JP6608753B2 - PdRu alloy electrode material and manufacturing method thereof - Google Patents

PdRu alloy electrode material and manufacturing method thereof Download PDF

Info

Publication number
JP6608753B2
JP6608753B2 JP2016073227A JP2016073227A JP6608753B2 JP 6608753 B2 JP6608753 B2 JP 6608753B2 JP 2016073227 A JP2016073227 A JP 2016073227A JP 2016073227 A JP2016073227 A JP 2016073227A JP 6608753 B2 JP6608753 B2 JP 6608753B2
Authority
JP
Japan
Prior art keywords
electrode material
pdru alloy
alloy electrode
pdru
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016073227A
Other languages
Japanese (ja)
Other versions
JP2017183242A (en
Inventor
慶樹 渡邉
圭太 宮嶋
宏 北川
康平 草田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Kyoto University
Original Assignee
Noritake Co Ltd
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Kyoto University filed Critical Noritake Co Ltd
Priority to JP2016073227A priority Critical patent/JP6608753B2/en
Publication of JP2017183242A publication Critical patent/JP2017183242A/en
Priority to JP2019193882A priority patent/JP6905231B2/en
Application granted granted Critical
Publication of JP6608753B2 publication Critical patent/JP6608753B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、パラジウムPdおよびルテニウムRuが固溶したPdRu合金の微粒子を導電性担体に固定したPdRu合金電極材料の耐久性を高める技術に関する。   The present invention relates to a technique for enhancing the durability of a PdRu alloy electrode material in which fine particles of a PdRu alloy in which palladium Pd and ruthenium Ru are dissolved are fixed to a conductive carrier.

一般に、電気化学反応用の触媒には、たとえば固体高分子形燃料電池PEFCの電極触媒としての用途が期待されており、そのような用途に好適な電気化学的反応活性の他に、高い耐久性が望まれる。   In general, a catalyst for an electrochemical reaction is expected to be used, for example, as an electrode catalyst for a polymer electrolyte fuel cell PEFC. In addition to an electrochemical reaction activity suitable for such a use, it has high durability. Is desired.

たとえば、従来の固体高分子形燃料電池PEFCの電極触媒において、表面積を拡大するためにナノ粒子化された白金族粒子を導電性担体としてのカーボンに固定して用いることが提案されている。この場合は、ナノ粒子化された電極触媒によって電気化学的反応活性が大幅に高められるが、一般的に徐々に溶出する、粗大化する、酸化するなどして、固体高分子形燃料電池の性能が低下するという問題があった。   For example, in an electrode catalyst of a conventional polymer electrolyte fuel cell PEFC, it has been proposed to use platinum group particles, which are made into nanoparticles, to fix carbon on a conductive carrier in order to increase the surface area. In this case, the electrochemical reaction activity is greatly enhanced by the nanoparticulate electrocatalyst, but generally the performance of the polymer electrolyte fuel cell is gradually eluted, coarsened, oxidized, etc. There was a problem that decreased.

国際公開第2014/045570号International Publication No. 2014/045570

例えば特許文献1に示されるように、PdとRuとが固溶したPdRu合金が、比較的最近知られるようになった。この材料は、触媒として高い活性を示すものであるが、電気化学反応に対する活性の維持特性など電極材料としての耐久特性については未知であった。   For example, as shown in Patent Document 1, a PdRu alloy in which Pd and Ru are dissolved has come to be known relatively recently. Although this material exhibits high activity as a catalyst, durability characteristics as an electrode material such as an activity maintaining characteristic against an electrochemical reaction have not been known.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、高い耐久性を有するPdRu合金電極材料およびその製造方法を提供することにある。   The present invention has been made against the background described above, and an object of the present invention is to provide a PdRu alloy electrode material having high durability and a method for producing the same.

ところで、たとえば、固体高分子形燃料電池において、カソードでは、(1)式に示される酸素還元反応(ORR)が持続され、アノードでは、(2)式に示される水素酸化反応(HOR)が持続される。たとえばアノードに対する燃料供給が不足すると(2)式の反応が持続できず、(3)式の酸素発生反応(OER)反応または(4)式の炭素電気化学的酸化反応が生じて電流が流されるが、(4)式に示される反応によるカーボンの腐食を抑制するために、(3)式に示される反応を発生させることが望まれる。   By the way, for example, in a polymer electrolyte fuel cell, an oxygen reduction reaction (ORR) represented by the formula (1) is sustained at the cathode, and a hydrogen oxidation reaction (HOR) represented by the formula (2) is sustained at the anode. Is done. For example, if the fuel supply to the anode is insufficient, the reaction of the formula (2) cannot be sustained, and the oxygen generation reaction (OER) reaction of the formula (3) or the carbon electrochemical oxidation reaction of the formula (4) is caused to flow. However, in order to suppress the corrosion of carbon due to the reaction represented by the formula (4), it is desired to generate the reaction represented by the formula (3).

1/2O+2H+2e→HO ・・・(1)
→2H+2e ・・・(2)
O→1/2O+2H+2e ・・・(3)
1/2C+HO→1/2CO+2H+2e ・・・(4)
1 / 2O 2 + 2H + + 2e → H 2 O (1)
H 2 → 2H + + 2e (2)
H 2 O → 1 / 2O 2 + 2H + + 2e (3)
1 / 2C + H 2 O → 1 / 2CO 2 + 2H + + 2e (4)

本発明者は、以上の事情を背景として種々検討を重ねた結果、上記(1)式の反応、(2)式の反応、および(3)式の反応は、PdRu合金の微粒子から成る電極材料の電気化学的活性表面積(ECA)に比例し、その電極材料の電気化学的活性表面積(ECA)の維持が耐久性能に関係することに着目し、PdRu合金の微粒子を導電性担体に固定した電極材料において、PdとRuとの割合を所定の範囲内とすることにより、PdRu合金の微粒子から成る電極材料の電気化学的活性表面積(ECA)を維持して電気化学的な表面活性の低下を抑制でき、少なくともPd単体よりは高い触媒活性を得つつ、耐久性を向上させることができることを見出した。すなわち、本発明者は、PdRu合金の微粒子を導電性担体に固定した電極材料は、PdとRuとの割合を所定の範囲内とすることで、少なくともPd単体よりは高い触媒活性を得つつ、高い耐久性を有することを見出した。本発明は、このような知見に基づいて為されたものである。   As a result of various studies conducted by the present inventors against the background described above, the reaction of the above formula (1), the reaction of the formula (2), and the reaction of the formula (3) are electrode materials composed of fine particles of PdRu alloy. Focusing on the fact that the maintenance of the electrochemical active surface area (ECA) of the electrode material is related to the durability performance in proportion to the electrochemically active surface area (ECA) of the electrode, an electrode in which fine particles of PdRu alloy are fixed to a conductive carrier By keeping the ratio of Pd and Ru within the specified range in the material, the electrochemically active surface area (ECA) of the electrode material composed of fine particles of PdRu alloy is maintained, and the decrease in electrochemical surface activity is suppressed. It was found that the durability could be improved while at least obtaining higher catalytic activity than Pd alone. That is, the present inventor has obtained an electrode material in which fine particles of a PdRu alloy are fixed on a conductive carrier, while obtaining a catalytic activity at least higher than that of Pd alone by setting the ratio of Pd and Ru within a predetermined range. It was found to have high durability. The present invention has been made based on such knowledge.

すなわち、第1発明の要旨とするところは、PdとRuが固溶しているPdRu合金PdRu1−xの微粒子を導電性担体の表面に固定したPdRu合金電極材料であって、PdとRuがPdのモル比xで0.81以上且つ0.97以下の範囲内であることにある。すなわち、上記微粒子状のPdRu合金PdRu1−xは、そのモル比xが0.81≦x≦0.97の範囲である組成を有していることにある。 That is, the gist of the first invention is a PdRu alloy electrode material in which fine particles of a PdRu alloy Pd x Ru 1-x in which Pd and Ru are dissolved are fixed on the surface of the conductive carrier, Ru exists in the range of 0.81 or more and 0.97 or less in the molar ratio x of Pd . That is, the particulate PdRu alloy Pd x Ru 1-x has a composition in which the molar ratio x is in the range of 0.81 ≦ x ≦ 0.97 .

