JP6615959B2 - 内視鏡システム - Google Patents

内視鏡システム Download PDF

Info

Publication number
JP6615959B2
JP6615959B2 JP2018154651A JP2018154651A JP6615959B2 JP 6615959 B2 JP6615959 B2 JP 6615959B2 JP 2018154651 A JP2018154651 A JP 2018154651A JP 2018154651 A JP2018154651 A JP 2018154651A JP 6615959 B2 JP6615959 B2 JP 6615959B2
Authority
JP
Japan
Prior art keywords
light
blue
blood vessel
wavelength
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018154651A
Other languages
English (en)
Other versions
JP2018171540A (ja
Inventor
永治 大橋
聡 小澤
美範 森本
祐樹 寺川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JP2018171540A publication Critical patent/JP2018171540A/ja
Application granted granted Critical
Publication of JP6615959B2 publication Critical patent/JP6615959B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Closed-Circuit Television Systems (AREA)

Description

本発明は、内視鏡システムに関する。
医療分野において、内視鏡システムを用いた内視鏡診断が普及している。内視鏡システムは、内視鏡と、内視鏡に照明光を供給する内視鏡用光源装置(以下、単に光源装置という)と、内視鏡が出力する画像信号を処理するプロセッサ装置とを備えている。内視鏡は生体内に挿入される挿入部を有する。挿入部の先端には、観察部位(被写体)に照明光を照射する照明窓と、観察部位を撮影するための観察窓が配されている。内視鏡には、光ファイバをバンドル化したファイババンドルからなるライトガイドが内蔵されている。ライトガイドは、光源装置から供給された照明光を照明窓に導光する。観察窓の奥にはCCD等の撮像素子が配されている。照明光が照射された観察部位は撮像素子で撮像され、撮像素子が出力する画像信号に基づいてプロセッサ装置で観察画像が生成される。観察画像はモニタに表示され、生体内の観察が行われる。
近年の内視鏡診断においては、白色光のもとで生体組織の表面の全体的な性状を把握する従来の観察に対して、特定の波長帯域に制限された特殊光(狭帯域光)を用いた観察も盛んに行われている。特殊光を用いた観察には各種のものがあるが、波長によって生体組織内への光の深達度が異なるという光学特性を利用して、生体組織の粘膜に存在する血管を強調して表示する血管強調観察が知られている(特許文献1、2参照)。生体組織に発生する癌等の異常組織においては血管の状態が正常組織と異なるため、血管強調観察は早期癌の発見等に有用性が認められている。
特許文献1、2に記載の光源装置には、白色光を発する光源に加えて、粘膜表層に存在する表層血管によく吸収される、例えば中心波長445nm程度の狭帯域な青色光を発する青色半導体光源が特殊光の光源として設けられている。これら各光源を点灯させて白色光と青色光を同時に観察部位に照射し、その反射光を撮像素子で撮像することで、表層血管を強調した観察画像を得ている。特許文献1、2では、より表層血管を強調した観察画像を得るために、撮像素子から出力された画像信号に対して、表層血管を強調する処理を施している。
特開2011−098088号公報 特開2012−152459号公報
ところで、本発明者らは、図29に示す粘膜、表層血管、および中層血管の反射スペクトルの関係を見出した。図29において、粘膜の反射スペクトルを2点鎖線、表層血管の反射スペクトルを実線、中層血管の反射スペクトルを点線でそれぞれ示す。表層血管は、粘膜表面からの深さ10μmの位置に存在する太さ10μmの血管、中層血管は、粘膜表面からの深さ50μmの位置に存在する太さ10〜20μmの血管をそれぞれ代表例として示している。
表層血管の反射率は、450nmを下回る波長帯域で大きく低下し、中層血管および粘膜の反射率との差が大きくなっている。一方、中層血管の反射率は、表層血管ほどではないが530nm〜560nmの波長帯域で低下し、表層血管および粘膜の反射率との差が大きくなっている。粘膜の反射率は、全波長帯域において表層血管、中層血管の反射率よりも大きくなっている。
表層血管と中層血管の反射率の変化に着目すると、450nmを下回る波長帯域では表層血管のほうが中層血管よりも反射率が低く、450nm付近で表層血管と中層血管の反射率が同じになり、450nm以上の波長帯域では反射率の大小が逆転して中層血管のほうが表層血管よりも反射率が低くなっている。つまり、450nmを下回る波長帯域の光を照射すると、表層血管のほうが光をよく吸収するため観察画像上で強調され、450nm以上の波長帯域の光を照射すると、逆に表層血管よりも中層血管のほうが観察画像上で強調される。このため、表層血管を観察対象とする場合は、符号Pで示す表層血管と中層血管の反射率の交点である450nm以上の波長帯域の光成分は少ないほうが、表層血管と中層血管との違いが明確に区別された高コントラストな観察画像を得ることができるのでよいことが分かる。
しかしながら、特許文献1、2において特殊光として用いられる中心波長445nm程度の青色光には、観察画像上の表層血管のコントラストを低下させる450nm以上の波長帯域の光成分が含まれている。このため、特許文献1、2では画像処理によって表層血管のコントラストを向上させているものの、真に表層血管と中層血管との違いが明確に区別された高コントラストな観察画像が得られているとは言い難かった。したがって、中層血管が邪魔になって表層血管を精細に観察することができないことがあった。
本発明は、上記課題に鑑みてなされたもので、生体組織の粘膜表層に存在する表層血管を強調して観察する表層血管強調観察において、表層血管のコントラストをより際立たせた観察画像を得ることができ、表層血管をより精細に観察することができる内視鏡システムを提供することを目的とする。
本発明は、複数の半導体光源が発光する光が統合された照明光を用いる内視鏡システムにおいて、照明光には緑色光と、青色光からロングカットフィルタによって切り出されたロングカット青色光とが含まれ、緑色光の波長帯域よりも青色光の波長帯域が狭く、緑色光と青色光とはスペクトルが連続的であり、且つ、ロングカット青色光と緑色光とはスペクトルが連続的である。本発明は、複数の半導体光源が発光する光が統合された照明光を用いる内視鏡システムにおいて、照明光には緑色光、青色光からロングカットフィルタによって切り出されたロングカット青色光、及び紫色光が含まれ、緑色光の波長帯域よりも青色光の波長帯域が狭く、緑色光と青色光とはスペクトルが連続的であり、且つ、ロングカット青色光と緑色光とはスペクトルが連続的である。
青色光は、青色半導体光源が発することが好ましい。青色光のうち、光強度の半値幅以上の波長成分の波長幅が、半値幅以下の波長成分の波長幅よりも狭いことが好ましい。緑色光、及び青色光は光路統合部によって統合されることが好ましい。
紫色光は、紫色半導体光源が発することが好ましい。紫色光のうち光強度の半値幅以上の波長成分の波長幅が、半値幅以下の波長成分の波長幅よりも狭いことが好ましい。緑色光、青色光、及び紫色光は光路統合部によって統合されることが好ましい。照明光には赤色光が含まれることが好ましい。
ロングカットフィルタは、青色光のうち、生体組織の粘膜表層に存在する表層血管と中層に存在する中層血管の反射スペクトルにおいて、表層血管と中層血管の反射率の交点の波長以上の長波長成分であって中層血管の反射率が表層血管の反射率よりも小さくなる長波長成分の少なくとも一部をカットして、ロングカット青色光を得ることが好ましい。表層血管と中層血管の反射率の交点は、表層血管の太さが太くなるにつれて、長波長側にシフトすることが好ましい。
本発明によれば、青色光源が発する青色の波長帯域の青色光のうち、生体組織の粘膜表層に存在する表層血管と中層に存在する中層血管の反射スペクトルにおいて、表層血管と中層血管の反射率の交点の波長以上の長波長成分の少なくとも一部をカットしているので、表層血管のコントラストをより際立たせた観察画像を得ることができ、表層血管をより精細に観察することができる。
