に吸収させる。また、第1決定部101は、吸収電力を第2決定部102に通知する。
第2決定部102は、吸収電力の通知を受け、また、抑制時間帯での再エネ電源の実際の発電電力の値を受信する。第2決定部102は、実際の発電電力から吸収電力を差し引いた値を逆潮流電力として決定する(ステップS303)。
次に、本実施形態の効果について説明する。
第1決定部101は、予測発電電力値から許容上限値を差し引いた結果を、蓄電池に吸収させる吸収電力として決定する。第2決定部102は、実際の発電電力から吸収電力を差し引いた結果を、再エネ電源から電力系統へ実効的に逆潮流した逆潮流電力として決定する。
再エネ電源の実際の発電電力から吸収電力を差し引いた値を「逆潮流電力」として決定することは、蓄電池に吸収(充電)された吸収電力が、再エネ電源の実際の発電電力の一部となることを意味する。この点は、図2からも明らかである。
蓄電池が、第1決定部101にて決定された吸収電力を吸収(蓄積)することで、再エネ電源から電力系統への逆潮流電力が許容上限値を超えることを防ぐことができる。また、実際の発電電力から吸収電力を差し引いた値を逆潮流電力として決定しているため、実効的な逆潮流電力を精度よく求めることが可能となる。この逆潮流電力は、例えば、電力会社に売電される。
このように、本実施形態では、蓄電池で吸収する電力を再エネ電源の発電電力の変動に合わせて制御するという、非常に困難なリアルタイムな高精度制御を行うことなく、発電抑制が必要な余剰電力を容易に吸収させることが可能になる。
次に、本実施形態の変形例について説明する。
第1決定部101は、再エネ電源の実際の発電電力を予測発電電力値以下にする発電抑制処理(以下、単に「発電抑制処理」と称する)を、再エネ電源に実行させてもよい。例えば、第1決定部101は、発電抑制処理を実行する旨の指示と、予測発電電力値とを、再エネ電源に送信する。再エネ電源は、その指示と予測発電電力値とを受信すると、その指示に従って発電抑制処理を実行する。
なお、再エネ電源が、予測発電電力値を受信した場合に発電抑制処理を実行する機能を有している場合には、第1決定部101は、発電抑制処理を実行する旨の指示を送信することなく、予測発電電力値を再エネ電源に送信すればよい。
また、第2決定部102は、逆潮流電力Eに基づいて売電価格を設定してもよい。例えば、第2決定部102は、逆潮流電力Eが大きくなるほど、売電価格を高くしてもよい。
また、第2決定部102は、逆潮流電力Eと電力D2とに基づいて売電価格を設定してもよい。例えば、第2決定部102は、逆潮流電力Eと電力D2の総量が大きくなるほど、売電価格を高くしてもよい。
また、第1決定部101は、複数の再エネ電源の吸収電力の総量を、複数の蓄電池に吸収させる総吸収電力として決定してもよい。この場合、第1決定部101は、総吸収電力を、複数の蓄電池に吸収させてもよい。
ここで、蓄電池の数を増やすために、再エネ電源の遠方にある蓄電池を使う場合、蓄電池で吸収する電力を再エネ電源の発電電力の変動に合わせてリアルタイムに高精度に制御することは、例えば制御のための通信の遅延や処理の遅延の影響で、より困難になる。
これに対して、上述したように複数の再エネ電源の吸収電力の総量を複数の蓄電池で吸収させる場合、蓄電池で吸収する電力を再エネ電源の発電電力の変動に合わせて制御する必要がなくなり、発電抑制が必要な余剰電力を容易に吸収させることが可能になる。
また、総吸収電力は、「個々の吸収電力(予測発電電力値−許容上限値)の総和」であるため、「複数の再エネ電源の予測発電電力値の総量」−「複数の再エネ電源の許容上限値」の式で表すことができる。よって、余剰電力を含む総吸収電力を算出する際には、複数の再エネ電源の予測発電電力値の総量が用いられることになる。このため、個々の再エネ電源の予測発電電力値の差異(ばらつき)を相殺できる効果(均し効果)が期待できる。したがって、余剰電力吸収に必要な蓄電池等の電気機器の容量を最小化でき、非常に有効である。
(第2実施形態)
本発明の第2実施形態は、第1実施形態の電力制御装置100(図1参照)と通信可能な再エネ電源200に関する。
図4は、本発明の第2実施形態の再エネ電源200を示した図である。
再エネ電源200は、発電部201と、制御部202と、を含む。