第1発明のPdRu合金電極材料は、PdとRuがPdのモル比xで0.81以上且つ0.97以下の範囲内である組成を有しているので、少なくともPd単体よりは高い触媒活性を得つつ、PdRu合金の微粒子の電気化学的な活性表面積の低下を抑制して耐久性を向上させることができる。 Since the PdRu alloy electrode material of the first invention has a composition in which Pd and Ru are in the range of 0.81 to 0.97 in terms of the molar ratio x of Pd, at least higher catalytic activity than that of Pd alone In addition, it is possible to improve the durability by suppressing the decrease in the electrochemical active surface area of the fine particles of the PdRu alloy.

ここで、前記PdRu合金電極材料は、電気化学反応用の触媒としての用途に適し、中でも固体高分子形燃料電池PEFCの触媒(電極)として好適に用いられるものである。このようにすれば、PdRu合金の微粒子の使用中における電気化学的な活性表面積の低下を抑制して活性を維持することができ、耐久性の高い固体高分子形燃料電池PEFCの電極が得られる。たとえば、従来の固体高分子形燃料電池PEFCの電極において、表面積を拡大するためにナノ粒子化された白金族粒子が導電性担体としてのカーボンに固定されて用いられる場合は、電圧変動などによって白金族粒子の溶出や、粒子の粗大化および酸化等により、電気化学的に活性を有する表面積が低下し、固体高分子形燃料電池の性能が低下するという問題が一般的にあるが、前記組成のPdRu合金の微粒子を導電性担体の表面に固定した電極材料が固体高分子形燃料電池PEFCの電極(触媒)として用いられることにより、PdRu合金の微粒子の電気化学的な活性表面積の低下を抑制して活性を維持することができ、固体高分子形燃料電池PEFCの耐久性が向上する。   Here, the PdRu alloy electrode material is suitable for use as a catalyst for electrochemical reaction, and is particularly suitable for use as a catalyst (electrode) of a polymer electrolyte fuel cell PEFC. In this way, it is possible to maintain the activity by suppressing the decrease of the electrochemical active surface area during the use of the fine particles of the PdRu alloy, and to obtain a highly durable polymer electrolyte fuel cell PEFC electrode. . For example, in the electrode of a conventional polymer electrolyte fuel cell PEFC, when platinum group particles that have been nanoparticulated to expand the surface area are fixed to carbon as a conductive support, In general, there is a problem that the surface area of electrochemical activity decreases due to elution of group particles, coarsening and oxidation of particles, and the performance of the polymer electrolyte fuel cell decreases. The electrode material in which the fine particles of PdRu alloy are fixed on the surface of the conductive carrier is used as the electrode (catalyst) of the polymer electrolyte fuel cell PEFC, thereby suppressing the decrease in the electrochemically active surface area of the fine particles of the PdRu alloy. Thus, the activity can be maintained, and the durability of the polymer electrolyte fuel cell PEFC is improved.

また、好適には、前記導電性担体は、カーボン粒子である。このカーボン粒子は、たとえば、グラッシーカーボン、グラファイト、カーボンオニオン、コークス、カーボンシャフト、カーボンナノウオール、カーボンナノコイル、カーボンナノチューブ、カーボンナノツイスト、カーボンナノファイバー、カーボンナノホーン、カーボンナノローブ、カーボンブラックなどのいずれかから成る。   Also preferably, the conductive carrier is carbon particles. The carbon particles may be, for example, glassy carbon, graphite, carbon onion, coke, carbon shaft, carbon nanowall, carbon nanocoil, carbon nanotube, carbon nanotwist, carbon nanofiber, carbon nanohorn, carbon nanolobe, carbon black, etc. Consists of

また、前記PdRu合金の微粒子を導電性担体の表面に固定したPdRu合金電極材料は、好適には、還元剤と導電性粒子とを含む加熱された懸濁液に、パラジウム化合物またはパラジウムイオンとルテニウム化合物またはルテニウムイオンと含む溶液を噴霧することで、PdとRuとを合金化したPdRu合金微粒子を前記導電性微粒子の表面或いは内部に析出させた混合液を得る工程と、前記混合液を所定の温度以上の温度に保持する工程を含む製造工程により製造される。このようにすれば、パラジウムとルテニウムとの合金化と、導電性粒子の表面にその合金の微粒子を導電性担体粒子に析出させる触媒の固定化とが同じ工程内で行なわれるので、工程が簡単となり、製造が容易となる。また、保護剤が無くとも粒子成長を抑えた微粒子を合成でき、さらに、粒子の凝集を少ないままに高濃度で担持可能である。 Further, PdRu alloy electrode material fixed to the surface of the particles a conductive support of said PdRu alloy is preferably a heated suspension containing the reducing agent and conductive particles, and a palladium compound or a palladium ion by spraying a solution containing the Le ruthenium compound or ruthenium ions, obtaining a surface or mixed solution is deposited on the inside of the Pd and PdRu alloy fine particles the conductive fine particles and a Ru alloyed, the mixture Manufactured by a manufacturing process including a process of maintaining the temperature at a predetermined temperature or higher. In this way, the alloying of palladium and ruthenium and the immobilization of the catalyst for depositing the alloy fine particles on the conductive carrier particles on the surface of the conductive particles are performed in the same process, so the process is simple. Thus, the manufacture becomes easy. In addition, fine particles with suppressed particle growth can be synthesized without a protective agent, and furthermore, the particles can be supported at a high concentration with little aggregation of particles.

また、好適には、前記PdRu合金電極材料は、PEFC触媒として用いられるものである。このようにすれば、PdRu合金の微粒子の使用中における電気化学的な活性表面積の低下を抑制して活性を維持することができ、耐久性の高いPEFC触媒が得られる。
また、好適には、前記PdとRuが、Pdのモル比xで0.88から0.95の範囲内である。
また、好適には、前記PdRu合金電極材料は、金属比表面積が10m /g以上であり、3電極式セルを用い、参照極に対する電位差を0Vが3秒、1.0Vが3秒を1電位サイクルとしたときに、1電位サイクル当たりの水素吸着電気量Q des の減少率が2.0×10 −4 以下である領域が、電位サイクル幅で1000サイクル以上存在する。
また、好適には、前記PdRu合金電極材料は、金属比表面積が10m /g以上であり、3電極式セルを用い、参照極に対する電位差を0Vが3秒、1.0Vが3秒を1電位サイクルとしたときに、1電位サイクル当たりの水素吸着電気量Q des の減少率が5.1×10 −6 以下である領域が、電位サイクル幅で1000サイクル以上存在する。
Preferably, the PdRu alloy electrode material is used as a PEFC catalyst. In this way, the activity can be maintained by suppressing the decrease in the electrochemical active surface area during use of the fine particles of the PdRu alloy, and a highly durable PEFC catalyst can be obtained.
Preferably, the Pd and Ru are within a range of 0.88 to 0.95 in terms of a molar ratio x of Pd.
Preferably, the PdRu alloy electrode material has a metal specific surface area of 10 m 2 / g or more, uses a three-electrode cell, and the potential difference with respect to the reference electrode is 0 V for 3 seconds and 1.0 V for 3 seconds. When a potential cycle is used , a region where the rate of decrease in the amount of hydrogen adsorption electricity Q des per potential cycle is 2.0 × 10 −4 or less is 1000 cycles or more in potential cycle width.
Preferably, the PdRu alloy electrode material has a metal specific surface area of 10 m 2 / g or more, uses a three-electrode cell, and the potential difference with respect to the reference electrode is 0 V for 3 seconds and 1.0 V for 3 seconds. When a potential cycle is used , a region where the reduction rate of the hydrogen adsorption electricity quantity Q des per potential cycle is 5.1 × 10 −6 or less exists in the potential cycle width of 1000 cycles or more.

