JP2012087374A - Method for manufacturing grain-oriented electromagnetic steel sheet - Google Patents

Method for manufacturing grain-oriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2012087374A
JP2012087374A JP2010235647A JP2010235647A JP2012087374A JP 2012087374 A JP2012087374 A JP 2012087374A JP 2010235647 A JP2010235647 A JP 2010235647A JP 2010235647 A JP2010235647 A JP 2010235647A JP 2012087374 A JP2012087374 A JP 2012087374A
Authority
JP
Japan
Prior art keywords
annealing
steel sheet
coil
finish annealing
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010235647A
Other languages
Japanese (ja)
Inventor
Kunihiro Senda
邦浩 千田
Yasuyuki Hayakawa
康之 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010235647A priority Critical patent/JP2012087374A/en
Publication of JP2012087374A publication Critical patent/JP2012087374A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an advantageous method for manufacturing a grain-oriented electromagnetic steel sheet excellent in magnetic properties at all positions of a product coil by controlling β angles so as to be in a proper range covering a total length of the coil by suppressing variation of the β angles in a secondary recrystallized grain after finish-annealing.SOLUTION: The method for manufacturing a grain-oriented electromagnetic steel sheet includes primary recrystallization annealing performed to a cold rolled material of an electromagnetic steel sheet, and finish-annealing applied thereafter for performing secondary recrystallization in a state of a coil. The finish-annealing is performed being divided into two times or more so as to be performed before and after a rewinding process of the coil for changing a curvature radius of the steel sheet or/and reversing a code of the curvature of the steel sheet, and a secondary recrystallization ratio in the first finish-annealing is set to 5 to 90% in a surface ratio.

Description

本発明は、方向性電磁鋼板の製造方法に関し、具体的には、仕上焼鈍時のコイル内における二次再結晶粒の結晶方位を制御し、製品コイル全長にわたって磁気特性に優れる方向性電磁鋼板を製造する方法に関するものである。   The present invention relates to a method of manufacturing a grain-oriented electrical steel sheet, specifically, a grain-oriented electrical steel sheet that controls the crystal orientation of secondary recrystallized grains in the coil during finish annealing and has excellent magnetic properties over the entire length of the product coil. It relates to a method of manufacturing.

方向性電磁鋼板は、最終板厚まで冷間圧延したSi含有鋼板を、脱炭焼鈍を兼ねた一次再結晶焼鈍後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布し、二次再結晶焼鈍と純化焼鈍を兼ねた仕上焼鈍を施し、その後、未反応の焼鈍分離剤を除去し、平坦化と絶縁被膜の焼き付けを兼ねて連続焼鈍炉を用いた平坦化焼鈍を施すことにより製造されるのが一般的である。ここで、上記二次再結晶させる仕上焼鈍は、鋼板表面にフォルステライト被膜を形成させることの他に、鋼中の不純物成分を除去して純化を図るため、1000℃以上の高温に数10時間保持する必要があることから、通常、鋼板をコイル状態にして、バッチ式の箱型焼鈍炉を用いて行われている。   The grain-oriented electrical steel sheet is obtained by applying an annealing separator containing MgO as a main component to the steel sheet surface after the primary recrystallization annealing that has been cold-rolled to the final sheet thickness and also performing decarburization annealing. Manufactured by performing final annealing that combines crystal annealing and purification annealing, then removing unreacted annealing separator and performing planarization annealing using a continuous annealing furnace for both planarization and baking of insulating coatings. It is common. Here, the finish annealing for the secondary recrystallization is not only to form a forsterite film on the surface of the steel sheet, but also to remove the impurity components in the steel and to purify it. Since it needs to be held, it is usually performed using a batch-type box annealing furnace with the steel sheet in a coiled state.

方向性電磁鋼板の磁気特性は、二次再結晶粒の結晶方位に大きく影響されることから、従来の方向性電磁鋼板の研究開発は、主に二次再結晶粒の結晶方位を磁気特性にとって理想的な方位、いわゆるゴス方位((110)[001])に近づけるべく、その努力がなされてきた。ここで、方向性電磁鋼板の磁気特性との関係で重要な、二次再結晶粒の理想方位(ゴス方位)からのずれを表す指標としては、図1に示すように、鋼板面内でのずれ角αと、板面からの仰角β(3つある<001>軸のうち、圧延方向に最も近い<001>軸と板面とがなす角度;以降、「β角」ともいう。)がある。   Since the magnetic properties of grain-oriented electrical steel sheets are greatly influenced by the crystal orientation of secondary recrystallized grains, research and development of conventional grain-oriented electrical steel sheets mainly uses the crystal orientation of secondary recrystallized grains as a magnetic property. Efforts have been made to approach the ideal orientation, the so-called Goss orientation ((110) [001]). Here, as an index representing the deviation from the ideal orientation (Goss orientation) of the secondary recrystallized grains, which is important in relation to the magnetic properties of the grain-oriented electrical steel sheet, as shown in FIG. Deviation angle α and elevation angle β from the plate surface (among the three <001> axes, the angle formed by the <001> axis closest to the rolling direction and the plate surface; hereinafter also referred to as “β angle”). is there.

なお、上記α角およびβ角は、小さければ小さい程、Goss方位への集積度が高まるため鉄損特性には好ましいようにも考えられる。しかし、β=0°に近づくにつれて渦電流損が増加し、却って、鉄損特性が悪化してしまうという問題が生ずる。そのため、低鉄損を実現する上では適度のβ角を有することが望ましく、一般的には、磁区細分化処理を施す材料では、α=0°、β=0°付近が、また、磁区細分化処理を施さない材料では、α=0°、β=2°付近が好ましいとされている。   In addition, since the α angle and the β angle are smaller, the degree of integration in the Goss direction is higher, so that it may be preferable for the iron loss characteristics. However, as β = 0 ° is approached, eddy current loss increases, and on the contrary, there arises a problem that iron loss characteristics deteriorate. Therefore, it is desirable to have an appropriate β angle in order to achieve low iron loss. Generally, in a material subjected to magnetic domain subdivision processing, α = 0 °, β = 0 ° and the magnetic domain subdivision In a material that is not subjected to the crystallization treatment, α = 0 ° and β = 2 ° are preferred.

上記ずれ角のなかで、特にβ角の制御は、安定的に低鉄損を実現するためには極めて重要である。しかし、鋼板をコイル状態にし、箱型焼鈍炉を用いて行われる仕上焼鈍においては、二次再結晶粒は、図2に示したように、コイルに巻かれたときの鋼板が有する曲率とは無関係に一定方向に成長する。ここで、上記図2は、曲率の大きいコイル内巻部の鋼板中の二次再結晶粒の成長方向を模式的に示したものである。   Among the deviation angles, control of the β angle is particularly important for stably realizing a low iron loss. However, in the finish annealing performed using a box-type annealing furnace with the steel sheet in a coiled state, the secondary recrystallized grains are, as shown in FIG. 2, the curvature of the steel sheet when wound on the coil. It grows in a certain direction regardless. Here, FIG. 2 schematically shows the growth direction of the secondary recrystallized grains in the steel plate of the coil inner winding portion having a large curvature.

そのため、仕上焼鈍で二次再結晶した鋼板を、その後、平坦化焼鈍した場合には、二次再結晶粒内部の位置でβ角が変化する、すなわち、二次再結晶の核発生位置である結晶粒の中央部と端部(粒界近傍部)とでは、図3に示したように、平坦化による曲げ戻しに起因してβ角が変動(以下、この変化量を「変動量」ともいう。)する。その結果、大きく成長した二次再結晶粒では、結晶粒の中央部と粒界近傍部とでは、2°を大きく超えるβ角の変動が生じることになる。そして、このようなβ角の大きな変動が生じると、透磁率が低下するとともに、ランセットと呼ばれる補助磁区の生成量が増加して、鉄損特性が大きく低下することになる。   Therefore, when the steel sheet that has been secondary recrystallized by finish annealing is subsequently flattened, the β angle changes at the position inside the secondary recrystallized grains, that is, the nucleation position of secondary recrystallization. As shown in FIG. 3, the β angle fluctuates at the central part and the end part (grain boundary vicinity part) of the crystal grains due to bending back by flattening (hereinafter, this change amount is also referred to as “variation amount”). Say.) As a result, in the secondary recrystallized grains that have grown greatly, fluctuations in the β angle that greatly exceed 2 ° occur between the central part of the crystal grains and the vicinity of the grain boundary. When such a large change in the β angle occurs, the magnetic permeability is lowered, the amount of auxiliary magnetic domains called lancets is increased, and the iron loss characteristic is greatly lowered.

このような現象を抑制するには、二次再結晶粒径を微細化することが有効であり、従来から、種々の技術が開発されてきた。例えば、特許文献1には、二次再結晶時に最終板厚鋼板がその圧延方向に交叉する方向にのびる波形を有しており、二次再結晶焼鈍後の矯正過程において上記波形を消去することで、〔001〕軸が圧延面に対して4.0°以下傾いている結晶組織を二次再結晶粒内に存在せしめた方向性電磁鋼板が、また、特許文献2には、焼鈍分離剤塗布前の工程において、最終板厚鋼板に圧延方向と交差する方向に微小湾曲を付与した後、矯正焼鈍工程を含ませた通常の処理工程で一方向性珪素鋼板を製造し、製品表面に微小歪を付与することで、圧延面に対して4°以下傾斜する〔001〕軸を有しかつ微小歪を有する低鉄損方向性電磁鋼板が、さらに、特許文献3には、冷間圧延した鋼板に圧延方向と交叉する方向に波形を形成し、その波付鋼板を脱炭焼鈍し、引続いて、連続ストリップ方式で2次再結晶焼鈍を行い、次いで、焼鈍分離剤を塗布した上で箱焼鈍による純化焼鈍を行い、その後、上記波付鋼板を平坦化する矯正処理する低鉄損方向性電磁鋼板の製造方法が開示されている。   In order to suppress such a phenomenon, it is effective to reduce the secondary recrystallization grain size, and various techniques have been developed conventionally. For example, Patent Document 1 has a waveform in which the final thick steel plate extends in a direction intersecting the rolling direction during secondary recrystallization, and the waveform is erased in the correction process after secondary recrystallization annealing. Then, a grain oriented electrical steel sheet in which a crystal structure in which the [001] axis is inclined by 4.0 ° or less with respect to the rolling surface is present in the secondary recrystallized grains is disclosed in Patent Document 2 as an annealing separator. In the process before coating, after the final thick steel plate is given a micro curve in the direction crossing the rolling direction, a unidirectional silicon steel plate is manufactured in a normal processing process including a straightening annealing process, and the product surface is microscopic. A low iron loss directional electrical steel sheet having a [001] axis inclined by 4 ° or less with respect to the rolling surface and imparting a small strain by applying strain is further cold-rolled in Patent Document 3. Form a corrugation in the direction crossing the rolling direction on the steel plate and remove the corrugated steel plate. Carbonization annealing, followed by secondary recrystallization annealing in a continuous strip method, then applying annealing separator, then performing purification annealing by box annealing, and then flattening the corrugated steel sheet A method for manufacturing a low iron loss grain-oriented electrical steel sheet is disclosed.

