JP6606991B2 - Oriented electrical steel sheet and manufacturing method thereof - Google Patents

Oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP6606991B2
JP6606991B2 JP2015225445A JP2015225445A JP6606991B2 JP 6606991 B2 JP6606991 B2 JP 6606991B2 JP 2015225445 A JP2015225445 A JP 2015225445A JP 2015225445 A JP2015225445 A JP 2015225445A JP 6606991 B2 JP6606991 B2 JP 6606991B2
Authority
JP
Japan
Prior art keywords
steel sheet
grain
oriented electrical
crystal
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015225445A
Other languages
Japanese (ja)
Other versions
JP2017095735A (en
Inventor
尚 茂木
史明 高橋
雅人 溝上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015225445A priority Critical patent/JP6606991B2/en
Publication of JP2017095735A publication Critical patent/JP2017095735A/en
Application granted granted Critical
Publication of JP6606991B2 publication Critical patent/JP6606991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、電気部材の素材として用いられた際に、部材からの騒音を低減させうる方向性電磁鋼板とその製造方法に関する。   The present invention relates to a grain-oriented electrical steel sheet that can reduce noise from a member when used as a material for an electric member, and a method for manufacturing the grain-oriented electrical steel sheet.

電気、電子機器に幅広く使用される磁性材料において、磁界印加時の長さ変化の度合い(これを磁歪と呼ぶ)は変圧器騒音の原因となるため、品質管理における重要な評価項目の一つとなっている。近年、電機機器からの騒音は、生活環境快適化の要求と共にさらに規制が厳しくなりつつある。このため、磁歪の低減による低騒音化の研究が盛んに行われている。   In magnetic materials widely used in electrical and electronic equipment, the degree of change in length when a magnetic field is applied (this is called magnetostriction) causes transformer noise, and is an important evaluation item in quality control. ing. In recent years, noise from electric appliances is becoming more restrictive along with a demand for comfortable living environment. For this reason, research on noise reduction by reducing magnetostriction has been actively conducted.

磁性材料のうち、トランスの鉄心に用いられる方向性電磁鋼板については、還流磁区を減少させることで磁歪を低減する手法がある。ここで言う還流磁区とは、磁界印加方向に対して直角に向いている磁化を有する領域である。この磁化が印加磁界により磁界と平行方向に向けて動くときに磁歪が生じる。従って、還流磁区量が少ないほど磁歪は小さくなる。主な磁歪低減の手法として以下のものが知られている。
1)結晶粒の<001>方向を圧延方向に揃え、磁化回転により形状変化を生じさせる還流磁区を作らない方法(非特許文献1)。
2)塑性歪を開放することで還流磁区を消去する方法(非特許文献2)。
3)被膜張力を鋼板に印加することで還流磁区を消去する方法(非特許文献3)。
4)もぐり角βを低減して還流磁区を消去する方法(非特許文献4)。
Among magnetic materials, there is a technique for reducing magnetostriction by reducing the number of return magnetic domains for grain-oriented electrical steel sheets used for transformer iron cores. The reflux magnetic domain referred to here is a region having magnetization that is oriented at right angles to the magnetic field application direction. Magnetostriction occurs when this magnetization moves in the direction parallel to the magnetic field by the applied magnetic field. Therefore, the smaller the reflux magnetic domain amount, the smaller the magnetostriction. The following are known as main methods for reducing magnetostriction.
1) A method in which the <001> direction of crystal grains is aligned with the rolling direction and a reflux magnetic domain that causes a shape change by magnetization rotation is not created (Non-patent Document 1).
2) A method of erasing the reflux magnetic domain by releasing plastic strain (Non-patent Document 2).
3) A method of erasing the reflux magnetic domain by applying a film tension to the steel sheet (Non-patent Document 3).
4) A method of erasing the reflux magnetic domain by reducing the bore angle β (Non-patent Document 4).

主にこれら4つの手法により、磁歪を低減させ、電機機器の低騒音化に寄与してきた。例えば,高張力皮膜で低磁歪化を図っている方法では、Al2O3の表面にSiO2,ZrO2,SnO2の中から選ばれる酸化物の1種又は2種以上を平均粒径の3〜30%被覆した複層コロイダル物質を固形分で100重量部に対しAl,Mg,Ca,Znの中から選ばれる燐酸塩を固形分で120〜250重量部からなる高張力皮膜を得るための方向性電磁鋼板の絶縁皮膜形成剤を用いている(特許文献1)。 Mainly by these four methods, the magnetostriction has been reduced and the noise of the electrical equipment has been reduced. For example, in the method of reducing magnetostriction with a high-tensile film, one or more oxides selected from SiO 2 , ZrO 2 , and SnO 2 on the surface of Al 2 O 3 have an average particle size. To obtain a high-strength coating consisting of 120 to 250 parts by weight of a solid phosphate selected from Al, Mg, Ca, and Zn with respect to 100 parts by weight of a multi-layer colloidal material coated with 3 to 30%. An insulating film forming agent for the grain-oriented electrical steel sheet is used (Patent Document 1).

もぐり角については鉄損の観点から研究され、もぐり角βが大きいと還流磁区が多くなることが記載されている。同様に鉄損も大きくなることが記載されている(非特許文献4)。   The bore angle is studied from the viewpoint of iron loss, and it is described that the larger the bore angle β, the more the return magnetic domain. Similarly, it is described that the iron loss increases (Non-patent Document 4).

電機機器のさらなる低騒音化への要求は強く、目的を達するためには高度な技術が必要となる。従来の低騒音化の研究は還流磁区の消滅による磁歪の低減を主な目的としてきた。ところが、方向性電磁鋼板に存在する還流磁区を皮膜張力などで全体的かつ一様に減らす従来の方法では磁歪の低減が頭打ちになってきたという問題がある。したがって,更に新たな技術が必要となっている。   The demand for further noise reduction of electrical equipment is strong, and advanced technology is required to achieve the purpose. Conventional research on noise reduction has mainly been aimed at reducing magnetostriction due to the disappearance of the return magnetic domain. However, there is a problem that the reduction of magnetostriction has reached its peak in the conventional method in which the reflux magnetic domain existing in the grain-oriented electrical steel sheet is reduced overall and uniformly by the film tension. Therefore, new technology is needed.