本発明の内視鏡システムの外観図である。 内視鏡の先端部の正面図である。 内視鏡システムの電気的構成を示すブロック図である。 青色半導体光源を示す図である。 青色半導体光源が発する青色光の発光スペクトルを示すグラフである。 緑色半導体光源が発する緑色光の発光スペクトルを示すグラフである。 赤色半導体光源が発する赤色光の発光スペクトルを示すグラフである。 ロングカットフィルタの透過特性を示すグラフである。 ロングカット青色光の発光スペクトルを示すグラフである。 ロングカット青色光、緑色光、赤色光により構成される照明光の発光スペクトルを示すグラフである。 撮像素子のマイクロカラーフィルタの分光特性を示すグラフである。 照明光の照射タイミングおよび撮像素子の動作タイミングを示す説明図である。 B画像に描出される表層血管および中層血管を示す図である。 G画像に描出される表層血管および中層血管を示す図である。 各半導体光源の配置と光路統合部の詳細構成を示す図である。 緑色光と赤色光の光路を統合するダイクロイックミラーのダイクロイックフィルタの透過特性を示すグラフである。 青色光、緑色光、赤色光の光路を統合するダイクロイックミラーのダイクロイックフィルタの透過特性を示すグラフである。 表層血管と中層血管の反射率の交点Pの波長が460nmである場合のロングカットフィルタの透過特性を示すグラフである。 図18の例のロングカット青色光の発光スペクトルを示すグラフである。 図18の例のロングカット青色光、緑色光、赤色光により構成される照明光の発光スペクトルを示すグラフである。 モード切替部を設けた第2実施形態の光源装置を示す図である。 青色光、緑色光、赤色光により構成される照明光の発光スペクトルを示すグラフである。 紫色半導体光源を設けた第3実施形態の光源装置を示す図である。 紫色半導体光源が発する紫色光の発光スペクトルを示すグラフである。 ロングカット青色光、緑色光、赤色光、紫色光により構成される照明光の発光スペクトルを示すグラフである。 青色光、紫色光の光路を統合するダイクロイックミラーのダイクロイックフィルタの透過特性を示すグラフである。 生体組織の散乱係数を示すグラフである。 極表層血管の強調観察における照明光の照射タイミングおよび撮像素子の動作タイミングを示す説明図である。 粘膜、表層血管、および中層血管の反射スペクトルを示すグラフである。
[第1実施形態]
図1において、内視鏡システム10は、生体内の観察部位を撮像する内視鏡11と、撮像により得られた画像信号に基づいて観察部位の観察画像を生成するプロセッサ装置12と、観察部位を照射する照明光を内視鏡11に供給する光源装置13と、観察画像を表示するモニタ14とを備えている。プロセッサ装置12には、キーボードやマウス等の操作入力部15が接続されている。
内視鏡11は、生体の消化管内に挿入される挿入部16と、挿入部16の基端部分に設けられた操作部17と、内視鏡11とプロセッサ装置12および光源装置13を連結するユニバーサルコード18とを備えている。
挿入部16は、先端から順に連設された、先端部19、湾曲部20、可撓管部21で構成される。図2に示すように、先端部19の先端面には、観察部位に照明光を照射する照明窓22、観察部位の像を取り込むための観察窓23、観察窓23を洗浄するために送気・送水を行う送気・送水ノズル24、鉗子や電気メスといった処置具を突出させて各種処置を行うための鉗子出口25が設けられている。観察窓23の奥には、撮像素子56や結像用の対物光学系60(ともに図3参照)が内蔵されている。
湾曲部20は、連結された複数の湾曲駒からなり、操作部17のアングルノブ26を操作することにより、上下左右方向に湾曲動作する。湾曲部20が湾曲することにより、先端部19の向きが所望の方向に向けられる。可撓管部21は、食道や腸等曲がりくねった管道に挿入できるように可撓性を有している。挿入部16には、撮像素子56を駆動する駆動信号や撮像素子56が出力する画像信号を通信する通信ケーブル、光源装置13から供給される照明光を照明窓22に導光するライトガイド55(図3参照)等が挿通されている。
操作部17には、アンブルノブ26の他、処置具を挿入するための鉗子口27、送気・送水ノズル24から送気・送水を行う際に操作される送気・送水ボタン28、静止画像を撮影するためのレリーズボタン(図示せず)等が設けられている。
ユニバーサルコード18には、挿入部16から延設される通信ケーブルやライトガイド55が挿通されており、プロセッサ装置12および光源装置13側の一端には、コネクタ29が取り付けられている。コネクタ29は、通信用コネクタ29aと光源用コネクタ29bからなる複合タイプのコネクタである。通信用コネクタ29aと光源用コネクタ29bはそれぞれ、プロセッサ装置12と光源装置13に着脱自在に接続される。通信用コネクタ29aには通信ケーブルの一端が配設されており、光源用コネクタ29bにはライトガイド55の入射端55a(図3参照)が配設されている。
図3において、光源装置13は、青色、緑色、赤色の3つの半導体光源35、36、37で構成される光源部40と、各半導体光源35〜37の各色光の光路を統合する光路統合部41と、各半導体光源35〜37の駆動を制御する光源制御部42とを備えている。
各半導体光源35〜37は、半導体発光素子として、青色の波長帯域の光を発する青色発光ダイオード(LED:Light Emitting Diode)43、緑色の波長帯域の光を発する緑色LED44、赤色の波長帯域の光を発する赤色LED45をそれぞれ有している。各LED43〜45は、周知のようにP型半導体とN型半導体を接合したものである。そして、電圧を掛けるとPN接合部付近においてバンドギャップを超えて電子と正孔が再結合して電流が流れ、再結合時にバンドギャップに相当するエネルギーを光として放出する。各LED43〜45は、供給電力の値を増加させると、発する光の光量が増加する。
図4に示すように、青色半導体光源35は、青色LED43が実装される基板35aと、基板35a上に形成され、青色LED43を収容するキャビティが形成されたモールド35bと、キャビティに封入された樹脂35cとで構成される。キャビティの内面は光を反射するリフレクタとして機能する。樹脂35cには光を拡散する拡散材が分散されている。青色LED43は配線35dによって基板35aと導通可能に接続される。このような青色半導体光源35の実装形態は、一般的に表面実装型と呼ばれる。なお、各半導体光源35〜37は基本的に同じ構成であるため、青色半導体光源35を例として挙げて説明し、緑色、赤色半導体光源36、37の説明は省略する。
図5に示すように、青色半導体光源35は、例えば青色の波長帯域である440nm〜470nm付近の波長成分を有し、中心波長455±10nm、ピーク波長455nmの青色光LBを発光する。また、図6に示すように、緑色半導体光源36は、例えば緑色の波長帯域である500nm〜600nm付近の波長成分を有し、中心波長520±10nm、ピーク波長520nmの緑色光LGを発光する。さらに図7に示すように、赤色半導体光源37は、例えば赤色の波長帯域である615nm〜635nm付近の波長成分を有し、中心波長620±10nm、ピーク波長625nmの赤色光LRを発光する。なお、中心波長は各色光の発光スペクトルの幅の中心の波長を示し、ピーク波長は各色光の発光スペクトルの山型の頂点の波長を示す。
図3において、青色半導体光源35の前面には、ロングカットフィルタ(以下、LCFと略す)48が設けられている。LCF48は、青色半導体光源35が発する青色光LBのうち、図29に示す、生体組織の粘膜表層に存在する表層血管と中層に存在する中層血管の反射スペクトルにおいて、表層血管と中層血管の反射率の交点Pの波長(450nm)以上の長波長成分をカットする。より具体的には、図8に示すように、LCF48は、波長450nm以上の緑色、赤色の波長帯域の光を反射し、それ未満の青色の波長帯域の光を透過する特性を有している。
LCF48によって、青色光LBは、図9に示すロングカット青色光LBlc1となる。ロングカット青色光LBlc1は、青色光LBのうち、図29を用いて説明した、表層血管のコントラスト向上の妨げになる450nm以上の波長帯域の光成分が全てカットされた光である。光路統合部41には、このロングカット青色光LBlc1が入射する。
なお、LCF48では、交点Pの波長(450nm)以上の長波長成分を完全にカット(即ち、100%カット)することなく、表層血管のコントラスト向上を十分に確保できる程度に、交点Pの波長(450nm)以上の長波長成分の少なくとも一部(例えば、80〜95%)をカットする。これにより、ロングカット青色光LBlc1のスペクトルは、それよりも長波長側の緑色光LGのスペクトルと離散的にならず、連続的になる。
各LED43〜45には、ドライバ50、51、52がそれぞれ接続されている。光源制御部42は、これら各ドライバ50〜52を介して、各LED43〜45の点灯、消灯および光量の制御を行う。光量の制御は、プロセッサ装置12から受信する露出制御信号に基づいて、各LED43〜45に供給する電力を変更することで行う。
各ドライバ50〜52は、光源制御部42の制御の下、各LED43〜45に駆動電流を連続的に与えることで各LED43〜45を点灯させる。そして、プロセッサ装置12から受信した露出制御信号に応じて、与える駆動電流値を変化させることにより各LED43〜45への供給電力を変更し、青色光LB、緑色光LG、赤色光LRの光量をそれぞれ独立に制御する。なお、駆動電流を連続的に与えるのではなくパルス状に与え、駆動電流パルスの振幅を変化させるPAM(Pulse Amplitude Modulation)制御や、駆動電流パルスのデューティ比を変化させるPWM(Pulse Width Modulation)制御を行ってもよい。
光路統合部41は、ロングカット青色光LBlc1、緑色光LG、赤色光LRの光路を1つの光路に統合する。光路統合部41の光出射部は、光源用コネクタ29bが接続されるレセプタクルコネクタ54の近傍に配置されている。光路統合部41は、各半導体光源35〜37から入射された光を、内視鏡11のライトガイド55の入射端55aに出射する。なお、図示は省略するが、光源用コネクタ29bとレセプタクルコネクタ54にはそれぞれ保護ガラスが設けられている。