特公昭57−61102号公報Japanese Patent Publication No.57-61102 特公昭58−00747号公報Japanese Patent Publication No.58-00747 特公昭58−05969号公報Japanese Patent Publication No. 58-05969

しかしながら、特許文献1〜3に開示された技術は、いずれも鋼板の圧延方向に交差する方向に波形の歪を付与する必要があるが、冷間圧延した鋼板にこのような加工を施すことは非現実的であり、実用化するには無理がある。また、特許文献1〜3に開示された技術では、二次再結晶方位の集積度を高度に保ったままで、二次再結晶粒径を小さくするのは、一次再結晶集合組織を大きく変える必要があるため限界がある。   However, all of the techniques disclosed in Patent Documents 1 to 3 need to impart corrugated distortion in a direction intersecting the rolling direction of the steel sheet, but it is not possible to perform such processing on a cold-rolled steel sheet. It is unrealistic and impossible to put into practical use. Further, in the techniques disclosed in Patent Documents 1 to 3, it is necessary to greatly change the primary recrystallization texture in order to reduce the secondary recrystallization grain size while maintaining a high degree of secondary recrystallization orientation accumulation. Because there is a limit.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、仕上焼鈍後の二次再結晶粒内のβ角の変動を抑え、コイル全長にわたってβ角を適正範囲に制御することによって、製品コイル全ての位置で磁気特性に優れる方向性電磁鋼板の有利な製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to suppress the fluctuation of the β angle in the secondary recrystallized grains after finish annealing, and to make the β angle within the proper range over the entire coil length. The purpose of this is to propose an advantageous method for producing grain-oriented electrical steel sheets that are excellent in magnetic properties at all positions of product coils.

発明者らは、上記課題を解決するべく、二次再結晶粒を微細化する従来技術以外の方法でコイル全長にわたってβ角を制御する方法について鋭意検討した。その結果、二次再結晶粒内のβ角の変動は、コイル状態に巻かれたときの鋼板が有する曲率に無関係に一方向に成長した二次再結晶粒を曲げ戻して平坦化することによって生ずるものであるから、この現象を逆に利用し、仕上焼鈍(二次再結晶焼鈍)を複数回に分けて行い、その都度、鋼板の曲率を変えて二次再結晶を進行させれば、二次再結晶粒内のβ角の変動を小さく抑制し、かつコイル全長にわたってβ角の変動量を適正範囲に制御することができ、ひいては製品コイルの全てにおいて鉄損特性を改善し得ることに想到し、本発明を完成させるに至った。   In order to solve the above problems, the inventors diligently studied a method for controlling the β angle over the entire length of the coil by a method other than the prior art for refining secondary recrystallized grains. As a result, the fluctuation of the β angle in the secondary recrystallized grains is caused by bending and flattening the secondary recrystallized grains grown in one direction regardless of the curvature of the steel sheet when coiled. Since this occurs, using this phenomenon in reverse, finish annealing (secondary recrystallization annealing) is performed in multiple steps, and each time the secondary recrystallization proceeds by changing the curvature of the steel sheet, It is possible to suppress the fluctuation of the β angle in the secondary recrystallized grains to be small, and to control the fluctuation amount of the β angle to an appropriate range over the entire length of the coil, thereby improving the iron loss characteristics in all the product coils. The present invention has been conceived and the present invention has been completed.

すなわち本発明は、冷間圧延した電磁鋼板素材を一次再結晶焼鈍し、その後、コイル状態で二次再結晶させる仕上焼鈍を施して方向性電磁鋼板を製造する方法において、上記仕上焼鈍を、コイルの巻き直し工程を挟んで2回に分けて行い、1回目の仕上焼鈍における二次再結晶率を面積率で5〜90%とすることを特徴とする方向性電磁鋼板の製造方法である。   That is, the present invention provides a method for producing a grain-oriented electrical steel sheet by subjecting a cold-rolled electrical steel sheet material to primary recrystallization annealing and then performing secondary annealing in a coil state to produce the directional electrical steel sheet. This is a method for producing a grain-oriented electrical steel sheet characterized in that the secondary recrystallization rate in the first finish annealing is set to 5 to 90% in terms of area ratio.

本発明の方向性電磁鋼板の製造方法は、上記コイルの巻き直しにより、巻き直し前後で鋼板の曲率半径を変化させることを特徴とする。   The grain-oriented electrical steel sheet manufacturing method of the present invention is characterized in that the radius of curvature of the steel sheet is changed before and after rewinding by rewinding the coil.

また、本発明の方向性電磁鋼板の製造方法は、上記コイルの巻き直しにより、巻き直し前後で鋼板の曲率の符号を逆転させることを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that the sign of the curvature of the steel sheet is reversed before and after rewinding by rewinding the coil.

また、本発明の方向性電磁鋼板の製造方法は、上記仕上焼鈍を、コイルの巻き直し工程を挟んで3回以上に分けて行うことを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that the finish annealing is performed in three or more times with a coil rewinding step in between.

また、本発明の方向性電磁鋼板の製造方法は、上記仕上焼鈍後、磁区細分化処理を施すことを特徴とする。   Moreover, the manufacturing method of the grain-oriented electrical steel sheet according to the present invention is characterized in that after the finish annealing, a magnetic domain refinement process is performed.

本発明によれば、製品コイル全長にわたって優れた磁気特性を有する方向性電磁鋼板を製造することができるので、製品品質(磁気特性)の向上のみならず、製品歩留りの向上、製造コストの低減にも寄与する。   According to the present invention, a grain-oriented electrical steel sheet having excellent magnetic characteristics over the entire length of the product coil can be manufactured, which not only improves product quality (magnetic characteristics) but also improves product yield and reduces manufacturing costs. Also contribute.

方向性電磁鋼板におけるα角およびβ角を説明する図である。It is a figure explaining the alpha angle and beta angle in a grain-oriented electrical steel sheet. コイル状態の鋼板を二次再結晶させたときの二次再結晶粒内の結晶方位の分布を説明する図である。It is a figure explaining the distribution of the crystal orientation in a secondary recrystallized grain when carrying out secondary recrystallization of the steel plate of a coil state. コイル状態で二次再結晶させた鋼板を平坦化したときの二次再結晶粒内の結晶方位の分布を説明する図である。It is a figure explaining the distribution of the crystal orientation in a secondary recrystallized grain when flattening the steel plate which carried out secondary recrystallization in the coil state. 1回目の仕上焼鈍における二次再結晶率と製品コイルの平均鉄損値との関係を示すグラフである。It is a graph which shows the relationship between the secondary recrystallization rate in the 1st finish annealing, and the average iron loss value of a product coil. 正転巻き直しによるコイルの巻き直し方法を説明する図である。It is a figure explaining the rewinding method of the coil by forward rewinding. 反転巻き直しによるコイルの巻き直し方法を説明する図である。It is a figure explaining the rewinding method of the coil by inversion rewinding. 1回目の仕上焼鈍と2回目の仕上焼鈍の間で正転巻き直しを行ったときの2回目の仕上焼鈍における二次再結晶を説明する図であり、(a)は1回目の仕上焼鈍で発生した二次再結晶粒がそのまま粒成長する場合を、(b)は一次再結晶粒内から新たな二次再結晶粒が発生する場合を示す。It is a figure explaining the secondary recrystallization in the second finish annealing when performing forward rewinding between the first finish annealing and the second finish annealing, (a) is the first finish annealing. The case where the generated secondary recrystallized grains grow as they are, (b) shows the case where new secondary recrystallized grains are generated from within the primary recrystallized grains. 1回目の仕上焼鈍と2回目の仕上焼鈍の間で反転巻き直しを行ったときの2回目の仕上焼鈍における二次再結晶を説明する図であり、(a)は1回目の仕上焼鈍で発生した二次再結晶粒がそのまま粒成長する場合を、(b)は一次再結晶粒内から新たな二次再結晶粒が発生する場合を示す。It is a figure explaining the secondary recrystallization in the 2nd finish annealing when reverse rewinding is performed between the 1st finish annealing and the 2nd finish annealing, and (a) occurs by the first finish annealing. (B) shows the case where new secondary recrystallized grains are generated from within the primary recrystallized grains. 反転巻き直しがβ角の分布に及ぼす影響を説明する図である(1回目の二次再結晶焼鈍で生じた二次再結晶粒が2回目の二次再結晶焼鈍で成長する場合)。It is a figure explaining the influence which reverse rewinding has on distribution of β angle (in the case where secondary recrystallized grains generated by the first secondary recrystallization annealing grow by the second secondary recrystallization annealing).

本発明の方向性電磁鋼板の製造方法は、冷間圧延したSi含有方向性電磁鋼板素材(冷延鋼板)を一次再結晶焼鈍し、その後、コイル状態で二次再結晶させる仕上焼鈍を施して方向性電磁鋼板を製造するに際して、上記仕上焼鈍を、コイルの巻き直し工程を挟んで複数回に分け、かつその都度、コイル状態に巻かれたときの鋼板の曲率を変化させて二次再結晶を進行させることによって、二次再結晶粒内におけるβ角の変動を小さく抑えるとともに、コイル全長にわたってβ角の変動量を適正範囲に制御し、これによってコイル全長にわたって優れた磁気特性を有する方向性電磁鋼板を得ようとする技術である。
すなわち、本発明は、二次再結晶粒内のβ角の変動を抑制しかつβ角の変動量を適正範囲に制御するために、仕上焼鈍における二次再結晶を複数回に分けて行い、それぞれの仕上焼鈍における鋼板の曲率をその都度変更するところに特徴がある。
The method for producing a grain-oriented electrical steel sheet according to the present invention comprises subjecting a cold-rolled Si-containing grain-oriented electrical steel sheet material (cold-rolled steel sheet) to primary recrystallization annealing and then subjecting it to secondary recrystallization in a coil state. When producing grain-oriented electrical steel sheets, the above-mentioned finish annealing is divided into multiple times with a coil rewinding process, and each time secondary recrystallization is performed by changing the curvature of the steel sheet when wound in a coiled state. By controlling the β angle fluctuation in the secondary recrystallized grains, the β angle fluctuation amount is controlled to an appropriate range over the entire coil length, and thereby the directionality with excellent magnetic characteristics over the entire coil length. This is a technique for obtaining electromagnetic steel sheets.
That is, the present invention performs the secondary recrystallization in the finish annealing in a plurality of times in order to suppress the fluctuation of the β angle in the secondary recrystallized grains and to control the fluctuation amount of the β angle to an appropriate range, It is characterized in that the curvature of the steel sheet in each finish annealing is changed each time.