本発明の一実施例のPdRu合金電極材料の製造工程を説明する工程図である。It is process drawing explaining the manufacturing process of the PdRu alloy electrode material of one Example of this invention. 図1の工程により得られた組成比(モル比x)の異なる13種類のPdRu合金電極材料(PdRu1−x/C)についての、粉末X線回折結果(XRDパターン)をそれぞれ示す図である。Shows composition ratios obtained in the step 1 for (molar ratio x) of different 13 types of PdRu alloy electrode material (Pd x Ru 1-x / C), the powder X-ray diffraction results (XRD patterns) respectively It is. 図1の工程により得られた組成比(モル比x)の異なる3種類のPdRuのPdRu合金電極材料(PdRu1−x/C)についての、高角散乱環状暗視野走査透過顕微鏡法による像(HAADF−STEM像)を上段に、エネルギ分散型X線分析装置EDXによる元素マッピング像を中段および下段に示す図である。Images of three types of PdRu PdRu alloy electrode materials (Pd x Ru 1-x / C) having different composition ratios (molar ratio x) obtained by the process of FIG. 1 by high-angle scattering annular dark field scanning transmission microscopy It is a figure which shows the element mapping image by the energy dispersive X-ray-analysis apparatus EDX in a middle stage and a lower stage in (HAADF-STEM image). 図1の工程により得られた組成比(モル比x)の異なる13種類のPdRu合金電極材料(PdRu1−x/C)についての、誘導結合プラズマ発光分光分析装置ICP−AESによる組成分析結果を示す図表である。Composition analysis by inductively coupled plasma emission spectrometer ICP-AES for 13 types of PdRu alloy electrode materials (Pd x Ru 1-x / C) having different composition ratios (molar ratio x) obtained by the process of FIG. It is a chart which shows a result. 図1の工程により得られた組成比(モル比x)の異なる13種類のPdRu合金電極材料(PdRu1−x/C)についての、COパルス法による金属表面積測定装置を用いて測定した金属比表面積を示す図表である。The composition ratio obtained in the step 1 for (molar ratio x) 13 kinds of different of PdRu alloy electrode material (Pd x Ru 1-x / C), was measured using a metal surface area analyzer by CO pulse method It is a graph which shows a metal specific surface area. 図1の工程により得られた組成比(モル比x)の異なる13種類のPdRu合金電極材料(PdRu1−x/C)についてサイクリックボルタンメトリ−を適用して耐久性評価をする際の、電位変動サイクルを示す図である。Durability evaluation is performed by applying cyclic voltammetry to 13 types of PdRu alloy electrode materials (Pd x Ru 1-x / C) having different composition ratios (molar ratio x) obtained by the process of FIG. It is a figure which shows a potential fluctuation cycle at the time. 図6の電位変動サイクルを用いたサイクリックボルタンメトリ−において、前記13種類のPdRu合金電極材料(PdRu1−x/C)についての正規化した水素吸着電気量Qdesをそれぞれ示す図表である。FIG. 6 is a table showing normalized hydrogen adsorption electric energy Q des for the 13 kinds of PdRu alloy electrode materials (Pd x Ru 1-x / C) in cyclic voltammetry using the potential fluctuation cycle of FIG. 6; It is. 図7に示される数値を、サイクル数を示す横軸と正規化した水素吸着電気量Qdesを示す縦軸とから成る二次元座標にプロットしてグラフ化した図である。The numerical values shown in FIG. 7 is a diagram showing a graph of plotted in two-dimensional coordinate composed of the vertical axis indicating the horizontal axis and the normalized hydrogen adsorbed quantity of electricity Q des indicating the number of cycles. 図7において、正規化した水素吸着電気量Qdes=50付近の水素吸着電気量Qdesの低下率を示す指標である50%rateを、前記13種類のPdRu合金電極材料(PdRu1−x/C)について示す図表である。In FIG. 7, the normalized hydrogen adsorption electricity quantity Q des = 50% rate, which is an index indicating the decrease rate of the hydrogen adsorption electricity quantity Q des in the vicinity of 50, is represented by the 13 types of PdRu alloy electrode materials (Pd x Ru 1- It is a graph shown about x / C). 図9に示される50%rateを、前記13種類のPdRu合金電極材料(PdRu1−x/C)についての組成比(モル比x)を示す横軸と50%rateを示す縦軸とから成る二次元座標にプロットしてグラフ化した図である。The horizontal axis indicating the composition ratio (molar ratio x) and the vertical axis indicating 50% rate for the 13 types of PdRu alloy electrode materials (Pd x Ru 1-x / C) shown in FIG. It is the figure plotted and plotted in the two-dimensional coordinate which consists of. 比較例1〜6と、それよりも金属比表面積が大きくされた実施例1〜5との試料についてそれぞれ求められた、COパルス法を用いた金属比表面積(m/g−metal)、図6の印加電位変動サイクル数の各値における正規化した水素吸着電気量normalizedQdes、50%rateを示す図表である。Metal specific surface area (m 2 / g-metal) using the CO pulse method, obtained for samples of Comparative Examples 1 to 6 and Examples 1 to 5 in which the metal specific surface area was larger than that, FIG. 6 is a chart showing normalized hydrogen adsorption electricity quantity normalizedQ des , 50% rate at each value of 6 applied potential fluctuation cycles. 図11に示されたデータのうち、図6の印加電位変動サイクルの増加に伴う、正規化した水素吸着電気量normalizedQdesの変化を、実施例1〜5および比較例1〜6の試料のそれぞれについてグラフ化した図である。Among the data shown in FIG. 11, the change in normalized hydrogen adsorption electricity amount normalizedQ des accompanying the increase in the applied potential fluctuation cycle in FIG. 6 is shown for each of the samples of Examples 1 to 5 and Comparative Examples 1 to 6. FIG. 図11に示されたデータのうち、実施例1〜5および比較例1〜6の試料のモル比xと50%rateとの関係をグラフ化した図である。FIG. 12 is a graph showing the relationship between the molar ratio x of samples of Examples 1 to 5 and Comparative Examples 1 to 6 and 50% rate in the data shown in FIG. 11. モル比xと50%rateとの関係をグラフ化した図において、モル比x=0.80〜1における50%rateの変化を最小自乗法によりフィッティングした結果を示す図である。In the figure which graphed the relationship between molar ratio x and 50% rate, it is a figure which shows the result of fitting the change of 50% rate in molar ratio x = 0.80-1 by the least square method.

以下、本発明の一実施例を図面を参照して詳細に説明する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、PdRu1−x合金微粒子が導電性担体であるカーボン粒子に担持されたPdRu合金電極材料(PdRu1−x/C)の製造工程例を示している。図1において、溶液A調整工程P1では、導電性担体たとえばキャボット社のVulcan XC−72という品名のカーボンブラック230mgを、還元剤として機能するトリエチレングリコール200mlに混合して懸濁液である溶液Aを調整した。また、溶液B工程P2では、K[PdCl]とRuCl・nHOとを水50mlに溶解して溶液Bを調整した。このとき、K[PdCl]とRuCl・nHOとの組成比すなわちPdのモル比xを、PdとRuの合計を1mmolとすることを維持しつつ、変化させて溶液Bを調整することができる。後述の組成分析、金属比表面積測定、耐久性評価に用いる試料を作成する場合には、K[PdCl]とRuCl・nHOとの組成比すなわちPdのモル比xを、0.0、0.10、0.30、0.50、0.70、0.80、0.85、0.88、0.90、0.92、0.95、0.97、1.0とに変化させることにより、13種類のPdRuの組成比の溶液Bを調整した。 FIG. 1 shows an example of a manufacturing process of a PdRu alloy electrode material (Pd x Ru 1-x / C) in which Pd x Ru 1-x alloy fine particles are supported on carbon particles as a conductive carrier. In FIG. 1, in the solution A adjustment step P1, a conductive carrier, for example, 230 mg of carbon black having a product name of Vulcan XC-72 manufactured by Cabot Corporation is mixed with 200 ml of triethylene glycol functioning as a reducing agent, and the solution A is a suspension. Adjusted. In the solution B step P2, K 2 [PdCl 4 ] and RuCl 3 · nH 2 O were dissolved in 50 ml of water to prepare a solution B. At this time, the composition B of K 2 [PdCl 4 ] and RuCl 3 · nH 2 O, that is, the molar ratio x of Pd was changed while maintaining the total of Pd and Ru at 1 mmol, thereby adjusting the solution B. can do. In the case of preparing a sample used for composition analysis, metal specific surface area measurement, and durability evaluation described later, the composition ratio of K 2 [PdCl 4 ] and RuCl 3 · nH 2 O, that is, the molar ratio x of Pd 0, 0.10, 0.30, 0.50, 0.70, 0.80, 0.85, 0.88, 0.90, 0.92, 0.95, 0.97, 1.0 Thus, the solution B having a composition ratio of 13 types of PdRu was prepared.

