JP6617033B2 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
JP6617033B2
JP6617033B2 JP2016005997A JP2016005997A JP6617033B2 JP 6617033 B2 JP6617033 B2 JP 6617033B2 JP 2016005997 A JP2016005997 A JP 2016005997A JP 2016005997 A JP2016005997 A JP 2016005997A JP 6617033 B2 JP6617033 B2 JP 6617033B2
Authority
JP
Japan
Prior art keywords
measurement
unit
measurement surface
reflected
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016005997A
Other languages
English (en)
Other versions
JP2017125795A (ja
Inventor
泰幸 郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Integrex Co Ltd
Original Assignee
Nagase Integrex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Integrex Co Ltd filed Critical Nagase Integrex Co Ltd
Priority to JP2016005997A priority Critical patent/JP6617033B2/ja
Publication of JP2017125795A publication Critical patent/JP2017125795A/ja
Application granted granted Critical
Publication of JP6617033B2 publication Critical patent/JP6617033B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、測定装置に関し、被測定物の真直形状や面形状を高精度に測定できる測定装置に関する。
長尺物などの被測定物の面形状や断面直線形状を精度良く測定をするために、基準となる直定規との比較測定を実施することがある。あるいは、光軸の直線性を基準にして、走査方向に被測定面と2点で当接する台上の鏡の傾斜をオートコリメータで測定して、直線形状を算出する方法も用いられている。また、基準が使えないときには、多点法プローブを用いた多点法により、運動誤差と形状誤差を分離する方法がとられる。更には、2点で当接する水準器あるいはタリベルなどで直線形状を求める方法もある。
真直形状や平面形状の測定対象が大型化するのに伴い、基準定規が長尺化し、その作成が困難になってきている。また、空中での光線の揺らぎの影響で光軸の基準も十分な精度を保てない場合もある。このような背景から、多点法を用いた測定の必要性が高まっているが、多点法ではゼロ点調整誤差による放物線誤差の問題があり、しかも長尺になり逐次数が増えるほど放物線誤差が大きくなるという問題がある。一方で、形状測定の効率化や自動化の要請もある。
特許文献1には、例えばステージの傾斜を、形状測定における移動開始点と終了点の静止時に計測し、多点法プローブで測定評価した真直形状における両端の傾斜の差に含まれる、多点法プローブのゼロ点調整誤差による放物線誤差の影響を抽出できることを利用して、目的の形状測定データそのものから多点法プローブのゼロ点の校正が出来る、いわゆるその場校正を実現できる技術が開示されている。
特開2009−281768号公報
ところで、被測定物において、交差する方向に延在する2つの測定面を精度良く測定したい場合、多点法プローブの向きを各測定面に対して各々適切に設定する必要があるので、準備に時間がかかるという問題がある。
本発明は、かかる問題点に鑑み、簡素な構成でありながら、交差する方向に延在する2つの測定面を精度良く測定できる測定装置を提供することを目的とする。
請求項1に記載の測定装置は、互いに交差する方向に延在する2つの測定面を備えた被測定物の形状を、前記測定面に対して相対的に走査変位することにより測定する測定装置において、
前記測定面に向かって光束を投射する3つの発光部と、前記測定面から反射した光束をそれぞれ受光する3つの受光部とを備えた測定部と、