発電部201は、太陽光や風力等の再生可能エネルギーを用いて発電する再エネ電源である。発電部201は、電力系統に接続されている。
制御部202は、発電部201の予測発電電力値を、発電電力予測装置(不図示)または図1に示した電力制御装置100から受信する。制御部202は、発電部201の発電電力を、発電部201の予測発電電力値に基づいて制御する。以下では、制御部202は、発電部201の発電電力を、発電部201の予測発電電力値以下に抑制するとする。
次に、本実施形態の動作について説明する。
図5Aは、再エネ電源200の動作を説明するためのフローチャートである。
制御部202は、発電部201の予測発電電力値を受信する(ステップS501)。
続いて、制御部202は、発電部201の発電電力を、発電部201の予測発電電力値以下に抑制する(ステップS502)。
次に、本実施形態の効果について説明する。
制御部202は、発電部201の発電電力を、発電部201の予測発電電力値以下に抑制する。このため、再エネ電源200の発電電力を予測発電電力値以下に抑制することが可能になる。よって、例えば、再エネ電源200が、図1に示した電力制御装置100に管理される場合、電力制御装置100は、別途、吸収電力値に基づく余剰電力の吸収を、何らかの他の電気機器を用いて実施しており、その結果、再エネ電源200から電力系統に供給される逆潮流電力を許容上限値以下にすることが可能になる。
次に、本実施形態の変形例を説明する。
再エネ電源200の制御部202の代わりに、図1に示した電力制御装置100から吸収電力(吸収電力値)を受信する受信部と、発電部201の実際の発電電力のうち吸収電力を蓄電池に充電する供給部が用いられてもよい。また、供給部が、発電部201の発電電力と吸収電力とに基づいて、電力系統に逆潮流する逆潮流電力を決定してもよい。
この場合、蓄電池が、再エネ電源200に対して遠隔に存在する場合と、再エネ電源200に併設されている場合とが考えられる。
図5Bは、蓄電池300が再エネ電源200に対して遠隔に存在する場合を示した図である。図5Bにおいて、発電部201と蓄電池300は、電力系統500を介して接続されている。
図5Cは、図5Bに示した再エネ電源200の動作を説明するための図である。
受信部205は、電力制御装置100から吸収電力値を受信する(ステップS501C)。
続いて、供給部206は、発電部201の実際の発電電力のうち、吸収電力値が示す吸収電力P1を、蓄電池300に充電する(ステップS502C)。なお、吸収電力P1は、電力系統を逆潮流しているが、蓄電池300で吸収されるため、実効的な逆潮流ではない。
続いて、供給部206は、発電部201の実際の発電電力から、吸収電力P1を差し引いた電力を、実効的な逆潮流電力として決定する(ステップS503C)。
続いて、供給部206は、実効的な逆潮流電力を売電する(ステップS504C)。
この変形例でも、再エネ電源200の発電量が短い周期で変動しても、事前に定められた電力を蓄電池に充電し、残った分を逆潮流電力として売電できる。よって、蓄電池の制御が容易になる。
図5Dは、蓄電池300が再エネ電源200に併設されている場合を示した図である。図5Dにおいて、発電部201と蓄電池300は、電力系統500を介さずに、例えばローカル配線で接続されている。
図5Dに示した再エネ電源200の動作は、電力系統500を介さずに蓄電池300に吸収電力を充電させる点を除いて、図5Bに示した再エネ電源200の動作と同様である。よって、この変形例でも、再エネ電源200の発電量が短い周期で変動しても、事前に定められた電力を蓄電池に充電し、残った分を逆潮流電力として売電できる。よって、蓄電池の制御が容易になる。
なお、図5Bや図5Dに示した供給部206は、図4で示した制御部202のように、発電部201の予測発電電力値を受信し、発電部201の発電電力を、発電部201の予測発電電力値以下に抑制してもよい。この場合、逆潮流により売電する電力量が、許容上限値を超えることを防止できる。
(第3実施形態)
図6は、本発明の第3実施形態の電力システム1を示した図である。
電力システム1は、電力制御装置100Aと、再エネ電源200Aと、蓄電池301と、HP(ヒートポンプ)給湯器302と、蓄電池303と、電力会社装置400と、を含む。