光路統合部41で統合されたロングカット青色光LBlc1、緑色光LG、赤色光LRの混合光の発光スペクトルを図10に示す。この混合光は照明光LW1として利用される。なお、図10に示す照明光LW1の発光スペクトルは一例であり、所望の観察画像の色味等に応じて目標とする照明光LW1の発光スペクトルを様々に変更してもよい。具体的には、ロングカット青色光LBlc1、緑色光LG、赤色光LRの光量の割合(各LED43〜45の駆動電流値の割合)を変更し、目標とする発光スペクトルの照明光LW1を生成する。ここで、上記したように、ロングカット青色光LBlc1と緑色光LGとはスペクトルが連続的になっており、更に、緑色光LGと赤色光LRともスペクトルが連続的になっていることから、照明光LW1のスペクトルは波長帯域(約400〜約670nm)全体で連続的である。したがって、照明光LW1は、波長帯域全体でスペクトルが連続的であるキセノンランプとの同等又は類似の演色性を持つ。
光源制御部42は、目標とする発光スペクトルを維持しつつ、照明光の露出制御を行う。照明光を構成する各色光の光量の割合が変わると、照明光の発光スペクトルが変化して観察画像の色味が変わってしまう。このため光源制御部42は、各色光の光量の割合が一定となるよう、各ドライバ50〜52を通じて各LED43〜45に与える駆動電流値を独立に変化させ、各色光の光量を増減させる。
内視鏡11は、ライトガイド55、撮像素子56、アナログ処理回路57(AFE:Analog Front End)、および撮像制御部58を備えている。ライトガイド55は、複数本の光ファイバをバンドル化したファイババンドルである。光源用コネクタ29bが光源装置13に接続されたときに、光源用コネクタ29bに配置されたライトガイド55の入射端55aが光路統合部41の光出射部と対向する。先端部19に位置するライトガイド55の出射端は、2つの照明窓22に光が導光されるように、照明窓22の前段で2本に分岐している。
照明窓22の奥には、照射レンズ59が配置されている。光源装置13から供給された照明光は、ライトガイド55により照射レンズ59に導光されて照明窓22から観察部位に向けて照射される。照射レンズ59は凹レンズからなり、ライトガイド55から出射する光の発散角を広げる。これにより、観察部位の広い範囲に照明光を照射することができる。
観察窓23の奥には、対物光学系60と撮像素子56が配置されている。観察部位の像は、観察窓23を通して対物光学系60に入射し、対物光学系60によって撮像素子56の撮像面56aに結像される。
撮像素子56は、CCDイメージセンサやCMOSイメージセンサ等からなり、その撮像面56aには、フォトダイオード等の画素を構成する複数の光電変換素子がマトリックス状に配列されている。撮像素子56は、撮像面56aで受光した光を光電変換して、各画素においてそれぞれの受光量に応じた信号電荷を蓄積する。信号電荷はアンプによって電圧信号に変換されて読み出される。電圧信号は画像信号として撮像素子56からAFE57に出力される。
AFE(Analog Front End)57は、相関二重サンプリング回路、自動ゲイン制御回路、およびアナログ/デジタル変換器(いずれも図示省略)で構成されている。相関二重サンプリング回路は、撮像素子56からのアナログの画像信号に対して相関二重サンプリング処理を施し、信号電荷のリセットに起因するノイズを除去する。自動ゲイン制御回路は、相関二重サンプリング回路によりノイズが除去された画像信号を増幅する。アナログ/デジタル変換器は、自動ゲイン制御回路で増幅された画像信号を、所定のビット数に応じた階調値を持つデジタルな画像信号に変換してプロセッサ装置12に入力する。
撮像制御部58は、プロセッサ装置12内のコントローラ65に接続されており、コントローラ65から入力される基準クロック信号に同期して、撮像素子56に対して駆動信号を入力する。撮像素子56は、撮像制御部58からの駆動信号に基づいて、所定のフレームレートで画像信号をAFE57に出力する。
撮像素子56は、カラー撮像素子であり、撮像面56aには、図11に示すような分光特性を有するB、G、Rの3色のマイクロカラーフィルタが設けられ、各マイクロカラーフィルタが各画素に割り当てられている。マイクロカラーフィルタの配列は例えばベイヤー配列である。
Bフィルタが割り当てられたB画素は約380nm〜560nmの波長帯域の光に感応し、Gフィルタが割り当てられたG画素は約450nm〜630nmの波長帯域の光に感応する。また、Rフィルタが割り当てられたR画素は約580nm〜800nmの波長帯域の光に感応する。照明光LW1を構成するロングカット青色光LBlc1、緑色光LG、赤色光LRは、ロングカット青色光LBlc1に対応する反射光が主としてB画素、緑色光LGに対応する反射光が主としてG画素、赤色光LRに対応する反射光が主としてR画素でそれぞれ受光される。
図12に示すように、撮像素子56は、1フレームの取得期間内で、画素に信号電荷を蓄積する蓄積動作と、蓄積した信号電荷を読み出す読み出し動作を行う。撮像素子56の蓄積動作のタイミングに合わせて、各半導体光源35〜37が点灯し、ロングカット青色光LBlc1、緑色光LG、赤色光LRの混合光からなる照明光LW1(LBlc1+LG+LR)が観察部位に照射され、その反射光が撮像素子56に入射する。撮像素子56は、照明光LW1の反射光をマイクロカラーフィルタで色分離する。ロングカット青色光LBlc1に対応する反射光をB画素が受光し、緑色光LGに対応する反射光をG画素が、赤色光LRに対応する反射光をR画素がそれぞれ受光する。撮像素子56は、読み出しタイミングに合わせて、B、G、Rの各画素の画素値が混在した1フレーム分の画像信号B、G、Rをフレームレートに従って順次出力する。
図3において、プロセッサ装置12は、コントローラ65の他、DSP(Digital Signal Processor)66と、画像処理部67と、フレームメモリ68と、表示制御回路69とを備えている。コントローラ65は、CPU(Central Processing Unit)、制御プログラムや制御に必要な設定データを記憶するROM(Read Only Memory)、プログラムをロードして作業メモリとして機能するRAM(Random Access Memory)等を有し、CPUが制御プログラムを実行することにより、プロセッサ装置12の各部を制御する。
DSP66は、撮像素子56が出力する画像信号を取得する。DSP66は、B、G、Rの各画素に対応する信号が混在した画像信号を、B、G、Rの画像信号に分離し、各色の画像信号に対して画素補間処理を行う。これにより、各画素にB、G、Rの画像信号が割り当てられる。この他、DSP66は、ガンマ補正や、B、G、Rの各画像信号に対してホワイトバランス補正等の信号処理を施す。
また、DSP66は、画像信号B、G、Rに基づいて露出値を算出して、画像全体の光量が不足している場合(露出アンダー)には照明光の光量を上げるように、一方、光量が高すぎる場合(露出オーバー)には照明光の光量を下げるように制御する露出制御信号をコントローラ65に出力する。コントローラ65は、光源装置13の光源制御部42に露出制御信号を送信する。
フレームメモリ68は、DSP66が出力する画像データや、画像処理部67が処理した処理済みの画像データを記憶する。表示制御回路69は、フレームメモリ68から画像処理済みの画像データを読み出して、コンポジット信号やコンポーネント信号等のビデオ信号に変換してモニタ14に出力する。
画像処理部67は、DSP66によってB、G、Rの各色に色分離された画像信号B、G、Rに基づいて、観察画像を生成する。この観察画像がモニタ14に出力される。画像処理部67は、フレームメモリ68内の画像信号B、G、Rが更新される毎に、観察画像を更新する。画像信号Bには、照明光LW1を構成するロングカット青色光LBlc1に対応する反射光の成分が含まれている。前述のように、ロングカット青色光LBlc1は、表層血管のコントラスト向上の妨げになる450nm以上の波長帯域の光成分が全てカットされた光であるため、表層血管が高コントラストで描出される。癌等の病変においては、正常組織と比較して表層血管の密集度が高くなる傾向がある等、血管のパターンに特徴があるため、腫瘍の良悪鑑別を目的とする観察においては、表層血管が鮮明に描出されることが好ましい。
画像処理部67は、画像信号B、G、Rに対して表層血管を強調する処理を施す強調処理部70を有している。
ここで、各画素の画像信号Bで表される画像(以下、B画像という)71には、図13に太線および薄いハッチングで示すように、表層血管72が高コントラストで描出されるが、細線のみで示すように中層血管73も多少映り込んでいる。これは中層血管も450nmを下回る波長帯域の光を多少なりとも吸収するためである。ただし、450nm以上の波長帯域の光が照射された場合よりも、B画像71内の中層血管73の映り込みは多くはない。一方、各画素の画像信号Gで表される画像(以下、G画像という)74には、図14に太線および薄いハッチングで示すように、B画像71とは逆に中層血管73が高コントラストで描出される。そして、細線のみで示すように表層血管72も多少映り込んでいる。画像信号Gには、表層血管72よりも中層血管73の吸収が大きい530nm〜560nmの波長帯域の緑色光LGに対応する反射光の成分が含まれているので、G画像74は強調される血管がB画像71とは逆に中層血管73となる。
