JP2008210572A - Electrocatalyst and power generation system using it - Google Patents
Electrocatalyst and power generation system using it Download PDFInfo
- Publication number
- JP2008210572A JP2008210572A JP2007044308A JP2007044308A JP2008210572A JP 2008210572 A JP2008210572 A JP 2008210572A JP 2007044308 A JP2007044308 A JP 2007044308A JP 2007044308 A JP2007044308 A JP 2007044308A JP 2008210572 A JP2008210572 A JP 2008210572A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- electrode catalyst
- activity
- current value
- catalyst component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、電極触媒に関し、より詳しくは、高活性で耐久性に優れる電極触媒に関する。 The present invention relates to an electrode catalyst, and more particularly to an electrode catalyst having high activity and excellent durability.
近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、電気自動車用電源、定置型電源として応用すべく種々の燃料電池の開発が試みられている。燃料電池の構造としては、例えば、固体高分子形燃料電池では、フィルム状の固体高分子膜からなる電解質層を用い、一般的には、膜−電極接合体(以下、「MEA」とも称する。)をセパレータを介して積層した構造を内蔵している。 In recent years, in response to social demands and trends against the background of energy and environmental problems, various fuel cells have been developed for application as power sources for electric vehicles and stationary power sources. As a structure of the fuel cell, for example, in a polymer electrolyte fuel cell, an electrolyte layer made of a film-like solid polymer membrane is used, and is generally also referred to as a membrane-electrode assembly (hereinafter referred to as “MEA”). ) Are stacked via a separator.
MEAは、電解質層がカソードとアノードとにより挟持されてなり、したがって、電極触媒層は少なくとも片面が電解質層に接する構造となっている。 In the MEA, the electrolyte layer is sandwiched between the cathode and the anode, and therefore, the electrode catalyst layer has a structure in which at least one surface is in contact with the electrolyte layer.
従来、カソードおよびアノードともに白金または白金合金等の触媒金属を微細化して、カーボンブラック等の比表面積の大きい導電性担体に高分散担持させた電極触媒が用いられてきた。かような電極触媒は、触媒金属表面の電極反応面積が大きいため、触媒活性を高くすることができる。また、高価な白金の使用量を減少させることもできる。 Conventionally, an electrode catalyst in which a catalytic metal such as platinum or a platinum alloy is refined and supported on a conductive carrier having a large specific surface area such as carbon black in a highly dispersed manner has been used for both the cathode and the anode. Since such an electrode catalyst has a large electrode reaction area on the surface of the catalyst metal, the catalytic activity can be increased. In addition, the amount of expensive platinum used can be reduced.
しかし、導電性担体として炭素を用いた場合、電極が貴電位環境(約0.8V以上)となると、担体の電気化学的な酸化反応が起こり担体の腐食反応が進行するという問題があった。かような担体の腐食反応は、下記化学式に示すように、水を酸化剤として二酸化炭素を生成する反応である。 However, when carbon is used as the conductive carrier, there is a problem that when the electrode is in a noble potential environment (about 0.8 V or more), an electrochemical oxidation reaction of the carrier occurs and the corrosion reaction of the carrier proceeds. Such a corrosion reaction of the carrier is a reaction for generating carbon dioxide using water as an oxidizing agent, as shown in the following chemical formula.
これにより、担体が消失し、担体表面に担持されていた触媒金属の遊離・凝集を招く。触媒金属の遊離・凝集は、触媒金属の電極反応面積を低下させ、結果として、触媒活性の低下を招き、電池性能を低下させる要因となる。 As a result, the carrier disappears, and the catalyst metal supported on the surface of the carrier is liberated and agglomerated. The liberation / aggregation of the catalyst metal decreases the electrode reaction area of the catalyst metal, resulting in a decrease in catalyst activity and a factor in reducing battery performance.
一方、アノードにおいて燃料不足が起こった場合、所望の電流密度を保つために燃料の酸化反応に代わって水の電気分解や担体の酸化といった反応が進行する。したがって、カソードの場合と同様にアノードにおいても担体が腐食・消失し、触媒金属の遊離・凝集が起こる。 On the other hand, when fuel shortage occurs at the anode, reactions such as electrolysis of water and oxidation of the carrier proceed in place of the fuel oxidation reaction in order to maintain a desired current density. Therefore, as in the case of the cathode, the support also corrodes and disappears in the anode, and the catalyst metal is liberated and agglomerated.
かような触媒活性の低下は、触媒として白金を用いた場合、白金が非常に高価な故、顕著な問題となる。 Such a decrease in catalytic activity becomes a significant problem when platinum is used as a catalyst because platinum is very expensive.
上記触媒活性の低下を防止して電極触媒の寿命特性を向上させる(耐久性を向上させる)ために、電極触媒をあらかじめ高温で熱処理する方法が従来採用されている。例えば、特許文献1では、サイクリックボルタンメトリー法による酸化還元電位が430mV以上(vs.SCE)(参照極にRHE(Reversible Hydrogen Electrode)を用いた場合、約680mV以上)である、白金含有燃料電池用触媒が提案されている。該触媒を得るために、特許文献1では、炭素担体に担持された白金を400〜1100℃、N2:H2=1:3の混合雰囲気下で2.5時間熱処理している。
しかしながら、上記特許文献1の技術を用いても、質量活性(質量あたりの活性)および比活性(実面積あたりの活性)の双方に優れた触媒が得られておらず、また耐久性においても、満足のいくものではなかった。 However, even using the technique of Patent Document 1, a catalyst excellent in both mass activity (activity per mass) and specific activity (activity per real area) has not been obtained, and also in durability, It was not satisfactory.
一般的に、炭素を担持体とする白金担持電極触媒を熱処理すればするほど、白金粒子は結晶性が高まり比活性は増加するものの、炭素担体上に担持された白金粒子は熱処理温度が高いほど粒子が凝集してしまい、質量活性が減少する。すなわち、質量活性と比活性とは相反する関係になっており、電極触媒を熱処理する場合に、質量活性に着目すると、比活性が維持できず、逆に比活性に着目すると質量活性が維持できないという問題点があった。 In general, the more heat-treated platinum-supported electrode catalyst having carbon as a support, the higher the crystallinity and the specific activity of platinum particles, but the higher the heat-treatment temperature of platinum particles supported on a carbon support. Particles aggregate and mass activity decreases. In other words, the mass activity and the specific activity are in a contradictory relationship. When the electrode catalyst is heat-treated, the specific activity cannot be maintained when focusing on the mass activity, and conversely, the mass activity cannot be maintained when focusing on the specific activity. There was a problem.