T.Nozawa et al, "Relationship BetweenTotal Losses under Tensile Stress in 3 Percent Si-Fe Single Crystals and TheirOrientations near (110)[001]", IEEE Trans. on Mag., Vol. MAG-14, No.4,1978.T. Nozawa et al, "Relationship BetweenTotal Losses under Tensile Stress in 3 Percent Si-Fe Single Crystals and Their Orientations near (110) [001]", IEEE Trans. On Mag., Vol. MAG-14, No. 4, 1978 . [画記的な方向性珪素鋼板オリエントコア・ハイビーの開発]:OHM1972.2)[Development of iconic direction-oriented silicon steel sheet Orient Core Hibee]: OHM1972.2) T.Nozawa et al, "Relationship between Total Losses underTensile Stress in 3 Percent Si-Fe Single Crystals and Their Orientations near(110) [001 ]", IEEE Trans.on Mag., Vol. MAG-14, No.4,1978.T. Nozawa et al, "Relationship between Total Losses under Tensile Stress in 3 Percent Si-Fe Single Crystals and Their Orientations near (110) [001]", IEEE Trans.on Mag., Vol. MAG-14, No. 4, 1978. M.Imamuraet al, "Magnetization process and Magnetostriction of a Four Percent Si-FeSingle Crystal Close to (110)[001 ]", IEEE Trans. on Mag., Vol. MAG-17, No.5,1981.M. Imamuraet al, "Magnetization process and Magnetostriction of a Four Percent Si-Fe Single Crystal Close to (110) [001]", IEEE Trans. On Mag., Vol. MAG-17, No. 5, 1981.

特開平10-1779号公報Japanese Patent Laid-Open No. 10-1779

本発明は、圧延方向の結晶粒径と粒界近傍のもぐり角βに着目し、最適な磁歪低減条件を見出し、低騒音化を効果的に実現する、磁歪特性の優れた低騒音トランス用に適用可能な方向性電磁鋼板を提供することにある。   The present invention pays attention to the crystal grain size in the rolling direction and the corner angle β in the vicinity of the grain boundary, finds the optimum magnetostriction reduction condition, and effectively realizes low noise, for a low noise transformer with excellent magnetostriction characteristics. It is to provide a grain-oriented electrical steel sheet that can be applied.

本発明は、上記課題を解決して係る目的を達成するために、以下の手段を採用する。
(1)
結晶粒の圧延方向の長さの平均値DLmaxが12mm以上、皮膜張力が1MPa以下、板厚が0.35mm以下であって、
結晶粒の圧延方向の長さを4等分した領域に分け、その外側の2つの領域に存在する結晶粒界から結晶粒の内側に向けた距離が2mm内の粒界近傍領域について、結晶方位のもぐり角の絶対値をβとして、(βが4.0°以下である粒界近傍領域の面積)/(粒界近傍領域の全面積)≧0.50であることを特徴とする、方向性電磁鋼板。

(1)に記載の方向性電磁鋼板を製造する方法であって、
仕上焼鈍用コイルを巻き取る際のスリーフ゛半径を350mm以上にするとともに、巻き取り速度を60mpm以下にすることを特徴とする、方向性電磁鋼板の製造方法。

仕上焼鈍用コイルを巻き取る際の巻き取り張力を5MPa以上にすることを特徴とする、()に記載の方向性電磁鋼板の製造方法。
The present invention employs the following means in order to solve the above problems and achieve the object.
(1)
Average length DLmax in the rolling direction of crystal grains is 12 mm or more, film tension is 1 MPa or less, plate thickness is 0.35 mm or less ,
The length of the crystal grain in the rolling direction is divided into four equal parts, and the crystal orientation is determined for the grain boundary neighboring area within a distance of 2 mm from the grain boundary existing in the two outer areas to the inside of the crystal grain. The absolute value of the corner angle is β, and (directional area of grain boundary region where β is 4.0 ° or less) / (total area of grain boundary region) ≧ 0.50 steel sheet.
( 2 )
A method for producing the grain-oriented electrical steel sheet according to (1),
A method for producing a grain-oriented electrical steel sheet, characterized in that a sleeving radius when winding a finish annealing coil is 350 mm or more and a winding speed is 60 mpm or less.
( 3 )
The method for producing a grain-oriented electrical steel sheet according to ( 2 ), wherein a winding tension when winding the finish annealing coil is 5 MPa or more.

本発明によれば、方向性電磁鋼板の磁歪を低減化させることが可能であり、例えばトランスなどの電気部材の素材として用いられた際に、部材からの騒音を低減させることができる。   According to the present invention, it is possible to reduce the magnetostriction of a grain-oriented electrical steel sheet. For example, when used as a material for an electrical member such as a transformer, noise from the member can be reduced.

従来技術に係る方向性電磁鋼板の磁区構造を模式的に示した説明図である。It is explanatory drawing which showed typically the magnetic domain structure of the grain-oriented electrical steel sheet which concerns on a prior art. 本発明の効果を示す図である。It is a figure which shows the effect of this invention. 結晶粒の圧延方向の長さを説明するための結晶粒の模式図である。It is a schematic diagram of the crystal grain for demonstrating the length of the rolling direction of a crystal grain. 粒界近傍領域を説明するための結晶粒の模式図である。It is a schematic diagram of the crystal grain for demonstrating a grain boundary vicinity area | region.

以下、本発明の一実施形態について図面を参照しながら詳細に説明する。
図1は従来技術に係る方向性電磁鋼板の磁区構造を模式的に示したものである。この図は鋼板の結晶粒界および磁区の状況を鋼板表面から観察したものである。本発明鋼版は一般的な方向性電磁鋼板に準じたものであり、結晶方位は{110}<001>方位に集積しており、磁区のほとんどは圧延方向に磁化しているため、その境界である磁壁の主なものは圧延方向に沿う、いわゆる180°磁壁となっている。この180°磁壁は一つの結晶粒内では貫通しているが、結晶構造が乱れ結晶方位の不連続が大きくなる結晶粒界で遮られ、この領域では、結晶方位の不連続に対応した磁気的不連続性に起因して鋼板外に磁束が漏れることになる。このためこの領域には磁化方向が圧延方向に対し直角方向となる還流磁区が形成される。このような構造は一般的に知られているものであり、この還流磁区が多いほど磁歪が大きいと考えられている(非特許文献4)。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 schematically shows a magnetic domain structure of a grain-oriented electrical steel sheet according to the prior art. In this figure, the state of crystal grain boundaries and magnetic domains of the steel sheet is observed from the steel sheet surface. The steel plate of the present invention conforms to a general grain-oriented electrical steel sheet, the crystal orientation is accumulated in the {110} <001> orientation, and most of the magnetic domains are magnetized in the rolling direction. The main domain wall is a so-called 180 ° domain wall along the rolling direction. This 180 ° domain wall penetrates within one crystal grain, but is blocked by the grain boundary where the crystal structure is disturbed and the crystal orientation discontinuity becomes large. In this region, the magnetic field corresponding to the crystal orientation discontinuity Magnetic flux leaks out of the steel sheet due to discontinuity. For this reason, a reflux magnetic domain having a magnetization direction perpendicular to the rolling direction is formed in this region. Such a structure is generally known, and it is considered that the greater the number of return magnetic domains, the greater the magnetostriction (Non-Patent Document 4).