反射部と、
前記反射部を、前記測定部に対して反射位置と非反射位置との間で、前記発光部から出射され前記反射部に入射する光束と、前記反射部から反射される光束とを含む面に対して直交する方向に平行移動させる駆動機構と、を有し、
前記測定部を前記測定面に対して相対的に走査変位させることで、逐次三点法により前記測定面の形状を測定することができ、
前記反射部が反射位置に変位したときは、前記発光部から出射された光束が前記反射部で反射して一方の前記測定面に向かって投射され、前記一方の測定面で反射した光束が、前記反射部で反射して前記受光部に受光されるようになっており、
前記反射部が非反射位置に変位したときは、前記発光部から出射された光束が前記反射部で反射することなく他方の前記測定面に向かって投射され、前記他方の測定面で反射した光束が、前記反射部で反射することなく前記受光部に受光されるようになっていることを特徴とする。
本発明によれば、前記反射部が反射位置に変位したときは、前記発光部から出射された光束が前記反射部で反射して一方の前記測定面に向かって投射され、前記一方の測定面で反射した光束が、前記反射部で反射して前記受光部に受光されるようになっているので、逐次三点法により前記一方の測定面の形状を測定することができ、また前記反射部が非反射位置に変位したときは、前記発光部から出射された光束が前記反射部で反射することなく他方の前記測定面に向かって投射され、前記他方の測定面で反射した光束が、前記反射部で反射することなく前記受光部に受光されるようになっているので、逐次三点法により前記他方の測定面の形状を測定することができ、これにより前記測定部を1度設定すれば、前記反射部の位置を切り替えつつ同一方向に走査変位させるのみで、2つの前記測定面を精度良く測定できるのである。
請求項2に記載の測定装置は、請求項1に記載の発明において、前記駆動機構は、電源と無線通信部とアクチュエータとを搭載しており、前記無線通信部が無線による信号を受信したときは、前記電源から前記アクチュエータに給電し、給電された前記アクチュエータが前記ミラーを相対変位させるようになっていることを特徴とする。
これにより、前記駆動機構に対して給電ケーブル等を連結する必要がなく、例えば搬送機構などを用いて前記測定装置を操作変位させる際に取り回し性が向上する。
請求項3に記載の測定装置は、請求項1又は2に記載の発明において、前記測定面に対して前記測定部を相対的に走査変位させる際に、前記測定部と前記測定面との間隔を所定値に維持しつつガイドするガイド部材を設けたことを特徴とする。
これにより、例えば直進性が比較的低い搬送装置を用いて、前記測定面に対して前記測定部を相対的に走査変位させる際にも、前記測定部と前記測定面との間隔を所定値に維持することができる。
請求項4に記載の測定装置は、請求項3に記載の発明において、前記ガイド部材は、前記一方の測定面又は前記他方の測定面を転動するローラを有することを特徴とする。
前記ローラを、前記一方の測定面又は前記他方の測定面を転動させることで、前記測定面に対して前記測定部をスムーズに走査変位させることができる。但し、ローラに限らず、滑りパッドなどを前記測定面に当接させるようにしても良い。
請求項5に記載の測定装置は、請求項1〜4のいずれかに記載の発明において、前記測定装置は搬送機構に取り付けられており、前記搬送機構は前記測定面に対して前記測定部を相対的に走査変位させることを特徴とする。
例えば前記搬送機構としてロボットなどにより前記測定装置を把持しつつ、前記測定面に対して前記測定部を相対的に走査変位させることで、前記被対象物の測定の効率化や自動化を図ることができる。
本発明によれば、簡素な構成でありながら、交差する方向に延在する2つの測定面を精度良く測定できる測定装置を提供することができる。
本実施の形態にかかる測定装置により測定可能な被測定物OBJの斜視図である。 被測定物OBJの上面図である。 本実施の形態にかかる測定装置を、ロボットにより把持した状態で示す図である。 本実施の形態にかかる測定装置100の斜視図であり、正面側から見た図である。 本実施の形態にかかる測定装置100の斜視図であり、背面側から見た図である。 本実施の形態にかかる測定装置100の正面図である。 図6の構成をVII-VII線で切断して矢印方向に見た図である。 本実施の形態にかかる測定装置のミラー駆動機構200の斜視図である。 (a)はミラーの非反射位置を示し、(b)はミラーの反射位置を示す図である。