以下では、再エネ電源200Aの数を「r」(rは1以上の整数)とする。また、個々の再エネ電源200Aを「再エネ電源200A(n)」とも称する。ここで、nは1、・・・、rである。
蓄電池301とHP給湯器302と蓄電池303は、発電抑制時に、各再エネ電源200A(n)の発電電力の一部を吸収(充電や消費)するための電気機器またはエネルギー蓄積装置の一例である。電気機器は、蓄電池301とHP給湯器302と蓄電池303に限らず、適宜変更可能である。例えば、電気機器として、家庭用電気機器が用いられてもよい。
電力制御装置100Aは、アグリゲータにて管理される。アグリゲータは、再エネ電源200A(n)を管轄している。電力制御装置100Aは、再エネ電源200A(n)や、蓄電池301、HP給湯器302および蓄電池303と通信する。
電力会社装置400は、電力会社にて管理される。電力会社装置400は、各再エネ電源200A(n)の発電電力の許容上限値を、電力制御装置100Aに送信する。本実施形態では、各再エネ電源200A(n)の発電電力の許容上限値として、再エネ電源200A(n)の定格のX%が用いられる。
電力制御装置100Aは、制御部101Aと、決定部102Aと、通信部103Aと、を含む。
通信部103Aは、電力会社装置400から、各再エネ電源200A(n)の発電電力の許容上限値(定格のX%)を受信する。
また、通信部103Aは、発電電力予測装置(不図示)から、各再エネ電源200A(n)の予測発電電力値を受信する。発電電力予測装置は、電力制御装置100Aに内蔵されてもよい。本実施形態では、各再エネ電源200A(n)の予測発電電力値として、再エネ電源200A(n)の定格のV%が用いられる。
通信部103Aは、各再エネ電源200A(n)の発電電力の許容上限値(定格のX%)と、各再エネ電源200A(n)の予測発電電力値(定格のV%)を、制御部101Aに出力する。
制御部101Aは、第1決定部の一例である。制御部101Aは、再エネ電源200A(n)ごとに、許容上限値(定格のX%)と予測発電電力値(定格のV%)とを用いて、吸収電力を決定する。制御部101Aは、再エネ電源200A(n)ごとの吸収電力の総計を、総余剰電力として決定する。総余剰電力は、複数の再エネ電源200Aの発電電力の全体から吸収する必要のある電力である。
本実施形態では、制御部101Aは、再エネ電源200A(n)ごとに、予測発電電力値(定格のV%)から許容上限値(定格のX%)を差し引いて吸収電力を算出する。制御部101Aは、再エネ電源200A(n)ごとの吸収電力の総計を、総余剰電力として決定する。
制御部101Aは、蓄電池301とHP給湯器302と蓄電池303が共同で総余剰電力を吸収(充電または電力消費)するように、通信部103Aを介して、蓄電池301とHP給湯器302と蓄電池303を制御する。
また、制御部101Aは、再エネ電源200A(n)ごとの吸収電力の値を決定部102Aに出力する。
また、制御部101Aは、各再エネ電源200A(n)の予測発電電力値を各再エネ電源200A(n)に通知する。
決定部102Aは、第2決定部の一例である。決定部102Aは、各再エネ電源200A(n)から、通信部101Aを介して、各再エネ電源200A(n)の実際の発電電力値を受信する。
決定部102Aは、再エネ電源200A(n)ごとに、実際の発電電力値から吸収電力を差し引くことで逆潮流電力を決定する。この逆潮流電力は、電力会社に売電される。
再エネ電源200Aは、発電要素201Aと、制御部202Aと、パワーコンディショナー203Aと、を含む。発電要素201Aとパワーコンディショナー203Aは、発電部204Aに含まれる。
発電要素201Aは、例えば、太陽電池パネル等の再エネ電源要素である。
パワーコンディショナー203Aは、発電要素201Aから電力系統500に供給される電力を調整する。
制御部202Aは、電力制御装置100Aから予測発電電力値を受信する。制御部202Aは、パワーコンディショナー203Aを制御して、発電部204Aから電力系統500に供給される予測発電電力値以下に抑制する。
また、制御部202Aは、パワーコンディショナー203Aから電力系統500に供給される電力(発電部204の実際の発電電力)の値を、電力制御装置100Aに送信する。
次に、本実施形態の動作について説明する。
図7は、電力制御装置100Aの動作を説明するためのフローチャートである。