本発明者らは方向性電磁鋼板の還流磁区を詳細に調査した。その結果、この還流磁区は圧延方向に沿った方向に延在する粒界ではなく、圧延方向と直交する方向に延在する粒界の近傍に発生する割合が高いことを知見した。これは、隣接する結晶粒との方位のずれは、圧延方向と直交する側に隣接する結晶粒とのずれより、圧延方向側に隣接す結晶粒とのずれが大きくなっているためと推定される。   The present inventors investigated in detail the reflux magnetic domains of grain-oriented electrical steel sheets. As a result, it has been found that this reflux magnetic domain is not a grain boundary extending in the direction along the rolling direction, but a high ratio is generated in the vicinity of the grain boundary extending in the direction orthogonal to the rolling direction. This is presumed that the deviation of the orientation between the adjacent crystal grains is larger because the deviation between the crystal grains adjacent to the rolling direction side is larger than the deviation of the crystal grains adjacent to the side perpendicular to the rolling direction. The

このように還流磁区の存在に偏りがあることから、本発明者は還流磁区を均一に消滅させるのでなく、より効率的に消滅させることを想到し、特定の粒界近傍に発生する還流磁区を選択的に少なくすることを検討した。初期の検討としては単純であるが、上記のように還流磁区が隣接粒との結晶方位との関係で圧延方向に直交する方向に延在する結晶粒界近傍に発生しやすいことから、特に圧延方向粒径との関連について詳細に調査を進めた。   Since there is a bias in the presence of the reflux magnetic domain in this way, the present inventor has devised a more efficient elimination rather than eliminating the reflux magnetic domain uniformly, and the reflux magnetic domain generated in the vicinity of a specific grain boundary. Considering selective reduction. Although it is simple as an initial study, as described above, since the reflux magnetic domain tends to occur near the grain boundary extending in the direction perpendicular to the rolling direction in relation to the crystal orientation with the adjacent grain, the rolling We investigated in detail about the relationship with directional particle size.

その結果、磁歪と圧延方向の結晶粒径の相関は皮膜張力が大きい場合には明確ではないが、皮膜張力が小さくなると依存性が現れ、低皮膜張力かつ粗大粒径である領域で、従来の高皮膜張力材よりも磁歪を小さくできる可能性があることが示された。図2は、代表的なデータを、1つの結晶粒において圧延方向に平行な直線と交差する粒界間の最大距離DLmaxと磁歪の関係で整理したものである。この相関は見方を変えると、圧延方向の粒径が大きい場合には皮膜張力を小さくした方が磁歪が小さくなるという現象であり、皮膜張力を付与することで磁歪が小さくなるという従来常識とは全く逆の現象となる。そして、さらに磁歪を低減するための皮膜張力と圧延方向の結晶粒径のバランスを詳細に検討するとともに、圧延方向に直交する方向に延在する粒界近傍領域での還流磁区と結晶方位を制御することで効果を最大限に得られることを確認してなされたものである。   As a result, the correlation between the magnetostriction and the crystal grain size in the rolling direction is not clear when the film tension is large, but the dependence appears when the film tension becomes small. It has been shown that there is a possibility that the magnetostriction can be made smaller than that of the high film tension material. FIG. 2 shows representative data organized by the relationship between the maximum distance DLmax and the magnetostriction between grain boundaries intersecting a straight line parallel to the rolling direction in one crystal grain. From a different perspective, this correlation is a phenomenon in which, when the grain size in the rolling direction is large, decreasing the film tension reduces the magnetostriction, and the conventional common sense that applying the film tension reduces the magnetostriction. This is exactly the opposite phenomenon. In addition, the balance between the film tension and the grain size in the rolling direction to further reduce magnetostriction is studied in detail, and the reflux magnetic domain and crystal orientation in the region near the grain boundary extending in the direction perpendicular to the rolling direction are controlled. It was made after confirming that the maximum effect can be obtained.

次に本発明の限定条件について説明する。
本発明の重要な特徴は、結晶粒の圧延方向の長さの平均値DLmaxを12mm以上、かつ皮膜張力を1MPa以下とすることである。この2つの定量的数値範囲は本発明の特徴である、低張力下での粒径制御による磁歪の低減効果を得るために必須の条件である。
Next, the limiting conditions of the present invention will be described.
An important feature of the present invention is that the average value DLmax in the rolling direction of crystal grains is 12 mm or more and the film tension is 1 MPa or less. These two quantitative numerical ranges are indispensable conditions for obtaining the magnetostriction reducing effect by controlling the particle size under low tension, which is a feature of the present invention.

「結晶粒の圧延方向の長さ」は本明細書内では、「L方向粒径」と記載することもある。L方向粒径は、様々な形態をもつ結晶粒において模式的には図3のような粒径になる。注意を要するのは、本発明における「L方向粒径」は、一般的にL方向に沿った区間内に存在する結晶粒の数を元に線分法などで決定されるような、L方向に関連する平均結晶粒径とは異なるということである。本発明で制御すべきは、個々の結晶粒についてのL方向に沿った最大の径、である。   The “length in the rolling direction of crystal grains” may be described as “L direction grain size” in the present specification. The grain size in the L direction is typically as shown in FIG. 3 for crystal grains having various forms. It should be noted that the “L direction grain size” in the present invention is generally determined in the L direction as determined by the line segment method or the like based on the number of crystal grains existing in the section along the L direction. This is different from the average crystal grain size related to. What is to be controlled in the present invention is the maximum diameter along the L direction for each crystal grain.

本発明ではこのL方向粒径を、十分に多くの結晶粒について計測し、その平均をDLmaxとして定義する。平均は、10個以上の結晶粒を含む視野において、結晶粒の全体が視野内にある全ての結晶粒についてのL方向粒径を平均するものとする。   In the present invention, the grain size in the L direction is measured for a sufficiently large number of crystal grains, and the average is defined as DLmax. In the field of view including 10 or more crystal grains, the average is obtained by averaging the L direction grain sizes of all the crystal grains in which the entire crystal grains are within the field of view.

DLmaxを大きくする理由は、一つには粒界近傍、特に圧延方向に直交する方向に延在する結晶粒界近傍に多く発生する還流磁区の数密度を抑制するためである。DLmaxを大きくすることで単純に単位面積内に存在する粒界を減らし、結果として還流磁区が減少することになるからである。しかしこの規定はこのような単純な理由だけで制限されるものではなく、皮膜張力の規定と共に発明範囲を満足することで、本発明効果が発現するようになる。   One reason for increasing DLmax is to suppress the number density of reflux magnetic domains that frequently occur in the vicinity of grain boundaries, particularly in the vicinity of crystal grain boundaries extending in a direction perpendicular to the rolling direction. This is because increasing the DLmax simply reduces the grain boundaries existing in the unit area, resulting in a decrease in the reflux magnetic domain. However, this rule is not limited only for such a simple reason, and the effect of the present invention is manifested by satisfying the scope of the invention together with the rule of the film tension.