以下、図面を参照して本発明の実施の形態を説明する。図1は、本実施の形態にかかる測定装置により測定可能な被測定物OBJの斜視図である。図2は、被測定物OBJの上面図である。図に示すように、被測定物OBJの両側には、鉛直方向上方及び前方に突出してなる一対の板状部PTが設けられている。各板状部PTの前縁の一部は、直線ブレード状に突出したブレード部ULとなっており、ブレード部ULの内側を向いた面PL1と、面PL1と直交して交差する板状部PTの面PL2が、それぞれ測定面となっている。
図3は、本実施の形態にかかる測定装置を、ロボットにより把持した状態で示す図である。搬送機構であるロボットRBTは、定盤に設置された基台BSに対して回転可能な回転テーブルTBを備えており、更に回転テーブルTBに対して揺動可能な揺動アームPAが設けられている。揺動アームPAの先端には、伸縮アームEAが揺動可能且つ伸縮可能に連結され、伸縮アームEAの先端には、ハンドHDが揺動可能に連結されている。ハンドHDは、チャック機構により測定装置100を把持可能である。ロボットRBTの構成は以上に限られず、任意の形態が可能である。
ロボットRBTの各部は、制御装置CONTにより数値制御され、不図示のモータ等を介して、所定の精度でハンドHDを任意の3次元位置に置くことが出来、従って被測定物OBJの測定面に沿って図1における鉛直方向に変位させることもできる。尚,図示していないが、天井面などを形状測定するような場合、ロボットRBTにより測定装置100を点線で示す姿勢で把持するようにし、更に水平方向に移動させたりすることも出来る。このように、ロボットRBTで把持することにより、測定装置100を被測定物OBJの測定面に合わせて、任意の方向に変位させることができるようになっている。
図4,5は、本実施の形態にかかる測定装置100の斜視図であり、図6は、本実施の形態にかかる測定装置100の正面図である。測定装置100において、板状のベースプレート101の背面に、ロボットRBTのハンドHDが把持可能なブラケット102を取り付けている。図示していないが、ブラケット102は、ハンドHDによりチャック可能な凹凸部を有している。
更に、ベースプレート101の背面におけるブラケット102の近傍に、コントローラ104が取り付けられている。コントローラ104は、図8を参照して後述するように、電池、無線通信部、CPUを内蔵している。
ベースプレート101の正面側には、これに接合されたサブプレート103を介して、測定部である3つの光センサ105A,105B,105Cが等間隔に並べられて取り付けられている。サブプレート103は、インバー等の熱膨張係数が低い素材から形成されており、温度変化による光センサ105A,105B,105Cの相対位置変化などの影響を極力抑制して安定した保持に貢献する。直方体状の光センサ105A,105B,105Cは、下方に略V字状の切欠部105aを有しており、図6に示すように、その一方の側面に発光部105bを設け、他方の側面に受光部105cを設けている。外部から光センサ105A,105B,105Cへの給電及び外部への出力転送は、それぞれ連結されたケーブル105dを介して行われる。
隣接する光センサ105A,105B,105Cの間において、ベースプレート101に一端を接合された略L字状のリブ106が、サブプレート103との干渉を回避しつつ上下方向に延在している。
図7は、図6の構成をVII-VII線で切断して矢印方向に見た図であり、被測定物OBJと共に示している。リブ106の自由端である下端には、軸線が斜めに延在するようにして固定軸106aが形成されている。固定軸106aの周囲には、軸受107を介してローラ108が組み付けられており、固定軸106aに対して回転自在となっている。ローラ108の材質は金属又は樹脂製である。ローラ108を樹脂製とする場合、例えばロックウェル硬さで80以上であるポリプラスチック株式会社製のジュラコン(登録商標)などを用いることが好ましい。
図7に示すように、走査変位の際に、ガイド部材としてのローラ108を測定面である面PL1及び面PL2の双方に当接させて転動させることで、ベースプレート101すなわち光センサ105A,105B,105Cと、面PL1及び面PL2との距離を一定に維持し、これによりロボットRBTのハンドHDの直進精度が比較的低い場合でも、後述する逐次三点法による測定を可能としている。
図8は、本実施の形態にかかる測定装置のミラー駆動機構200の斜視図であるが、寸法や形状等は一部実際と異なる。ミラー駆動機構200において、細長い保持体201は、長手方向に沿って3つのミラー202A,202B,202Cを等間隔で取り付けている。保持体201は、インバー等の熱膨張係数が低い素材から形成されており、温度変化によるミラー202A,202B,202Cの相対位置変化などの影響を極力抑制して安定した保持に貢献する。反射部であるミラー202A,202B,202Cは、保持体201と共に、後述するように光センサ105A,105B,105Cの下方で変位可能となっている。