そこで、本発明が目的とするところは、質量活性および比活性の双方の活性に優れた電極触媒を提供することである。 Therefore, an object of the present invention is to provide an electrode catalyst excellent in both mass activity and specific activity.
本発明らは、上記課題を解決するため、鋭意検討を行った。その結果、触媒成分100原子%に対して、70原子%以上の白金を含む触媒成分が導電性担体に担持されてなる電極触媒であって、サイクリックボルタンメトリー法による水素吸脱着波形の水素脱着電流における190〜230mVの範囲のピーク電流値(I190〜230mV)と、250〜270mVのピーク電流値または変曲点における電流値(I250〜270mV)とが、 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, an electrode catalyst in which a catalyst component containing 70 atomic% or more of platinum is supported on a conductive support with respect to 100 atomic% of the catalyst component, and a hydrogen desorption current having a hydrogen adsorption / desorption waveform by a cyclic voltammetry method. The peak current value in the range of 190 to 230 mV (I 190 to 230 mV ) and the peak current value of 250 to 270 mV or the current value at the inflection point (I 250 to 270 mV )
の関係を満たすことを特徴とする電極触媒が、上記目的を解決することを見出し、本発明を完成させた。 The present inventors have found that an electrode catalyst characterized by satisfying the above relationship solves the above object.
本発明の電極触媒は、高活性で耐久性に優れた電極触媒であるため、燃料電池に適用した場合に自動車用、家庭用、電子機器用などに幅広く応用可能である。 Since the electrode catalyst of the present invention is an electrode catalyst having high activity and excellent durability, when applied to a fuel cell, it can be widely applied to automobiles, households, electronic devices and the like.
本発明の第1は、白金を含む触媒成分が導電性担体に担持されてなる電極触媒であって、サイクリックボルタンメトリー法の水素吸脱着波形の水素脱着電流における190〜230mVの範囲のピーク電流値(I190〜230mV)と、250〜270mVのピーク電流値または変曲点における電流値(I250〜270mV)とが、 A first aspect of the present invention is an electrode catalyst in which a catalyst component containing platinum is supported on a conductive carrier, and a peak current value in a range of 190 to 230 mV in a hydrogen desorption current of a hydrogen adsorption / desorption waveform of a cyclic voltammetry method. (I 190 to 230 mV ) and a current value at an inflection point (I 250 to 270 mV ) of 250 to 270 mV ,
の関係を満たすことを特徴とする電極触媒である。 It is an electrode catalyst characterized by satisfying this relationship.
触媒成分として使用される白金粒子が立方晶の単結晶からなること、およびこの立方晶は結晶子の大きさによって形状が異なり、(100)面のみが表れる立方形から(111)面のみが表れる八面体形まで様々な形があり、(111)面が多いほど安定性に優れ、(100)面が多いほど活性に優れることは、例えば特開2005−166409号にあるように従来から知られている。各単結晶面において、サイクリックボルタンメトリー法(CV)による波形をとると、(100)面の水素脱着電流におけるピークは、250〜270mV(vs.RHE)にあり、また(111)面の水素脱着電流におけるピークは、190〜230mV(vs.RHE)にある(J.Solla−Gullon et al.,Journal of Electroanalytical Chemistry 491(2000),P69〜77)。 The platinum particles used as the catalyst component consist of a cubic single crystal, and the shape of this cubic crystal varies depending on the size of the crystallite, and only the (111) plane appears from the cubic shape where only the (100) plane appears. There are various shapes up to the octahedral shape, and it has been conventionally known that, as there are (111) planes, the stability is excellent, and the (100) planes are excellent in activity as disclosed in, for example, JP-A-2005-166409. ing. When each single crystal plane has a waveform by cyclic voltammetry (CV), the peak in the hydrogen desorption current of (100) plane is in the range of 250 to 270 mV (vs. RHE), and the hydrogen desorption of (111) plane. The peak in current is at 190-230 mV (vs. RHE) (J. Solla-Gullon et al., Journal of Electrochemical Chemistry 491 (2000), P69-77).
本発明者らはこれらの事実に基づき、CVの水素脱着電流において、250〜270mVにおけるピーク電流と、190〜230mVにあるピーク電流とに着目した。その結果、サイクリックボルタンメトリー法の水素吸脱着波形の水素脱着電流における250〜270mVのピーク電流値または変曲点における電流値(I250〜270mV)に対する190〜230mVの範囲のピーク電流値(I190〜230mV)の比すなわちI250〜270mV/I190〜230mVで示されるIp値が、白金粒子の露出結晶面の存在割合を示す1つの重要な目安となることを、本発明者らは見出した。さらに、本発明者らは、該Ip値を最適化することにより、白金粒径が適度で、ゆえに比活性、質量活性の双方に優れた電極触媒が得られることを見出した。 Based on these facts, the inventors focused on the peak current at 250 to 270 mV and the peak current at 190 to 230 mV in the hydrogen desorption current of CV. As a result, the peak current value (I 190 in the range of 190 to 230 mV with respect to the peak current value of 250 to 270 mV or the current value at the inflection point (I 250 to 270 mV ) in the hydrogen desorption current of the hydrogen adsorption / desorption waveform of the cyclic voltammetry method. The present inventors have found that an Ip value represented by a ratio of ~ 230 mV ), i.e., I 250-270 mV / I 190-230 mV , is one important measure of the abundance of exposed crystal faces of platinum particles. . Furthermore, the present inventors have found that by optimizing the Ip value, an electrode catalyst having an appropriate platinum particle size and hence excellent in both specific activity and mass activity can be obtained.
図1は、CVで得られる水素吸脱着波形の一例である。波形の上側が水素脱着波形であり、下側が水素吸着波形である。触媒B(Ip値0.92)および触媒C(Ip値0.96)は本発明品であり、触媒Aは本発明品ではない(Ip値0.78)。Ip値の算出において、250〜270mVの範囲にピーク電流が現れる場合には、そのピーク電流値を、また、ピーク電流が現れない場合には、250〜270mVでの変曲点における電流値を、Ip値の算出に用いるものとする。250〜270mVの範囲の電流は、上述したように活性の高い(100)面を現すことから、ピーク電流として表れる形態のほうが好ましい。 FIG. 1 is an example of a hydrogen adsorption / desorption waveform obtained by CV. The upper side of the waveform is a hydrogen desorption waveform, and the lower side is a hydrogen adsorption waveform. Catalyst B (Ip value 0.92) and Catalyst C (Ip value 0.96) are products of the present invention, and Catalyst A is not a product of the present invention (Ip value 0.78). In the calculation of the Ip value, when the peak current appears in the range of 250 to 270 mV, the peak current value is obtained. When the peak current does not appear, the current value at the inflection point at 250 to 270 mV is obtained. It shall be used for calculation of Ip value. Since the current in the range of 250 to 270 mV expresses the (100) surface having high activity as described above, the form that appears as the peak current is preferable.