電力の安定供給を実現するためには、電力供給量(発電量)が電力需要量を上回っている時間帯において電力供給量(発電量)を抑制する必要がある。
再エネ電源200Aが接続された電力系統500において再エネ電源200Aによる電力供給量を抑制する場合、優先給電規定に則って、まず再エネ電源以外の電力供給量を抑制する必要がある。
ここで、優先給電規定に則り火力発電等の出力抑制や揚水式発電のポンプくみ上げ(揚水運転)による需要創出を行った後でも、翌日の10時30分から15時30分の時間帯で再エネ電源の発電に起因する余剰電力の発生が予測されたとする。
このとき電力会社は、全ての再エネ電源200Aで出力抑制(発電抑制)が必要であると判断し、前日の段階で翌日の10時30分から15時30分の時間帯に全ての再エネ電源において出力抑制を実施することを決定する。なお、優先給電規定に則り火力発電や揚水式発電のポンプくみ上げを制御することで、再エネ電源に起因する余剰電力が解消される場合には、翌日の再エネ電源での出力抑制の実施は見送られる。
電力会社は、出力抑制の実施を決定すると、翌日の10時30分から15時30分までの時間帯(以下「抑制時間帯」と称する)における、各再エネ電源200A(n)の発電電力の許容上限値(定格のX%)を計算する。ここで、各再エネ電源200A(n)の発電電力が、各再エネ電源200A(n)の許容上限値(定格のX%)以下になっていれば、再エネ電源に起因する余剰電力が解消されることになる。
電力会社装置400は、抑制時間帯における各再エネ電源200A(n)の発電電力の許容上限値(定格のX%)を、電力制御装置100Aに送信する。
電力制御装置100Aでは、通信部103Aは、抑制時間帯における各再エネ電源200A(n)の発電電力の許容上限値(定格のX%)を受信する(ステップS701)。通信部103Aは、抑制時間帯における各再エネ電源200A(n)の許容上限値(定格のX%)を、制御部101Aに出力する。
また、通信部103Aは、抑制時間帯における各再エネ電源200A(n)の予測発電電力値(定格のY%)を、発電電力予測装置から受信する(ステップS702)。通信部103Aは、抑制時間帯における各再エネ電源200A(n)の予測発電電力値を、制御部101Aに出力する。
制御部101Aは、抑制時間帯での各再エネ電源200A(n)の許容上限値および予測発電電力値を受け付けると、再エネ電源200A(n)ごとに、抑制時間帯の各時刻について、予測発電電力値から許容上限値を差し引いて吸収電力を決定する。そして、制御部101Aは、抑制時間帯における時刻ごとに各再エネ電源200A(n)の吸収電力を合計して時刻(ある時刻を中心とする30分間や1時間)ごとの総余剰電力Ztotalを決定する(ステップS703)。
制御部101Aは、抑制時間帯における各時刻の総余剰電力Ztotalを、例えば以下の式に基づいて算出する。以下の式では、抑制時間帯の時刻ごとに、該時刻のYnおよびXnが用いられる。
総余剰電力Ztotal=(Σ再エネ電源200A(n)の定格×(Yn−Xn)/100)
ここで、再エネ電源200A(n)の定格×(Yn−Xn)/100で算出される電力は、抑制時間帯における各時刻の再エネ電源200A(n)の吸収電力である。
続いて、制御部101Aは、抑制時間帯の各時刻の総余剰電力Ztotalを、抑制時間帯の各時刻において蓄電池301とHP給湯器302と蓄電池303で吸収するための蓄電池301とHP給湯器302と蓄電池303の運転計画を作成する(ステップS704)。
続いて、制御部101Aは、通信部103Aを通じて、蓄電池301とHP給湯器302と蓄電池303に、それぞれの運転計画を送信する(ステップS705)。蓄電池301とHP給湯器302と蓄電池303は、それぞれ、運転計画を受信すると、運転計画を保持する。
続いて、制御部101Aは、各再エネ電源200A(n)に、予測発電電力値(定格のV%)と抑制時間帯(この場合、翌日の10時30分〜15時30分)を示す抑制時間帯情報を送信する(ステップS706)。各再エネ電源200A(n)では、制御部202Aは、予測発電電力値(定格のV%)と抑制時間帯情報を受信すると、予測発電電力値(定格のV%)と抑制時間帯情報を保持する。
ここまでの処理が、発電抑制の前日に行われる。
図8は、発電抑制の当日の蓄電池301、HP給湯器302、蓄電池303の動作を説明するためのフローチャートである。