保持体201の中央付近には、スライダ203が取り付けられている。スライダ203は、サブプレート103(図3,4)に固定されたレール204に沿って移動可能となっている。スライダ203の上部中央には、連結部203aが形成されている。連結部203aの位置は、ミラー、保持体201、スライダ203の組立体における合成重心上、又はその近傍(例えば保持体203の全長に対し合成重心から±10%以内の位置)に設けられると、後述するアクチュエータ206の動作時における保持体201のピッチング,すなわちミラー202A,202B,202Cの傾き等を抑制できるので好ましい。
連結部203aに近傍に、係止機構205が設けられている。係止機構205は、スライダ203に固定されたチューブ205aと、チューブ205a内に配置されたコイルバネ205bと、コイルバネ205bに当接すると共にチューブ205aから一部突出するように配置された玉205cとを有する。玉205cは、コイルバネ205bにより図で上方に付勢されている。玉205cに対向するようにして、サブプレート103の一部には、2つの座繰り孔103a、103bが、保持体201の長手方向に隔置して形成されている。
更にサブプレート103には、アクチュエータ206が取り付けられている。アクチュエータ206は、例えば電磁力で軸206aを伸縮可能となっており、軸206aの先端は連結部203aに係合している。アクチュエータ206は、コントローラ104に接続されている。具体的には、コントローラ104は、無線通信部104aと、電源としての電池104bと、CPU104cとを有する。無線通信部104aは、外部の指示装置(不図示)より無線で信号を受信してCPU104cに入力する。CPU104cは、無線通信部104aからの信号を入力することにより、電池104bからの電力をアクチュエータ206に給電するようになっている。このように、電池104bを含むコントローラ104を測定装置100に搭載することで、外部からの配線が不要になり、測定装置100をロボットRBTで把持した際の取り回し性が向上する。
図8は、ミラー駆動機構の動作を説明するための図である。ここで、ミラー駆動機構200の動作について説明する。まず、外部の指示装置(不図示)より無線通信部104aに縮長信号が送信されると、CPU104cは、電池104bからの電力をアクチュエータ206に給電することで、軸206aを縮長させる。すると、連結部203aを介してスライダ203が,保持体201と共にアクチュエータ206に接近する方向へと変位する。この直前で、玉205cが座繰り孔103bに入り込んでいた状態でも、アクチュエータ206の駆動力により、コイルバネ205bの付勢力に抗して玉205cが座繰り孔103bからチューブ205a内に引き戻されるので、軸206aの縮張が阻害されることはない。
更に、係止機構205が座繰り孔103a、103bの間にある間は、玉205cがサブプレート103の下面に当接しつつ、チューブ205a内に潜り込んだ状態になることで、スライダ203の変位を阻害しないようになっている。一方、軸206aの長さが所定長になるまで縮むと、CPU104cにより電池104bからの給電が停止されるが、このとき玉205cが座繰り孔103aに入り込み、コイルバネ205bの付勢力で座繰り孔103aに向かって押圧される。これにより、電池104bからの給電が停止された後も、スライダ203の位置が保持されるようになっている。この時のミラーの位置を、図8,9に実線で示す。
このとき、各ミラー202A,202B,202Cは、図6に実線で示すように光センサ105A,105B,105Cの切欠部105a直下よりずれた位置(非反射位置)にあるので、光センサ105A,105B,105Cの発光部105bから出射された光束BMを反射せず、かかる光束BMは図9(a)に示すように下方に向かうこととなる。よって光センサ105A,105B,105Cの切欠部105aが、測定すべき面PL2に対向しているときは、光束BMは面PL2で反射してミラー202A,202B,202Cで反射することなく、同じ光センサ105A,105B,105Cの受光部105cに直接入射し、その入射位置に基づいて光センサから面PL2の入射点の位置までの距離(後述する出力m1(x)、m2(x)、m3(x)に相当)を求めることができる。この値を用いて、逐次三点法により面PL2の形状測定を行える。