ここで、仕上焼鈍を2回に分けて行う場合には、1回目の仕上焼鈍における二次再結晶率は、二次再結晶した部分の板面内の面積率にして5〜90%とする必要がある。面積率90%超えでは、1回目の仕上焼鈍のみで二次再結晶を完了させるのと実質的に同じとなり、巨大な二次再結晶粒が生成して、二次再結晶粒の端部(結晶粒界)でのβ角の最大値(粒内のβ角の変動量)が大きくなるからである。同様に、面積率5%未満では、2回目の仕上焼鈍のみで二次再結晶を完了させるのと実質的に同じとなり、巨大な二次再結晶粒が生成して、やはり粒内のβ角の変動量が大きくなるからである。好ましい1回目の仕上焼鈍における再結晶率は、面積率にして30〜70%の範囲である。   Here, when finishing annealing is performed twice, the secondary recrystallization rate in the first finishing annealing is set to 5 to 90% in terms of the area ratio in the plate surface of the secondary recrystallized portion. There is a need. When the area ratio exceeds 90%, it is substantially the same as completing the secondary recrystallization only by the first finish annealing, and a huge secondary recrystallized grain is generated and the end of the secondary recrystallized grain ( This is because the maximum value of the β angle at the crystal grain boundary (the variation amount of the β angle in the grain) becomes large. Similarly, when the area ratio is less than 5%, it is substantially the same as completing the secondary recrystallization only by the second finish annealing, and a huge secondary recrystallized grain is formed, and the β angle within the grain is also produced. This is because the amount of fluctuation of becomes large. The recrystallization rate in the first finish annealing is preferably in the range of 30 to 70% in terms of area ratio.

上記限定理由の根拠となった実験について説明する。
C:0.05mass%、Si:3.2mass%、Mn:0.10mass%、Se:0.02mass%、Sb:0.04mass%、Al:0.020mass%、N:0.0050mass%およびCu:0.05mass%を含有する鋼スラブを1400℃に加熱後、熱間圧延して板厚2.0mmの熱延板とした後、1100℃×60秒の熱延板焼鈍を施し、酸洗し、冷間圧延して板厚0.23mmの冷延板とした。次いで、850℃×120秒の脱炭焼鈍を兼ねた一次再結晶焼鈍を施してから、MgOを主成分とする焼鈍分離剤を塗布し、内径500mm、外径1500mmのコイルに巻き取り、仕上焼鈍を施し、その後、未反応のMgOを洗浄除去し、絶縁被膜の焼き付けを兼ねた平坦化焼鈍を施して製品コイルとした。
The experiment that became the basis for the above limitation reasons will be described.
C: 0.05 mass%, Si: 3.2 mass%, Mn: 0.10 mass%, Se: 0.02 mass%, Sb: 0.04 mass%, Al: 0.020 mass%, N: 0.0050 mass% and Cu : A steel slab containing 0.05 mass% was heated to 1400 ° C. and hot-rolled into a hot-rolled sheet having a thickness of 2.0 mm, and then subjected to hot-rolled sheet annealing at 1100 ° C. × 60 seconds, and pickling And it cold-rolled to make a cold-rolled sheet having a thickness of 0.23 mm. Next, after performing primary recrystallization annealing also serving as decarburization annealing at 850 ° C. × 120 seconds, an annealing separator mainly composed of MgO is applied, wound around a coil having an inner diameter of 500 mm and an outer diameter of 1500 mm, and finish annealing. After that, unreacted MgO was washed and removed, and flattening annealing was performed to double the baking of the insulating film to obtain a product coil.

なお、上記仕上焼鈍は、昇温速度20℃/hrで加熱を開始し、昇温過程の途中、あるいは、1050℃まで加熱後の均熱の途中で、いったん降温して1回目の仕上焼鈍における二次再結晶を中断した後、後述する図5に示した正転巻き直しをしてコイル内巻と外巻の位置を逆転させて内径500mmφ、外径1500mmφのコイルに巻き取り、その後、このコイルを再度、昇温速度20℃/hrで1050℃の温度に加熱し、二次再結晶を完了させてから、さらに、1200℃×5hrで純化を図る2回目の仕上焼鈍を施した。なお、1回目の仕上焼鈍後の巻き直し時には、コイルの長さ方向中央部からサンプルを採取して、1回目の仕上焼鈍における二次再結晶率を測定した。   In the above-mentioned finish annealing, heating is started at a temperature rising rate of 20 ° C./hr, and the temperature is once lowered in the middle of the temperature rising process or in the middle of soaking after heating to 1050 ° C. After the secondary recrystallization is interrupted, the forward rotation shown in FIG. 5 to be described later is performed to reverse the positions of the inner and outer coils, and the coil is wound around a coil having an inner diameter of 500 mmφ and an outer diameter of 1500 mmφ. The coil was again heated to a temperature of 1050 ° C. at a temperature increase rate of 20 ° C./hr to complete secondary recrystallization, and then subjected to a second finish annealing for purification at 1200 ° C. × 5 hr. At the time of rewinding after the first finish annealing, a sample was taken from the central portion in the length direction of the coil, and the secondary recrystallization rate in the first finish annealing was measured.

上記のようにして得た各製品コイルの長さ方向両端部および中央部の3箇所からサンプルを採取し、エプスタイン試験法にて鉄損を測定し、上記3箇所の平均鉄損値をその製品コイルの平均鉄損値とした。図4は、上記のようにして得た、1回目の仕上焼鈍における二次再結晶率と、製品コイルの平均鉄損値との関係を示したものである。この図から、1回目の仕上焼鈍による二次再結晶率が5〜90%の範囲で平均鉄損値が改善されており、30〜70%の範囲ではより改善されていることがわかる。   Samples were taken from three locations, both in the longitudinal direction at both ends and in the center, of each product coil obtained as described above, and the iron loss was measured by the Epstein test method. The average iron loss value of the coil was used. FIG. 4 shows the relationship between the secondary recrystallization rate in the first finish annealing obtained as described above and the average iron loss value of the product coil. From this figure, it can be seen that the average iron loss value is improved when the secondary recrystallization rate by the first finish annealing is in the range of 5 to 90%, and further improved in the range of 30 to 70%.

また、仕上焼鈍の回数は、上記のように2回に限定されるものではなく、二次再結晶粒内のβ角の変動をより小さくするため、3回以上に分けて行ってもよい。なお、仕上焼鈍を3回に分けて行う場合には、1回目の仕上焼鈍における再結晶率を5〜70%の範囲とし、2回目の仕上焼鈍後における二次再結晶の面積率を30〜90%の範囲とするのが好ましい。ただし、仕上焼鈍の回数が増えると、製造コストも上昇するので、製造性の観点からは、3回程度を上限とするのが好ましい。   Further, the number of finish annealing is not limited to two as described above, and may be divided into three or more times in order to reduce the fluctuation of the β angle in the secondary recrystallized grains. In addition, when finishing annealing is performed in three times, the recrystallization rate in the first finishing annealing is in a range of 5 to 70%, and the area ratio of secondary recrystallization after the second finishing annealing is 30 to 30%. A range of 90% is preferable. However, since the manufacturing cost increases as the number of finish annealing increases, it is preferable that the upper limit is about 3 times from the viewpoint of manufacturability.

なお、仕上焼鈍を複数回に分ける方法は、二次再結晶温度以上に加熱後、二次再結晶の進行途中で降温し、二次再結晶を中断する方法が現実的で好ましく、また、各仕上焼鈍における二次再結晶率を制御する方法は、上記二次再結晶焼鈍温度および時間と、二次再結晶率との関係を予め求めておき、それに従って焼鈍温度と時間を決定してやればよい。   In addition, the method of dividing the finish annealing into a plurality of times is preferably a method in which the temperature is lowered in the course of the secondary recrystallization after heating to the secondary recrystallization temperature or higher, and the method of interrupting the secondary recrystallization is realistic and preferable. The method for controlling the secondary recrystallization rate in finish annealing may be obtained by previously obtaining the relationship between the secondary recrystallization annealing temperature and time and the secondary recrystallization rate, and determining the annealing temperature and time accordingly. .

また、各仕上焼鈍時における鋼板の曲率をその都度変更する方法としては、各仕上焼鈍間で、コイルを巻き直す方法が現実的で好ましく、具体的には、図5に示したように仕上焼鈍後のコイルを、そのまま巻き戻して巻き取る方法(以降、「正転巻き直し」ともいう)と、図6に示したように仕上焼鈍後のコイルを、巻き取る方向を逆転して、すなわち、表裏を逆転して巻き取る方法(以降、「反転巻き直し」ともいう)とがあるが、いずれも用いることができる。   In addition, as a method of changing the curvature of the steel sheet at each finish annealing each time, a method of rewinding the coil between each finish annealing is practical and preferable. Specifically, as shown in FIG. The method of rewinding and winding the subsequent coil as it is (hereinafter also referred to as “forward rewinding”), and reversing the winding direction of the coil after finish annealing as shown in FIG. There is a method (hereinafter also referred to as “reversal rewinding”) in which the front and back sides are reversed, and any of them can be used.

ここで、図5の正転巻き直しについて説明すると、この正転巻き直しを行うことによって、直前の仕上焼鈍におけるコイル内巻部(A端)は、コイル外巻部へと移動する結果、上記A端は、大きな曲率(小さな曲率半径)から小さな曲率(大きな曲率半径)へと変化する。逆に、直前の仕上焼鈍におけるコイル外巻部(B端)は、コイル内巻部へと移動する結果、上記B端は、小さな曲率(大きな曲率半径)状態から大きな曲率(小さな曲率半径)へと変化する。   Here, the normal rewinding in FIG. 5 will be described. As a result of performing the normal rewinding, the coil inner winding part (A end) in the last finish annealing moves to the coil outer winding part. The A end changes from a large curvature (small curvature radius) to a small curvature (large curvature radius). On the contrary, the coil outer winding part (B end) in the last finish annealing moves to the coil inner winding part. As a result, the B end changes from a small curvature (large curvature radius) state to a large curvature (small curvature radius). And change.