本発明では、DLmaxを12mm以上かつ皮膜張力を1MPa以下と規定することで本発明効果を得ることができる。これを外れた領域では本発明効果を十分に得ることができない。好ましくは、DLmaxは16mm以上、さらに好ましくは21mm以上である。皮膜張力は好ましくは0.7MPa以下、さらに好ましくは0.4MPa以下、従来、皮膜により付与していた張力はゼロでも構わない。   In the present invention, the effect of the present invention can be obtained by defining DLmax as 12 mm or more and the film tension as 1 MPa or less. The effect of the present invention cannot be sufficiently obtained in a region outside this range. Preferably, DLmax is 16 mm or more, more preferably 21 mm or more. The film tension is preferably 0.7 MPa or less, more preferably 0.4 MPa or less. Conventionally, the tension applied by the film may be zero.

上記の境界値は、後述する製法で製造される、結晶方位が二次再結晶によって{110}<001>方位に強く集積した状態となっている方向性電磁鋼板において、実験的に得られたものである。   The above boundary value was experimentally obtained in a grain-oriented electrical steel sheet produced by a manufacturing method described later and having a crystal orientation strongly accumulated in the {110} <001> orientation by secondary recrystallization. Is.

板厚については0.35mmを越えるとトランス製造元において低騒音用トランスの用途に使用されないため0.35mm以下に限定した。   If the plate thickness exceeds 0.35mm, the transformer manufacturer will not use it for low noise transformer applications, so it is limited to 0.35mm or less.

さらに、1つの結晶粒において図4に模式的に示す粒界近傍領域について、結晶方位のもぐり角との関連で還流磁区の存在量を制御することで発明効果が顕著になる。   Further, in the region near the grain boundary schematically shown in FIG. 4 in one crystal grain, the effect of the invention becomes remarkable by controlling the abundance of the reflux magnetic domain in relation to the drilling angle of the crystal orientation.

粒界近傍領域は、次のように決定する。まず1つの結晶粒に注目し、この結晶粒をその結晶粒のL方向粒径で4等分した領域に分ける。その外側の2つの領域に存在する結晶粒界から結晶粒の内側に向けた距離が2mm内の領域が粒界近傍領域である。本発明では、この粒界近傍領域について、結晶方位のもぐり角の絶対値をβとして、(βが4.0°以下である粒界近傍領域の面積)/(粒界近傍領域の全面積)≧0.50 とすることで発明効果を十分に得ることが可能となる。ここで、もぐり角βとは、結晶粒の<001>方位のうち、鋼板の圧延方向に最も近い方位が鋼板表面となす角度をいう。粒界近傍領域のβは、皮膜除去後の鋼板の鋼板表面から10個以上の結晶粒について、SEMによるEBSDマッピングを行うことにより結晶方位を測定することで決定する。   The region near the grain boundary is determined as follows. First, attention is paid to one crystal grain, and this crystal grain is divided into four regions divided by the grain size in the L direction. A region within a distance of 2 mm from the crystal grain boundary existing in the two outer regions to the inner side of the crystal grain is a region near the grain boundary. In the present invention, with respect to the region near the grain boundary, where β is the absolute value of the flue angle of the crystal orientation, (area of the region near the grain boundary where β is 4.0 ° or less) / (total area of the region near the grain boundary) ≧ 0 The effect of the invention can be sufficiently obtained by setting. Here, the boring angle β is an angle formed by the orientation closest to the rolling direction of the steel plate to the steel plate surface among the <001> orientations of the crystal grains. Β in the vicinity of the grain boundary is determined by measuring the crystal orientation by performing EBSD mapping by SEM on 10 or more crystal grains from the steel plate surface of the steel plate after removal of the film.

なお、本発明が対象とする方向性電磁鋼板の結晶粒は、通常、板厚方向は1つの結晶粒で占められており、上記の結晶粒径および結晶方位の測定は、皮膜を除去した鋼板の表面から実施するものとする。   The grain of the grain-oriented electrical steel sheet targeted by the present invention is usually occupied by one crystal grain in the thickness direction, and the measurement of the crystal grain size and crystal orientation is performed by removing the film. It shall be carried out from the surface.

ここで規定する粒界領域の範囲、βの値、面積比などは、すべて実験的に決定したものである。これらの特性がこの範囲になることで本発明の効果が顕著に発現する。βが大きい鋼板では、Dmaxや張力をどのように制御したとしても、磁歪を十分に小さくできない。   The grain boundary region range, β value, area ratio, and the like specified here are all experimentally determined. When these characteristics are within this range, the effect of the present invention is remarkably exhibited. In a steel plate having a large β, the magnetostriction cannot be sufficiently reduced no matter how Dmax and tension are controlled.

これらの制御値の物理的な意味合いは明確ではないが、特に還流磁区が発生しやすい圧延方向と直交する方向に延在する粒界近傍の領域で、隣接粒との方位のずれを小さく制御することが、本発明の特徴的な現象である、低張力下での磁歪低減効果に寄与するためであると考えられる。   Although the physical meaning of these control values is not clear, the deviation of the orientation with the adjacent grains is controlled to be small, particularly in the region in the vicinity of the grain boundary extending in the direction perpendicular to the rolling direction in which reflux magnetic domains are likely to occur. This is considered to contribute to the magnetostriction reduction effect under low tension, which is a characteristic phenomenon of the present invention.

本発明鋼板のその他の特徴および製造方法について好適な実施形態について説明する。本発明は以下に示す鋼板の形態または製造条件の構成のみに限定されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。ただ、下限値に「超」と示す数値限定範囲には下限値が含まれず、上限値に「未満」と示す数値限定範囲には上限値が含まれない。   Preferred embodiments of the other features and manufacturing method of the steel sheet of the present invention will be described. The present invention is not limited to the form of the steel sheet or the manufacturing conditions described below, and various modifications can be made without departing from the spirit of the present invention. Moreover, a lower limit value and an upper limit value are included in the numerical limit range described below. However, the lower limit value does not include the lower limit value, and the upper limit value does not include the upper limit value.

方向性電磁鋼板は、冷間圧延処理と焼鈍処理との組み合わせによって、結晶粒の磁化容易軸と圧延方向とが一致するように結晶方位が制御された鋼板(地鉄)と、鋼板の表面(鋼板表面)に形成されたグラス皮膜と、グラス皮膜の表面に形成された絶縁皮膜とを備えている。   A grain-oriented electrical steel sheet is a combination of a cold rolling process and an annealing process in which the crystal orientation is controlled so that the easy axis of crystal grains coincides with the rolling direction, and the surface of the steel sheet ( A glass film formed on the surface of the steel sheet and an insulating film formed on the surface of the glass film.

鋼板は、化学成分として、例えば質量分率で、Si:0.8%〜7%、C:0%超〜0.085%、酸可溶性Al:0%〜0.065%、N:0%〜0.012%、Mn:0%〜1%、Cr:0%〜0.3%、Cu:0%〜0.4%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、Ni:0%〜1%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる。   The steel sheet has, for example, mass fractions as chemical components, Si: 0.8% to 7%, C: more than 0% to 0.085%, acid-soluble Al: 0% to 0.065%, N: 0% 0.012%, Mn: 0% to 1%, Cr: 0% to 0.3%, Cu: 0% to 0.4%, P: 0% to 0.5%, Sn: 0% to 0% .3%, Sb: 0% to 0.3%, Ni: 0% to 1%, S: 0% to 0.015%, Se: 0% to 0.015%, with the balance being Fe and Consists of impurities.