これに対し、外部の指示装置(不図示)より無線通信部104aに伸長信号が送信されると、CPU104cは、電池104bからの逆特性の電力をアクチュエータ206に給電することで、軸206aを伸長させる。すると、連結部203aを介してスライダ203が,保持体201と共にアクチュエータ206から離間する方向へと変位する。このとき、アクチュエータ206の駆動力により、コイルバネ205bの付勢力に抗して玉205cが座繰り孔103bからチューブ205a内に引き戻されるので、軸206aの伸張が阻害されることはない。
軸206aの長さが所定長になるまで伸びると、電池104bからの給電が停止されるが、かかる場合も玉205cが座繰り孔103bに入り込み、コイルバネ205bの付勢力で座繰り孔103bに向かって押圧される。これにより、電池104bからの給電が停止された後も、スライダ203の位置が保持されるようになっている。この時のミラーの位置を、図8,9に点線で示す。
このとき、各ミラー202A,202B,202Cは、図6に点線で示すように光センサ105A,105B,105Cの切欠部105a直下の位置(反射位置)にくるので、光センサ105A,105B,105Cの発光部105bから出射された光束BMを反射し、反射された光束BMは図9(b)に示すように側方に向かい、面PL1に入射することとなる。更に光束BMは面PL1で反射して、再度ミラー202A,202B,202Cで反射され、同じ光センサ105A,105B,105Cの受光部105cに入射し、その入射位置に基づいて光センサから面PL1の入射点の位置までの距離(後述する出力m1(x)、m2(x)、m3(x)に相当)を求めることができる。この値を用いて、逐次三点法により面PL1の形状測定を行える。
次に、逐次三点法により、本実施の形態にかかる測定装置100を用いた被測定物の測定方法について説明する。ここでは、ロボットRBTにより把持した測定装置100を被測定物OBJに対して相対変位させながら、面PL1又はPL2を測定する。まず、アクチュエータ206の軸を縮長させることで、ミラー202A,202B,202Cを非反射位置に置き、測定装置100を面PL2に沿って走査変位させながら、面PL2を測定するものとし、図6で面PL2に直交する方向をz方向、測定装置100を走査変位する方向をx方向(被測定物を示す図1における鉛直方向)とする。
測定装置100を走査変位する際に微小な変形や傾きが生じると、測定装置100全体がz方向に移動したり傾斜したりすることによる運動誤差成分が生じる。ここで、面PL2の表面形状をf(x)、測定装置100のZ方向への偏心誤差をez(x)とし、走査方向への傾斜誤差をEp(x)とし、各光センサ105A,105B,105Cの出力m1(x)、m2(x)、m3(x)は、以下の式で表せる。
1(x)=f(x−d)+ez(x)−d・Ep(x) (1)
2(x)=f(x)+ez(x) (2)
3(x)=f(x+d)+ez(x)+d・Ep(x) (3)
更に隣り合う光センサ105A,105B,105Cの出力から偏心誤差成分を消去して、次式の差動出力を得る。
μ1(x)=m3(x)−m2(x)=f(x+d)−f(x)+d・Ep(x) (4)
μ2(x)=m2(x)−m1(x)=f(x)−f(x−d)+d・Ep(x) (5)
更に、(4),(5)式の差をΔμ(x)とすると、傾斜誤差成分を除去した以下の式が得られる。
Δμ(x)=μ1(x)−μ2(x)=f(x+d)−2f(x)+f(x−d) (6)
一方、式(1)〜(3)より、f(x)の二階差分を求めると、以下の式(7)となる。
Δ2f(x)
={f(x+d)−2・f(x)+f(x−d)}/d2
=[{f(x+d)−f(x)}−{f(x)−f(x−d)}]/d2
={m3(x)−2・m2(x)−m1(x)}/d2 (7)
よって、Δ2f(x)は、光センサ105A,105B,105Cを取り付けたサブプレート103の並進誤差ez(x)、傾斜誤差Ep(x)の影響を受けることなく、光センサの出力m1(x),m2(x),m3(x)及び間隔dで表されることとなる。
つまり、測定値m1(x)〜m3(x)等により得られたΔ2f(x)を二階積分することにより、面PL2の表面形状f(x)を知ることができる。なお、f(x)の一次以下の項は、面PL2の測定部分の平均的な距離、傾きを表すことになるので、形状測定においては無視することができる。