また、図6の反転巻き直しについて説明すると、この反転巻き直しを行うことによって、直前の仕上焼鈍におけるコイル内巻部(A端)およびコイル外巻部(B端)は、それぞれコイル内位置および曲率(曲率半径)は上記のように変化するが、それに加えてさらに、鋼板の曲げ方向、すなわち、曲率の符号も逆転する。したがって、この反転巻き直しは、正転巻き直しよりも鋼板の曲率の変化量が大きいため、後述するようにβ角の変動を抑制する効果が大きい。   Further, the reverse rewinding of FIG. 6 will be described. By performing this reverse rewinding, the coil inner winding portion (A end) and the coil outer winding portion (B end) in the last finish annealing are respectively positioned in the coil and The curvature (curvature radius) changes as described above, but in addition, the bending direction of the steel sheet, that is, the sign of the curvature is also reversed. Therefore, since this rewinding has a larger amount of change in the curvature of the steel sheet than the normal rewinding, the effect of suppressing the fluctuation of the β angle is great as will be described later.

上記のように、本発明は、二次再結晶粒の成長途中で粒成長を停止し、コイルを巻き直してコイル各部の曲率を変更しつつ、二次再結晶を完了させることによって、β角を適正範囲に制御しようとするものである。したがって、1回目、2回目(あるいは3回目以降)の仕上焼鈍時のコイル内径および外径は、鋼板の長さや板厚、二次再結晶粒の大きさ等を考慮し、最終仕上焼鈍後(二次再結晶完了後)にコイル全長にわたってβ角の変動量(もしくは最大値)が最も小さくなるよう、適正な値を選択する必要がある。   As described above, the present invention stops the grain growth in the middle of the growth of the secondary recrystallized grains, and completes the secondary recrystallization while rewinding the coil to change the curvature of each part of the coil. Is to be controlled within an appropriate range. Therefore, the coil inner diameter and outer diameter during the first and second (or third and subsequent) finish annealing are considered after the final finish annealing in consideration of the length and thickness of the steel sheet, the size of the secondary recrystallized grains, etc. It is necessary to select an appropriate value so that the fluctuation amount (or maximum value) of the β angle becomes the smallest over the entire length of the coil after completion of the secondary recrystallization.

以下、仕上焼鈍を2回に分けて仕上焼鈍する本発明の方法について具体的に説明する。
図7(a)は、1回目の仕上焼鈍で、二次再結晶を途中で停止させたときのコイル内巻部(A端)の二次再結晶の進行状況を表した図であり、二次再結晶粒と一次再結晶粒とが混在する状態を示したものである。この場合には、従来技術の仕上焼鈍の場合のように二次再結晶粒は巨大に成長していないため、二次再結晶粒内における[001]軸と鋼板面とがなすずれ角(β角)の変動量は図2より小さい。
Hereinafter, the method of the present invention in which the finish annealing is divided into two times and will be specifically described.
FIG. 7A is a diagram showing the progress of secondary recrystallization of the coil inner winding portion (A end) when secondary recrystallization is stopped halfway in the first finish annealing. This shows a state where secondary recrystallized grains and primary recrystallized grains coexist. In this case, since the secondary recrystallized grains do not grow enormously as in the case of the finish annealing of the prior art, the deviation angle (β) between the [001] axis and the steel plate surface in the secondary recrystallized grains The variation in angle is smaller than that in FIG.

ここで、1回目の仕上焼鈍後、図5に示した正転巻き直しでコイルを巻き直した場合には、1回目の仕上焼鈍時のコイル内巻部のA端は、コイル外巻部へと移動する結果、A端における鋼板の大きな曲率(小さな曲率半径)は小さな曲率(大きな曲率半径)へと変化する。そして、この状態で2回目の仕上焼鈍を再度施して二次再結晶を進行させた場合には、1回目の仕上焼鈍で発生した二次再結晶粒がそのまま成長して巨大な二次再結晶粒を形成するか、あるいは、巻き直しによる曲率変化に起因した内部歪によって、一次再結晶粒内から新たな二次再結晶核が生成し、この二次再結晶粒が粒成長する、のいずれかの現象が起こると考えられる。   Here, after the first finish annealing, when the coil is rewound by the forward rewinding shown in FIG. 5, the end A of the coil inner winding portion at the first finish annealing is directed to the coil outer winding portion. As a result, the large curvature (small curvature radius) of the steel sheet at the A end changes to a small curvature (large curvature radius). And in this state, when the second finish annealing is performed again and the secondary recrystallization proceeds, the secondary recrystallized grains generated by the first finish annealing grow as they are, and a huge secondary recrystallization occurs. Either a secondary recrystallized nucleus is formed from the primary recrystallized grain due to the internal strain caused by the change in curvature due to re-rolling or the secondary recrystallized grain grows. Such a phenomenon is thought to occur.

図7(b)は、前者の場合、即ち、1回目の仕上焼鈍で発生した二次再結晶粒がそのまま成長して巨大な二次再結晶粒を形成する場合を示したものである。この場合には、図7(b)からわかるように、2回目の仕上焼鈍時の鋼板の曲率は1回目の仕上焼鈍よりも小さくなっているため、二次再結晶粒がそのまま成長しても、二次再結晶粒内のβ角の変動量は、図2のときのように大きくならない。その結果、1回目の仕上焼鈍でのβ角が小さくなることに加えて、2回目の仕上焼鈍でのβ角の増大が抑制されるので、二次再結晶完了後の粒内のβ角の変動量はより小さく抑えられ、鉄損特性が改善されることが期待される。   FIG. 7B shows the former case, that is, the case where the secondary recrystallized grains generated by the first finish annealing grow as they are to form huge secondary recrystallized grains. In this case, as can be seen from FIG. 7B, the curvature of the steel sheet at the second finish annealing is smaller than that at the first finish annealing, so even if the secondary recrystallized grains grow as they are. The amount of fluctuation of the β angle in the secondary recrystallized grains does not increase as in FIG. As a result, in addition to a decrease in the β angle in the first finish annealing, an increase in the β angle in the second finish annealing is suppressed, so the β angle in the grains after the completion of the secondary recrystallization is reduced. It is expected that the amount of fluctuation will be smaller and the iron loss characteristics will be improved.

一方、図7(c)は、上記後者の場合、すなわち、2回目の仕上焼鈍で、一次再結晶粒内から新たな二次再結晶粒が発生する場合を示したものである。この場合には、新たに発生した二次再結晶粒は、1回目の仕上焼鈍で発生した二次再結晶粒のβ角の影響を受けることなく核生成するので、β角=0°に近い状態から粒成長することになる。その結果、二次再結晶粒内のβ角の変動量は、1回目の仕上焼鈍で発生した二次再結晶がそのまま成長する図7(b)の場合よりも小さくなる。さらに、この場合には、1回目の仕上焼鈍で発生した二次再結晶粒に、2回目の仕上焼鈍で発生した二次再結晶粒が加わり、それらの二次再結晶粒の境界には結晶粒界や擬似粒界ができるため、二次再結晶粒を微細化したのと同じ磁区細分化効果が得られる。その結果、上記β角の変動抑制による鉄損改善効果と相俟って、より大きな鉄損特性の改善が期待される。   On the other hand, FIG. 7C shows the latter case, that is, the case where new secondary recrystallized grains are generated from the primary recrystallized grains in the second finish annealing. In this case, the newly generated secondary recrystallized grains nucleate without being affected by the β angle of the secondary recrystallized grains generated by the first finish annealing, so that the β angle is close to 0 °. Grain will grow from the state. As a result, the amount of fluctuation of the β angle in the secondary recrystallized grains is smaller than in the case of FIG. 7B in which the secondary recrystallization generated by the first finish annealing grows as it is. Further, in this case, secondary recrystallized grains generated by the second finish annealing are added to the secondary recrystallized grains generated by the first finish annealing, and a crystal is formed at the boundary of the secondary recrystallized grains. Since grain boundaries and pseudo grain boundaries are formed, the same magnetic domain refinement effect as that obtained by refining secondary recrystallized grains can be obtained. As a result, in combination with the effect of improving the iron loss by suppressing the fluctuation of the β angle, a greater improvement in the iron loss characteristic is expected.

さらに、図6に示した反転巻き直しをした場合には、上記に説明した正転巻き直しの場合よりも、さらに鉄損特性の改善が期待できる。
というのは、反転巻き直しを行った場合には、1回目の仕上焼鈍時のコイル内巻部のA端は、コイル外巻部に移動するだけでなく、鋼板の曲げ方向も逆転する。その結果、A端における鋼板の大きな曲率(小さな曲率半径)は小さな曲率(大きな曲率半径)へと変化することに加えて曲率の符号も逆転するので、正転巻き直しの場合よりも鋼板の曲率の変化量は大きい。そして、この状態で2回目の仕上焼鈍を施した場合にも、1回目の仕上焼鈍で発生した二次再結晶粒がそのまま成長して巨大な二次再結晶粒を形成するか、あるいは、一次再結晶粒内から新たな二次再結晶核が生成し、粒成長する、のいずれかの現象が起こると考えられる。
Furthermore, when the reverse rewinding shown in FIG. 6 is performed, the iron loss characteristic can be further improved as compared with the case of the forward rewinding described above.
This is because when the rewinding is performed, the A end of the coil inner winding part at the time of the first finish annealing not only moves to the coil outer winding part, but also the bending direction of the steel sheet is reversed. As a result, since the large curvature (small curvature radius) of the steel sheet at the A end changes to a small curvature (large curvature radius), the sign of the curvature is also reversed, so that the curvature of the steel sheet is greater than in the case of forward rewinding. The amount of change is large. And even when the second finish annealing is performed in this state, the secondary recrystallized grains generated by the first finish annealing grow as they are to form huge secondary recrystallized grains, or the primary It is considered that any of the phenomenon that new secondary recrystallization nuclei are generated from the recrystallized grains and the grains grow is caused.

図8(b)は、上記前者の場合、即ち、1回目の仕上焼鈍で発生した二次再結晶粒がそのまま成長して巨大な二次再結晶粒を形成する場合を示したものである。この場合には、1回目の仕上焼鈍でのβ角が小さいことに加えて、図8(b)からわかるように、反転巻き直しで曲率が逆転する結果、2回目の仕上焼鈍時の鋼板の板面は、1回目の仕上焼鈍で発生した二次再結晶粒の粒成長方向に沿う方向(鋼板面により近い方向)になっている。その結果、二次再結晶粒内のβ角の変動量は、図7(b)のときよりもさらに小さくなり、鉄損特性がより改善することが期待される。   FIG. 8B shows the case of the former case, that is, the case where the secondary recrystallized grains generated by the first finish annealing grow as they are to form huge secondary recrystallized grains. In this case, in addition to the small β angle in the first finish annealing, as can be seen from FIG. 8 (b), as a result of the reversal of the curvature by the rewinding, the steel plate in the second finish annealing The plate surface is in a direction (direction closer to the steel plate surface) along the grain growth direction of the secondary recrystallized grains generated by the first finish annealing. As a result, the fluctuation amount of the β angle in the secondary recrystallized grains is further reduced as compared with the case of FIG. 7B, and it is expected that the iron loss characteristic is further improved.