上記の鋼板の化学成分は、結晶方位を{110}<001>方位に集積させたGoss集合組織に制御するために好ましい化学成分である。上記元素のうち、Si及びCが基本元素であり、酸可溶性Al、N、Mn、Cr、Cu、P、Sn、Sb、Ni、S、およびSeが選択元素である。上記の選択元素は、その目的に応じて含有させればよいので下限値を制限する必要がなく、下限値が0%でもよい。また、これらの選択元素が不純物として含有されても、本実施形態の効果は損なわれない。上記の鋼板は、上記の基本元素および選択元素の残部がFe及び不純物からなってもよい。なお、不純物とは、鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境等から不可避的に混入する元素を意味する。   The chemical component of the steel sheet is a preferable chemical component for controlling the Goss texture in which the crystal orientation is accumulated in the {110} <001> orientation. Of the above elements, Si and C are basic elements, and acid-soluble Al, N, Mn, Cr, Cu, P, Sn, Sb, Ni, S, and Se are selective elements. Since the above-mentioned selective element may be contained according to the purpose, it is not necessary to limit the lower limit value, and the lower limit value may be 0%. Even if these selective elements are contained as impurities, the effect of the present embodiment is not impaired. In the steel sheet, the balance of the basic element and the selective element may be Fe and impurities. In addition, an impurity means the element inevitably mixed from the ore as a raw material, a scrap, or a manufacturing environment, when manufacturing a steel plate industrially.

また、方向性電磁鋼板では二次再結晶時に純化焼鈍を経ることが一般的である。純化焼鈍においてはインヒビター形成元素の系外への排出が起きる。特にN、Sについては濃度の低下が顕著で、50ppm以下になる。通常の純化焼鈍条件であれば、9ppm以下、さらには6ppm以下、純化焼鈍を十分に行えば、一般的な分析では検出できない程度(1ppm以下)にまで達する。   In general, grain oriented electrical steel sheets undergo purification annealing during secondary recrystallization. In the purification annealing, the inhibitor forming elements are discharged out of the system. In particular, for N and S, the decrease in the concentration is remarkable, and it becomes 50 ppm or less. Under normal purification annealing conditions, 9 ppm or less, further 6 ppm or less. If the purification annealing is sufficiently performed, it reaches a level that cannot be detected by general analysis (1 ppm or less).

上記鋼板の化学成分は、鋼の一般的な分析方法によって測定すればよい。例えば、鋼板の化学成分は、ICP−AES(Inductively Coupled Plasma−Atomic Emission Spectrometry)を用いて測定すればよい。具体的には、皮膜除去後の鋼板の中央の位置から35mm角の試験片を、島津製作所製ICPS-8100等(測定装置)により、予め作成した検量線に基づいた条件で測定することにより特定できる。なお、CおよびSは燃焼−赤外線吸収法を用い、Nは不活性ガス融解−熱伝導度法を用いて測定すればよい。   What is necessary is just to measure the chemical component of the said steel plate with the general analysis method of steel. For example, the chemical composition of the steel sheet may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Specifically, a 35 mm square test piece from the center position of the steel sheet after film removal is measured by using an ICPS-8100 manufactured by Shimadzu Corporation (measurement device) under conditions based on a calibration curve prepared in advance. it can. C and S may be measured using a combustion-infrared absorption method, and N may be measured using an inert gas melting-thermal conductivity method.

グラス皮膜は、例えば、フォルステライト(Mg2SiO4)、スピネル(MgAl2O4)、または、コーディエライト(Mg2Al4Si5O16)などの複合酸化物によって構成されている。グラス皮膜は、方向性電磁鋼板の製造プロセスの1つである仕上げ焼鈍工程において、鋼板に焼き付きが発生することを防止するために形成された皮膜である。従って、グラス皮膜は、方向性電磁鋼板の構成要素として必須の要素ではない。   The glass film is made of a composite oxide such as forsterite (Mg2SiO4), spinel (MgAl2O4), or cordierite (Mg2Al4Si5O16). The glass film is a film formed in order to prevent the steel sheet from being seized in the finish annealing step, which is one of the manufacturing processes of the grain-oriented electrical steel sheet. Therefore, the glass film is not an essential element as a component of the grain-oriented electrical steel sheet.

絶縁皮膜は、例えば、コロイダルシリカ及びリン酸塩を含有し、電気的絶縁性だけでなく、張力、耐食性及び耐熱性等を鋼板に与える役割を担っている。   The insulating film contains, for example, colloidal silica and phosphate, and plays a role of imparting not only electrical insulation properties but also tension, corrosion resistance, heat resistance, and the like to the steel sheet.

なお、方向性電磁鋼板のグラス皮膜および絶縁皮膜は、例えば、次の方法によって除去することができる。グラス皮膜または絶縁皮膜を有する方向性電磁鋼板を、NaOH:10質量%+H2O:90質量%の水酸化ナトリウム水溶液に、80℃で15分間、浸漬する。次いで、H2SO4:10質量%+H2O:90質量%の硫酸水溶液に、80℃で3分間、浸漬する。その後、HNO3:10質量%+H2O:90質量%の硝酸水溶液によって、常温で1分間弱、浸漬して洗浄する。最後に、温風のブロアーで1分間弱、乾燥させる。   In addition, the glass film and insulating film of a grain-oriented electrical steel sheet can be removed by the following method, for example. A grain-oriented electrical steel sheet having a glass film or an insulating film is immersed in a sodium hydroxide aqueous solution of NaOH: 10% by mass + H 2 O: 90% by mass at 80 ° C. for 15 minutes. Subsequently, it is immersed in a sulfuric acid aqueous solution of H2SO4: 10% by mass + H2O: 90% by mass at 80 ° C. for 3 minutes. Thereafter, the substrate is dipped and washed with a nitric acid aqueous solution of HNO3: 10% by mass + H2O: 90% by mass for 1 minute at room temperature. Finally, dry with a warm air blower for 1 minute.