しかし、実際には、サブプレート103に支持された各光センサ105A,105B,105Cには、測定時の基準点のずれ、いわゆるゼロ点ずれが存在する。例えば、各光センサ105A,105B,105Cのz方向の基準点からのずれを、それぞれ、k1,k2,k3とおいて、式(1)〜(3)を再計算すると、以下の式(1)′〜(3)′となる。
1(x)=f(x−d)+ez(x)−d・Ep(x)+k1 (1)′
2(x)=f(x)+ez(x)+k2 (2)′
3(x)=f(x+d)+ez(x)+d・Ep(x)+k3 (3)′
更に、f(x)の二階差分を取ると、以下の式(7)′となる。
Δ2f(x)
={f(x+d)−2・f(x)+f(x−d)}/d2
={m3(x)−2・m2(x)−m1(x)}/d2−{k3−2・k2+k1}/d2
={m3(x)−2・m2(x)−m1(x)}−k123/d2 (7)′
ただし、式(7)′において、k3−2・k2+k1=k123とした。
さらに、式(7)′に基づいて、Δ2f(x)を二階積分すると、測定値m1(x)〜m3(x)等の項の他に、k123/2d2を係数としたx2に比例する項が生じる。したがって、測定値m1(x)〜m3(x)から得られる値は、表面形状f(x)からk123・x2/2d2の分ずれたものであり、これは、いわゆる放物線誤差として知られるゼロ点ずれに起因する誤差である。かかる放物線誤差をg(x)とする。つまり、光センサ105A,105B,105Cの出力値からは、面PL2の真の面形状f(x)に、放物線誤差g(x)が重畳された、誤差内在形状h(x)=f(x)+g(x)が求められることとなり、よって放物線誤差g(x)を求めない限り、真の被測定物OBJの上面形状f(x)を得ることができないといえる。
そこで、水準器を利用して放物線誤差を排除することを考える。(4)、(5)式の差動出力に対して、(5)式にゼロ点誤差の項αを加え、(4)式の差動出力をdだけシフトして、以下の式を得る。
μ1(x+d)=f(x+2d)−f(x+d)+d・Ep(x+d) (4)′
μ2(x)=f(x)−f(x−d)+d・Ep(x)+α (5)′
ここで、αは2つの隣り合う光センサの測定基準を結ぶ線が平行にならないことによるZ方向のシフト誤差を、角度に対応させたゼロ点誤差である。(4)′、(5)′式の差をとると、以下の式が得られる。
ΔEp(x)≡d(Ep(x+d)−Ep(x))=μ1(x+d)−μ2(x)+α (8)
(8)式は,隣り合う光センサの傾斜誤差の差分を表しているから、逐次N点加えていくことで、以下の(9)式を得る。
Figure 0006617033
(9)式の左辺におけるEp(0)は、測定開始点(x=0)の傾斜誤差であり、Ep(Nd)は、測定終了点(x=Nd=L)の傾斜誤差である。つまり、測定開始点と測定終了点での測定装置100の傾き、すなわち面PL2の測定開始点と測定終了点の傾きを、図2に点線で示すように水準器LVを面PL2に当てて測定すれば、右辺の値、すなわちゼロ点誤差αを理論上求めることができるのである。
これに対し、面PL1の形状については、アクチュエータ206の軸を伸長させることで、ミラー202A,202B,202Cを反射位置に置き、測定装置100を面PL1に沿って走査変位させながら,上述したのと同様に逐次三点法で測定を行うことができる。但し、面PL1に直交する方向をz方向、測定装置100を走査変位する方向をx方向とする。又、放物線誤差を排除するために、面PL1の測定開始点と測定終了点の傾きを、図2に点線で示すように水準器LVを面PL1に当てて測定すればよい。
被測定物OBJの反対側にある板状部PTにおける面PL1,PL2の形状については、ロボットRBTを把持した測定装置100を反転させて、同様に面PL1,PL2に沿って走査変位することで測定することができる。
本実施の形態によれば、ミラー202A,202B,202Cが反射位置に変位したときは、発光部105bから出射された光束がミラー202A,202B,202Cで反射して一方の面PL1に向かって投射され、一方の面PL1で反射した光束が、ミラー202A,202B,202Cで反射して受光部105cに受光されるようになっているので、逐次三点法により一方の面PL1の形状を測定することができる。またミラー202A,202B,202Cが非反射位置に変位したときは、発光部105bから出射された光束がミラー202A,202B,202Cで反射することなく他方の面PL2に向かって投射され、他方の面PL2で反射した光束が、ミラー202A,202B,202Cで反射することなく受光部105cに受光されるようになっているので、逐次三点法により他方の面PL2の形状を測定することができる。従って、ミラー202A,202B,202Cの位置を切り替えることにより、ロボットRBTにより把持した測定装置100を同じ方向へ走査変位させるのみで、2つの面PL1,PL2を精度良く測定できる。