次いで、加熱工程P3において溶液Aが200℃に加熱された後、噴霧工程P4において、所定の噴霧装置を用いて、加熱された溶液Aに溶液Bを噴霧することでPdとRuとを合金化するとともにPdRu1−x合金微粒子をカーボン粒子の表面或いは内部に析出させた混合液Cを得た。噴霧終了後、混合液Cを保温工程P5において200℃に15分間保持し、冷却工程P6において室温まで放置冷却した。次いで、分離工程P7において、遠心分離機を用いて、固型分であるPdRu合金電極材料(PdRu1−x/C)を混合液から分離し、得られた固型分を乾燥工程P8において60℃の温度で18時間乾燥後、さらに100℃の温度で2時間真空乾燥することにより粉末化し、PdRu合金電極材料(PdRu1−x/C)を得た。加熱工程P3、噴霧工程P4、保温工程P5、冷却工程P6、分離工程P7は、いずれも大気中で行なった。 Next, after the solution A is heated to 200 ° C. in the heating step P3, in the spraying step P4, the solution B is sprayed on the heated solution A by using a predetermined spraying device to alloy Pd and Ru. At the same time, a mixed liquid C was obtained in which Pd x Ru 1-x alloy fine particles were precipitated on the surface or inside of the carbon particles. After spraying, the mixed solution C was kept at 200 ° C. for 15 minutes in the heat retaining step P5, and allowed to cool to room temperature in the cooling step P6. Next, in the separation step P7, the solid component PdRu alloy electrode material (Pd x Ru 1-x / C) is separated from the mixed solution using a centrifuge, and the obtained solid portion is dried in the drying step P8. And dried at 60 ° C. for 18 hours, and further vacuum dried at 100 ° C. for 2 hours to obtain a PdRu alloy electrode material (Pd x Ru 1-x / C). The heating process P3, the spraying process P4, the heat retaining process P5, the cooling process P6, and the separation process P7 were all performed in the atmosphere.

図2は、図1の工程により得られた、PdRu1−xの組成比(モル比)xが相違する13種類のPdRu合金電極材料(PdRu1−x/C)の試料についての、粉末X線回折結果(XRDパターン)を示している。図2におけるピークから、PdおよびRuを含む場合はPdとRuが合金化(固溶)していること、および、パラジウムPdのモル比xが大きくなるにつれて、六方細密充填(hcp)から面心立方充填(fcc)へ変化することが、示されている。 Figure 2 was obtained by the process of FIG. 1, Samples of the composition ratio of Pd x Ru 1-x (molar ratio) x are different 13 types of PdRu alloy electrode material (Pd x Ru 1-x / C) The powder X-ray-diffraction result (XRD pattern) of is shown. From the peak in FIG. 2, when Pd and Ru are included, Pd and Ru are alloyed (solid solution), and from the hexagonal close packing (hcp) to the face center as the molar ratio x of palladium Pd increases. It has been shown to change to cubic filling (fcc).

図3は、図1の工程により得られた13種類のPdRu合金電極材料(PdRu1−x/C)の試料のうち、モル比xが0.1、0.50、0.90である3種類のPdRu合金電極材料(PdRu1−x/C)の試料についての、高角散乱環状暗視野走査透過顕微鏡法による像(HAADF−STEM像)を上段に、エネルギ分散型X線分析装置EDXによる元素マッピング像を中段および下段に示している。図3の上段に示される像は、PdRu合金電極材料(PdRu1−x/C)は、PdRuの組成比に拘わらず粒子形状であることを示し、図3の中段および下段に示される像は、Pd元素およびRu元素は、PdRuの組成比に拘わらずPdRu合金電極材料(PdRu1−x/C)の粒子内に均一に存在していることを示している。 FIG. 3 shows a sample of 13 kinds of PdRu alloy electrode materials (Pd x Ru 1-x / C) obtained by the process of FIG. 1 with a molar ratio x of 0.1, 0.50, and 0.90. Energy dispersive X-ray analysis of a sample of three types of PdRu alloy electrode material (Pd x Ru 1-x / C) by high-angle scattering annular dark-field scanning transmission microscopy (HAADF-STEM image) Element mapping images by the apparatus EDX are shown in the middle and lower stages. The image shown in the upper part of FIG. 3 shows that the PdRu alloy electrode material (Pd x Ru 1-x / C) has a particle shape regardless of the composition ratio of PdRu, and is shown in the middle and lower parts of FIG. The image shows that the Pd element and the Ru element are present uniformly in the particles of the PdRu alloy electrode material (Pd x Ru 1-x / C) regardless of the composition ratio of PdRu.

図4は、図1の工程により得られたPdRuの組成比が相違する13種類のPdRu合金電極材料(PdRu1−x/C)の試料についての、誘導結合プラズマ発光分光分析装置ICP−AES(エスアイアイ・ナノテクノロジー社製 SPS5100)による組成分析結果を示す図表である。なお、ICP−AESに当たっては、試料をアルカリで溶融分解後、溶融物を塩酸、硝酸で溶解し、超純水で定容して検液とした。この結果から得られたPdとRuとのモル比は、PdRu1−yで示されている。図4によれば、ICP−AESによる組成分析結果で示されたPdの組成比(モル比)yは、製造時に調合したPdの組成比(モル比)xと略一致していて、仕込み通りの生成物が得られたことが確認された。 FIG. 4 shows an inductively coupled plasma emission spectrometer ICP- for 13 types of PdRu alloy electrode materials (Pd x Ru 1-x / C) having different PdRu composition ratios obtained by the process of FIG. It is a graph which shows the composition analysis result by AES (SII nanotechnology company make SPS5100). For ICP-AES, the sample was melted and decomposed with alkali, the melt was dissolved with hydrochloric acid and nitric acid, and the volume was adjusted with ultrapure water to prepare a test solution. The molar ratio of Pd and Ru obtained from this result is indicated by Pd y Ru 1-y . According to FIG. 4, the composition ratio (molar ratio) y of Pd indicated by the composition analysis result by ICP-AES is substantially the same as the composition ratio (molar ratio) x of Pd prepared at the time of manufacture, and as prepared. It was confirmed that the product was obtained.

図5は、図1の工程により得られたPdRuの組成比が相違する13種類のPdRu合金電極材料(PdRu1−x/C)の試料についての、COパルス法による金属表面積測定装置(日本ベル社製 BEL−METAL)を用いて測定した結果を示す図表である。この測定結果の計算に必要な触媒組成や担持量として、図4に記載のICP−AESによる組成分析結果の値を用いている。このCOパルス法では、試料を100℃で加熱後、吸着ガスとして10%COガスをパルスで送り熱伝導度検出器TCDの時間積分強度から吸着ガス量G(単位:m/g)が求められ、1個の金属原子に1つのCO分子が吸着すると仮定し、次式(5)により金属表面積S(単位:m/g)が求められた。図5によれば、PdRu合金電極材料(PdRu1−x/C)中の金属比表面積(単位:m/g−metal)および、これらの計算に用いた金属断面積Aが示されている。 FIG. 5 shows a metal surface area measuring apparatus by a CO pulse method for 13 types of PdRu alloy electrode materials (Pd x Ru 1-x / C) obtained by the process of FIG. It is a chart which shows the result measured using Nippon Bell Co., Ltd. BEL-METAL). The value of the composition analysis result by ICP-AES shown in FIG. 4 is used as the catalyst composition and the loading amount necessary for calculation of this measurement result. In this CO pulse method, after heating a sample at 100 ° C., 10% CO gas is pulsed as an adsorbed gas, and the adsorbed gas amount G (unit: m 3 / g) is obtained from the time integrated intensity of the thermal conductivity detector TCD. Assuming that one CO molecule is adsorbed on one metal atom, the metal surface area S (unit: m 2 / g) was obtained by the following equation (5). FIG. 5 shows the specific metal surface area (unit: m 2 / g-metal) in the PdRu alloy electrode material (Pd x Ru 1-x / C) and the metal cross-sectional area A used for these calculations. ing.