本発明の第1において、電極触媒のIp値は、0.9〜1.1である。Ip値が0.9未満であると、酸素還元反応活性(ORR)が比較的低い(111)面が露出する割合が多くなり、電極触媒の活性が低くなる。また、Ip値が1.1を超えると、酸素還元反応活性が高い結晶面である(100)面がある程度露出した状態であるが、白金粒径が大きくなるため、質量活性が低くなる。一方、Ip値が、0.9〜1.1であれば、白金粒径が適当であり、質量活性のみならず、比活性も高い電極触媒となり、非常にバランスに優れた触媒となる。さらに、電極触媒の耐久性も高いものとなる。Ip値は、本願発明の効果がより顕著に発揮されることから、0.9〜1.05であることが好ましく、0.95〜1.0であることがより好ましい。 In the first aspect of the present invention, the Ip value of the electrode catalyst is 0.9 to 1.1. When the Ip value is less than 0.9, the proportion of the (111) plane having a relatively low oxygen reduction reaction activity (ORR) is increased, and the activity of the electrode catalyst is lowered. On the other hand, when the Ip value exceeds 1.1, the (100) plane, which is a crystal plane having a high oxygen reduction reaction activity, is exposed to some extent, but the mass activity of the platinum is decreased because the platinum particle size is increased. On the other hand, if the Ip value is from 0.9 to 1.1, the platinum particle size is appropriate, and the catalyst becomes an electrode catalyst having not only mass activity but also high specific activity, and a catalyst having a very good balance. Furthermore, the durability of the electrode catalyst is also high. The Ip value is preferably 0.9 to 1.05, and more preferably 0.95 to 1.0, since the effects of the present invention are more remarkably exhibited.
なお、Ip値を算出するために用いる水素脱着波形は、下記実施例に記載のCVによって求めるものとする。 In addition, the hydrogen desorption waveform used for calculating the Ip value is obtained by CV described in the following examples.
本発明の電極触媒は、触媒成分100原子%に対して、70原子%以上の白金からなる触媒成分と、該触媒成分を担持してなる導電性担体とを含む。 The electrode catalyst of the present invention includes a catalyst component composed of 70 atomic percent or more of platinum with respect to 100 atomic percent of the catalyst component, and a conductive carrier that supports the catalyst component.
用いられる導電性担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよいが、主成分がカーボンであることが好ましい。具体的には、アセチレンブラック、チャンネルブラック、ランプブラック、オイルファーネスブラック、サーマルブラックなどのカーボンブラック;カーボンナノチューブ;カーボンナノファイバー;カーボンナノホーン;カーボンフィブリル;活性炭;コークス;天然黒鉛;人造黒鉛などの導電性炭素材料が挙げられる。カーボンブラックは、黒鉛化処理が施されていてもよい。中でも、低コストで大量生産に向いていることから、カーボンブラックが好ましい。なお、「主成分がカーボンである」とは、主成分として炭素原子を含むことをいい、炭素原子のみからなる、実質的に炭素原子からなる、の双方を含む概念である。場合によっては、燃料電池の特性を向上させるために、炭素原子以外の元素が含まれていてもよい。なお、「実質的に炭素原子からなる」とは、2〜3質量%程度以下の不純物の混入が許容されうることを意味する。 Any conductive carrier may be used as long as it has a specific surface area for supporting the catalyst component in a desired dispersed state and has sufficient electron conductivity, but the main component is carbon. Is preferred. Specifically, carbon black such as acetylene black, channel black, lamp black, oil furnace black, and thermal black; carbon nanotube; carbon nanofiber; carbon nanohorn; carbon fibril; activated carbon; coke; natural graphite; Carbon material. Carbon black may be subjected to graphitization. Among these, carbon black is preferable because it is suitable for mass production at low cost. “The main component is carbon” means that the main component contains carbon atoms, and is a concept that includes both carbon atoms and substantially carbon atoms. In some cases, elements other than carbon atoms may be included in order to improve the characteristics of the fuel cell. Note that “substantially consisting of carbon atoms” means that contamination of about 2 to 3 mass% or less of impurities can be allowed.
導電性担体のBET比表面積は、触媒成分を高分散担持させるのに充分な比表面積であればよいが、好ましくは50〜1500m2/g、より好ましくは60〜1300m2/gである。導電性担体の比表面積がかような範囲内の値であると、触媒成分の粒径が10nm以下で、かつ担持量30wt%以上となっても高分散の状態を維持できるため好ましい。 The BET specific surface area of the conductive support may be a specific surface area sufficient to support the catalyst component in a highly dispersed state, but is preferably 50 to 1500 m 2 / g, more preferably 60 to 1300 m 2 / g. It is preferable that the specific surface area of the conductive support is in such a range because the highly dispersed state can be maintained even when the particle size of the catalyst component is 10 nm or less and the supported amount is 30 wt% or more.
また、導電性担体の平均粒径は、特に限定されないが、担持の容易さ、触媒利用率などの観点からは、平均粒径が好ましくは10〜100nm、より好ましくは20〜50nmである。「導電性担体の平均粒径」は、走査型電子顕微鏡によって観察されるいわゆる一次粒子径によって規定される。 The average particle diameter of the conductive carrier is not particularly limited, but the average particle diameter is preferably 10 to 100 nm, more preferably 20 to 50 nm, from the viewpoints of ease of loading, catalyst utilization, and the like. The “average particle diameter of the conductive carrier” is defined by the so-called primary particle diameter observed with a scanning electron microscope.