本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。明細書の記載及び実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。例えば搬送機構としては、ロボットに限られず、リニアガイドとアクチュエータとを組み合わせたものであっても良い。又、測定すべき2面は必ずしも直交している必要はないし、測定装置に対して被測定物を相対的に変位させても良い。更に、駆動機構の無線通信部の代わりに、有線で信号を受信する通信部を設けても良いし、電磁式アクチュエータの代わりに、エアを動力源としてスライダを駆動するエアシリンダ等を設けても良い。又、測定部の発光部及び受光部は、異なる場所に設置されているものに限らず、同一場所に配置されてなり、発光部から測定面へ向かう光束と測定面から反射されて受光部へ向かう光束とが略同一光路を通過するものも含む。
100 測定装置
101 ベースプレート
102 ブラケット
103 サブプレート
103a 座繰り孔
103b 座繰り孔
104 コントローラ
104a 無線通信部
104b 電池
104c CPU
105A,105B,105C 光センサ
105a 切欠部
105b 発光部
105c 受光部
106 リブ
106a 固定軸
107 軸受
108 ローラ
200 ミラー駆動機構
201 保持体
202A,202B,202C ミラー
203 スライダ
203a 連結部
204 レール
205 係止機構
205a チューブ
205b コイルバネ
205c 玉
206 アクチュエータ
206a 軸
OBJ 被測定物
RBT ロボット

Claims (5)

  1. 互いに交差する方向に延在する2つの測定面を備えた被測定物の形状を、前記測定面に対して相対的に走査変位することにより測定する測定装置において、
    前記測定面に向かって光束を投射する3つの発光部と、前記測定面から反射した光束をそれぞれ受光する3つの受光部とを備えた測定部と、
    反射部と、
    前記反射部を、前記測定部に対して反射位置と非反射位置との間で、前記発光部から出射され前記反射部に入射する光束と、前記反射部から反射される光束とを含む面に対して直交する方向に平行移動させる駆動機構と、を有し、
    前記測定部を前記測定面に対して相対的に走査変位させることで、逐次三点法により前記測定面の形状を測定することができ、
    前記反射部が反射位置に変位したときは、前記発光部から出射された光束が前記反射部で反射して一方の前記測定面に向かって投射され、前記一方の測定面で反射した光束が、前記反射部で反射して前記受光部に受光されるようになっており、
    前記反射部が非反射位置に変位したときは、前記発光部から出射された光束が前記反射部で反射することなく他方の前記測定面に向かって投射され、前記他方の測定面で反射した光束が、前記反射部で反射することなく前記受光部に受光されるようになっていることを特徴とする測定装置。
  2. 前記駆動機構は、電源と無線通信部とアクチュエータとを搭載しており、前記無線通信部が無線による信号を受信したときは、前記電源から前記アクチュエータに給電し、給電された前記アクチュエータが前記ミラーを相対変位させるようになっていることを特徴とする請求項1に記載の測定装置。
  3. 前記測定面に対して前記測定部を相対的に走査変位させる際に、前記測定部と前記測定面との間隔を所定値に維持しつつガイドするガイド部材を設けたことを特徴とする請求項1又は2に記載の測定装置。
  4. 前記ガイド部材は、前記一方の測定面又は前記他方の測定面を転動するローラを有することを特徴とする請求項3に記載の測定装置。
  5. 前記測定装置は搬送機構に取り付けられており、前記搬送機構は前記測定面に対して前記測定部を相対的に走査変位させることを特徴とする請求項1〜4のいずれかに記載の測定装置。
JP2016005997A 2016-01-15 2016-01-15 測定装置 Active JP6617033B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016005997A JP6617033B2 (ja) 2016-01-15 2016-01-15 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016005997A JP6617033B2 (ja) 2016-01-15 2016-01-15 測定装置