蓄電池301、HP給湯器302、蓄電池303は、それぞれ、電力制御装置100Aから受信した運転計画に従って動作して抑制時間帯の各時刻における総余剰電力Ztotalを吸収(充電または電力消費)する(ステップS801)。
図9は、発電抑制の当日の再エネ電源200A(n)の動作を説明するためのフローチャートである。
再エネ電源200A(n)では、制御部202Aは、抑制時間帯になると、パワーコンディショナー203Aから電力系統500に供給される電力を、その時刻の予測発電電力値以下に抑制する(ステップS901)。ここで、パワーコンディショナー203Aから電力系統500に供給される電力は、再エネ電源200A(n)の実際の発電電力Cとなる。但し、この電力は、予測発電電力値を超えることはないよう抑制された電力である。
次に、本実施形態の効果について説明する。
本実施形態では、第1実施形態と同様の効果に加えて、以下の効果も奏する。
制御部101Aは、再エネ電源200A(n)に予測発電電力値を送信することで、再エネ電源200A(n)の実際の発電電力を予測発電電力値以下にする発電抑制処理を再エネ電源200A(n)に実行させる。このため、予測発電電力値が実際の発電電力よりも小さい場合でも、再エネ電源200A(n)から電力系統500に供給される電力を、予測発電電力以下にすることが可能になる。その結果、蓄電池等の電気機器で吸収できない余剰電力を含め、確実に余剰電力の発生を防ぐことができる。
図10は、予測発電電力値Aが時間の経過と共に変化する場合での本実施形態の動作例を示した図である。
図10に示したように、発電要素201Aの発電電力Hが、抑制時間帯Tにおいて予測発電電力値Aを超えている場合でも、パワーコンディショナー203Aから電力系統500に供給される電力(実際の発電電力C)は、予測発電電力A以下となる。
このため、蓄電池301、303およびHP給湯器302が、各再エネ電源200A(n)の実際の発電電力Cのうち吸収電力Dを充電することで、各再エネ電源200A(n)の実効的な(つまり充電等で吸収されない分の)逆潮流電力Eを許容上限値B以下にできる。
また、再エネ電源200A(n)の実際の発電電力Cのうち電力系統500に供給される電力(逆潮流電力E、電力会社への売電分となる量)は、実際の発電電力Cから吸収電力Dを差し引くことで簡単に求めることができる。
このように、抑制時間帯Tでの予測発電電力値Aが時間の経過と共に変化する場合でも、再エネ電源200A(n)から電力系統500への実効的な逆潮流電力Eが許容上限値Bを超えることを防ぎ、逆潮流電力そのものも精度よく把握することが可能となる。また、蓄電池やHP給湯器で吸収(充電や電力消費)する電力を再エネ電源の発電電力の変動に合わせて制御するという、非常に困難なリアルタイムな高精度制御を行うことなく、発電抑制が必要な余剰電力を容易に吸収させることが可能になる。
図11は、抑制時間帯Tでの予測発電電力値Aが一定値である場合の本実施形態の動作例を示した図である。
図11に示したように、発電要素201Aの発電電力Hが、予測発電電力値Aを超えている場合でも、発電抑制処理により、パワーコンディショナー203Aから電力系統500に供給される電力(実際の発電電力C)は、予測発電電力A以下となる。
このため、抑制時間帯Tでの予測発電電力値Aが時間の経過と共に変化する場合と同様に、各再エネ電源200A(n)の逆潮流電力Eは、許容上限値B以下となる。
また、再エネ電源200A(n)の発電電力Cのうち電力系統500に供給される電力(実効的な逆潮流電力E)は、実際の発電電力Cから吸収電力Dを差し引くことで簡単に求めることができる。
このように、抑制時間帯Tでの予測発電電力値Aが一定である場合でも、再エネ電源200A(n)から電力系統500への逆潮流電力Eが許容上限値Bを超えることを防ぎ、逆潮流電力そのものも精度よく把握することが可能となる。また、蓄電池やHP給湯器で吸収(充電または電力消費)する電力を再エネ電源の発電電力の変動に合わせて制御するという、非常に困難なリアルタイムな高精度制御を行うことなく、発電制御が必要な余剰電力を容易に吸収させることが可能になる。