次に、本実施形態に係る方向性電磁鋼板の製造方法について説明する。
方向性電磁鋼板の最初の鋳造工程では、質量分率で、例えばSi:0.8%〜7%、C:0%超〜0.085%、酸可溶性Al:0.01%〜0.065%、N:0%〜0.012%、Mn:0%〜1%、Cr:0%〜0.3%、Cu:0%〜0.4%、P:0%〜0.5%、Sn:0%〜0.3%、Sb:0%〜0.3%、Ni:0%〜1%、S:0%〜0.015%、Se:0%〜0.015%、を含有し、残部がFe及び不純物からなる化学成分を有する溶鋼が連続鋳造機に供給されて、スラフ゛が連続的に製出される。
Next, the manufacturing method of the grain-oriented electrical steel sheet according to the present embodiment will be described.
In the first casting process of grain-oriented electrical steel sheets, by mass fraction, for example, Si: 0.8% to 7%, C: more than 0% to 0.085%, acid-soluble Al: 0.01% to 0.065%, N: 0% to 0.012 %, Mn: 0% to 1%, Cr: 0% to 0.3%, Cu: 0% to 0.4%, P: 0% to 0.5%, Sn: 0% to 0.3%, Sb: 0% to 0.3%, Molten steel containing Ni: 0% to 1%, S: 0% to 0.015%, Se: 0% to 0.015%, with the balance being a chemical component consisting of Fe and impurities is supplied to a continuous casting machine. Is produced continuously.

続いて、熱間圧延工程では、鋳造工程から得られたスラフ゛が所定の温度(例えば1150〜1400℃)に加熱された後、そのスラフ゛に対して熱間圧延が実施される。これにより、例えば、1.8〜3.5mmの厚さを有する熱延鋼板が得られる。   Subsequently, in the hot rolling process, the slab obtained from the casting process is heated to a predetermined temperature (for example, 1150 to 1400 ° C.), and then the hot rolling is performed on the slab. Thereby, for example, a hot-rolled steel sheet having a thickness of 1.8 to 3.5 mm is obtained.

続いて、焼鈍工程では、熱間圧延工程から得られた熱延鋼板に対して、所定の温度条件(例えば750〜1200℃で30秒〜10分間加熱する条件)の下で焼鈍処理が実施される。続いて、冷間圧延工程では、焼鈍工程にて焼鈍処理が実施された熱延鋼板の表面に酸洗処理が実施された後、熱延鋼板に対して冷間圧延が実施される。これにより、例えば、0.15〜0.35mmの厚さを有する冷延鋼板が得られる。   Subsequently, in the annealing process, an annealing treatment is performed on the hot-rolled steel sheet obtained from the hot rolling process under a predetermined temperature condition (for example, a condition of heating at 750 to 1200 ° C. for 30 seconds to 10 minutes). The Subsequently, in the cold rolling process, after the pickling process is performed on the surface of the hot-rolled steel sheet that has been annealed in the annealing process, the hot-rolled steel sheet is cold-rolled. Thereby, for example, a cold-rolled steel sheet having a thickness of 0.15 to 0.35 mm is obtained.

続いて、脱炭焼鈍工程では、冷間圧延工程から得られた冷延鋼板に対して、所定の温度条件(例えば700〜900℃で1〜3分間加熱する条件)の下で熱処理(すなわち、脱炭焼鈍処理)が実施される。このような脱炭焼鈍処理が実施されると、冷延鋼板において、炭素が所定量以下に低減され、一次再結晶組織が形成される。また、脱炭焼鈍工程では、冷延鋼板の表面に、シリカ(SiO)を主成分として含有する酸化物層が形成される。 Subsequently, in the decarburization annealing process, the cold-rolled steel sheet obtained from the cold rolling process is heat-treated under a predetermined temperature condition (for example, a condition of heating at 700 to 900 ° C. for 1 to 3 minutes) (that is, Decarburization annealing treatment) is performed. If such a decarburization annealing process is implemented, in a cold-rolled steel plate, carbon will be reduced to a predetermined amount or less, and a primary recrystallized structure will be formed. In the decarburization annealing step, an oxide layer containing silica (SiO 2 ) as a main component is formed on the surface of the cold rolled steel sheet.

続いて、焼鈍分離剤塗布工程では、マク゛ネシア(MgO)を主成分として含有する焼鈍分離剤が、冷延鋼板の表面(酸化物層の表面)に塗布される。続いて、仕上焼鈍工程では、焼鈍分離剤が塗布された冷延鋼板に対して、所定の温度条件(例えば1100〜1300℃で20〜24時間加熱する条件)の下で熱処理(すなわち、仕上げ焼鈍処理)が実施される。このような仕上焼鈍処理が実施されると、二次再結晶が冷延鋼板に生じるとともに、冷延鋼板が純化される。その結果、上述の鋼板の化学組成を有し、結晶粒の磁化容易軸と圧延方向Xとが一致するように結晶構造が制御された冷延鋼板が得られる。   Subsequently, in the annealing separator coating step, an annealing separator containing magnesium (MgO) as a main component is applied to the surface of the cold-rolled steel sheet (the surface of the oxide layer). Subsequently, in the finish annealing step, the cold-rolled steel sheet coated with the annealing separator is subjected to heat treatment (ie, finish annealing at a temperature of 1100 to 1300 ° C. for 20 to 24 hours) under a predetermined temperature condition. Process). When such a finish annealing treatment is performed, secondary recrystallization occurs in the cold-rolled steel sheet, and the cold-rolled steel sheet is purified. As a result, a cold-rolled steel sheet having the above-described chemical composition of the steel sheet and having a crystal structure controlled so that the easy axis of crystal grains coincides with the rolling direction X is obtained.

また、上記のような仕上焼鈍処理が実施されると、シリカを主成分として含有する酸化物層が、マク゛ネシアを主成分として含有する焼鈍分離剤と反応して、鋼板の表面にフォルステライト(MgSiO)等の複合酸化物からなるク゛ラス皮膜が形成される。仕上焼鈍工程では、鋼板がコイル状に巻かれた状態で仕上げ焼鈍処理が実施される。仕上げ焼鈍処理中に鋼板の表面にク゛ラス皮膜が形成されることにより、コイル状に巻かれた鋼板に焼き付きが発生することを防止することができる。 In addition, when the finish annealing treatment as described above is performed, the oxide layer containing silica as a main component reacts with an annealing separator containing magnesia as a main component, so that forsterite (Mg A glass film made of a complex oxide such as 2 SiO 4 ) is formed. In the finish annealing step, the finish annealing process is performed in a state where the steel sheet is wound in a coil shape. By forming a glass film on the surface of the steel sheet during the finish annealing treatment, it is possible to prevent seizure from occurring on the steel sheet wound in a coil shape.

さらに続いて平坦化焼鈍に加えて絶縁皮膜剤を塗布し、焼き付けることで絶縁被膜を形成し、最終的な方向性電磁鋼板製品を得る。ここでは皮膜剤の塗布量を通常より少なめとし、0.1〜1.5g/m2で塗布量を調整することで皮膜張力を発明規定に合うように調整が可能である。 Furthermore, in addition to planarization annealing, an insulating film agent is applied and baked to form an insulating film, thereby obtaining a final grain-oriented electrical steel sheet product. Here, it is possible to adjust the coating tension to meet the provisions of the invention by setting the coating amount of the coating agent to be less than usual and adjusting the coating amount at 0.1 to 1.5 g / m 2 .