また、図8(c)は、上記後者の場合、すなわち、2回目の仕上焼鈍で、一次再結晶粒内から新たな二次再結晶粒が発生する場合を示したものである。この場合にも、新たに発生した二次再結晶粒は、1回目の仕上焼鈍で発生した二次再結晶粒のβ角の影響を受けることなく、β角=0°に近い状態から粒成長することになるので、1回目の仕上焼鈍で発生した二次再結晶がそのまま成長する図8(b)のときよりもβ角の変動量は小さくなる。また、新たな二次再結晶粒の発生は、二次再結晶粒の微細化と同じ効果をもたらす。さらに、この反転巻き直しを行った場合には、鋼板の曲率の変化量が正転巻き直しの場合よりも大きいので、一次再結晶粒内から新たな二次再結晶粒が発生する確率が、正転巻き直しの場合よりも高くなる。その結果、図8(c)の場合におけるβ角の変動量は、1回目の仕上焼鈍で発生した二次再結晶がそのまま成長する図8(b)の場合や、前述した図7(b)および図7(c)の場合よりも、さらに小さくなる。したがって、反転巻き直しを行った場合には、正転巻き直しを行った場合よりも大きな鉄損改善効果が期待できる。   FIG. 8C shows the latter case, that is, a case where new secondary recrystallized grains are generated from the primary recrystallized grains in the second finish annealing. Also in this case, newly generated secondary recrystallized grains are grown from a state close to β angle = 0 ° without being affected by the β angle of the secondary recrystallized grains generated in the first finish annealing. Therefore, the fluctuation amount of the β angle is smaller than that in the case of FIG. 8B where the secondary recrystallization generated in the first finish annealing grows as it is. In addition, the generation of new secondary recrystallized grains has the same effect as the refinement of secondary recrystallized grains. Furthermore, when this rewinding is performed, since the amount of change in the curvature of the steel sheet is larger than in the case of normal rewinding, the probability that a new secondary recrystallized grain will occur from within the primary recrystallized grain, It becomes higher than the case of normal rewinding. As a result, the variation amount of the β angle in the case of FIG. 8C is the case of FIG. 8B in which the secondary recrystallization generated by the first finish annealing is grown as it is, or the above-described FIG. 7B. And it becomes smaller than the case of FIG.7 (c). Therefore, when reverse rewinding is performed, a greater iron loss improvement effect can be expected than when forward rewinding is performed.

ここで、1回目の仕上焼鈍(二次再結晶焼鈍)で発生した二次再結晶粒が、反転巻き直し後にそのまま成長して巨大な二次再結晶粒を形成する場合について説明する。
図9は、内径24インチ(600mmφ)のコイル内巻部を模擬し、曲率半径300mmに湾曲させた一次再結晶後の電磁鋼板素材を、従来の仕上焼鈍方法(1回の仕上焼鈍)で、二次再結晶粒を核発生位置から圧延方向に向かって前後に20mmずつ成長させて粒径40mmの巨大粒へと成長させたときの二次再結晶粒内のβ角の分布と、本発明の仕上焼鈍方法を適用し、1回目の仕上焼鈍で、核発生位置から圧延方向に向かって前後に10mmずつ二次再結晶粒を成長させた後、曲率半径は同じ300mmで、曲げ方向のみを反転させてから、2回目の仕上焼鈍を施して引続き二次再結晶粒を成長させて粒径40mmの二次再結晶粒としたときの粒内のβ角の分布を、核発生位置のβ角=0°として比較して示したものである。この図から、1回の仕上焼鈍で二次再結晶を完了させる従来の仕上焼鈍方法では、二次再結晶粒の端部(結晶粒界)におけるβ角の最大値は4°にまで達しているのに対し、本発明の仕上焼鈍方法ではβ角の最大値は2°程度に半減し、理想とするβ角(2°)に近づいていることがわかる。
Here, the case where the secondary recrystallized grains generated by the first finish annealing (secondary recrystallization annealing) grow as they are after reversal rewinding to form huge secondary recrystallized grains will be described.
FIG. 9 shows an electrical steel sheet material after primary recrystallization that simulates a coil inner winding part with an inner diameter of 24 inches (600 mmφ) and is curved to a curvature radius of 300 mm, by a conventional finish annealing method (one finish annealing). The distribution of β angles in the secondary recrystallized grains when the secondary recrystallized grains are grown 20 mm forward and backward from the nucleation position toward the rolling direction into giant grains having a grain size of 40 mm, and the present invention In the first finish annealing, secondary recrystallized grains were grown by 10 mm forward and backward from the nucleation position toward the rolling direction from the nucleation position, and then the curvature radius was the same 300 mm and only the bending direction was changed. After reversing, the distribution of the β angle in the grains when the second re-annealing grains are subsequently grown and the secondary recrystallized grains are grown to obtain secondary recrystallized grains having a grain size of 40 mm is expressed by β at the nucleation position. The comparison is shown with an angle = 0 °. From this figure, in the conventional finish annealing method in which secondary recrystallization is completed by one finish annealing, the maximum β angle at the end of the secondary recrystallized grain (grain boundary) reaches 4 °. In contrast, in the finish annealing method of the present invention, the maximum value of the β angle is halved to about 2 °, which is close to the ideal β angle (2 °).

なお、図9では、二次再結晶の核発生位置ではβ角=0°と仮定したが、実際の二次再結晶核のβ角は±3°程度の範囲内にあり、さらに、圧延方向への粒成長も必ずしも均等ではない。そのため、1回の仕上焼鈍で二次再結晶を完了させる従来の仕上焼鈍方法では、二次再結晶粒内のβ角の最大値は上記計算値(4°)よりさらに大きい値となり、磁気特性も大きく劣化することになる。この点、本発明の仕上焼鈍方法は、二次再結晶粒が巨大化してもβ角の変動量の増大を抑制でき、しかも、2回目の仕上焼鈍で新たな二次再結晶粒が発生したときには、結晶粒の微細化と同じ効果が得られるので、鉄損改善効果は極めて大きい。   In FIG. 9, it is assumed that the β angle = 0 ° at the secondary recrystallization nucleation position, but the actual β angle of the secondary recrystallization nuclei is in the range of about ± 3 °, and the rolling direction Grain growth is not necessarily uniform. Therefore, in the conventional finish annealing method in which the secondary recrystallization is completed by one finish annealing, the maximum value of the β angle in the secondary recrystallized grains is larger than the calculated value (4 °), and the magnetic characteristics Will be greatly degraded. In this regard, the finish annealing method of the present invention can suppress an increase in the amount of fluctuation of the β angle even when the secondary recrystallized grains become large, and new secondary recrystallized grains are generated by the second finish annealing. Sometimes, the same effect as the refinement of crystal grains can be obtained, so the iron loss improvement effect is extremely large.

なお、上記説明では、1回目の仕上焼鈍時のコイル内巻部(A端)を例にとって説明したが、1回目の仕上焼鈍時のコイル外巻部(図5,5のB端)についても、まったく同様にして鉄損低減効果が得られる。すなわち、1回目の仕上焼鈍時のコイル外巻(B端)は、図5の正転巻き戻しをした場合には、コイル内巻となって、鋼板の曲率が小(曲率半径が大)から大(曲率半径が小)へと変化し、また、図6の反転巻き戻しをした場合には、上記曲率半径の変化に加えて、鋼板の曲げ方向(曲率の符号)も変化する。そのため、1回目の仕上焼鈍時のコイル外巻部(B端)も、内巻部(A端)と同様、二次再結晶粒内のβ角の変動抑制と適度のβ角の付与、ならびに、結晶粒の微細化効果を得ることできる。したがって、本発明に係る方法(仕上焼鈍方法)で製造した方向性電磁鋼板は、コイル内の全ての位置で、二次再結晶粒内のβ角の変動が抑制されるとともに、適度のβ角を付与することができるので、製品コイルの全長にわたって鉄損特性に優れたものとすることができる。   In the above description, the coil inner winding portion (A end) at the first finish annealing is described as an example, but the coil outer winding portion (B end in FIGS. 5 and 5) at the first finish annealing is also described. The iron loss reduction effect can be obtained in exactly the same manner. That is, the coil outer winding (B end) at the time of the first finish annealing becomes the coil inner winding when the forward rotation rewinding in FIG. 5 is performed, and the curvature of the steel sheet is small (the curvature radius is large). In the case of changing to large (the radius of curvature is small) and performing reverse rewinding in FIG. 6, in addition to the change in the radius of curvature, the bending direction of the steel sheet (the sign of the curvature) also changes. Therefore, the coil outer winding part (B end) at the time of the first finish annealing is also the same as the inner winding part (A end), suppressing the fluctuation of the β angle in the secondary recrystallized grains and imparting an appropriate β angle, and Thus, the effect of refining crystal grains can be obtained. Therefore, the grain-oriented electrical steel sheet manufactured by the method according to the present invention (finish annealing method) suppresses the variation of β angle in the secondary recrystallized grains at all positions in the coil and has an appropriate β angle. Therefore, the iron loss characteristics can be excellent over the entire length of the product coil.

上記に説明したように、本発明に係る製造方法(仕上焼鈍方法)は、磁区細分化処理を施さない場合において、低鉄損を実現するのに理想とされる2°程度のβ角をコイル全長にわたって均一に付与することができるので、特にGoss方位への集積度が高い方向性電磁鋼板、すなわち、α≒0°、β=0〜2°が得られ易く、かつ、磁区細分化処理を施さない高磁束密度の方向性電磁鋼板の製造方法に用いた場合に優れた効果が得られる。ただし、本発明の製造方法において、磁区細分化処理を施してもよいことは勿論である。   As described above, the manufacturing method (finish annealing method) according to the present invention has a β angle of about 2 ° which is ideal for realizing a low iron loss when the magnetic domain subdivision process is not performed. Since it can be applied uniformly over the entire length, it is easy to obtain a grain-oriented electrical steel sheet that is particularly highly integrated in the Goss orientation, that is, α≈0 °, β = 0-2 °, and magnetic domain refinement treatment. An excellent effect is obtained when used in a method for producing a directional electrical steel sheet having a high magnetic flux density that is not applied. However, in the manufacturing method of the present invention, it is needless to say that the magnetic domain fragmentation treatment may be performed.