本実施形態において、抑制時間帯Tでの予測発電電力値Aとしては、例えば、抑制時間帯Tにおける再エネ電源200A(n)の発電電力の予測値の最大値が用いられる。この場合、パワーコンディショナー203Aが発電要素201の発電電力より小さい電力を電力系統500に供給する状況(以下「パワコン抑制状況」と称する)の発生を低減可能になる。パワコン抑制状況では、発電要素201の余剰電力が、蓄電池301やHP給湯器302に吸収されず、有効に利用されない。このため、抑制時間帯Tでの予測発電電力値Aとして、抑制時間帯Tにおける再エネ電源200A(n)の発電電力の予測値の最大値が用いられれば、発電要素201の余剰電力の有効活用を図ることが可能になる。
本実施形態において、再エネ電源200Aの代わりに、図5Bや図5Dに示した再エネ電源200が用いられてもよい。この場合、電力制御装置100Aは、各再エネ電源200に、対応する吸収電力値を送信する。この際、需要家の蓄電池301やHP給湯器302は、図5Bに示したように、電力系統500を介して再エネ電源200と接続されてもよいし、図5Dに示したように、電力系統500を介さずにローカル配線等を介して接続されてもよい。ここで、再エネ電源200やHP給湯器302に吸収電力を吸収させる手法は、図5Bや図5Dを用いて説明した手法が用いられる。
なお、図5Bや図5Dに示した供給部206は、制御部202Aのように、自己が含まれる再エネ電源200の予測発電電力値を受信し、該再エネ電源200の発電電力を、該再エネ電源200の予測発電電力値以下に抑制してもよい。この場合、逆潮流により売電する電力量が、許容上限値を超えることを防止できる。
次に、上述した実施形態の変形例について説明する。
許容上限値は、一定値に限らず、時間の経過に伴って変動してもよい。
図12は、許容上限値が変動する一例を示した図である。再エネ電源の電力を有効に活用するには、許容上限値は、きめ細かく、例えば、30分や1時間ごとに更新されることが好ましい。
第1決定部101や制御部101Aは、抑制時間帯になる前に、吸収電力を充電する蓄電池をあらかじめ放電させておくことで、蓄電池の空き容量を増やしておくことが望ましい。
また、HP給湯器では、抑制時間帯になる前に湯を消費し、抑制時間帯に湯沸かしができるようにしておくことが望ましい。
再エネ電源のそばに、蓄電池やHP給湯器が設けられてもよい。例えば、蓄電池やHP給湯器が再エネ電源に併設されてもよい。
再エネ電源の予測発電電力(定格のV%)を導出する手法としては、発電電力予測装置が導出する手法に限らず、例えば、以下の手法が用いられてもよい。
(1)クラウド側(例えば、電力制御装置100A)が、再エネ電源全体の総発電電力の予測を、再エネ電源の定格の総量の%(百分率)で導出し、その導出結果(以下「%予測値」と称する)を、そのまま各再エネ電源の定格のV%として用いる。
(2)クラウド側(電力制御装置100A)が、各再エネ電源の予測発電電力(定格のV%)を導出する。
(3)各再エネ電源が、自己の予測発電電力(定格のV%)を導出し、その導出結果をクラウド側(電力制御装置100A)へ送信する。
再エネ電源の許容上限値(定格のX%)の設定手法としては、例えば、以下の手法が用いられてもよい。
(1)全ての再エネ電源に対して、一律の許容上限値(定格のX%)を設定する。
(2)再エネ電源の所在地の天候等を考慮して、再エネ電源に対して個別の許容上限値(定格のX%)を設定する。例えば、再エネ電源として太陽光発電装置を用いる場合、その所在地の日照時間が長い再エネ電源を優先的に抑制する最適化処理を行って、再エネ電源に対して個別の許容上限値(定格のX%)を設定する。
(3)全ての再エネ電源の許容上限値を「0」(完全にオフ)にする。
抑制時間帯は、翌日の10時30分から15時30分までの時間帯に限らず適宜変更可能である。
上記実施形態において、電力制御装置100、100Aや、制御部202、202Aや、受信部205と供給部206との組合せは、それぞれ、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能な記録媒体に記録されたプログラムを読込み実行して、電力制御装置100、100Aや、制御部202、202Aや、受信部205と供給部206との組合せのいずれか有する機能を実行する。記録媒体は、例えば、CD-ROM(Compact Disk Read Only Memory)である。記録媒体は、CD-ROMに限らず適宜変更可能である。