強調処理部70は、中層血管73の輪郭を抑制し、相対的に表層血管72の輪郭を強調する処理を行う。具体的には、G画像74内の中層血管73の領域を抽出し、画像信号B、G、Rを元に生成したフルカラー画像において、G画像74で抽出した中層血管73の領域の画素値と、中層血管73の領域に隣接する他の領域(表層血管72や粘膜表面)の画素値の差を縮めて、中層血管73の領域と他の領域を同化させる。画像処理部67は、輪郭抑制処理が施されたフルカラー画像を観察画像として出力する。なお、B画像71内の表層血管72の領域を抽出して、抽出した表層血管72の領域と他の領域との画素値の差を広げて、表層血管72の領域に対して輪郭強調処理を施したフルカラー画像を観察画像としてもよい。
図15において、光路統合部41は、各半導体光源35〜37が発する各色光をコリメートするコリメータレンズ80、81、82と、ダイクロイックミラー83、84と、光路統合部41から出射する光をライトガイド55の入射端55aに集光する集光レンズ85とで構成されている。各ダイクロイックミラー83、84は、透明なガラス板に所定の透過特性を有するダイクロイックフィルタを形成した光学部材である。
緑色半導体光源36は、その光軸がライトガイド55の光軸と一致する位置に配置されている。そして、緑色半導体光源36と赤色半導体光源37は、互いの光軸が直交するように配置されている。これら緑色半導体光源36と赤色半導体光源37の光軸が直交する位置に、ダイクロイックミラー83が設けられている。同様に、青色半導体光源35も、緑色半導体光源36の光軸と直交するように配置され、これらの光軸が直交する位置に、ダイクロイックミラー84が設けられている。ダイクロイックミラー83は緑色半導体光源36、赤色半導体光源37の光軸、ダイクロイックミラー84は青色半導体光源35、緑色半導体光源36の光軸に対して、それぞれ45°傾けた姿勢で配置されている。
図16に示すように、ダイクロイックミラー83のダイクロイックフィルタは、約610nm以上の赤色の波長帯域の光を反射し、それ未満の青色、緑色の波長帯域の光を透過する特性を有している。ダイクロイックミラー83は、コリメータレンズ81を介して緑色半導体光源36から入射した緑色光LGを下流側に透過させ、コリメータレンズ82を介して赤色半導体光源37から入射した赤色光LRを反射させる。これにより緑色光LGと赤色光LRの光路が統合される。
図17に示すように、ダイクロイックミラー84のダイクロイックフィルタは、約470nm未満の青色の波長帯域の光を反射し、それ以上の緑色、赤色の波長帯域の光を透過する特性を有している。このため、ダイクロイックミラー84は、ダイクロイックミラー83を透過した緑色光LG、およびダイクロイックミラー83で反射した赤色光LRを透過させる。さらに、ダイクロイックミラー84は、LCF48、およびコリメータレンズ80を介して入射したロングカット青色光LBlc1を反射させる。このダイクロイックミラー84により、ロングカット青色光LBlc1、緑色光LG、および赤色光LRの全ての光路が統合され、照明光LW1が生成される。
以下、上記構成による作用について説明する。内視鏡診断を行う場合には、内視鏡11をプロセッサ装置12と光源装置13に接続し、プロセッサ装置12と光源装置13の電源を入れて、内視鏡システム10を起動する。
内視鏡11の挿入部16を被検者の消化管内に挿入して、消化管内の観察を開始する。光源制御部42は、各LED43〜45に与える駆動電流値を設定して、各半導体光源35〜37の点灯を開始する。そして、目標とする発光スペクトルを維持しつつ光量制御を行う。
各半導体光源35〜37は、各LED43〜45による青色光LB、緑色光LG、赤色光LRをそれぞれ発する。青色光LBはLCF48を透過してロングカット青色光LBlc1となる。ロングカット青色光LBlc1、緑色光LG、赤色光LRは光路統合部41のコリメータレンズ80〜82にそれぞれ入射する。
青色光LBは、ピーク波長が455nmで、440nm〜470nm付近の波長成分を有する。図29を用いて説明したように、青色光LBのうちの450nm以上の波長帯域の光成分は、表層血管と中層血管のコントラスト差を高めて表層血管を高コントラストで描出するためには、カットしたほうがよい。そこで、本実施形態では、LCF48により、450nm以上の長波長成分をカットし、表層血管のコントラストの悪化を招かないようにしている。
ロングカット青色光LBlc1はダイクロイックミラー84で反射される。緑色光LGはダイクロイックミラー83、84を透過する。赤色光LRはダイクロイックミラー83で反射し、ダイクロイックミラー84を透過する。ダイクロイックミラー83、84によって、ロングカット青色光LBlc1、緑色光LG、赤色光LRの光路が統合される。これらロングカット青色光LBlc1、緑色光LG、赤色光LRは、集光レンズ85に入射する。これにより、ロングカット青色光LBlc1、緑色光LG、赤色光LRで構成される照明光LW1が生成される。集光レンズ85は、照明光LW1を内視鏡11のライトガイド55の入射端55aに集光し、照明光LW1を内視鏡11に供給する。
内視鏡11において、照明光LW1はライトガイド55を通じて照明窓22に導光されて、照明窓22から観察部位に照射される。観察部位で反射した照明光LW1の反射光は、観察窓23から撮像素子56に入射する。撮像素子56は画像信号B、G、Rをプロセッサ装置12のDSP66に出力する。DSP66は画像信号B、G、Rを色分離して、画像処理部67に入力する。撮像素子56による撮像動作は所定のフレームレートで繰り返される。
強調処理部70は、入力された画像信号B、G、Rに対して表層血管を強調する処理を施す。画像処理部67は、この強調処理を施した画像信号B、G、Rを元に観察画像を生成する。観察画像は表示制御回路69を通じてモニタ14に出力される。観察画像は撮像素子56のフレームレートに従って更新される。
また、DSP66は、画像信号B、G、Rに基づいて露出値を算出し、算出した露出値に応じた露出制御信号を光源装置13の光源制御部42に送信する。光源制御部42は、受信した露出制御信号に基づいて、各色光の光量の割合が一定となるよう(目標とする発光スペクトルが変化しないよう)各半導体光源35〜37の駆動電流値を決定する。そして、決定した駆動電流値で各半導体光源35〜37を駆動する。これにより、各半導体光源35〜37による、照明光LW1を構成するロングカット青色光LBlc1、緑色光LG、赤色光LRの光量を、観察に適した割合に一定に保つことができる。
青色光LB、緑色光LG、赤色光LRの光量をそれぞれ独立に制御可能であるため、目標とする発光スペクトルの照明光LW1の生成が容易であり、また、目標とする発光スペクトルを維持しつつ、照明光の露出制御を行うことも容易である。
照明光LW1を構成するロングカット青色光LBlc1には、観察画像上の表層血管のコントラストを悪化させる成分が全く含まれていない。また、強調処理部70で表層血管を強調する処理が施される。従来は表層血管を強調する処理のみを行っていたが、本発明ではこれに加えて、観察画像上の表層血管のコントラストを悪化させる光成分をLCF48で取り除いている。このため、表層血管と中層血管との違いが明確に弁別された、表層血管のより精細な観察に好適な観察画像を得ることができる。
なお、LCF48の位置は、上記第1実施形態で例示した青色半導体光源35とコリメータレンズ80の間に限らず、青色光LBの光路上にあればよい。例えば、コリメータレンズ80とダイクロイックミラー84の間にLCF48を配置してもよい。
LCF48は、例えば、400nm以上450nm未満の光を透過するバンドパス特性を有するものでもよい。ただし、バンドパス特性を有するフィルタは、上記第1実施形態で例示したショートパス特性を有するものよりも製造コストが嵩むので、上記第1実施形態のように、ショートパス特性を有するLCF48のほうがコスト面で有利である。
表層血管と中層血管の反射率の交点Pの波長は、上記第1実施形態で例示した、表層血管の太さが10μmの場合の450nmに限らず、観察対象とする表層血管の太さに応じて変化し、表層血管の太さが太くなるにつれ、交点Pの波長も長波長側にシフトする。具体的には、交点Pの波長は445nm〜460nmの範囲の値をとり得る。このため、LCF48でカットする波長も、観察対象とする表層血管の太さに応じて決定される。
例えば、交点Pの波長が460nmである場合は、LCF48として、波長460nm以上の緑色、赤色の波長帯域の光を反射し、それ未満の青色の波長帯域の光を透過する、図18に示す特性を有するものが用いられる。図18に示す透過特性のLCF48によって、青色光LBは、図19に示すロングカット青色光LBlc2となる。図9に示すロングカット青色光LBlc1には、青色光LBのピーク波長455nmの光成分が含まれていないが、ロングカット青色光LBlc2には、青色光LBのピーク波長455nmの光成分が含まれている。このため、ロングカット青色光LBlc2のほうが、ロングカット青色光LBlc1よりも光量が大きい。この場合、光路統合部41で統合されたロングカット青色光LBlc2、緑色光LG、赤色光LRの混合光である照明光LW2の発光スペクトルは、図20に示すようになる。なお、照明光LW2についても、照明光LW1と同様、波長帯域全体においてスペクトルが連続している。
なお、表層血管を強調する処理としては、上記第1実施形態で例示した方法の他に、特許文献1の特開2011−098088号公報、特許文献2の特開2012−152459号公報に記載された方法を採用してもよい。例えば、表層血管は観察画像上で比較的細く映るので、周波数成分が比較的高周波に偏ることを利用して、B画像71に周波数フィルタリングを施して、表層血管に該当する高周波成分を抽出し、この抽出した高周波成分でB画像71内の表層血管を強調することで、表層血管のコントラストを上げる。あるいは、中層血管に該当する中低周波成分を抽出し、抽出した中低周波成分でB画像71内の中層血管のコントラストを抑制し、相対的に表層血管のコントラストを上げる。