本発明の方向性電磁鋼板の製造方法は、箱焼鈍炉を用いてコイル状態で二次再結晶させる方向性電磁鋼板の製造方法であれば、仕上焼鈍を上述した条件で行うこと以外、特に制限なく適用することができる。
また、本発明の製造方法は、二次再結晶を発現させるメカニズムの違いによらず適用可能であり、例えば、AlNやMnS,MnSe等のインヒビターを用いて二次再結晶を生じさせる方向性電磁鋼板の製造方法や、上記インヒビター成分を用いずに二次再結晶を起こさせる方向性電磁鋼板の製造方法のいずれにも適用することができる。
If the manufacturing method of the grain-oriented electrical steel sheet of the present invention is a method for producing a grain-oriented electrical steel sheet that is secondarily recrystallized in a coil state using a box annealing furnace, it is particularly limited except that finish annealing is performed under the above-described conditions. Can be applied without.
In addition, the production method of the present invention can be applied regardless of the difference in the mechanism for causing secondary recrystallization. For example, a directional electromagnetic wave that causes secondary recrystallization using an inhibitor such as AlN, MnS, or MnSe. The present invention can be applied to both a method for producing a steel sheet and a method for producing a grain-oriented electrical steel sheet that causes secondary recrystallization without using the inhibitor component.

なお、本発明の製造方法に用いる鋼素材としては、例えば、インヒビターを用いる場合には、C:0.005〜0.080mass%、Si:2.0〜5.0mass%、Mn:0.03〜0.20mass%を含有する鋼に、インヒビター形成元素としてAl,N,SおよびSeをそれぞれ、sol.Al:0.010〜0.120mass%、N:0.005〜0.015mass%、S:0.005〜0.020mass%、Se:0.01〜0.04mass%を適宜含有し、さらに上記インヒビターの効果を高める補強元素としてSb,Bi,Mo,Cu,P,Snなどを適宜添加した鋼を好適に用いることができる。なお、上記成分のうち、Cは主として脱炭焼鈍において、また、S,Se,N,Al,P等は仕上焼鈍後半の純化焼鈍において除去される。   In addition, as a steel raw material used for the manufacturing method of this invention, when using an inhibitor, for example, C: 0.005-0.080 mass%, Si: 2.0-5.0 mass%, Mn: 0.03 In steel containing ˜0.20 mass%, Al, N, S, and Se were added as sol. Al: 0.010-0.120 mass%, N: 0.005-0.015 mass%, S: 0.005-0.020 mass%, Se: 0.01-0.04 mass% suitably contained, and further A steel to which Sb, Bi, Mo, Cu, P, Sn or the like is appropriately added as a reinforcing element that enhances the inhibitor effect can be suitably used. Of the above components, C is mainly removed during decarburization annealing, and S, Se, N, Al, P, and the like are removed during purification annealing in the second half of finish annealing.

一方、インヒビターを用いない場合の鋼素材としては、C:0.02mass%以下、Si:1.0〜5.0mass%、Al:0.0100mass%以下、N:0.0050mass%以下を含有し、インヒビター効果を有するB,Nb,V,S,SeおよびPを0.0050mass%以下に低減した鋼であれば好適に用いることができる。なお、上記鋼には、鉄損特性を改善するため、Mn:0.02〜2.0mass%、Ni:0.005〜2.0mass%、Sn:0.01〜2.0mass%、Sb:0.005〜0.5mass%、Cu:0.01〜2.0mass%、Mo:0.01〜0.50mass%、Cr:0.01〜2.0mass%を適宜添加してもよい。   On the other hand, as a steel material when no inhibitor is used, C: 0.02 mass% or less, Si: 1.0 to 5.0 mass%, Al: 0.0100 mass% or less, N: 0.0050 mass% or less Any steel can be suitably used as long as it has B, Nb, V, S, Se and P having an inhibitory effect reduced to 0.0050 mass% or less. In addition, in order to improve an iron loss characteristic, in said steel, Mn: 0.02-2.0 mass%, Ni: 0.005-2.0 mass%, Sn: 0.01-2.0 mass%, Sb: You may add 0.005-0.5 mass%, Cu: 0.01-2.0 mass%, Mo: 0.01-0.50 mass%, Cr: 0.01-2.0 mass% suitably.

C:0.05mass%、Si:3.2mass%、Mn:0.10mass%、S:0.02mass%、Sb:0.04mass%、Al:0.020mass%、N:0.0050mass%およびCu:0.05mass%を含有する鋼スラブを1400℃に加熱後、熱間圧延して板厚が2.0mmの熱延板とし、1100℃×60秒の熱延板焼鈍を施した後、酸洗し、冷間圧延して最終板厚0.23mmの冷延板とした。次いで、再結晶焼鈍と脱炭焼鈍を兼ねた850℃×120秒の一次再結晶焼鈍を施した後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布・乾燥し、内径500mmφ、外径1500mmφのコイルに巻き取り、箱焼鈍炉を用いて以下に示す2方法で仕上焼鈍を施した。   C: 0.05 mass%, Si: 3.2 mass%, Mn: 0.10 mass%, S: 0.02 mass%, Sb: 0.04 mass%, Al: 0.020 mass%, N: 0.0050 mass% and Cu : A steel slab containing 0.05% by mass is heated to 1400 ° C. and hot-rolled to obtain a hot-rolled sheet having a thickness of 2.0 mm, and then subjected to hot-rolled sheet annealing at 1100 ° C. for 60 seconds, and then an acid Washed and cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. Next, after subjecting to primary recrystallization annealing at 850 ° C. × 120 seconds, which also serves as recrystallization annealing and decarburization annealing, an annealing separator mainly composed of MgO is applied to the steel sheet surface and dried, and an inner diameter of 500 mmφ and an outer diameter The coil was wound around a 1500 mmφ coil and subjected to finish annealing by the following two methods using a box annealing furnace.

(A法:従来の仕上焼鈍方法)
昇温速度20℃/hrで1200℃まで加熱後、50hr保持する1回の焼鈍で、二次再結晶と純化を完了させる仕上焼鈍を施した。
(B法:本発明の仕上焼鈍方法)
20℃/hrで1050℃まで昇温した後、直ちに降温する1回目の仕上焼鈍で二次再結晶を中途まで進行させた後、仕上焼鈍を中断して冷却し、図5に示した正転巻き直しをしてコイル内巻と外巻の位置を逆転させて内径500mmφ、外径1500mmφのコイルに巻き取り、その後、このコイルを、20℃/hrで1200℃まで加熱した後、1200℃×5hrで純化を図る2回目の仕上焼鈍を施して二次再結晶を完了させた。なお、上記1回目の仕上焼鈍後の巻き直し時に、コイルの長さ方向中央部から採取したサンプルで二次再結晶の進行状況を確認したところ、面積率にして40%で二次再結晶が完了し、残りは一次再結晶粒のままであった。
(Method A: conventional finish annealing method)
After heating to 1200 ° C. at a rate of temperature increase of 20 ° C./hr, finish annealing was performed to complete secondary recrystallization and purification by one annealing that was held for 50 hr.
(Method B: Finish annealing method of the present invention)
After raising the temperature to 1050 ° C. at 20 ° C./hr, the secondary recrystallization is progressed halfway through the first finish annealing immediately followed by cooling, interrupting the finish annealing and cooling, as shown in FIG. After rewinding, the positions of the inner and outer coils are reversed and wound on a coil having an inner diameter of 500 mmφ and an outer diameter of 1500 mmφ. After that, the coil is heated to 1200 ° C. at 20 ° C./hr, and then 1200 ° C. × A second finish annealing for purification at 5 hr was performed to complete the secondary recrystallization. When rewinding after the first finish annealing, the progress of secondary recrystallization was confirmed with a sample taken from the central part in the length direction of the coil. As a result, the secondary recrystallization was 40% in area ratio. Completed and the rest remained primary recrystallized grains.

次いで、上記のようにして得た仕上焼鈍後の鋼板表面から未反応MgOを洗浄除去し、絶縁被膜の焼き付けと平坦化焼鈍を兼ねた連続焼鈍を施して方向性電磁鋼板(製品コイル)とした。その際、製品コイルの内巻部および外巻部からサンプルを採取し、エプスタイン試験法にて磁気特性(磁束密度B、鉄損W17/50)を測定し、その結果を純化焼鈍時のコイル内位置別に比較して表1に示した。 Next, unreacted MgO is washed and removed from the surface of the steel sheet after the finish annealing obtained as described above, and subjected to continuous annealing that combines the baking of the insulating coating and the flattening annealing to obtain a grain-oriented electrical steel sheet (product coil). . At that time, samples were taken from the inner and outer windings of the product coil, and the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) were measured by the Epstein test method, and the results were measured during purification annealing. Table 1 shows a comparison by position within the coil.

Figure 2012087374
Figure 2012087374

表1から、従来の仕上焼鈍方法(A法)で製造した方向性電磁鋼板では、純化焼鈍時のコイル外巻部では良好な磁気特性が得られているものの、コイル内巻部では、磁束密度Bが低く、鉄損値W17/50も大きくなっている。これに対して、本発明の仕上焼鈍方法(B法)で製造した方向性電磁鋼板では、コイルの位置に関係なく全長にわたって良好な磁気特性が得られている。
この理由は、従来の仕上焼鈍方法では、コイル内巻部および外巻部は、それぞれ曲率半径250mm,750mmにて二次再結晶が完了するため、二次再結晶粒内のβ角の変動量が大きく、特に、コイル内巻部のβ角の変動量が大きいので、鉄損特性は大きく劣化する。これに対して本発明の仕上焼鈍方法では、1回目の仕上焼鈍でのコイル内巻部および外巻部は、それぞれ曲率半径250mm,750mmにて二次再結晶粒が成長するが、図5に示した正転巻き直しを行うことで、2回目の仕上焼鈍では、それらの関係が逆転し、それぞれ曲率半径750mm,250mmにて二次再結晶粒が成長するので、コイル長さ方向のβ角の変動が小さく抑えられる。さらに、本発明の仕上焼鈍方法では、従来の仕上焼鈍方法ではβ角が小さくなり過ぎるコイル外巻部にも適度なβ角を付与することができる。その結果、二次再結晶粒内のβ角の変動量がコイル全長にわたって均一化されるので、従来の仕上焼鈍方法と比較し、低鉄損を実現できるものと考えられる。
From Table 1, in the grain-oriented electrical steel sheet manufactured by the conventional finish annealing method (Method A), good magnetic properties are obtained in the coil outer winding portion during the purification annealing, but in the coil inner winding portion, the magnetic flux density is obtained. B 8 is low, is larger iron loss W 17/50. On the other hand, in the grain-oriented electrical steel sheet manufactured by the finish annealing method (B method) of the present invention, good magnetic properties are obtained over the entire length regardless of the position of the coil.
This is because, in the conventional finish annealing method, the secondary recrystallization is completed at the curvature radii of 250 mm and 750 mm in the coil inner winding portion and the outer winding portion, respectively. In particular, since the fluctuation amount of the β angle of the coil inner winding is large, the iron loss characteristic is greatly deteriorated. On the other hand, in the finish annealing method of the present invention, secondary recrystallized grains grow with curvature radii of 250 mm and 750 mm, respectively, in the coil inner winding portion and the outer winding portion in the first finish annealing. By performing the normal rewinding shown, the relationship is reversed in the second finish annealing, and secondary recrystallized grains grow at the curvature radii of 750 mm and 250 mm, respectively. Fluctuations can be kept small. Furthermore, in the finish annealing method of the present invention, an appropriate β angle can be imparted to the coil outer winding portion where the β angle becomes too small in the conventional finish annealing method. As a result, since the fluctuation amount of the β angle in the secondary recrystallized grains is made uniform over the entire length of the coil, it is considered that a low iron loss can be realized as compared with the conventional finish annealing method.