Publications (2)

Publication Number Publication Date
JP2017125795A JP2017125795A (ja) 2017-07-20
JP6617033B2 true JP6617033B2 (ja) 2019-12-04

Family

ID=59364048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016005997A Active JP6617033B2 (ja) 2016-01-15 2016-01-15 測定装置

Country Status (1)

Country Link
JP (1) JP6617033B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6740182B2 (ja) 2017-06-28 2020-08-12 三菱重工業株式会社 飛行体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105552U (ja) * 1978-01-09 1979-07-25
JP3797704B2 (ja) * 1996-04-05 2006-07-19 株式会社ミツトヨ 光学式測定装置
US7044680B2 (en) * 2002-03-15 2006-05-16 Gomaco Corporation Method and apparatus for calculating and using the profile of a surface
JP2005180925A (ja) * 2003-12-16 2005-07-07 Soatec Inc レーザ測定システム
JP5210911B2 (ja) * 2009-02-03 2013-06-12 株式会社ナガセインテグレックス 形状測定装置

Also Published As

Publication number Publication date
JP2017125795A (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
EP1875158B1 (en) Surface sensing device with optical sensor
CN110553605B (zh) 一种激光雷达偏转角误差的测量系统及方法
EP0916922B1 (en) Non-contact surface roughness measuring device
CN207456386U (zh) 用于测量装置的光学传感器和测量系统
KR101149513B1 (ko) 레일의 직선도 및 평탄도 측정장치
JP5484700B2 (ja) 測長装置
JP2020501168A (ja) 試験片表面に圧子を侵入移動する間、測定信号を決定する測定デバイス、測定構成及び方法
US8575791B2 (en) Manufacturing-process equipment
JPH10170243A (ja) 形状測定装置及び方法
JP2015169491A (ja) 変位検出装置および変位検出方法
JP2011208992A (ja) 空間座標測定システムおよび空間座標測定方法
JP6617033B2 (ja) 測定装置
JP2009281768A (ja) 測定装置
JP5606039B2 (ja) ステージ装置及び波面収差測定装置
JP2006287098A (ja) 位置決め装置
JP6337172B2 (ja) 長さ測定装置
JP4753657B2 (ja) 表面形状測定装置及び表面形状測定方法
JP2012145550A (ja) 追尾式レーザ干渉測定装置の標的間絶対距離計測方法および追尾式レーザ干渉測定装置
JP6617039B2 (ja) 測定装置
JP6662089B2 (ja) ステージ装置
KR100909583B1 (ko) 모아레 측정장치의 테이블 이동장치
JP2020173207A (ja) 形状測定機
JP2014153223A (ja) 計測装置
EP2754992A1 (en) Optical profilometer
JP2012181021A (ja) 接触式プローブおよび形状測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6617033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250