輪郭抑制処理や周波数強調処理の説明からも分かるように、表層血管を強調する処理は、表層血管と中層血管のコントラスト差が広がるものであればよく、中層血管に対して表層血管のコントラストを上げる処理に限らず、表層血管に対しては何もせず、代わりに中層血管のコントラストを抑制して、相対的に表層血管のコントラストを上げる処理、および表層血管のコントラストを上げ、かつ中層血管のコントラストを抑制する処理も含まれる。
[第2実施形態]
上記第1実施形態では、LCF48が青色半導体光源35の前面に固定され、LCF48の長波長成分のカット機能が常に有効化されているが、本発明はこれに限定されない。LCF48のカット機能の有効化、無効化を切り替えてもよい。
図21に示すように、本実施形態の光源装置90は、モード切替部95を備えている。モード切替部95は、LCF48のカット機能を有効化して、表層血管を強調して観察する表層血管強調観察モードと、LCF48のカット機能を無効化して、観察部位の全体の性状を観察する通常観察モードとを切り替える。なお、光源装置90は、モード切替部95が設けられている他は上記第1実施形態と同じ構成であるため、上記第1実施形態と同じ構成には同一の符号を付し、説明を省略する。
モード切替部95は、モード切替ボタン96と、ロングカットフィルタ移動機構(以下、LCF移動機構と略す)97と、光源制御部98とで構成される。モード切替ボタン96は、光源制御部98に接続されている。モード切替ボタン96は、モード切替のための指示信号を光源制御部98に発する操作部材であり、例えば、光源装置90またはプロセッサ装置12の筐体の前面パネルや、内視鏡11の操作部17等に設けられている。光源制御部98は、上記第1実施形態の光源制御部42と同じく、各ドライバ50〜52を介して、各LED43〜45の点灯、消灯および光量の制御を行う他、モード切替ボタン96からの指示信号に応じて、LCF移動機構97の駆動を制御する。
LCF移動機構97は、例えば、モータと、モータの回転力を直線運動に変えるラックアンドピニオンギヤ(ともに図示せず)とで構成され、青色半導体光源35の前面に配置する実線で示すセット位置と、青色半導体光源35の前面から退避させる点線で示す退避位置との間で、LCF48をスライド移動させる。
LCF48がセット位置にある場合(LCF48のカット機能が有効化された場合)は、上記第1実施形態と同じく、青色光LBは、450nm以上の長波長成分がカットされてロングカット青色光LBlc1となり、観察部位には、ロングカット青色光LBlc1、緑色光LG、赤色光LRの混合光である照明光LW1が照射される。一方、LCF48が退避位置にある場合(LCF48のカット機能が無効化された場合)は、青色光LBはそのまま光路統合部41に入射する。観察部位には、青色光LB、緑色光LG、赤色光LRの混合光である、図22に示すような発光スペクトルの照明光LW0が照射される。
照明光LW0は、緑色光LG、赤色光LRに、青色光LBがそのまま重畳されたもので、従来の観察部位の全体の性状を観察する際に照射される白色光に近い発光スペクトルを有する。照明光LW0は、照明光LW1のように青色光LBに表層血管のコントラストを向上させるための加工を施していないので、照明光LW1と比べて、観察部位の全体の性状の観察に適している。また、青色光LBの光成分がカットされていないため照明光LW1よりも光量が大きい。
このように、モード切替部95を設けて、LCF48のカット機能を有効化または無効化する選択を術者が可能な構成とすれば、従来行われている白色光による観察部位の全体の性状の観察(通常観察モード)と、表層血管の強調観察(表層血管強調観察モード)とを両方行うことができる。観察の初期段階では、観察部位の全体の性状を観察するために通常観察モードを選択し、病変部と疑わしき観察部位が発見された場合は、表層血管強調観察モードを選択するといった使い分けができる。また、観察部位の全体の性状を観察する際には、観察部位から先端部19を離して、比較的遠景で観察部位を撮像することが多いので、照明光LW1よりも光量が増した照明光LW0を用いるほうが有利である。
なお、通常観察モードと表層血管強調観察モードとでは照明光の発光スペクトルが異なるので、DSP66で行うホワイトバランス補正等の信号処理を、例えば各モードで観察画像の色味が同じになるようにする等、各モードに応じて変更することが好ましい。
強調処理部70は、両モードで作動してもよいし、表層血管強調観察モードのときのみ作動してもよい。
LCF48の移動機構は上記に例示したモータとラックアンドピニオンギヤで構成したものに限らない。例えば、可視光透過ガラス製の円板(ターレット)の半面にLCF48を形成し、あとの半分は何も設けずに、青色光LBがそのまま透過できるようにしておき、モータで円板を回転移動させることで、LCF48のカット機能を有効化または無効化してもよい。
なお、光源制御部がLCF移動機構97の駆動を制御する例を記載したが、光源制御部とは別にLCF移動機構97の駆動を制御する制御部を設けてもよい。
LCF48は、上記各実施形態のような透過特性が変化しないものに限らない。例えば、圧電素子等のアクチュエータを駆動することにより、2枚の高反射光フィルタからなる基板の面間隔を変更することで、透過光の波長帯域を制御するエタロンフィルタや、偏光フィルタ間に複屈折フィルタとネマティック液晶セルを挟んで構成され、液晶セルへの印加電圧を変更することで透過光の波長帯域を制御する液晶チューナブルフィルタ等、透過特性が可変のフィルタを用いてもよい。エタロンフィルタや液晶チューナブルフィルタ等の透過特性が可変のフィルタを用いれば、LCF移動機構がいらないので、コスト、スペースの点で有利である。なお、エタロンフィルタや液晶チューナブルフィルタ等の透過特性が可変のフィルタを用いる場合、上記第2実施形態のモード切替部は、エタロンフィルタや液晶チューナブルフィルタを駆動して透過光の波長帯域を変更するドライバと、ドライバを介してエタロンフィルタや液晶チューナブルフィルタの駆動を制御する制御部とで構成される。
[第3実施形態]
上記各実施形態では、光源部を青色、緑色、赤色の3つの半導体光源35〜37で構成しているが、上記各実施形態で観察対象とした表層血管のうちの粘膜表層により近い表層血管(以下、上記各実施形態で観察対象とした表層血管と区別するため極表層血管という)を強調して観察するための紫色の波長帯域の光を発する紫色半導体光源を追加してもよい。
図23において、本実施形態の光源装置110は、上記各実施形態の各半導体光源35〜37に加えて、紫色半導体光源115を有する光源部116と、各半導体光源35〜37、115の各色光の光路を統合する光路統合部117とを備えている。なお、光源装置110は、光源部と光路統合部の一部の構成が異なる他は上記第1実施形態と同じ構成であるため、上記第1実施形態と同じ構成には同一の符号を付し、説明を省略する。
紫色半導体光源115は、発光素子として、紫色の波長帯域の光を発する紫色LED(図示せず)を有している。紫色半導体光源115の具体的な構造は、図4に示す青色半導体光源35と同じである。図24に示すように、紫色半導体光源115は、例えば紫色の波長帯域である395nm〜415nm付近の波長成分を有し、中心波長405±10nm、ピーク波長405nmの紫色光LVを発光する。
光路統合部117は、上記各実施形態の光路統合部41に、紫色光LVをコリメートするコリメータレンズ118と、ロングカット青色光LBlc1と、紫色光LVの光路を統合するダイクロイックミラー119を追加した構成である。光路統合部117は、ロングカット青色光LBlc1、緑色光LG、赤色光LR、および紫色光LVの光路を1つの光路に統合する。光路統合部117で統合されたロングカット青色光LBlc1、緑色光LG、赤色光LR、紫色光LVの混合光の発光スペクトルを図25に示す。この混合光は照明光LW3として利用される。
青色半導体光源35と紫色半導体光源115は、互いの光軸が直交するように配置され、これらの光軸が直交する位置に、ダイクロイックミラー119が設けられている。ダイクロイックミラー119は青色半導体光源35、紫色半導体光源115の光軸に対して45°傾けた姿勢で配置されている。
図26に示すように、ダイクロイックミラー119のダイクロイックフィルタは、約430nm未満の紫色の波長帯域の光を反射し、それ以上の青色、緑色、赤色の波長帯域の光を透過する特性を有している。ダイクロイックミラー119は、コリメータレンズ80を介して入射したロングカット青色光LBlc1を下流側に透過させ、コリメータレンズ118を介して紫色半導体光源38から入射した紫色光LVを反射させる。これによりロングカット青色光LBlc1と紫色光LVの光路が統合される。ダイクロイックミラー119で反射した紫色光LVは、ダイクロイックミラー84が図17に示すように約470nm未満の青色の波長帯域の光を反射する特性を有するので、ダイクロイックミラー84で反射して集光レンズ85に向かう。これにより、ロングカット青色光LBlc1、緑色光LG、赤色光LR、および紫色光LVの全ての光の光路が統合される。
図29において、表層血管の反射率は、450nmを下回る波長帯域で大きく落ち込み、405nm付近において最も落ち込んでいる。反射率が低い波長帯域の光を観察部位に照射すると、血管においては吸収が大きいので、血管とそれ以外の部分とのコントラストに差がある観察画像が得られる。