C:0.05mass%、Si:3.2mass%、Mn:0.10mass%、S:0.02mass%、Al:0.020mass%およびN:0.0050mass%を含有する鋼スラブを1400℃に加熱後、熱間圧延して板厚が2.0mmの熱延板とし、1100℃×60秒の熱延板焼鈍を施した後、酸洗し、1回目の冷間圧延で板厚1.5mmの中間板厚とし、1050℃×60秒の中間焼鈍後、最終冷間圧延により最終板厚が0.23mmの冷延板とした。次いで、再結晶焼鈍と脱炭焼鈍を兼ねた850℃×120秒の一次再結晶焼鈍を施した後、MgOを主成分とする焼鈍分離剤を鋼板表面に塗布・乾燥し、内径500mmφ、外径1500mmφのコイルに巻き取り、箱焼鈍炉を用いて以下に示す2方法で仕上焼鈍を施した。
(A´法:従来の仕上焼鈍方法)
昇温速度15℃/hrで900℃まで加熱後、30hr保持して二次再結晶を完了させた後、1200℃×5hrで純化する仕上焼鈍を施した。
(C法:本発明の仕上焼鈍方法)
15℃/hrで900℃まで加熱後、10hr保持する1回目の仕上焼鈍で二次再結晶を中途まで進行させた後、仕上焼鈍を中断して冷却し、図6に示した反転巻き直しでコイル内巻と外巻の位置および表裏を逆転させて内径500mmφ、外径1500mmφのコイルに巻き取り、その後、このコイルを、30℃/hrで900℃の温度に加熱し、30hr保持して二次再結晶を完了させた後、1200℃×5hrで純化する2回目の仕上焼鈍を施した。なお、上記1回目の仕上焼鈍後の巻き直し時に、コイルの長さ方向中央部から採取したサンプルで二次再結晶の進行状況を確認したところ、面積率にして50%で二次再結晶が完了し、残りは一次再結晶粒のままであった。
Steel slab containing C: 0.05 mass%, Si: 3.2 mass%, Mn: 0.10 mass%, S: 0.02 mass%, Al: 0.020 mass% and N: 0.0050 mass% at 1400 ° C After heating, it is hot-rolled to obtain a hot-rolled sheet having a thickness of 2.0 mm, subjected to hot-rolled sheet annealing at 1100 ° C. × 60 seconds, pickled, and subjected to sheet thickness 1. The intermediate plate thickness was 5 mm, and after intermediate annealing at 1050 ° C. × 60 seconds, the cold rolled plate having a final plate thickness of 0.23 mm was obtained by final cold rolling. Next, after subjecting to primary recrystallization annealing at 850 ° C. × 120 seconds, which also serves as recrystallization annealing and decarburization annealing, an annealing separator mainly composed of MgO is applied to the steel sheet surface and dried, and an inner diameter of 500 mmφ and an outer diameter The coil was wound around a 1500 mmφ coil and subjected to finish annealing by the following two methods using a box annealing furnace.
(A 'method: conventional finish annealing method)
After heating up to 900 ° C. at a rate of temperature increase of 15 ° C./hr, holding for 30 hr to complete secondary recrystallization, finish annealing was performed to purify at 1200 ° C. × 5 hr.
(Method C: Finish annealing method of the present invention)
After heating to 900 ° C. at 15 ° C./hr and continuing the secondary recrystallization halfway through the first finish annealing that is held for 10 hr, the finish annealing is interrupted and cooled, and the rewinding shown in FIG. The positions and front and back of the inner and outer windings of the coil are reversed and wound on a coil having an inner diameter of 500 mmφ and an outer diameter of 1500 mmφ, and then this coil is heated to 900 ° C. at 30 ° C./hr and held for 30 hr. After the next recrystallization was completed, a second finish annealing was performed to purify at 1200 ° C. × 5 hr. When rewinding after the first finish annealing, the progress of secondary recrystallization was confirmed with a sample taken from the central portion in the length direction of the coil. As a result, the secondary recrystallization was found to be 50% in area ratio. Completed and the rest remained primary recrystallized grains.

次いで、上記のようにして得た仕上焼鈍後の鋼板表面から未反応MgOを洗浄除去し、絶縁被膜の焼き付けと平坦化焼鈍を兼ねた連続焼鈍を施して方向性電磁鋼板(製品コイル)とした。その際、製品コイルの内巻部および外巻部からサンプルを採取し、エプスタイン試験法にて磁気特性(磁束密度B、鉄損W17/50)を測定し、その結果を純化焼鈍時のコイル内位置別に比較して表2に示した。 Next, unreacted MgO is washed and removed from the surface of the steel sheet after the finish annealing obtained as described above, and subjected to continuous annealing that combines the baking of the insulating coating and the flattening annealing to obtain a grain-oriented electrical steel sheet (product coil). . At that time, samples were taken from the inner and outer windings of the product coil, and the magnetic properties (magnetic flux density B 8 , iron loss W 17/50 ) were measured by the Epstein test method, and the results were measured during purification annealing. Table 2 shows a comparison by position within the coil.

Figure 2012087374
Figure 2012087374

表2から、従来の仕上焼鈍方法(A´法)で製造した方向性電磁鋼板では、純化焼鈍時のコイル外巻部では良好な磁気特性が得られているものの、コイル内巻部では、磁束密度Bが低く、鉄損値W17/50も大きくなっている。これに対して、本発明の仕上焼鈍方法(C法)で製造した方向性電磁鋼板では、コイルの位置に関係なく全長にわたって良好な磁気特性が得られている。しかも、従来の仕上焼鈍方法で製造した方向性電磁鋼板の磁気特性は、実施例1の比較例の磁気特性と大差がないのに対して、本発明の仕上焼鈍方法(C法)で製造した方向性電磁鋼板の磁気特性は、実施例1の発明例(B法)の磁気特性よりもさらに改善されており、比較例との差が大きくなっている。
この理由は、実施例1の本発明の仕上焼鈍方法(B法)では、1回目の仕上焼鈍後の巻き直しを図5に示した正転巻き直しで行っているのに対して、本実施例の仕上焼鈍方法(C法)では、1回目の仕上焼鈍後の巻き直しを、図6に示した鋼板の曲げ方向を逆転させる反転巻き直しで行っているため、β角の変動がより小さく抑えられたことに加えて、擬似的な結晶粒界が導入されて二次再結晶粒の微細化効果が発現したことによるものと考えられる。
From Table 2, in the grain-oriented electrical steel sheet manufactured by the conventional finish annealing method (A ′ method), good magnetic properties are obtained in the coil outer winding portion during the purification annealing, but in the coil inner winding portion, the magnetic flux low density B 8, is larger iron loss value W 17/50. On the other hand, in the grain-oriented electrical steel sheet manufactured by the finish annealing method (C method) of the present invention, good magnetic properties are obtained over the entire length regardless of the position of the coil. Moreover, the magnetic properties of the grain-oriented electrical steel sheet produced by the conventional finish annealing method are not significantly different from the magnetic properties of the comparative example of Example 1, whereas it was produced by the finish annealing method (Method C) of the present invention. The magnetic properties of the grain-oriented electrical steel sheet are further improved over the magnetic properties of the inventive example (Method B) of Example 1, and the difference from the comparative example is large.
This is because, in the finish annealing method (Method B) of the present invention of Example 1, the rewinding after the first finish annealing is performed by the forward rewinding shown in FIG. In the example finish annealing method (C method), since the rewinding after the first finish annealing is performed by reversal rewinding that reverses the bending direction of the steel plate shown in FIG. 6, the variation in β angle is smaller. In addition to being suppressed, it is considered that a pseudo grain boundary was introduced and the effect of refining secondary recrystallized grains was developed.