S=(G/22.4×10)×N×A×10−18・・・(5)
但し、Nはアボガドロ数、Aは金属断面積である。
S = (G / 22.4 × 10 3 ) × N × A × 10 −18 (5)
However, N is Avogadro's number and A is a metal cross-sectional area.

(耐久性評価)
次に、図1の工程により得られたPdRuの組成比が相違する13種類のPdRu合金電極材料(PdRu1−x/C)についての耐久性評価を、電気化学的活性表面積ECAの低下特性を用いて評価するために、水素吸着電気量Qdesの測定を、以下の測定条件で行なった。
[試料作製条件]
18.5mgのPdRu合金電極材料(PdRu1−x/C)に、19.00mlの2−プロパノールと6.00mlの蒸留水と100μlの5%Nafion(登録商標)溶液(5%ナフィオン分散溶液DE21 CSタイプ、和光純薬工業株式会社)とを加え、30分間超音波分散してインクとした。このインク10μlを直径5mmのグラッシーカーボン電極に塗布し、乾燥させて13種類の試料(電極材料PdRu1−x/C)を得た。
[水素吸着電気量変化特性の測定条件]
・3電極式セル:対極:白金、参照極:可逆水素電極RHE、電解液:0.1M過塩素酸、25℃、 飽和
・電流測定装置:ポテンシオスタット(北斗電工社製 HZ5000)
・測定方法:上記の試料(電極)に、上記3電極式セルを用いて、図6に示すように0Vを3秒、1.0V(vs.RHE)を3秒を1サイクルとするパルス状の電位変動を最大18000サイクルまで印加し、その間の0、100、500、1000、2000、3000、4000、13000、18000サイクル毎にサイクリックボルタンメトリーCVを行なった。なお、アノード電極およびカソード電極の両方における使用を想定して、上記のパルス状の電位変動の幅は、0V〜1.0Vと広範囲に設定されている。また、この電位変動サイクルの印加は、水素吸着電気量Qdesが最大値の50%以下に到達するまで、継続する。上記サイクリックボルタンメトリーCVでは、上記3電極式セルを用い、0V〜1.2の範囲で掃引速度が50mV/sにて電位Eを掃引したとき、得られたサイクリックボルタグラムの0.04V〜0.4V辺りに現れた水素吸着ピークの面積から、水素吸着電気量Qdesを算出した。(6)式から明らかなように、電気化学的活性表面積(ECA)と水素吸着電気量Qdesとは、比例する関係にあるので、正規化することにより同じ値となる。
ECA=Qdes/金属粒子単位表面積当たりの水素吸着電気量 ・・・(6)
(Durability evaluation)
Next, durability evaluation of 13 types of PdRu alloy electrode materials (Pd x Ru 1-x / C) having different PdRu composition ratios obtained by the process of FIG. In order to evaluate using the characteristics, the hydrogen adsorption electricity quantity Q des was measured under the following measurement conditions.
[Sample preparation conditions]
18.5 mg of PdRu alloy electrode material (Pd x Ru 1-x / C), 19.00 ml of 2-propanol, 6.00 ml of distilled water and 100 μl of 5% Nafion® solution (5% Nafion dispersion) Solution DE21 CS type, Wako Pure Chemical Industries, Ltd.) and ultrasonically dispersed for 30 minutes to obtain an ink. 10 μl of this ink was applied to a glassy carbon electrode having a diameter of 5 mm and dried to obtain 13 types of samples (electrode material Pd x Ru 1-x / C).
[Measurement conditions of hydrogen adsorption electricity quantity change characteristics]
3 electrode type cell: counter electrode: platinum, reference electrode: reversible hydrogen electrode RHE, electrolyte: 0.1 M perchloric acid, 25 ° C., N 2 saturation / current measuring device: potentiostat (HZ5000 manufactured by Hokuto Denko)
Measurement method: Using the above-mentioned three-electrode cell for the above-mentioned sample (electrode), as shown in FIG. 6, 0V for 3 seconds and 1.0V (vs. RHE) for 3 seconds for 1 cycle A potential voltammetric CV was applied every 0, 100, 500, 1000, 2000, 3000, 4000, 13000, 18000 cycles. In addition, assuming the use in both the anode electrode and the cathode electrode, the width of the pulse-like potential fluctuation is set in a wide range of 0V to 1.0V. The application of this potential fluctuation cycle is continued until the hydrogen adsorption electricity quantity Q des reaches 50% or less of the maximum value. In the cyclic voltammetry CV, when the potential E is swept at a sweep speed of 50 mV / s in the range of 0 V to 1.2 using the above-mentioned three-electrode cell, 0.04 V of the obtained cyclic voltagram The hydrogen adsorption electricity quantity Q des was calculated from the area of the hydrogen adsorption peak that appeared around 0.4 V. As is clear from the equation (6), the electrochemically active surface area (ECA) and the hydrogen adsorption electricity quantity Q des are in a proportional relationship, and thus are equalized by normalization.
ECA = Q des / hydrogen adsorption electric energy per unit surface area of metal particles (6)

(電気化学的活性表面積の減少特性)
次に、上記のようにして13種類のPdRu合金電極材料(PdRu1−x/C)の試料のそれぞれについて、所定サイクル毎にそれぞれ得られた水素吸着電気量Qdesの最大値を100としたときの相対値すなわち正規化された水素吸着電気量normalizedQdes(無次元)は、図7に示す如くとなる。図8は、サイクル数を示す横軸と正規化した水素吸着電気量normalizedQdesを示す縦軸とから成る二次元座標に、正規化された水素吸着電気量normalizedQdesをプロットしてグラフ化した図である。図8から明らかなように、正規化した水素吸着電気量normalizedQdesは、サイクル数の増加にともなって50付近まで低下した後、その低下速度が著しく低下した。そこで、触媒性能の低下速度を表す指標として、50%rateを次のように定義した。すなわち、図8において、正規化した水素吸着電気量normalizedQdesが50となる直前のデータポイントと直後のデータポイントとを結ぶ直線の傾きの絶対値を、50%rate(単位:サイクル−1)と定義した。この指標50%rateは、正規化した水素吸着電気量normalizedQdesが50付近における低下速度に対応しており、その値が小さいほど、PdRu合金の微粒子の電気化学的な表面活性の低下が小さくて活性が維持され、耐久性が高いことを意味している。
(Reduction characteristics of electrochemically active surface area)
Next, for each of the 13 types of PdRu alloy electrode material (Pd x Ru 1-x / C) samples as described above, the maximum value of the hydrogen adsorption electricity quantity Q des obtained for each predetermined cycle is set to 100. The relative value when normalized, that is, the normalized hydrogen adsorption electricity quantity normalizedQ des (dimensionless) is as shown in FIG. Figure 8 is a two-dimensional coordinate composed of the vertical axis indicating the horizontal axis and the normalized hydrogen adsorbed amount of electricity NormalizedQ des indicating the number of cycles, and graphed by plotting the normalized hydrogen adsorbed amount of electricity NormalizedQ des Figure It is. As apparent from FIG. 8, normalized hydrogen adsorbed amount of electricity NormalizedQ des, after dropped to around 50 with increasing number of cycles, the decrease rate was significantly decreased. Therefore, 50% rate was defined as follows as an index representing the rate of decrease in catalyst performance. That is, in FIG. 8, the absolute value of the slope of the straight line connecting the data point immediately before the normalized hydrogen adsorption electricity quantity normalizedQ des becomes 50 and the data point immediately after is 50% rate (unit: cycle −1 ). Defined. This index 50% rate corresponds to the rate of decrease in the normalized hydrogen adsorption electricity quantity normalized Q des near 50, and the smaller the value, the smaller the decrease in the electrochemical surface activity of the fine particles of the PdRu alloy. It means that the activity is maintained and the durability is high.