また、図27に示すように、生体組織の光の散乱特性にも波長依存性があり、短波長になるほど散乱係数μSは大きくなる。散乱は生体組織内への光の深達度に影響する。すなわち、散乱が大きいほど、生体組織の粘膜表層付近で反射される光が多く、中深層に到達する光が少ない。そのため、短波長であるほど深達度は低く、長波長になるほど深達度は高い。
紫色半導体光源115が発する中心波長405±10nmの紫色光LVは、比較的短波長で深達度が低いので、上記各実施形態で観察対象とした表層血管のうちの粘膜表層により近い極表層血管による吸収が大きい。このため紫色光LVは極表層血管強調用の特殊光として用いられる。紫色光LVを用いることにより、ロングカット青色光LBlc1によって強調される表層血管に加えて、極表層血管が高コントラストで描出された観察画像を得ることができる。
図28において、極表層血管を強調観察する場合は、撮像素子56の蓄積動作のタイミングに合わせて、各半導体光源35〜37に加えて紫色半導体光源115が点灯する。各半導体光源35〜37、115が点灯すると、照明光LW1とともに、紫色光LVが追加されて、これらの混合光(LW1+LV)である図25に示す照明光LW3が観察部位に照射される。
照明光LW1に紫色光LVが追加された照明光LW3は、撮像素子56のマイクロカラーフィルタで分光される。B画素は、ロングカット青色光LBlc1に対応する反射光に加えて、紫色光LVに対応する反射光を受光する。G画素、R画素は、上記第1実施形態と同じく、緑色光LGに対応する反射光、赤色光LRに対応する反射光をそれぞれ受光する。撮像素子56は、読み出しタイミングに合わせて、画像信号B、G、Rをフレームレートに従って順次出力する。
この場合における画像信号Bには、照明光LW1を構成するロングカット青色光LBlc1に対応する反射光の成分に加えて、紫色光LVに対応する反射光の成分が含まれているため、表層血管だけでなく極表層血管が高コントラストで描出される。表層血管と同様に、癌等の病変においては、正常組織と比較して極表層血管の密集度が高くなる傾向がある等、極表層血管のパターンに特徴があるため、本実施形態の光源装置110によれば極表層血管が鮮明に描出されるので好ましい。
上記第1実施形態では、プロセッサ装置12からの露出制御信号に基づいて、各LED43〜45に与える駆動電流値を変化させることで各色光の光量制御を行っているが、LEDの発熱の影響や経時劣化の影響により、半導体光源は駆動電流値に対する出力光量が変動する場合がある。そこで、各色光の光量を測定する光量測定センサを設けて、光量測定センサが出力する光量測定信号に基づいて、各色光の光量が目標値に達しているか否かを監視してもよい。
この場合、光源制御部は、光量測定信号と目標とする光量とを比較し、この比較結果に基づいて、光量が目標値となるように、露出制御で設定した各半導体光源35〜37に与える駆動電流値を微調整する。このように各色光の光量を光量測定センサで常に監視し、光量の測定結果に基づき与える駆動電流値を微調整することで、常に目標値に沿うように光量を制御することができる。このため目標とする発光スペクトルの照明光をより安定して得ることができる。
上記各実施形態では、LEDのみで構成された半導体光源を挙げているが、例えば、緑色半導体光源を、紫色から青色の波長帯域の青色励起光を発する青色励起光LED、および青色励起光で励起されて緑色の波長帯域の緑色光を発する緑色蛍光体で構成された蛍光型半導体光源としてもよい。また、緑色半導体光源に代えて、あるいは加えて、赤色半導体光源を、紫色から青色の波長帯域の青色励起光を発する青色励起光LED、および青色励起光で励起されて赤色の波長帯域の赤色蛍光を発する赤色蛍光体で構成してもよい。赤色半導体光源を蛍光型半導体光源で構成する場合は、励起光LEDは紫色から青色の波長帯域の青色励起光を発する青色励起光発光素子に限らず、緑色の波長帯域の緑色励起光を発する緑色励起光発光素子であってもよい。この場合、上記第1実施形態の図4に示すモールド35bのキャビティに、樹脂35cの代わりに蛍光体を封入して蛍光型半導体光源を構成する。
蛍光型半導体光源の励起光発光素子が発する光が、表層血管と中層血管の反射率の交点Pの波長以上の成分を含んでいる場合は、その光成分をカットするフィルタを設けることが好ましい。
また、図4に示したLEDの実装形態は1例であり、他の形態を採用してもよい。例えば、封止樹脂35cの光出射面に発散角を調整するマイクロレンズを設けてもよいし、あるいは表面実装型でなく、マイクロレンズが形成された砲弾型のケースにLEDを収容した形態でもよい。また、緑色半導体光源や赤色半導体光源として蛍光型半導体光源を使用する場合は、蛍光型半導体光源は励起光LEDと蛍光体を一体的に設けたものに限らず、これらを別に設けたものでもよい。この場合には、励起光LEDと蛍光体の間にレンズや光ファイバ等の導光部材を追加して、導光部材を介して励起光LEDの励起光を蛍光体に導光する。
さらに、蛍光型半導体の発光素子として、LEDの代わりにレーザダイオード(LD(Laser Diode))を用いてもよい。LEDやLDの他に有機EL(Electro-Luminescence)素子を用いてもよい。蛍光型半導体光源に限らず、他の半導体光源の発光素子に、LDや有機EL素子を用いてもよい。
光源部の構成としては、上記各実施形態で例示した青色、緑色、赤色の各半導体光源35〜37を有するものに代えて、白色光源と青色半導体光源との組み合わせでもよい。白色光源としては、白色LEDや、青色励起光発光素子と、青色励起光で励起されて緑色から赤色のブロードな波長帯域の蛍光を発する蛍光体とで構成した蛍光型白色半導体光源等を用いてもよいし、半導体光源に限らずキセノンランプやメタルハライドランプを用いてもよい。
また、白色光源と、白色光源が発する白色光の光路上に配置されたフィルタターレットとで光源部を構成してもよい。フィルタターレットは、可視光透過ガラス製の円板の半面にLCF48が形成され、あとの半分は何も設けられず、白色光源が発した白色光をそのまま透過するもので、モータ等により回転される。LCF48は、白色光のうちの表層血管と中層血管の反射率の交点Pの波長以上の光成分をカットしてロングカット青色光を生成する。この場合は白色光源が青色光源を兼ねる。
この場合、撮像素子56の蓄積動作と同期してフィルタターレットが順次回転され、観察部位には照明光として白色光とロングカット青色光が交互に照射される。画像処理部67は、白色光を照射して得られた画像信号とロングカット青色光を照射して得られた画像信号を元に観察画像を生成する。強調処理部70は、例えば、青色光を照射して得られたB画像を、白色光を照射して得られたフルカラー画像に合成することで、表層血管を強調する。
白色光源が青色光源を兼ねる上記の場合は、青色光の光量を独立して制御することが難しいので、上記各実施形態のように青色光源を単独の青色半導体光源とし、青色光の光量を独立して制御可能な構成とするほうがより好ましい。また、青色光源を単独の青色半導体光源とすることで、白色光源が青色光源を兼ねる場合と比べて、青色光LBひいてはロングカット青色光の光量を稼ぐことができ、表層血管の視認性を向上させることができるのでより好ましい。
上記各実施形態における光路統合部の構成は1例であり、種々の変更が可能である。例えばダイクロイックフィルタを形成した光学部材としてダイクロイックミラーを用いているが、代わりにプリズムにダイクロイックフィルタを形成したダイクロイックプリズムを用いてもよい。また、ダイクロイックミラーやダイクロイックプリズムといった、ダイクロイックフィルタを形成した光学部材の代わりに、例えば、各半導体光源に対峙する複数の入射端と、内視鏡のライトガイドの入射端に対峙する1つの出射端を有する分岐型ライトガイドを用いて光路を統合してもよい。分岐型ライトガイドは、光ファイバをバンドル化したファイババンドルであり、一端において光ファイバを所定本数ずつ複数に分割して、入射端を複数に分岐させたものである。この場合には、分岐した各入射端のそれぞれに対応させて各半導体光源を配置する。
ロングカット青色光と緑色光LGの混合光や、緑色光LGと紫色光LVの混合光を観察部位に照射し、緑色光LGベースで観察画像を取得してもよい。
上記各実施形態では、撮像素子56として、B、G、Rのマイクロカラーフィルタによって照明光を色分離するカラー撮像素子を有し、カラー撮像素子によってB、G、Rの画像信号を同時に取得する同時式の内視鏡システムおよびそれに用いられる光源装置を例に説明したが、モノクロ撮像素子を有し、青色、緑色、赤色の各色光を順次照射して、B、G、Rの画像信号を面順次で取得する面順次式の内視鏡システムおよびそれに用いられる光源装置に本発明を適用してもよい。
なお、言うまでもないが、上記各実施形態は、単独で実施することも、複合して実施することも可能である。
上記各実施形態では、光源装置とプロセッサ装置が別体で構成される例で説明したが、2つの装置を一体で構成してもよい。また、本発明は、照明光の観察部位の反射光をイメージガイドで導光するファイバスコープや、撮像素子と超音波トランスデューサが先端部に内蔵された超音波内視鏡を用いた内視鏡システムおよびそれに用いられる光源装置にも適用することができる。
10 内視鏡システム
11 内視鏡
13、90、110 光源装置
35 青色半導体光源
36 緑色半導体光源
37 赤色半導体光源
40、116 光源部
41、117 光路統合部
42、98 光源制御部
43 青色LED
48 ロングカットフィルタ(LCF)
55 ライトガイド
56 撮像素子
95 モード切替部
96 モード切替ボタン
97 ロングカットフィルタ(LCF)移動機構
115 紫色半導体光源