本発明における触媒成分は、触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などの観点から、触媒成分100原子%に対して、70原子%以上の白金を含む。好ましくは80〜100原子%であり、より好ましくは、90〜100原子%であり、さらに好ましくは100原子%である。なお、触媒成分の含有比率は、ICP発光分光分析により測定でき、具体的には、エスアイアイ・ナノテクノロジー製誘導結合プラズマ発光分光分析装置SPS−1700HVR型を用いて測定した値を採用する。 The catalyst component in the present invention contains 70 atom% or more of platinum with respect to 100 atom% of the catalyst component from the viewpoint of catalyst activity, poisoning resistance to carbon monoxide and the like, and heat resistance. Preferably it is 80-100 atomic%, More preferably, it is 90-100 atomic%, More preferably, it is 100 atomic%. The content ratio of the catalyst component can be measured by ICP emission spectroscopic analysis, and specifically, a value measured using an inductively coupled plasma emission spectroscopic analyzer SPS-1700HVR type manufactured by SII Nanotechnology is adopted.
触媒成分として、白金以外に含まれうる成分としては、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属が挙げられる。 As a catalyst component, components other than platinum include metals such as ruthenium, iridium, rhodium, palladium, osmium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, and aluminum. It is done.
触媒成分の形状は、特に制限されず公知の触媒成分と同様の形状が使用できるが、粒子状であることが好ましい。触媒成分の平均粒径は、好ましくは3〜7nmであり、より好ましくは3〜5nmである。かような範囲に触媒成分の粒径があれば、電極触媒の比活性および質量活性の双方が良好であるので好ましい。なお、本発明における「触媒成分粒子の平均粒径」は、X線回折法(X−Ray Diffraction:以下XRD法とする)によって測定される回折ピークの半値幅により求められる平均結晶子径を採用する。具体的には、実施例中で採用された方法によって求められる。 The shape of the catalyst component is not particularly limited, and the same shape as a known catalyst component can be used, but a particulate shape is preferable. The average particle diameter of the catalyst component is preferably 3 to 7 nm, more preferably 3 to 5 nm. If the particle diameter of the catalyst component is in such a range, both the specific activity and mass activity of the electrode catalyst are good, which is preferable. The “average particle diameter of the catalyst component particles” in the present invention employs an average crystallite diameter determined by a half-value width of a diffraction peak measured by an X-ray diffraction method (hereinafter referred to as XRD method). To do. Specifically, it is calculated | required by the method employ | adopted in the Example.
電極触媒100質量%に対して、触媒成分の含有量は、好ましくは10〜60質量%、より好ましくは30〜50質量%である。触媒成分の担持量がかような範囲内の値であると、導電性担体上での触媒成分の分散度と触媒性能とのバランスが適切に制御されうる。 The content of the catalyst component is preferably 10 to 60% by mass, more preferably 30 to 50% by mass with respect to 100% by mass of the electrode catalyst. When the supported amount of the catalyst component is within such a range, the balance between the degree of dispersion of the catalyst component on the conductive support and the catalyst performance can be appropriately controlled.
本発明の第1の電極触媒の製造方法は、特に制限されるものではないが、以下好適な製造方法を述べる。 Although the manufacturing method of the 1st electrode catalyst of this invention is not restrict | limited in particular, A suitable manufacturing method is described below.
まず、平均粒径1〜5nm、好ましくは2〜5nm、より好ましくは2.5〜5nmである触媒成分が、BET比表面積50〜1500m2/g、好ましくは60〜1200m2/gである導電性担体に担持されてなる電極触媒前駆体を準備する。かような電極触媒前駆体は、市販品を用いてもよいし、公知の方法で製造してもよい。市販品としては、TEC10E50E(田中貴金属工業社製)、SA50BK(エヌ・イーケムキャット社製)、HiSPEC8000(Johnson Matthey社製)、などがある。電極触媒前駆体を製造する場合には、特に制限されるものではないが、含浸法、液相還元担持法、蒸発乾固法、コロイド吸着法、噴霧熱分解法、逆ミセル法等、公知の方法を利用することによって、容易に調製することができる。好ましくは、触媒成分を低コストで高分散担持可能な、液相還元担持法が用いられる。 First, a catalyst component having an average particle diameter of 1 to 5 nm, preferably 2 to 5 nm, more preferably 2.5 to 5 nm, has a BET specific surface area of 50 to 1500 m 2 / g, preferably 60 to 1200 m 2 / g. An electrode catalyst precursor supported on a conductive support is prepared. A commercial item may be used for such an electrode catalyst precursor, and it may be manufactured by a well-known method. Commercially available products include TEC10E50E (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), SA50BK (manufactured by N.E. Chemcat), HiSPEC8000 (manufactured by Johnson Matthey), and the like. When producing an electrode catalyst precursor, it is not particularly limited, but known methods such as impregnation method, liquid phase reduction support method, evaporation to dryness method, colloid adsorption method, spray pyrolysis method, reverse micelle method, etc. It can be easily prepared by utilizing the method. Preferably, a liquid phase reduction loading method that can carry a catalyst component at a low cost and in a highly dispersed manner is used.
次に、電極触媒前駆体を熱処理する。熱処理条件は、Ip値が0.9〜1.1になるように設定すれば、特に限定されないが、具体的には以下のようである。 Next, the electrode catalyst precursor is heat-treated. The heat treatment condition is not particularly limited as long as the Ip value is set to be 0.9 to 1.1, but specifically, it is as follows.
熱処理する場合の熱処理温度は、触媒成分の粒径が適切な範囲となるため、好ましくは200〜1000℃、より好ましくは400〜1000℃、さらに好ましくは600〜1000℃、特に好ましくは600〜800℃である。また、熱処理する場合の熱処理時間は、好ましくは0.5〜3時間、より好ましくは1〜3時間、さらに好ましくは1時間である。かような範囲の熱処理時間であれば、粒径が適切な範囲となり、活性が高くなり、また導電性担体のメタン化反応があまり進行しない。 The heat treatment temperature in the case of heat treatment is preferably 200 to 1000 ° C., more preferably 400 to 1000 ° C., further preferably 600 to 1000 ° C., and particularly preferably 600 to 800 because the particle size of the catalyst component falls within an appropriate range. ° C. Moreover, the heat processing time in heat processing becomes like this. Preferably it is 0.5-3 hours, More preferably, it is 1-3 hours, More preferably, it is 1 hour. When the heat treatment time is in such a range, the particle size is in an appropriate range, the activity is high, and the methanation reaction of the conductive support does not proceed so much.