以上の製法の中で特に仕上焼鈍用コイルの巻き取り条件は、前述したL方向粒径や張力、さらに粒界近傍領域を好ましく制御するために有効である。   Among the above-mentioned production methods, the winding conditions for the finish annealing coil are particularly effective for preferably controlling the aforementioned L direction grain size and tension, and further the region near the grain boundary.

本発明では仕上焼鈍用コイルを巻き取る際のスリーブ半径を350mm以上とすることで発明効果を十分に得ることが可能となる。好ましくは420mm以上、さらに好ましくは510mm以上である。これは単純に、曲率を有するコイル状態で二次再結晶を実施することを起因として生ずる、もぐり角を小さくするためである。この範囲を外れると、もぐり角が大きくなり発明効果を得にくくなる。   In the present invention, the effect of the invention can be sufficiently obtained by setting the sleeve radius when winding the finish annealing coil to 350 mm or more. Preferably it is 420 mm or more, More preferably, it is 510 mm or more. This is simply to reduce the bore angle caused by performing secondary recrystallization in a coiled state having a curvature. If it is out of this range, the corner angle becomes large and it becomes difficult to obtain the invention effect.

さらに特徴的な条件は、この際の巻き取り速度を60mpm以下、好ましくは50mpm以下、さらに好ましくは40mpm以下、とすることである。この理由は明確ではないが、巻き取り速度が早い場合、コイルの巻きつけに不均一が生じ、仕上焼鈍(二次再結晶)中の巻き付けられた鋼板表面と雰囲気との接触が変化して、最終的に本発明に取って好ましい、L方向への結晶粒成長や粒界近傍領域でのもぐり角の制御が実現しにくくなるものと考えられる。   Further characteristic conditions are that the winding speed at this time is 60 mpm or less, preferably 50 mpm or less, more preferably 40 mpm or less. The reason for this is not clear, but when the winding speed is high, the coil winding becomes uneven, and the contact between the surface of the wound steel sheet and the atmosphere during finish annealing (secondary recrystallization) changes, Ultimately, it is considered that it is difficult to realize the control of the grain growth in the L direction and the corner angle in the vicinity of the grain boundary, which is preferable for the present invention.

もう一つは、巻き取り張力を5MPa以上とすることである。好ましくは7MPa以上、さらに好ましくは13MPa以上とすることで発明効果を十分に得ることが可能となる。この理由は明確ではないが、巻き取り張力は単純にL方向への張力であり、二次再結晶の進行における結晶粒のL方向への優先成長に寄与するとともに、その際に粒界近傍領域のもぐり角も好ましいものになるためと考えられる。   The other is to make the winding tension 5 MPa or more. The invention effect can be sufficiently obtained when the pressure is preferably 7 MPa or more, more preferably 13 MPa or more. The reason for this is not clear, but the winding tension is simply the tension in the L direction, which contributes to the preferential growth of the crystal grains in the L direction during the progress of secondary recrystallization, and at that time, the region near the grain boundary. This is considered to be because the bore angle becomes favorable.

方向性電磁鋼板の最初の鋳造工程では、質量分率で、Si:3.21%、C:0.045%、酸可溶性Al:0.030%、N:0.0065%、Mn:0.15%、Cr:0.11%、S:0.007%を含有し、残部がFe及び不純物からなる化学成分を有する溶鋼が連続鋳造機に供給し、スラフ゛を製造する。 In the first casting process of grain-oriented electrical steel sheet, by mass fraction, Si: 3.21%, C: 0.045%, acid-soluble Al: 0.030%, N: 0.0065%, Mn: 0.15%, Cr: 0.11%, S: Molten steel containing a chemical component containing 0.007% and the balance consisting of Fe and impurities is supplied to a continuous casting machine to produce a slab.

続いで、熱間圧延工程で1150℃に加熱し、そのスラフ゛に対して熱間圧延をし、2.3mmの厚さを有する熱延鋼板を得る。 Subsequently, it is heated to 1150 ° C. in the hot rolling process, and the slab is hot rolled to obtain a hot rolled steel sheet having a thickness of 2.3 mm.

続いて、焼鈍工程では、1000℃で3分間加熱し,次いで冷間圧延工程では、焼鈍工程にて焼鈍処理を実施し、熱延鋼板を酸洗処理し、冷間圧延をし、0.30mmの厚さを有する冷延鋼板を得る。 Subsequently, in the annealing process, heating was performed at 1000 ° C. for 3 minutes, and in the cold rolling process, annealing was performed in the annealing process, the hot-rolled steel sheet was pickled, cold-rolled, and 0.30 mm A cold-rolled steel sheet having a thickness is obtained.

続いて、脱炭焼鈍工程では、冷延鋼板に対して、840℃で2分間加熱して脱炭焼鈍処理を実施する。 Subsequently, in the decarburization annealing step, the cold rolled steel sheet is heated at 840 ° C. for 2 minutes to perform a decarburization annealing process.

続いて、焼鈍分離剤塗布工程では、マク゛ネシア(MgO)を主成分として含有する焼鈍分離剤を、冷延鋼板の表面に塗布し、続いて、仕上焼鈍工程では、焼鈍分離剤が塗布された冷延鋼板に対して、1200℃で20時間の熱処理を実施する。ここで二次再結晶が冷延鋼板に生じるとともに、冷延鋼板が純化される。 Subsequently, in the annealing separator coating process, an annealing separator containing magnesia (MgO) as a main component is applied to the surface of the cold-rolled steel sheet. Subsequently, in the finish annealing process, the cooling separator coated with the annealing separator is applied. The rolled steel sheet is heat treated at 1200 ° C. for 20 hours. Here, secondary recrystallization occurs in the cold-rolled steel sheet, and the cold-rolled steel sheet is purified.

また、上記のような仕上焼鈍処理が実施されると、シリカを主成分として含有する酸化物層が、マク゛ネシアを主成分として含有する焼鈍分離剤と反応して、鋼板の表面にフォルステライト(MgSiO)等の複合酸化物からなるク゛ラス皮膜が形成される。仕上焼鈍工程では、鋼板がコイル状に巻かれた状態で仕上焼鈍処理が実施される。仕上焼鈍処理中に鋼板の表面にク゛ラス皮膜が形成されることにより、コイル状に巻かれた鋼板に焼き付きが発生することを防止することができる。これにより結晶粒の磁化容易軸と圧延方向が一致するように結晶構造が制御された方向性電磁鋼板が得られる。 In addition, when the finish annealing treatment as described above is performed, the oxide layer containing silica as a main component reacts with an annealing separator containing magnesia as a main component, so that forsterite (Mg A glass film made of a complex oxide such as 2 SiO 4 ) is formed. In the finish annealing step, the finish annealing process is performed in a state where the steel sheet is wound in a coil shape. By forming a glass film on the surface of the steel sheet during the finish annealing treatment, it is possible to prevent seizure from occurring on the steel sheet wound in a coil shape. As a result, a grain-oriented electrical steel sheet having a crystal structure controlled so that the easy axis of crystal grains coincides with the rolling direction can be obtained.