Claims (11)

  1. 複数の半導体光源が発光する光が統合された照明光を用いる内視鏡システムにおいて、
    前記照明光には緑色光と、青色光からロングカットフィルタによって切り出されたロングカット青色光とが含まれ、
    前記緑色光の波長帯域よりも前記青色光の波長帯域が狭く、
    前記緑色光と前記青色光とはスペクトルが連続的であり、且つ、前記ロングカット青色光と前記緑色光とはスペクトルが連続的である内視鏡システム。
  2. 複数の半導体光源が発光する光が統合された照明光を用いる内視鏡システムにおいて、
    前記照明光には緑色光、青色光からロングカットフィルタによって切り出されたロングカット青色光、及び紫色光が含まれ、
    前記緑色光の波長帯域よりも前記青色光の波長帯域が狭く、
    前記緑色光と前記青色光とはスペクトルが連続的であり、且つ、前記ロングカット青色光と前記緑色光とはスペクトルが連続的である内視鏡システム。
  3. 前記青色光は、青色半導体光源が発する請求項1または2記載の内視鏡システム。
  4. 前記青色光のうち、光強度の半値幅以上の波長成分の波長幅が、前記半値幅以下の波長成分の波長幅よりも狭い請求項1ないし3いずれか1項記載の内視鏡システム。
  5. 前記緑色光、及び前記青色光は光路統合部によって統合される請求項1ないし3いずれか1項記載の内視鏡システム。
  6. 前記紫色光は、紫色半導体光源が発する請求項2記載の内視鏡システム。
  7. 前記紫色光のうち光強度の半値幅以上の波長成分の波長幅が、前記半値幅以下の波長成分の波長幅よりも狭い請求項2または6記載の内視鏡システム。
  8. 前記緑色光、前記青色光、及び前記紫色光は光路統合部によって統合される請求項2、6、7いずれか1項記載の内視鏡システム。
  9. 前記照明光には赤色光が含まれる請求項1ないし7いずれか1項記載の内視鏡システム。
  10. 前記ロングカットフィルタは、前記青色光のうち、生体組織の粘膜表層に存在する表層血管と中層に存在する中層血管の反射スペクトルにおいて、前記表層血管と前記中層血管の反射率の交点の波長以上の長波長成分であって中層血管の反射率が表層血管の反射率よりも小さくなる長波長成分の少なくとも一部をカットして、ロングカット青色光を得る請求項1ないし9いずれか1項記載の内視鏡システム。
  11. 前記表層血管と前記中層血管の反射率の交点は、前記表層血管の太さが太くなるにつれて、長波長側にシフトする請求項10記載の内視鏡システム。
JP2018154651A 2013-08-27 2018-08-21 内視鏡システム Active JP6615959B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013175615 2013-08-27
JP2013175615 2013-08-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017117438A Division JP6391772B2 (ja) 2013-08-27 2017-06-15 内視鏡システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019201346A Division JP6827512B2 (ja) 2013-08-27 2019-11-06 内視鏡システム