また、熱処理時の雰囲気は、窒素ガスと水素ガスとの混合雰囲気下で行うことが好ましい。熱処理時の窒素ガスと水素ガスとの混合雰囲気下は、窒素ガスおよび水素ガスの流量が全混合ガス流量100%中、好ましくは100%である。水素ガスおよび窒素ガス以外に、アルゴン、ヘリウム等の不活性ガスが含まれうる。さらに、水素ガスの流量は、水素ガスおよび窒素ガスの全流量(N2+H2)に対して、流量比でH2/(N2+H2)=5〜25であることが好ましく、5〜20であることがより好ましく、10〜20であることがさらに好ましい。かような範囲であれば、粒径が適切な範囲となり、活性が高くなり、また導電性担体のメタン化反応があまり進行しない。 Moreover, it is preferable to perform the atmosphere at the time of heat processing in the mixed atmosphere of nitrogen gas and hydrogen gas. Under a mixed atmosphere of nitrogen gas and hydrogen gas at the time of heat treatment, the flow rates of nitrogen gas and hydrogen gas are preferably 100% of the total mixed gas flow rate of 100%. In addition to hydrogen gas and nitrogen gas, an inert gas such as argon or helium may be included. Further, the flow rate of the hydrogen gas is preferably H 2 / (N 2 + H 2 ) = 5 to 25 in terms of a flow rate ratio with respect to the total flow rate (N 2 + H 2 ) of the hydrogen gas and the nitrogen gas, More preferably, it is 20, and more preferably 10-20. In such a range, the particle size becomes an appropriate range, the activity becomes high, and the methanation reaction of the conductive support does not progress so much.
上記のとおり、熱処理における温度、時間、雰囲気の各条件を適切に設定することにより、本発明の第1の電極触媒を得ることができる。適切な熱処理条件により、Pt表面に水素が吸着し、表面エネルギーが下がるため、小さな粒径を維持したまま、表面エネルギーの高い結晶面が露出できると考えられる。 As described above, the first electrode catalyst of the present invention can be obtained by appropriately setting the temperature, time, and atmosphere conditions in the heat treatment. Under appropriate heat treatment conditions, hydrogen is adsorbed on the Pt surface and the surface energy is lowered. Therefore, it is considered that a crystal surface having a high surface energy can be exposed while maintaining a small particle size.
本発明の製造方法によって得られる電極触媒は、上述のように、優れた活性および耐久性を有し、燃料電池に適用した場合に電池の耐久性向上に大きく寄与する。電極触媒の適用用途としては、PEFCが挙げられる。PEFCにおいて、電極触媒は触媒層に配置される。PEFCの一般的な構成としては、セパレータ、ガス拡散層、カソード触媒層、固体高分子電解質膜、アノード触媒層、ガス拡散層、およびセパレータが、この順序で配置された構成が挙げられる。ただし、PEFCにおける基本的な構成は上記に限定されるわけではなく、他の構成を有するPEFCにも、本発明を適用することが可能である。 As described above, the electrode catalyst obtained by the production method of the present invention has excellent activity and durability, and greatly contributes to improving the durability of the battery when applied to a fuel cell. PEFC is mentioned as an application use of an electrode catalyst. In PEFC, the electrode catalyst is disposed in the catalyst layer. A general configuration of PEFC includes a configuration in which a separator, a gas diffusion layer, a cathode catalyst layer, a solid polymer electrolyte membrane, an anode catalyst layer, a gas diffusion layer, and a separator are arranged in this order. However, the basic configuration of the PEFC is not limited to the above, and the present invention can also be applied to PEFCs having other configurations.
本発明の電極触媒は、アノードおよびカソードの双方の電極触媒として好適に用いられる。しかしながら、アノードにおける水素の酸化反応に対してカソードでの還元反応は作動電位が高電位であるため、電極触媒の劣化が生じやすい。したがって、前記電極触媒は、少なくともカソードに使用される形態が好ましい。 The electrode catalyst of the present invention is suitably used as both an anode and a cathode electrode catalyst. However, since the operating potential of the reduction reaction at the cathode is higher than the oxidation reaction of hydrogen at the anode, the electrode catalyst is likely to deteriorate. Accordingly, it is preferable that the electrode catalyst is used at least for the cathode.
さらに、燃料電池に適用した場合の適用用途としては、自動車用燃料電池、家庭用燃料電池、電子機器用燃料電池など幅広く適用可能である。本発明のPEFCは、触媒層が劣化しづらく、耐久性に優れる。即ち、本発明のPEFCは、長期間に亘ってPEFCを使用した場合であっても、電圧低下が少ない。そのため、自動車用燃料電池、家庭用燃料電池、電子機器用燃料電池など幅広く適用可能である。さらに、長期間に渡る耐久性が求められる用途において、本発明の電極触媒を含む燃料電池は特に有益である。かような用途としては、自動車用が挙げられる。本発明のPEFCは長期間に亘って発電特性が維持されうるため、本発明のPEFCを搭載してなる自動車の寿命の長期化や自動車価値の向上が達成されうる。 Furthermore, as application applications when applied to fuel cells, it can be widely applied to automobile fuel cells, household fuel cells, electronic device fuel cells and the like. The PEFC of the present invention is excellent in durability because the catalyst layer is hardly deteriorated. That is, the PEFC of the present invention has little voltage drop even when the PEFC is used for a long period of time. Therefore, it can be widely applied to automobile fuel cells, household fuel cells, electronic device fuel cells, and the like. Furthermore, a fuel cell including the electrode catalyst of the present invention is particularly useful in applications that require durability over a long period of time. Examples of such applications include those for automobiles. Since the power generation characteristics of the PEFC of the present invention can be maintained over a long period of time, it is possible to extend the life of a vehicle equipped with the PEFC of the present invention and improve the vehicle value.
本発明の第2は、触媒成分100原子%に対して、70原子%以上の白金を含む触媒成分が導電性担体に担持されてなる電極触媒の活性評価方法であって、サイクリックボルタンメトリー法による水素吸脱着波形の水素脱着電流における190〜230mVの範囲のピーク電流値(I190〜230mV)と、250〜270mVのピーク電流値または変曲点における電流値(I250〜270mV)との比に基づいて電極触媒の活性を評価する、活性評価方法である。上述したように、Ip値は白金粒子の露出結晶面の存在割合を示す1つの重要な目安となり、Ip値によって、その触媒の活性の程度を予測することが可能となる。例えば、Ip値が小さすぎる場合には、比活性の点で問題となり、Ip値が大きすぎる場合には、質量活性の点で問題となる場合があることが予測可能である。評価例としては、Ip=0.9〜1.1、より好ましくは0.95〜1.0である電極触媒が、触媒として活性に優れたものであると判定する例が挙げられる。 A second aspect of the present invention is a method for evaluating the activity of an electrocatalyst in which a catalyst component containing 70 atomic percent or more of platinum is supported on a conductive support with respect to 100 atomic percent of the catalyst component, and is based on a cyclic voltammetry method. The ratio of the peak current value in the range of 190 to 230 mV (I 190 to 230 mV ) in the hydrogen desorption current of the hydrogen adsorption / desorption waveform to the peak current value of 250 to 270 mV or the current value at the inflection point (I 250 to 270 mV ). This is an activity evaluation method for evaluating the activity of an electrode catalyst based on the activity. As described above, the Ip value is one important standard indicating the abundance ratio of the exposed crystal plane of the platinum particle, and the degree of activity of the catalyst can be predicted by the Ip value. For example, it can be predicted that if the Ip value is too small, there will be a problem in terms of specific activity, and if the Ip value is too large, it may be a problem in terms of mass activity. As an evaluation example, an example in which an electrode catalyst having Ip = 0.9 to 1.1, more preferably 0.95 to 1.0, is determined to have excellent activity as a catalyst.