図9は、正規化したnormalized水素吸着電気量Qdes=50付近の水素吸着電気量normalizedQdesの低下率を示す指標である50%rateを、13種類のPdRu合金電極材料(PdRu1−x/C)の試料について示す図表である。図10は、図9に示される50%rateを、前記13種類のPdRu合金電極材料(PdRu1−x/C)の試料についての組成比(モル比x)を示す横軸と50%rateを示す縦軸とから成る二次元座標にプロットしてグラフ化した図である。 9, the 50% rate is an index showing the decrease rate of the hydrogen adsorption electric quantity NormalizedQ des nearby normalized hydrogen adsorption quantity of electricity Q des = 50 normalized, 13 kinds of PdRu alloy electrode material (Pd x Ru 1- It is a graph shown about the sample of x / C). FIG. 10 shows the 50% rate shown in FIG. 9 with the horizontal axis showing the composition ratio (molar ratio x) of the 13 types of PdRu alloy electrode materials (Pd x Ru 1-x / C) and 50%. It is the figure plotted and plotted on the two-dimensional coordinate which consists of the vertical axis | shaft which shows rate.

上記図9および図10に示されるように、モル比xが0.85≦x≦0.95の範囲内である場合には、水素吸着電気量normalizedQdesの低下率を示す指標値である50%rateの値が著しく低く、PdRu合金電極材料(PdRu1−x/C)の耐久性が高い。また、その事実は、さらに続けて電位サイクルを印加したとしても、高い電気化学的活性表面積ECAを保つことを示唆している。 As shown in FIG. 9 and FIG. 10, when the molar ratio x is in the range of 0.85 ≦ x ≦ 0.95, it is an index value indicating the rate of decrease in the hydrogen adsorbed electricity amount normalized Q des 50 The value of% rate is remarkably low, and the durability of the PdRu alloy electrode material (Pd x Ru 1-x / C) is high. The fact also suggests that a high electrochemically active surface area ECA is maintained even when a potential cycle is subsequently applied.

(金属比表面積を考慮した耐久性評価)
以上の事実は、モル比xが0.85≦x≦0.95の範囲内である場合には、正規化された水素吸着電気量normalizedQdesの耐久性が著しく高いことを示唆しているが、これらのデータには、モル比(組成比)x以外の耐久性に影響する因子である金属比表面積が考慮されねばならない。金属比表面積が小さい試料ほど耐久性が高くなる傾向を示すことは当然であるから、金属比表面積が小さい組成との比較において、上記モル比xの範囲0.85≦x≦0.95の優位性が示される必要がある。
(Durability evaluation considering specific metal surface area)
The above facts suggest that when the molar ratio x is in the range of 0.85 ≦ x ≦ 0.95, the durability of the normalized hydrogen adsorption electricity quantity normalizedQ des is remarkably high. In these data, the specific metal surface area, which is a factor affecting the durability other than the molar ratio (composition ratio) x, must be considered. Since it is natural that a sample having a smaller metal specific surface area tends to have higher durability, in comparison with a composition having a smaller metal specific surface area, the above range of molar ratio x is in the range of 0.85 ≦ x ≦ 0.95. Gender needs to be shown.

そこで、モル比x=0の試料に窒素雰囲気中、250℃、2時間という熱処理を施すことで金属比表面積を低下させた試料を作成して比較例1とした。また、元々金属比表面積が小さい、モル比xが0.30、0.50、0.70、0.80、1.0の試料を比較例2、3、4、5、6とし、また、モル比xが0.85、0.88、0.90、0.92、0.95の試料を実施例1、2、3、4、5とした。これにより、実施例1〜5の金属比表面積の値は、比較例1〜6の金属比表面積以上の値とされた。そして、それら実施例1〜5および比較例1〜6の試料について、前述と同様の条件で、COパルス法を用いた金属比表面積(m/g−metal)、各サイクル数における正規化した水素吸着電気量normalizedQdes、50%rateをそれぞれ求めた。 Therefore, a sample with a reduced metal specific surface area was prepared by subjecting a sample with a molar ratio x = 0 to a heat treatment at 250 ° C. for 2 hours in a nitrogen atmosphere to obtain Comparative Example 1. Samples having a originally low metal specific surface area and a molar ratio x of 0.30, 0.50, 0.70, 0.80, 1.0 are referred to as Comparative Examples 2, 3, 4, 5, 6, Samples having a molar ratio x of 0.85, 0.88, 0.90, 0.92, and 0.95 were designated as Examples 1, 2, 3, 4, and 5, respectively. Thereby, the value of the metal specific surface area of Examples 1-5 was made into the value more than the metal specific surface area of Comparative Examples 1-6. And about the sample of those Examples 1-5 and Comparative Examples 1-6, it normalized in the metal specific surface area (m < 2 > / g-metal) and each cycle number using the CO pulse method on the same conditions as the above-mentioned. The hydrogen adsorption electricity quantity normalized Q des and 50% rate were determined, respectively.

図11は、上記実施例1〜5および比較例1〜6の試料についてそれぞれ求められた、COパルス法を用いた金属比表面積(m/g−metal)と、図6の印加電位変動サイクル数の各値における正規化した水素吸着電気量normalizedQdesと、50%rateを示す図表である。図12は、図11に示されたデータのうち、図6の印加電位変動サイクルの増加に伴う、正規化した水素吸着電気量normalizedQdesの変化を、実施例1〜5および比較例1〜6の試料のそれぞれについてグラフ化した図である。図13は、図11に示されたデータのうち、実施例1〜5および比較例1〜6の試料のモル比xと50%rateとの関係をグラフ化した図である。 FIG. 11 shows the specific metal surface area (m 2 / g-metal) obtained using the CO pulse method and the applied potential fluctuation cycle shown in FIG. 6 obtained for the samples of Examples 1 to 5 and Comparative Examples 1 to 6, respectively. It is a chart which shows normalized hydrogen adsorption electric energy normalizedQ des in each value of number, and 50% rate. FIG. 12 shows changes in normalized hydrogen adsorption electricity quantity normalizedQ des accompanying the increase in the applied potential fluctuation cycle of FIG. 6 among the data shown in FIG. 11, in Examples 1-5 and Comparative Examples 1-6. It is the figure graphed about each of these samples. FIG. 13 is a graph of the relationship between the molar ratio x of samples of Examples 1 to 5 and Comparative Examples 1 to 6 and 50% rate in the data shown in FIG.

図11、図12、図13に示すように、Pdのモル比xが0.85≦x≦0.95の範囲内である実施例1〜5は、比較例1〜6よりも、金属比表面積が大きいすなわち小径粒にも拘わらず、耐久性が著しく高い。すなわち、モル比xが0.85≦x≦0.95の範囲内である実施例1〜5の耐久性の高さは、その組成すなわちPdのモル比xによることが明確に示されている。   As shown in FIGS. 11, 12, and 13, Examples 1 to 5 in which the molar ratio x of Pd is in the range of 0.85 ≦ x ≦ 0.95 are higher than the comparative examples 1 to 6 Despite its large surface area, that is, small-diameter grains, the durability is remarkably high. That is, it is clearly shown that the high durability of Examples 1 to 5 in which the molar ratio x is in the range of 0.85 ≦ x ≦ 0.95 depends on the composition, that is, the molar ratio x of Pd. .

なお、図11に示されていないが図4、図5、図7、図9のx=0.97(実施例6)は、50%rateにおいて比較例6と同様であったが、比表面積が比較例6よりもかなり大きいため(図5)、組成の影響による実質的な耐久性は高いと言える。   Although not shown in FIG. 11, x = 0.97 (Example 6) in FIGS. 4, 5, 7, and 9 was the same as that in Comparative Example 6 at 50% rate. Is considerably larger than Comparative Example 6 (FIG. 5), it can be said that the substantial durability due to the influence of the composition is high.

ここで、x=0.8〜1の50%rateを通る曲線補間式の上で50%rateがPdよりも小さくなる領域を示すために、50%rateの組成比xに対する変化、すなわち50%rateの組成比xに対する関係を最小自乗法を用いて二次関数としてフィッティングした。図14はその結果を示し、その二次関数(回帰式)は次式(7)にて表される。図14において、回帰式の決定係数Rは、0.9522である。決定係数の値が1に近いことから,良好なフィッティングが得られたことがわかる。また、図14の曲線で示される回帰式から、0.81≦x<1の範囲において、50%rateがx=1の場合(比較例6)よりも小さくなることが推定される。つまり、0.81≦x<1の範囲において耐久性が高いと推定される。 Here, in order to show a region where 50% rate is smaller than Pd on the curve interpolation formula passing through 50% rate of x = 0.8 to 1, a change with respect to the composition ratio x of 50% rate, that is, 50% The relation of the rate to the composition ratio x was fitted as a quadratic function using the method of least squares. FIG. 14 shows the result, and its quadratic function (regression equation) is expressed by the following equation (7). In FIG. 14, the regression coefficient determination coefficient R 2 is 0.9522. Since the coefficient of determination is close to 1, it can be seen that a good fitting was obtained. Further, from the regression equation shown by the curve of FIG. 14, it is estimated that 50% rate is smaller than that in the case of x = 1 (Comparative Example 6) in the range of 0.81 ≦ x <1. That is, it is estimated that durability is high in the range of 0.81 ≦ x <1.