上記の工程において、仕上焼鈍用コイルの巻取り条件、仕上焼鈍での昇温条件、張力皮膜塗布条件により、下記条件1及び条件2への適合を変化させるとともに、磁歪を測定し発明の効果を検証した。
(条件1)圧延方向の粒径を12mm以下にする。
(条件2)粒界近傍の方位を制御し、βを4.0°以下にする。
ここで、λ17 は磁束密度1.7Tにおける磁歪である。
In the above process, the conformity to the following conditions 1 and 2 is changed according to the winding condition of the coil for finish annealing, the temperature raising condition in the finish annealing, and the tension coating application condition, and the magnetostriction is measured to obtain the effect of the invention. Verified.
(Condition 1) The grain size in the rolling direction is 12 mm or less.
(Condition 2) The orientation in the vicinity of the grain boundary is controlled so that β is 4.0 ° or less.
Here, λ 17 is the magnetostriction at a magnetic flux density of 1.7T.

結果を表1に示す。本発明範囲にある鋼板は磁歪が小さくなっている。   The results are shown in Table 1. The steel sheet within the scope of the present invention has a small magnetostriction.

本発明によれば、電気部材の騒音低減化のために鋼板の磁歪を低減させることが可能であるので、本発明は産業上の利用可能性を十分に有する。   According to the present invention, it is possible to reduce the magnetostriction of the steel sheet in order to reduce the noise of the electric member, so the present invention has sufficient industrial applicability.

Claims (3)

結晶粒の圧延方向の長さの平均値DLmaxが12mm以上、皮膜張力が1MPa以下、板厚が0.35mm以下であって、
結晶粒の圧延方向の長さを4等分した領域に分け、その外側の2つの領域に存在する結晶粒界から結晶粒の内側に向けた距離が2mm内の粒界近傍領域について、結晶方位のもぐり角の絶対値をβとして、(βが4.0°以下である粒界近傍領域の面積)/(粒界近傍領域の全面積)≧0.50であることを特徴とする、方向性電磁鋼板。
Average length DLmax in the rolling direction of crystal grains is 12 mm or more, film tension is 1 MPa or less, plate thickness is 0.35 mm or less ,
The length of the crystal grain in the rolling direction is divided into four equal parts, and the crystal orientation is determined for the grain boundary neighboring area whose distance from the grain boundary existing in the two outer areas to the inside of the crystal grain is 2 mm. The absolute value of the corner angle is β, and (directional area of grain boundary region where β is 4.0 ° or less) / (total area of grain boundary region) ≧ 0.50 steel sheet.
請求項1に記載の方向性電磁鋼板を製造する方法であって、
仕上焼鈍用コイルを巻き取る際のスリーフ゛半径を350mm以上にするとともに、巻き取り速度を60mpm以下にすることを特徴とする、方向性電磁鋼板の製造方法。
A method for producing the grain-oriented electrical steel sheet according to claim 1,
A method for producing a grain-oriented electrical steel sheet, characterized in that a winding radius for winding a finish annealing coil is 350 mm or more and a winding speed is 60 mpm or less.
仕上焼鈍用コイルを巻き取る際の巻き取り張力を5MPa以上にすることを特徴とする、請求項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 2 , wherein a winding tension when winding the finish annealing coil is 5 MPa or more.
JP2015225445A 2015-11-18 2015-11-18 Oriented electrical steel sheet and manufacturing method thereof Active JP6606991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015225445A JP6606991B2 (en) 2015-11-18 2015-11-18 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015225445A JP6606991B2 (en) 2015-11-18 2015-11-18 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017095735A JP2017095735A (en) 2017-06-01
JP6606991B2 true JP6606991B2 (en) 2019-11-20

Family

ID=58803405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015225445A Active JP6606991B2 (en) 2015-11-18 2015-11-18 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6606991B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301629B2 (en) * 1992-03-16 2002-07-15 川崎製鉄株式会社 Method for producing oriented silicon steel sheet having metallic luster and excellent magnetic properties
JP3956621B2 (en) * 2001-01-30 2007-08-08 Jfeスチール株式会社 Oriented electrical steel sheet
JP4224957B2 (en) * 2001-07-24 2009-02-18 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet having no undercoat
JP4616623B2 (en) * 2004-11-18 2011-01-19 新日本製鐵株式会社 Method for producing grain-oriented electrical steel sheet
JP2010236004A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp Method of applying annealing separation agent for manufacturing grain-oriented electric steel sheet
JP2012087374A (en) * 2010-10-20 2012-05-10 Jfe Steel Corp Method for manufacturing grain-oriented electromagnetic steel sheet
US9663839B2 (en) * 2011-12-16 2017-05-30 Posco Method for manufacturing grain-oriented electrical steel sheet having excellent magnetic properties
JP5862873B2 (en) * 2011-12-27 2016-02-16 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2017095735A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
RU2502810C2 (en) Manufacturing method of textured electrical steel plate, textured electrical steel plate for strip core, and strip core
JP5423909B1 (en) Method for producing grain-oriented electrical steel sheet
JP6801740B2 (en) Hot-rolled steel sheet for grain-oriented electrical steel sheet and its manufacturing method
JP6658338B2 (en) Electrical steel sheet excellent in space factor and method of manufacturing the same
KR102572634B1 (en) Grain-oriented electrical steel sheet, method of forming insulation film on grain-oriented electrical steel sheet, and manufacturing method of grain-oriented electrical steel sheet
JP6825681B2 (en) Electrical steel sheet and its manufacturing method
WO2020149321A1 (en) Method for manufacturing grain-oriented electrical steel sheet
EP3653752A1 (en) Oriented electromagnetic steel sheet, and manufacturing method of oriented electromagnetic steel sheet
JP7006772B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP6915688B2 (en) Directional electrical steel sheet
JP7052391B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP6519006B2 (en) Unidirectional electrical steel sheet, decarburizing plate for unidirectional electrical steel sheet, and method for producing them
JP6801412B2 (en) Electrical steel sheet and its manufacturing method
JP2018178196A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP6606991B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP7339549B2 (en) Grain-oriented electrical steel sheet with excellent insulation film adhesion without forsterite film
JP6844110B2 (en) Manufacturing method of grain-oriented electrical steel sheet and manufacturing method of original sheet for grain-oriented electrical steel sheet
JP6690244B2 (en) Bidirectional electrical steel sheet and method for manufacturing bidirectional electrical steel sheet
JP2008106367A (en) Double oriented silicon steel sheet
KR102583464B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7036194B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JP2020169366A (en) Method for manufacturing grain oriented electrical steel sheet
JP7226678B1 (en) Manufacturing method of grain-oriented electrical steel sheet
BRPI1101246A2 (en) grain oriented electric steel sheet, steel strip treatment method, and nitrided steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R151 Written notification of patent or utility model registration

Ref document number: 6606991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151