以上説明した各実施形態において、図示した構成は単なる一例であって、本発明はその構成に限定されるものではない。
1 電力システム
100、100A 電力制御装置
101 第1決定部
101A 制御部
102 第2決定部
102A 決定部
103A 通信部
200、200A 再エネ電源
201、204A 発電部
201A 発電要素
202、202A 制御部
203A パワーコンディショナー
205 受信部
206 供給部
301、303 蓄電池
302 HP給湯器
400 電力会社装置
500 電力系統

Claims (7)

  1. 再生可能エネルギーを用いて発電する発電装置の所定の出力抑制時間帯における予測発電電力値と、前記発電装置の発電電力の許容上限値とに基づいて、電力系統を介して前記発電装置と接続され、前記発電装置と異なる場所に設置された電気機器に吸収させる吸収電力を決定する第1決定部と、
    前記吸収電力に関する情報を含む運転情報を前記電気機器へ送信することで、前記出力抑制時間帯における前記電気機器の消費電力を前記吸収電力にする電力吸収処理を前記電気機器に実行させ、
    さらに前記予測発電電力値及び発電抑制処理に関する情報を前記発電装置に送信することで、前記出力抑制時間帯における前記発電装置の実際の発電電力を前記予測発電電力値以下にする前記発電抑制処理を前記発電装置に実行させる通信部と、を有する電力制御装置。
  2. 前記第1決定部は、
    前記出力抑制時間帯における、複数の前記発電装置の予測発電電力値と複数の前記発電装置の発電電力の許容上限値とに基づいて複数の前記電気機器に吸収させるべき総余剰電力を決定し、
    複数の前記電気機器が吸収する電力の総和と総余剰電力とに基づいて複数の記電気機器の吸収電力を決定し、複数の電気機器の吸収電力の総和が前記総吸収電力となるように前記電気機器毎の吸収電力を決定し、
    前記通信部は、
    前記吸収電力に関する情報を含む運転情報を複数の前記電気機器へ送信する、請求項1に記載の電力制御装置。
  3. 前記予測発電電力値及び前記発電電力の許容上限値のうち、少なくとも一つが外部装置から受信した情報である、請求項1または2に記載の電力制御装置。
  4. 前記出力抑制時間帯における前記予測発電電力値及び前記許容上限値は、前記出力抑制時間帯よりも短い時間間隔で更新される、請求項1から3のいずれか1項に記載の電力制御装置。
  5. 前記運転情報の送信先である前記電気機器は、蓄電池、HP給湯器または家庭用電気機器である、請求項1から4のいずれか1項に記載の電力制御装置。
  6. 前記発電抑制処理に関する情報に前記出力抑制時間帯を示す抑制時間帯情報を含む、請求項1から5のいずれか1項に記載の電力制御装置。
  7. 前記発電装置は、太陽光発電装置または風力発電装置である請求項1から6のいずれか1項に記載の電力制御装置。
JP2018203986A 2018-10-30 2018-10-30 電力制御装置 Active JP6624266B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018203986A JP6624266B2 (ja) 2018-10-30 2018-10-30 電力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018203986A JP6624266B2 (ja) 2018-10-30 2018-10-30 電力制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017544087A Division JP6428948B2 (ja) 2015-10-05 2015-10-05 電力制御装置、電力制御方法およびプログラム

Publications (2)

Publication Number Publication Date
JP2019033669A JP2019033669A (ja) 2019-02-28
JP6624266B2 true JP6624266B2 (ja) 2019-12-25

Family