以下、実施例を用いて、より具体的に本発明を説明する。なお、本発明が下記実施例に
限定されることはない。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example.
(実施例1)
触媒成分として平均粒径2.5nmの白金のみがBET比表面積800m2/gであるケッチェンブラックに担持されてなる電極触媒(田中貴金属工業社製:TEC10E50E、白金担持量50wt%)を管状炉に入れて30分間、H2/(H2+N2)=10である雰囲気ガス(水素ガスおよび窒素ガス)でパージした(流量;水素ガス:10mL/分、窒素ガス:90mL/分)。その後、ガスを流したまま、昇温速度は10℃/分で800℃まで昇温し、800℃(熱処理温度)で1時間(熱処理時間)保持した後、自然冷却(急冷)し、100℃以下になった時点で、流すガスをエアーに切り替え、室温まで冷却して熱処理触媒を作製した。
(Example 1)
As a catalyst component, an electrode catalyst (Tanaka Kikinzoku Kogyo Co., Ltd .: TEC10E50E,
(実施例2)
熱処理温度を600℃に変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Example 2)
A catalyst was prepared in the same procedure as in Example 1 except that the heat treatment temperature was changed to 600 ° C.
(実施例3)
熱処理温度を1000℃に変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Example 3)
A catalyst was prepared in the same procedure as in Example 1 except that the heat treatment temperature was changed to 1000 ° C.
(実施例4)
雰囲気をH2/(H2+N2)=5である雰囲気のガスに変更した以外は、実施例1と同様の手順にて触媒を作製した。
Example 4
A catalyst was prepared in the same procedure as in Example 1 except that the atmosphere was changed to an atmosphere gas of H 2 / (H 2 + N 2 ) = 5.
(実施例5)
雰囲気をH2/(H2+N2)=25である雰囲気のガスに変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Example 5)
A catalyst was prepared in the same procedure as in Example 1 except that the atmosphere was changed to an atmosphere gas of H 2 / (H 2 + N 2 ) = 25.
(実施例6)
熱処理時間を3時間に変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Example 6)
A catalyst was prepared in the same procedure as in Example 1 except that the heat treatment time was changed to 3 hours.
(比較例1)
触媒成分として平均粒径2.5nmの白金のみがBET比表面積800m2/gであるケッチェンブラックに担持されてなる電極触媒(田中貴金属工業社製:TEC10E50E、白金担持量50wt%)を、比較例1の触媒とした。
(Comparative Example 1)
A comparison was made of an electrode catalyst (Tanaka Kikinzoku Kogyo Co., Ltd .: TEC10E50E, platinum loading 50 wt%) in which only platinum having an average particle diameter of 2.5 nm was supported on a ketjen black having a BET specific surface area of 800 m 2 / g as a catalyst component. The catalyst of Example 1 was obtained.
(比較例2)
熱処理温度を200℃に変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Comparative Example 2)
A catalyst was prepared in the same procedure as in Example 1 except that the heat treatment temperature was changed to 200 ° C.
(比較例3)
熱処理温度を400℃に変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Comparative Example 3)
A catalyst was prepared in the same procedure as in Example 1 except that the heat treatment temperature was changed to 400 ° C.
(比較例4)
雰囲気を100%窒素ガスに変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Comparative Example 4)
A catalyst was prepared in the same procedure as in Example 1 except that the atmosphere was changed to 100% nitrogen gas.
(比較例5)
雰囲気を100%水素ガスに変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Comparative Example 5)
A catalyst was prepared in the same procedure as in Example 1 except that the atmosphere was changed to 100% hydrogen gas.
(比較例6)
熱処理時間を6時間に変更した以外は、実施例1と同様の手順にて触媒を作製した。
(Comparative Example 6)
A catalyst was prepared in the same procedure as in Example 1 except that the heat treatment time was changed to 6 hours.
上記実施例1〜6および比較例1〜6を以下の評価方法にて評価を行なった。 The said Examples 1-6 and Comparative Examples 1-6 were evaluated with the following evaluation methods.
(評価例1:触媒成分の結晶子径測定方法)
各実施例および比較例の触媒成分の結晶子径を、XRD法により測定し、39°近傍のピーク値からシェラー式を用いて結晶子径を算出した。
(Evaluation Example 1: Method for measuring crystallite size of catalyst component)
The crystallite diameter of the catalyst component of each Example and Comparative Example was measured by the XRD method, and the crystallite diameter was calculated from the peak value near 39 ° using the Scherrer equation.
XRDの測定条件は、以下の通りである;
測定機器:マックサイエンス社製 X線回折装置(MXP18VAHF型)、線源:(CuKα)、出力設定:電圧40kV、電流300mA、発散スリット1.0°、散乱スリット1.0°、受光スリット0.3mm、走査範囲5〜90°。
The measurement conditions for XRD are as follows:
Measuring instrument: X-ray diffractometer (MXP18VAHF type), manufactured by Mac Science Co., Ltd., radiation source: (CuKα), output setting: voltage 40 kV, current 300 mA, divergence slit 1.0 °, scattering slit 1.0 °,
(評価例2:触媒評価方法)
(1)電気化学測定装置系
回転ディスク電極装置(北斗電工社製HZ−301)を使用し、対極に白金線、参照極には標準水素電極、作用極にはグラッシーカーボン電極に触媒インクを塗布し、電解液には0.5mol/L硫酸水溶液(和光純薬工業社製)を用いた。電気化学測定は、ポテンショスタット(北斗電工社製電気化学測定システムHZ−5000)によって測定した。
(Evaluation Example 2: Catalyst Evaluation Method)
(1) Electrochemical measuring device system Using a rotating disk electrode device (HZ-301, manufactured by Hokuto Denko), apply a catalyst wire to a platinum wire for the counter electrode, a standard hydrogen electrode for the reference electrode, and a glassy carbon electrode for the working electrode. And 0.5 mol / L sulfuric acid aqueous solution (made by Wako Pure Chemical Industries Ltd.) was used for electrolyte solution. The electrochemical measurement was performed using a potentiostat (electrochemical measurement system HZ-5000 manufactured by Hokuto Denko).