50%rate=1.8543x−3.3526x+1.5155 ・・・(7) 50% rate = 1.8543x 2 −3.3526x + 1.5155 (7)

上述のように、本実施例のPdRu合金電極材料(PdRu1−x/C)によれば、Pdのモル比xが0.81≦x<1の範囲内であるので、PdRu合金の微粒子の電気化学的な表面活性の低下を抑制して活性を維持することができ、高い耐久性が得られる。 As described above, according to the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example, the Pd molar ratio x is in the range of 0.81 ≦ x <1, The activity can be maintained by suppressing the decrease in electrochemical surface activity of the fine particles, and high durability can be obtained.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)は、固体高分子形燃料電池PEFCの電極(触媒)として用いられる場合には、耐久性の高い固体高分子形燃料電池PEFCの電極が得られる。 In addition, when the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example is used as an electrode (catalyst) of a polymer electrolyte fuel cell PEFC, it is a highly durable polymer electrolyte fuel. An electrode of the battery PEFC is obtained.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)の導電性担体は、還元剤と、導電性担体粒子と、パラジウム化合物またはパラジウムイオンと、ルテニウム化合物またはルテニウムイオンと含む溶液を、所定の温度以上の温度に保持する保温工程P5を含む製造工程により製造される。このようにすれば、パラジウムとルテニウムとの合金化と、導電性粒子の表面にその合金の微粒子を導電性担体粒子に析出させる触媒の固定化とが同じ噴霧工程P4内で行なわれるので、工程が簡単となり、製造が容易となる。また、保護剤が無くとも粒子成長を抑えた微粒子を合成でき、さらに、粒子の凝集を少ないままに高濃度に坦持可能である。 Further, the conductive carrier of the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example includes a reducing agent, conductive carrier particles, a palladium compound or palladium ion, and a ruthenium compound or ruthenium ion. The solution is manufactured by a manufacturing process including a heat retaining process P5 for holding the solution at a temperature equal to or higher than a predetermined temperature. In this way, the alloying of palladium and ruthenium and the immobilization of the catalyst for depositing fine particles of the alloy on the conductive carrier particles on the surface of the conductive particles are performed in the same spraying step P4. Becomes simple and easy to manufacture. In addition, fine particles with suppressed particle growth can be synthesized without a protective agent, and further, the particles can be supported at a high concentration with little aggregation.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)は、高い耐久性を示す。 Further, the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example shows high durability.

また、本実施例のPdRu合金電極材料(PdRu1−x/C)の導電性担体は、PdRu合金の微粒子が導電性担体であるカーボン粒子に直接析出させられることにより固定されているので、PdRu合金の微粒子がカーボン粒子に高濃度で担持され、同量であれば電極触媒性能が高められ、同じ性能であれば粉体を少なくできて、電極の電気抵抗を低くできる利点がある。 In addition, since the conductive support of the PdRu alloy electrode material (Pd x Ru 1-x / C) of this example is fixed by directly depositing the fine particles of the PdRu alloy on the carbon particles as the conductive support, The fine particles of the PdRu alloy are supported on the carbon particles at a high concentration, and if the amount is the same, the electrode catalyst performance is enhanced, and if the performance is the same, the powder can be reduced and the electrical resistance of the electrode can be lowered.

なお、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

P4:噴霧工程
P5:保温工程(工程)
P4: Spraying process P5: Thermal insulation process (process)

Claims (7)

PdとRuが固溶しているPdRu合金PdRu1−xの微粒子を導電性担体の表面に固定したPdRu合金電極材料であって、
前記PdとRuが、Pdのモル比xで0.81≦x≦0.97の範囲内である
ことを特徴とするPdRu合金電極材料。
A PdRu alloy electrode material in which fine particles of a PdRu alloy Pd x Ru 1-x in which Pd and Ru are dissolved are fixed to the surface of a conductive carrier,
The PdRu alloy electrode material , wherein the Pd and Ru are in a range of 0.81 ≦ x ≦ 0.97 in terms of a molar ratio x of Pd .
前記PdとRuが、Pdのモル比xで0.88から0.95の範囲内である
ことを特徴とする請求項1のPdRu合金電極材料。
The PdRu alloy electrode material according to claim 1, wherein the Pd and Ru are in a range of 0.88 to 0.95 in terms of a molar ratio x of Pd .
金属比表面積が10m  Metal specific surface area is 10m 2 /g以上であり、/ G or more,
3電極式セルを用い、参照極に対する電位差を0Vが3秒、1.0Vが3秒を1電位サイクルとしたときに、1電位サイクル当たりの水素吸着電気量Q  Using a three-electrode type cell, when the potential difference with respect to the reference electrode is 0 V for 3 seconds and 1.0 V for 3 seconds for one potential cycle, the amount of hydrogen adsorption electricity per Q cycle Q desdes の減少率が2.0×10Decrease rate of 2.0 × 10 −4-4 以下である領域が、電位サイクル幅で1000サイクル以上存在するThe following areas exist at 1000 cycles or more in potential cycle width
ことを特徴とする請求項1のPdRu合金電極材料。  The PdRu alloy electrode material according to claim 1.
金属比表面積が10m  Metal specific surface area is 10m 2 /g以上であり、/ G or more,
3電極式セルを用い、参照極に対する電位差を0Vが3秒、1.0Vが3秒を1電位サイクルとしたときに、1電位サイクル当たりの水素吸着電気量Q  Using a three-electrode type cell, when the potential difference with respect to the reference electrode is 0 V for 3 seconds and 1.0 V for 3 seconds for one potential cycle, the amount of hydrogen adsorption electricity per Q cycle Q desdes の減少率が5.1×10Reduction rate of 5.1 × 10 −6-6 以下である領域が、電位サイクル幅で1000サイクル以上存在するThe following areas exist at 1000 cycles or more in potential cycle width
ことを特徴とする請求項2のPdRu合金電極材料。  The PdRu alloy electrode material according to claim 2.
前記PdRu合金電極材料は、固体高分子形燃料電池PEFCの触媒電極として用いられる
ことを特徴とする請求項1から4のいずれか1のPdRu合金電極材料。
The PdRu alloy electrode material according to any one of claims 1 to 4, wherein the PdRu alloy electrode material is used as a catalyst electrode of a polymer electrolyte fuel cell PEFC.
前記導電性担体は、カーボン粒子である
ことを特徴とする請求項1から5のいずれか1のPdRu合金電極材料。
The conductive support, any one of PdRu alloy electrode material of claims 1 to 5, characterized in that the carbon particles.
請求項1からのいずれか1に記載されたPdRu合金の微粒子を導電性担体に固定したPdRu合金電極材料の製造方法であって、
還元剤と導電性粒子とを含む加熱された懸濁液に、パラジウム化合物またはパラジウムイオンとルテニウム化合物またはルテニウムイオンと含む溶液を噴霧することで、PdとRuとを合金化したPdRu合金微粒子を前記導電性微粒子の表面或いは内部に析出させた混合液を得る工程と、
前記混合液を所定の温度以上の温度に保持する工程とを、含む
ことを特徴とするPdRu合金電極材料の製造方法。
A method for producing a PdRu alloy electrode material in which the fine particles of the PdRu alloy according to any one of claims 1 to 6 are fixed to a conductive carrier,
The heated suspension containing the reducing agent and conductive particles, by spraying a solution containing a palladium compound or a palladium ion and Le ruthenium compound or ruthenium ion, PdRu alloy microparticles alloying Pd and Ru A step of obtaining a mixed liquid in which the conductive fine particles are deposited on the surface or inside of the conductive fine particles;
Holding the mixed liquid at a temperature equal to or higher than a predetermined temperature. A method for producing a PdRu alloy electrode material , comprising:
JP2016073227A 2016-03-31 2016-03-31 PdRu alloy electrode material and manufacturing method thereof Active JP6608753B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016073227A JP6608753B2 (en) 2016-03-31 2016-03-31 PdRu alloy electrode material and manufacturing method thereof
JP2019193882A JP6905231B2 (en) 2016-03-31 2019-10-24 PdRu alloy material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016073227A JP6608753B2 (en) 2016-03-31 2016-03-31 PdRu alloy electrode material and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019193882A Division JP6905231B2 (en) 2016-03-31 2019-10-24 PdRu alloy material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2017183242A JP2017183242A (en) 2017-10-05
JP6608753B2 true JP6608753B2 (en) 2019-11-20