ID=65524530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018203986A Active JP6624266B2 (ja) 2018-10-30 2018-10-30 電力制御装置

Country Status (1)

Country Link
JP (1) JP6624266B2 (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229205A (ja) * 2010-04-15 2011-11-10 Japan Wind Development Co Ltd 蓄電池併設型自然エネルギー発電システムに用いる電力管理制御システム
JP5681448B2 (ja) * 2010-10-29 2015-03-11 株式会社東芝 家庭用エネルギー管理システム
JP5580183B2 (ja) * 2010-12-13 2014-08-27 パナソニック株式会社 電力制御装置及びそれを用いた電力制御システム
US9423849B2 (en) * 2011-01-31 2016-08-23 Nec Corporation Electric power management system and electric power management method

Also Published As

Publication number Publication date
JP2019033669A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP5101675B2 (ja) 需給バランス制御装置
JP6216377B2 (ja) 電力調整装置、電力調整方法、電力調整システム、蓄電装置、サーバ、プログラム
Prodan et al. A model predictive control framework for reliable microgrid energy management
JP6564264B2 (ja) 電力管理システム及び電力管理方法
JP4064334B2 (ja) エネルギーシステムの制御装置および制御方法
JP5639540B2 (ja) 蓄電池需給計画作成装置および蓄電池需給計画作成方法
US9543775B2 (en) Battery controller, management system, battery control method, battery control program, and storage medium
WO2015064641A1 (ja) 電力制御システム、電力制御方法および記録媒体
KR101712944B1 (ko) 에너지 저장 장치의 충방전 스케줄링 장치 및 방법
JP2015080359A (ja) ウィンドファームの制御方法および制御装置
JPWO2019116960A1 (ja) 電力管理システム
JP2017108560A (ja) 電力融通システムの制御装置および制御プログラム
JP6042775B2 (ja) 制御装置、プログラム
JP2022050126A (ja) 分散型エネルギーリソース管理装置、分散型エネルギーリソース管理方法、および、分散型エネルギーリソース管理プログラム
JP6406391B2 (ja) 発電制御装置および制御方法
JP2016167913A (ja) 電力供給システム及び電力供給方法
JP2015149839A (ja) エネルギーマネジメントシステム
JP6428948B2 (ja) 電力制御装置、電力制御方法およびプログラム
JP2020058101A (ja) 電力供給システム
JP6702408B2 (ja) 電力制御装置、電力制御システム、電力制御方法、及び、プログラム
JP6624266B2 (ja) 電力制御装置
WO2016185671A1 (ja) 蓄電池制御装置
JP6159812B2 (ja) 分散電源管理システム
JP2018174623A (ja) 電力管理装置、申請発電量算出方法
WO2017163934A1 (ja) 電力制御システム、制御装置、制御方法およびコンピュータプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6624266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150