(2)電気化学測定準備
作製した触媒Pt/Cのカーボン量が20mgになるように秤量しビーカーに入れた。このビーカーに水18mL、イソプロパノール6mL、5wt% Nafion(登録商標)溶液(Du pont社製)を0.2mL入れ、超音波攪拌を30分間行なった。この触媒インクをマイクロピペットを用いて10μLを5mmφのGC(グラッシーカーボン)電極に塗布し、80℃の乾燥炉で10分間乾燥させた。
(2) Preparation for electrochemical measurement The prepared catalyst Pt / C was weighed so that the amount of carbon was 20 mg and placed in a beaker. In this beaker, 18 mL of water, 6 mL of isopropanol, 0.2 mL of 5 wt% Nafion (registered trademark) solution (manufactured by Du Pont) were added, and ultrasonic stirring was performed for 30 minutes. 10 μL of this catalyst ink was applied to a 5 mmφ GC (glassy carbon) electrode using a micropipette and dried in an oven at 80 ° C. for 10 minutes.
(3)電気化学測定
(3−1)サイクリックボルタンメトリー
回転ディスク電極装置に電極、電解液をセットして、電解液を窒素で30分間パージした後に、サイクリックボルタンメトリーを電位走査速度は50mV/s、電位走査範囲は0〜1200mV(vs.RHE)、室温の条件で行なった。判定に用いたサイクリックボルタモグラム(サイクリックボルタンメトリーで測定したグラフを表す)は、上記条件で測定した15サイクル目の結果を採用した。サイクルは計15サイクル行った。
(3) Electrochemical measurement (3-1) Cyclic voltammetry After setting the electrode and electrolyte on the rotating disk electrode device and purging the electrolyte with nitrogen for 30 minutes, cyclic voltammetry was performed at a potential scanning speed of 50 mV / s. The potential scanning range was 0 to 1200 mV (vs. RHE) at room temperature. The cyclic voltammogram (representing a graph measured by cyclic voltammetry) used for the determination employs the results of the 15th cycle measured under the above conditions. A total of 15 cycles were performed.
(3−2)耐久性評価
1.0〜0.6V(vs.RHE)の電位範囲で5秒間のパルス波を1サイクルとし、窒素パージした電解液中でこれを2000サイクル行なった。サイクル試験を行った後、上記サイクリックボルタンメトリーと同条件で測定し、ECA値を算出し比較例1の触媒を基準として実施例3の触媒について比較評価した。なお、ECA値は、Pt質量あたりの電気化学的な比表面積を示す値であり、算出方法は以下の通りである。まず、Ptの電気化学による表面積を求めるために、サイクリックボルタモグラムから電位の幅50mV〜400mVの間で起こる水素吸着電荷量(還元側の電位×電流から求めた面積)を、単位白金面積あたりの水素吸着する電荷量(210μC/cm2−Pt)で割ることによりPt表面積を求める。この求めたPt表面積を、触媒中のPt質量で割ることでECA値が求められる。
(3-2) Durability Evaluation One cycle of a pulse wave of 5 seconds in a potential range of 1.0 to 0.6 V (vs. RHE) was performed in an electrolytic solution purged with nitrogen for 2000 cycles. After performing a cycle test, measurement was performed under the same conditions as in the above cyclic voltammetry, an ECA value was calculated, and the catalyst of Example 3 was compared and evaluated with the catalyst of Comparative Example 1 as a reference. In addition, ECA value is a value which shows the electrochemical specific surface area per Pt mass, and the calculation method is as follows. First, in order to obtain the electrochemical surface area of Pt, the amount of hydrogen adsorbed charge (area obtained from the reduction side potential × current) occurring between the potential range of 50 mV to 400 mV from the cyclic voltammogram is calculated per unit platinum area. The Pt surface area is determined by dividing by the amount of charge adsorbed by hydrogen (210 μC / cm 2 -Pt). The ECA value is obtained by dividing the obtained Pt surface area by the Pt mass in the catalyst.
(3−3)酸素還元活性評価(比活性)
上記(3−1)のサイクリックボルタンメトリー後に、電解液中を酸素で30分間パージした後、作用極を1600rpmで回転させて200mVから1200mV(vs.RHE)に電位走査して酸素還元電流を測定した。900mV(vs.RHE)のときの酸素還元電流値を上記(3−2)で求めたPt表面積で割ることにより、実施例および比較例の比活性を算出した。
(3-3) Oxygen reduction activity evaluation (specific activity)
After the cyclic voltammetry in (3-1) above, after purging the electrolyte with oxygen for 30 minutes, the working electrode is rotated at 1600 rpm and the potential is scanned from 200 mV to 1200 mV (vs. RHE) to measure the oxygen reduction current. did. The specific activities of Examples and Comparative Examples were calculated by dividing the oxygen reduction current value at 900 mV (vs. RHE) by the Pt surface area obtained in (3-2) above.
(3−4)酸素還元活性評価(質量活性)
(3−3)で求めた比活性に(3−2)で求めたECA値を積算することにより、実施例および比較例の質量活性を算出した。
(3-4) Oxygen reduction activity evaluation (mass activity)
The mass activities of the examples and comparative examples were calculated by integrating the specific activity determined in (3-3) with the ECA value determined in (3-2).
結果を下記表1に示す。 The results are shown in Table 1 below.
以上の結果から、Ip値が0.9〜1.1の範囲である電極触媒は、質量活性および比活性の双方の活性のバランスに優れた触媒であることがわかった。さらに、耐久性にも優れた電極触媒であった。 From the above results, it was found that an electrode catalyst having an Ip value in the range of 0.9 to 1.1 is a catalyst having an excellent balance of both mass activity and specific activity. Furthermore, the electrode catalyst was excellent in durability.