Publications (2)

Publication Number Publication Date
JP2018171540A JP2018171540A (ja) 2018-11-08
JP6615959B2 true JP6615959B2 (ja) 2019-12-04

Family

ID=52586281

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015534112A Active JP6162809B2 (ja) 2013-08-27 2014-08-05 内視鏡システム
JP2017117438A Active JP6391772B2 (ja) 2013-08-27 2017-06-15 内視鏡システム
JP2018154651A Active JP6615959B2 (ja) 2013-08-27 2018-08-21 内視鏡システム
JP2019201346A Active JP6827512B2 (ja) 2013-08-27 2019-11-06 内視鏡システム

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015534112A Active JP6162809B2 (ja) 2013-08-27 2014-08-05 内視鏡システム
JP2017117438A Active JP6391772B2 (ja) 2013-08-27 2017-06-15 内視鏡システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019201346A Active JP6827512B2 (ja) 2013-08-27 2019-11-06 内視鏡システム

Country Status (2)

Country Link
JP (4) JP6162809B2 (ja)
WO (1) WO2015029709A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3354188A4 (en) * 2015-09-24 2019-04-17 Olympus Corporation ENDOSCOPE DEVICE
US10321816B2 (en) 2016-06-17 2019-06-18 Fujifilm Corporation Light source device and endoscope system
JP7219208B2 (ja) * 2017-03-10 2023-02-07 ソニー・オリンパスメディカルソリューションズ株式会社 内視鏡装置
JP6909856B2 (ja) * 2017-08-23 2021-07-28 富士フイルム株式会社 内視鏡システム
CN112911094A (zh) 2019-12-04 2021-06-04 索尼半导体解决方案公司 电子设备
JP7331720B2 (ja) 2020-02-06 2023-08-23 三菱電機株式会社 半導体装置
JP7159261B2 (ja) * 2020-11-04 2022-10-24 富士フイルム株式会社 内視鏡システム

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3228627B2 (ja) * 1993-03-19 2001-11-12 オリンパス光学工業株式会社 内視鏡用画像処理装置
JP4817632B2 (ja) * 2004-09-27 2011-11-16 京セラ株式会社 Ledファイバ光源装置及びそれを用いた内視鏡
JP4694310B2 (ja) * 2005-08-22 2011-06-08 Hoya株式会社 電子内視鏡、内視鏡光源装置、内視鏡プロセッサ、および内視鏡システム
JP4917822B2 (ja) * 2006-03-30 2012-04-18 富士フイルム株式会社 内視鏡装置
JP2009297290A (ja) * 2008-06-13 2009-12-24 Fujifilm Corp 内視鏡装置およびその画像処理方法
JP5250342B2 (ja) * 2008-08-26 2013-07-31 富士フイルム株式会社 画像処理装置およびプログラム
JP5767775B2 (ja) * 2009-07-06 2015-08-19 富士フイルム株式会社 内視鏡装置
JP5468845B2 (ja) * 2009-08-24 2014-04-09 オリンパスメディカルシステムズ株式会社 医療機器
DE112011100495T5 (de) * 2010-02-10 2013-01-03 Hoya Corporation Elektronisches Endoskopsystem
JP2011200364A (ja) * 2010-03-25 2011-10-13 Hoya Corp 内視鏡装置
JP5405373B2 (ja) * 2010-03-26 2014-02-05 富士フイルム株式会社 電子内視鏡システム
JP5467971B2 (ja) * 2010-08-30 2014-04-09 富士フイルム株式会社 電子内視鏡システム、電子内視鏡システムのプロセッサ装置及び電子内視鏡システムの作動方法
JP2012115372A (ja) * 2010-11-30 2012-06-21 Fujifilm Corp 内視鏡装置
JP2012223376A (ja) * 2011-04-20 2012-11-15 Hoya Corp 照明用発光ダイオードの制御回路、制御方法及びそれを用いた電子内視鏡装置
JP5858752B2 (ja) * 2011-11-28 2016-02-10 富士フイルム株式会社 内視鏡用光源装置
JP5757891B2 (ja) * 2012-01-23 2015-08-05 富士フイルム株式会社 電子内視鏡システム、画像処理装置、画像処理装置の作動方法及び画像処理プログラム
JP5467181B1 (ja) * 2012-03-29 2014-04-09 オリンパスメディカルシステムズ株式会社 内視鏡システム
EP2702928B1 (en) * 2012-04-04 2017-09-20 Olympus Corporation Light source device
JP5695684B2 (ja) * 2013-02-04 2015-04-08 富士フイルム株式会社 電子内視鏡システム
JP5976045B2 (ja) * 2013-08-27 2016-08-23 富士フイルム株式会社 内視鏡用光源装置、およびこれを用いた内視鏡システム
JP6247610B2 (ja) * 2014-07-30 2017-12-13 富士フイルム株式会社 内視鏡システム、内視鏡システムの作動方法、光源装置、光源装置の作動方法

Also Published As

Publication number Publication date
JP2018171540A (ja) 2018-11-08
JP6391772B2 (ja) 2018-09-19
WO2015029709A1 (ja) 2015-03-05
JP2020018914A (ja) 2020-02-06
JP2017185267A (ja) 2017-10-12
JP6827512B2 (ja) 2021-02-10
JPWO2015029709A1 (ja) 2017-03-02
JP6162809B2 (ja) 2017-07-12

Similar Documents

Publication Publication Date Title
JP7011000B2 (ja) 内視鏡用光源装置
JP6615959B2 (ja) 内視鏡システム
JP5997676B2 (ja) 内視鏡用光源装置、およびこれを用いた内視鏡システム
JP5976045B2 (ja) 内視鏡用光源装置、およびこれを用いた内視鏡システム
JP5496852B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
EP2465432B1 (en) Endoscope apparatus
US9456738B2 (en) Endoscopic diagnosis system
JP5159904B2 (ja) 内視鏡診断装置
JP5539840B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
JP5762344B2 (ja) 画像処理装置及び内視鏡システム
JP5997630B2 (ja) 光源装置、及びこれを用いた内視鏡システム
JPWO2011010534A1 (ja) 透過率調整装置、観察装置、及び観察システム
JP5539841B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
JP2016174976A (ja) 内視鏡システム
JP2012081048A (ja) 電子内視鏡システム、電子内視鏡、及び励起光照射方法
JP5525991B2 (ja) 電子内視鏡システム、電子内視鏡システムのプロセッサ装置、及び電子内視鏡システムの作動方法
JP5965028B2 (ja) 内視鏡システム
JP2017170165A (ja) 内視鏡システム
JP2019000148A (ja) 内視鏡システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191106

R150 Certificate of patent or registration of utility model

Ref document number: 6615959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250