Family

ID=60008573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016073227A Active JP6608753B2 (en) 2016-03-31 2016-03-31 PdRu alloy electrode material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6608753B2 (en)

Families Citing this family (251)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10643904B2 (en) 2016-11-01 2020-05-05 Asm Ip Holdings B.V. Methods for forming a semiconductor device and related semiconductor device structures
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
USD876504S1 (en) 2017-04-03 2020-02-25 Asm Ip Holding B.V. Exhaust flow control ring for semiconductor deposition apparatus
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
WO2019103613A1 (en) 2017-11-27 2019-05-31 Asm Ip Holding B.V. A storage device for storing wafer cassettes for use with a batch furnace
KR102633318B1 (en) 2017-11-27 2024-02-05 에이에스엠 아이피 홀딩 비.브이. Devices with clean compact zones
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TWI799494B (en) 2018-01-19 2023-04-21 荷蘭商Asm 智慧財產控股公司 Deposition method
CN111630203A (en) 2018-01-19 2020-09-04 Asm Ip私人控股有限公司 Method for depositing gap filling layer by plasma auxiliary deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
CN116732497A (en) 2018-02-14 2023-09-12 Asm Ip私人控股有限公司 Method for depositing ruthenium-containing films on substrates by cyclical deposition processes
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
KR20190128558A (en) 2018-05-08 2019-11-18 에이에스엠 아이피 홀딩 비.브이. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TWI816783B (en) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
TW202013553A (en) 2018-06-04 2020-04-01 荷蘭商Asm 智慧財產控股公司 Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
CN112292478A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
CN112292477A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
TW202044325A (en) 2019-02-20 2020-12-01 荷蘭商Asm Ip私人控股有限公司 Method of filling a recess formed within a surface of a substrate, semiconductor structure formed according to the method, and semiconductor processing apparatus
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
KR20200102357A (en) 2019-02-20 2020-08-31 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for plug fill deposition in 3-d nand applications
TW202104632A (en) 2019-02-20 2021-02-01 荷蘭商Asm Ip私人控股有限公司 Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
TW202100794A (en) 2019-02-22 2021-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus and method for processing substrate
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
KR20200108248A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. STRUCTURE INCLUDING SiOCN LAYER AND METHOD OF FORMING SAME
US11192091B2 (en) * 2019-03-22 2021-12-07 The Hong Kong University Of Science And Technology Palladium-ruthenium alloys for electrolyzers
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
KR20200123380A (en) 2019-04-19 2020-10-29 에이에스엠 아이피 홀딩 비.브이. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
CN112309843A (en) 2019-07-29 2021-02-02 Asm Ip私人控股有限公司 Selective deposition method for achieving high dopant doping
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
KR20210018759A (en) 2019-08-05 2021-02-18 에이에스엠 아이피 홀딩 비.브이. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
KR20210043460A (en) 2019-10-10 2021-04-21 에이에스엠 아이피 홀딩 비.브이. Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210065848A (en) 2019-11-26 2021-06-04 에이에스엠 아이피 홀딩 비.브이. Methods for selectivley forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
KR20210080214A (en) 2019-12-19 2021-06-30 에이에스엠 아이피 홀딩 비.브이. Methods for filling a gap feature on a substrate and related semiconductor structures
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
KR20210116249A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
KR20210132605A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Vertical batch furnace assembly comprising a cooling gas supply
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
KR20210143653A (en) 2020-05-19 2021-11-29 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
TW202219628A (en) 2020-07-17 2022-05-16 荷蘭商Asm Ip私人控股有限公司 Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
TW202212623A (en) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 Method of forming metal silicon oxide layer and metal silicon oxynitride layer, semiconductor structure, and system
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
TW202235675A (en) 2020-11-30 2022-09-16 荷蘭商Asm Ip私人控股有限公司 Injector, and substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1409260A (en) * 1971-12-29 1975-10-08 Exxon Research Engineering Co Fuel cell having non-alloyed palladium-ruthenium anode catalyst
US4460660A (en) * 1982-12-22 1984-07-17 Rca Corporation Negative hydrogen electrode comprising an alloy palladium and rutherium
GB0614909D0 (en) * 2006-07-27 2006-09-06 Johnson Matthey Plc Catalyst
US9452417B2 (en) * 2012-09-18 2016-09-27 Japan Science And Technology Agency Catalyst using Pd-Ru solid solution alloy fine particles
EP3192596A4 (en) * 2014-09-09 2018-04-11 Kyoto University Alloy microparticles and method for producing same, alloy microparticle cluster, catalyst, and method for producing same
JP6541373B2 (en) * 2015-02-28 2019-07-10 株式会社ノリタケカンパニーリミテド PdRu alloy electrode material and method of manufacturing the same

Also Published As

Publication number Publication date
JP2017183242A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6608753B2 (en) PdRu alloy electrode material and manufacturing method thereof
Ma et al. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells
Han et al. Balancing the galvanic replacement and reduction kinetics for the general formation of bimetallic CuM (M= Ru, Rh, Pd, Os, Ir, and Pt) hollow nanostructures
JP6541373B2 (en) PdRu alloy electrode material and method of manufacturing the same
Li et al. Self-supported Pt nanoclusters via galvanic replacement from Cu 2 O nanocubes as efficient electrocatalysts
JP6352955B2 (en) Fuel cell electrode catalyst and method for producing fuel cell electrode catalyst
US7879752B2 (en) Electrocatalyst
Yang et al. Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation
Eckardt et al. Oxygen reduction reaction activity and long-term stability of platinum nanoparticles supported on titania and titania-carbon nanotube composites
JP2008515149A (en) Carbon-supported catalysts with reduced water retention
Jukk et al. Loading effect of carbon-supported platinum nanocubes on oxygen electroreduction
JP2008041253A (en) Electrocatalyst and power generation system using the same
US20210008535A1 (en) Method for producing catalysts with nanoparticles of platinum and its alloys with metals
Guo et al. Effect of component distribution and nanoporosity in CuPt nanotubes on electrocatalysis of the oxygen reduction reaction
JPWO2013035698A1 (en) Highly active and stable catalyst particles, electrode catalyst using the same, and method for producing the same
Souza et al. Support modification in Pt/C electrocatalysts for durability increase: A degradation study assisted by identical location transmission electron microscopy
US20110195347A1 (en) Process for producing a catalyst and catalyst
KR20200001064A (en) The platinum-transition metal composite supported on carbon and method for preparing the same
Polani et al. Size dependent oxygen reduction and methanol oxidation reactions: catalytic activities of PtCu octahedral nanocrystals
JP2008210572A (en) Electrocatalyst and power generation system using it
Han et al. Highly stable and active Pt electrocatalysts on TiO2-Co3O4-C composite support for polymer exchange membrane fuel cells
Zhang et al. Zeolitic imidazolate framework derived cobalt oxide anchored bacterial cellulose: a good template with improved H2O adsorption ability and its enhanced hydrogen evolution performance
Maniwan et al. Activity and stability of PtxCr/C catalyst for oxygen reduction reaction: Effect of the Pt: Cr ratio and heat treatment atmosphere
JP2013235812A (en) Electrode catalyst for fuel cell and method for producing the same
JP6141547B2 (en) Catalyst support, method for producing the same, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191024

R150 Certificate of patent or registration of utility model

Ref document number: 6608753

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250