Claims (8)
サイクリックボルタンメトリー法による水素吸脱着波形の水素脱着電流における190〜230mVの範囲のピーク電流値(I190〜230mV)と、250〜270mVのピーク電流値または変曲点における電流値(I250〜270mV)とが、
Cyclic voltammetry peak current value in the range of 190~230MV in the hydrogen desorption current hydrogen adsorption and desorption wave by the (I 190~230mV), the current value at the peak current value or the inflection point of 250~270mV (I 250~270mV )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044308A JP2008210572A (en) | 2007-02-23 | 2007-02-23 | Electrocatalyst and power generation system using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007044308A JP2008210572A (en) | 2007-02-23 | 2007-02-23 | Electrocatalyst and power generation system using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008210572A true JP2008210572A (en) | 2008-09-11 |
Family
ID=39786719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007044308A Pending JP2008210572A (en) | 2007-02-23 | 2007-02-23 | Electrocatalyst and power generation system using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008210572A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011017562A (en) * | 2009-07-07 | 2011-01-27 | Yokogawa Electric Corp | Method and device for evaluation using cyclic voltammetry |
JP2011069765A (en) * | 2009-09-28 | 2011-04-07 | Yokogawa Electric Corp | Active surface area calculation method and calculation device |
JP2014506715A (en) * | 2011-01-19 | 2014-03-17 | ユーティーシー パワー コーポレイション | Shape-controlled palladium and palladium alloy nanoparticle catalysts |
US9663600B2 (en) | 2012-12-21 | 2017-05-30 | Audi Ag | Method of fabricating an electrolyte material |
US9923223B2 (en) | 2012-12-21 | 2018-03-20 | Audi Ag | Electrolyte membrane, dispersion and method therefor |
US9923224B2 (en) | 2012-12-21 | 2018-03-20 | Audi Ag | Proton exchange material and method therefor |
US10505197B2 (en) | 2011-03-11 | 2019-12-10 | Audi Ag | Unitized electrode assembly with high equivalent weight ionomer |
US20230099785A1 (en) * | 2021-09-30 | 2023-03-30 | The Regents Of The University Of California | Robust palladium hydride catalyst for electrocatalytic formate formation with high co tolerance |
CN116072898A (en) * | 2021-10-29 | 2023-05-05 | 中国石油化工股份有限公司 | Platinum-carbon catalyst, preparation method and application thereof, and hydrogen fuel cell |
-
2007
- 2007-02-23 JP JP2007044308A patent/JP2008210572A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011017562A (en) * | 2009-07-07 | 2011-01-27 | Yokogawa Electric Corp | Method and device for evaluation using cyclic voltammetry |
JP2011069765A (en) * | 2009-09-28 | 2011-04-07 | Yokogawa Electric Corp | Active surface area calculation method and calculation device |
JP2014506715A (en) * | 2011-01-19 | 2014-03-17 | ユーティーシー パワー コーポレイション | Shape-controlled palladium and palladium alloy nanoparticle catalysts |
US10505197B2 (en) | 2011-03-11 | 2019-12-10 | Audi Ag | Unitized electrode assembly with high equivalent weight ionomer |
US9663600B2 (en) | 2012-12-21 | 2017-05-30 | Audi Ag | Method of fabricating an electrolyte material |
US9923223B2 (en) | 2012-12-21 | 2018-03-20 | Audi Ag | Electrolyte membrane, dispersion and method therefor |
US9923224B2 (en) | 2012-12-21 | 2018-03-20 | Audi Ag | Proton exchange material and method therefor |
US20230099785A1 (en) * | 2021-09-30 | 2023-03-30 | The Regents Of The University Of California | Robust palladium hydride catalyst for electrocatalytic formate formation with high co tolerance |
CN116072898A (en) * | 2021-10-29 | 2023-05-05 | 中国石油化工股份有限公司 | Platinum-carbon catalyst, preparation method and application thereof, and hydrogen fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ramos-Sánchez et al. | PdNi electrocatalyst for oxygen reduction in acid media | |
Jukk et al. | Oxygen reduction on Pd nanoparticle/multi-walled carbon nanotube composites | |
Ma et al. | Promotion by hydrous ruthenium oxide of platinum for methanol electro-oxidation | |
Martínez-Casillas et al. | Electrocatalytic reduction of dioxygen on PdCu for polymer electrolyte membrane fuel cells | |
JP2008210572A (en) | Electrocatalyst and power generation system using it | |
Beltrán-Gastélum et al. | Evaluation of PtAu/MWCNT (multiwalled carbon nanotubes) electrocatalyst performance as cathode of a proton exchange membrane fuel cell | |
Hernandez-Pichardo et al. | The role of the WO3 nanostructures in the oxygen reduction reaction and PEM fuel cell performance on WO3–Pt/C electrocatalysts | |
JP2008041253A (en) | Electrocatalyst and power generation system using the same | |
Xu et al. | Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions | |
JP4764866B2 (en) | Catalyst carrier, catalyst, method for producing catalyst carrier, and method for producing catalyst | |
JP6727266B2 (en) | Anode catalyst layer for fuel cell and fuel cell using the same | |
JPWO2016104587A1 (en) | Catalyst support, method for producing the same, and use thereof | |
Kaya et al. | Highly active RuPd bimetallic catalysts for sodium borohydride electrooxidation and hydrolysis | |
Sharma et al. | Graphene-manganite-Pd hybrids as highly active and stable electrocatalysts for methanol oxidation and oxygen reduction | |
CN112640169B (en) | Anode catalyst layer for fuel cell and fuel cell using the same | |
Xu | A comparative study on electrocatalytic performance of PtAu/C and PtRu/C nanoparticles for methanol oxidation reaction | |
Glass et al. | Optimization of platinum loading on partially fluorinated carbon catalysts for enhanced proton exchange membrane fuel cell performance | |
Sun et al. | Pd–Ru/C as the electrocatalyst for hydrogen peroxide reduction | |
Gharibi et al. | Palladium/Cobalt Coated on Multi‐Walled Carbon Nanotubes as an Electro‐catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells | |
Kim et al. | Highly active and CO2 tolerant Ir nanocatalysts for H2/CO2 separation in electrochemical hydrogen pumps | |
Centi et al. | The role of mechanically induced defects in carbon nanotubes to modify the properties of electrodes for PEM fuel cell | |
JP5754686B2 (en) | Cathode platinum catalyst for highly active fuel cells | |
JP5601280B2 (en) | Catalyst for polymer electrolyte fuel cell | |
WO2020059502A1 (en) | Anode catalyst layer for fuel cell and fuel cell using same | |
Stassi et al. | A half cell study of performance and degradation of oxygen reduction catalysts for application in low temperature fuel cells |