C:0.05mass%、Si:3.2mass%、Mn:0.10mass%、S:0.02mass%、Sb:0.04mass%、Al:0.0050mass%、N:0.0030mass%およびCu:0.05mass%を含有する鋼スラブを1250℃に加熱後、熱間圧延して板厚が2.0mmの熱延板とし、1100℃×60秒の熱延板焼鈍を施した後、酸洗し、冷間圧延し、最終板厚が0.23mmの冷延板とした。次いで、再結晶焼鈍と脱炭焼鈍を兼ねた850℃×120秒の一次再結晶焼鈍を施した後、以下のA´´法は、MgOを主成分とする焼鈍分離剤を塗布し、以下のC´、D法は、焼鈍分離財を塗布せず、内径500mmφ、外径1500mmφのコイルに巻き取り、箱焼鈍炉を用いて以下に示す3方法で仕上焼鈍を施して方向性電磁鋼板を製造した。
(A´´法:従来の仕上焼鈍方法)
昇温速度10℃/hrで900℃まで加熱後、50hr保持して二次再結晶を完了させた後、1200℃×5hrで純化を図る仕上焼鈍を施した。
(C´法:本発明の仕上焼鈍方法)
10℃/hrで900℃まで加熱後、20hr保持する1回目の仕上焼鈍で二次再結晶を中途まで進行させた後、仕上焼鈍を中断して冷却し、MgOを主成分とする焼鈍分離剤を塗布・乾燥し、図6に示した反転巻き直しでコイル内巻と外巻の位置および表裏を逆転させて内径500mmφ、外径1500mmφのコイルに巻き取り、その後、このコイルを、30℃/hrで900℃まで昇温後、40hr保持して二次再結晶を完了させた後、1200℃×5hrで純化する2回目の仕上焼鈍を施した。なお、上記1回目の仕上焼鈍後の巻き直し時に、コイルの長さ方向中央部から採取したサンプルで二次再結晶の進行状況を確認したところ、面積率にして60%で二次再結晶が完了し、残りは一次再結晶粒のままであった。
(D法:本発明の仕上焼鈍方法)
10℃/hrで900℃まで昇温後、10hr保持する1回目の仕上焼鈍を施して二次再結晶を中途まで進行させた後、仕上焼鈍を中断して冷却し、図6に示した反転巻き直しでコイル内巻と外巻の位置および表裏を逆転させて内径500mmφ、外径1500mmφのコイルに巻き取り、内径500mmφ、外径1500mmφのコイルとした。
次いで、上記コイルを、30℃/hrで900℃まで昇温後、10hr保持する2回目の仕上焼鈍を施して二次再結晶をさらに進行させた後、仕上焼鈍を中断して冷却し、図6に示した反転巻き直しでコイル内巻と外巻の位置および表裏を逆転させて再度、内径500mmφ、外径1500mmφのコイルとした。
その後、30℃/hrで昇温し、900℃×20hrで二次再結晶を完了させた後、MgOを主成分とする焼鈍分離剤を塗布し、1200℃×5hrで純化する3回目の仕上焼鈍を施した。なお、上記1回目の仕上焼鈍後および2回目の仕上焼鈍後の巻き直し時に採取したサンプルで二次再結晶の進行状況を確認したところ、それぞれ面積率にして30%および60%の部分で二次再結晶が完了しており、残りは一次再結晶粒のままであった。
C: 0.05 mass%, Si: 3.2 mass%, Mn: 0.10 mass%, S: 0.02 mass%, Sb: 0.04 mass%, Al: 0.0050 mass%, N: 0.0030 mass%, and Cu : A steel slab containing 0.05 mass% was heated to 1250 ° C., then hot-rolled to obtain a hot-rolled sheet having a thickness of 2.0 mm, and subjected to hot-rolled sheet annealing at 1100 ° C. × 60 seconds, and then an acid Washed and cold-rolled to obtain a cold-rolled sheet having a final sheet thickness of 0.23 mm. Next, after performing primary recrystallization annealing at 850 ° C. × 120 seconds, which is both recrystallization annealing and decarburization annealing, the following A ″ method applies an annealing separator mainly composed of MgO, In the C ′ and D methods, a grain-oriented electrical steel sheet is manufactured by winding up a coil having an inner diameter of 500 mmφ and an outer diameter of 1500 mmφ without applying an annealing separation good, and performing a final annealing by the following three methods using a box annealing furnace. did.
(A ″ method: conventional finish annealing method)
After heating to 900 ° C. at a rate of temperature increase of 10 ° C./hr, holding for 50 hr to complete secondary recrystallization, finish annealing was performed to purify at 1200 ° C. × 5 hr.
(C ′ method: finish annealing method of the present invention)
After heating up to 900 ° C. at 10 ° C./hr, the secondary recrystallization is progressed halfway through the first finish annealing that is held for 20 hr, and then the finish annealing is interrupted and cooled, and an annealing separator mainly composed of MgO. Is applied and dried, and the positions and front and back of the inner and outer windings of the coil are reversed by reversing rewinding as shown in FIG. 6 and wound around a coil having an inner diameter of 500 mmφ and an outer diameter of 1500 mmφ. After the temperature was raised to 900 ° C. in hr, the secondary recrystallization was completed by holding for 40 hr, and then a second finish annealing was performed to purify at 1200 ° C. × 5 hr. When rewinding after the first finish annealing described above, the progress of secondary recrystallization was confirmed with a sample taken from the central portion in the length direction of the coil. As a result, secondary recrystallization was observed at an area ratio of 60%. Completed and the rest remained primary recrystallized grains.
(Method D: Finish annealing method of the present invention)
After raising the temperature to 900 ° C. at 10 ° C./hr and performing the first finish annealing for 10 hours, the secondary recrystallization is progressed halfway, then the finish annealing is interrupted and cooled, and the inversion shown in FIG. By rewinding, the positions and front and back of the inner and outer coils of the coil were reversed and wound around a coil having an inner diameter of 500 mmφ and an outer diameter of 1500 mmφ to obtain a coil having an inner diameter of 500 mmφ and an outer diameter of 1500 mmφ.
Next, after the coil was heated to 900 ° C. at 30 ° C./hr and subjected to second finish annealing for 10 hours, secondary recrystallization was further advanced, and then the finish annealing was interrupted and cooled. The positions of the inner and outer coils and the front and back of the coil were reversed by the reversal rewinding shown in FIG.
Thereafter, the temperature is raised at 30 ° C./hr, and after secondary recrystallization is completed at 900 ° C. × 20 hr, an annealing separator containing MgO as a main component is applied, and the third finish is purified at 1200 ° C. × 5 hr. Annealed. The progress of secondary recrystallization was confirmed with the samples collected during the rewinding after the first finish annealing and after the second finish annealing, and the area ratio was 30% and 60%, respectively. The next recrystallization was completed, and the rest remained primary recrystallized grains.

次いで、上記のようにして得た仕上焼鈍後の鋼板表面から未反応MgOを洗浄除去し、絶縁被膜の焼き付けと平坦化焼鈍を兼ねた連続焼鈍を施した後、圧延直角方向に対して10°傾斜した方向に、8mm間隔でプラズマジェットを線状に照射して磁区細分化処理を施して方向性電磁鋼板(製品コイル)とした。次いで、上記のようにして得た製品コイルの内巻および外巻からサンプルを採取し、SST試験器(Single Strip Tester)にて磁気特性を測定し、その結果を純化焼鈍時のコイル内位置別に比較して表3に示した。   Next, unreacted MgO is washed and removed from the surface of the steel sheet after finish annealing obtained as described above, and after continuous annealing that combines baking of the insulating coating and flattening annealing, it is 10 ° with respect to the direction perpendicular to the rolling direction. In the inclined direction, a plasma jet was linearly irradiated at intervals of 8 mm to perform magnetic domain subdivision treatment to obtain a grain-oriented electrical steel sheet (product coil). Next, samples are taken from the inner and outer windings of the product coil obtained as described above, the magnetic properties are measured with an SST tester (Single Strip Tester), and the results are classified according to the position in the coil during purification annealing. Table 3 shows a comparison.

Figure 2012087374
Figure 2012087374

表3から、従来の仕上焼鈍方法(A´´法)で製造した方向性電磁鋼板では、磁区細分化処理を施したことで磁気特性は改善されてはいるものの、純化焼鈍時のコイル外巻部ではやはり、磁束密度Bが低く、鉄損値W17/50も大きくなっている。これに対して、本発明の仕上焼鈍方法(C´法、D法)で製造した方向性電磁鋼板では、コイルの反転巻き直しにより鋼板の曲率を変化させて仕上焼鈍を行ったことと、磁区細分化処理の効果とが相俟って、コイルの位置に関係なく全長にわたって良好な磁気特性が得られている。特に、2回のコイル巻き直しを行ったD法では、磁気特性の向上が著しい。 From Table 3, in the grain-oriented electrical steel sheet manufactured by the conventional finish annealing method (A ″ method), the magnetic properties were improved by applying the magnetic domain subdivision treatment, but the coil outer winding during the purification annealing again in part, the magnetic flux density B 8 is low, is larger iron loss value W 17/50. On the other hand, in the grain-oriented electrical steel sheet manufactured by the finish annealing method (C ′ method, D method) of the present invention, the finish annealing was performed by changing the curvature of the steel sheet by rewinding the coil. Combined with the effect of the subdividing treatment, good magnetic properties are obtained over the entire length regardless of the position of the coil. In particular, in the D method in which the coil is rewound twice, the magnetic characteristics are remarkably improved.

Claims (5)

冷間圧延した電磁鋼板素材を一次再結晶焼鈍し、その後、コイル状態で二次再結晶させる仕上焼鈍を施して方向性電磁鋼板を製造する方法において、上記仕上焼鈍を、コイルの巻き直し工程を挟んで2回に分けて行い、1回目の仕上焼鈍における二次再結晶率を面積率で5〜90%とすることを特徴とする方向性電磁鋼板の製造方法。 In the method of producing a grain-oriented electrical steel sheet by subjecting a cold-rolled electrical steel sheet material to primary recrystallization annealing and then subjecting it to secondary recrystallization in a coiled state, the above-mentioned finish annealing is performed by a coil rewinding step. A method for producing a grain-oriented electrical steel sheet, characterized in that the secondary recrystallization rate in the first finish annealing is 5 to 90% in terms of area ratio. 上記コイルの巻き直しにより、巻き直し前後で鋼板の曲率半径を変化させることを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the curvature radius of the steel sheet is changed before and after the rewinding by rewinding the coil. 上記コイルの巻き直しにより、巻き直し前後で鋼板の曲率の符号を逆転させることを特徴とする請求項1または2に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the sign of the curvature of the steel sheet is reversed before and after the rewinding by rewinding the coil. 上記仕上焼鈍を、コイルの巻き直し工程を挟んで3回以上に分けて行うことを特徴とする請求項1〜3のいずれか1項に記載の方向性電磁鋼板の製造方法。 The method for manufacturing a grain-oriented electrical steel sheet according to any one of claims 1 to 3, wherein the finish annealing is performed three or more times with a coil rewinding step in between. 上記仕上焼鈍後、磁区細分化処理を施すことを特徴とする請求項1〜4のいずれか1項に記載の方向性電磁鋼板の製造方法。 The method for producing a grain-oriented electrical steel sheet according to any one of claims 1 to 4, wherein a magnetic domain refinement treatment is performed after the finish annealing.
JP2010235647A 2010-10-20 2010-10-20 Method for manufacturing grain-oriented electromagnetic steel sheet Pending JP2012087374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010235647A JP2012087374A (en) 2010-10-20 2010-10-20 Method for manufacturing grain-oriented electromagnetic steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235647A JP2012087374A (en) 2010-10-20 2010-10-20 Method for manufacturing grain-oriented electromagnetic steel sheet

Publications (1)

Publication Number Publication Date
JP2012087374A true JP2012087374A (en) 2012-05-10

Family

ID=46259325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235647A Pending JP2012087374A (en) 2010-10-20 2010-10-20 Method for manufacturing grain-oriented electromagnetic steel sheet

Country Status (1)

Country Link
JP (1) JP2012087374A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095735A (en) * 2015-11-18 2017-06-01 新日鐵住金株式会社 Oriented magnetic steel sheet and manufacturing method thereof
WO2018056379A1 (en) * 2016-09-21 2018-03-29 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
JP2019148009A (en) * 2014-12-15 2019-09-05 ポスコPosco Grain-oriented electrical steel sheet and manufacturing method therefor
WO2019245044A1 (en) * 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
JP2021123754A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123753A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123752A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123755A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021183722A (en) * 2020-05-20 2021-12-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing the same and strain introduction device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148009A (en) * 2014-12-15 2019-09-05 ポスコPosco Grain-oriented electrical steel sheet and manufacturing method therefor
US10760141B2 (en) 2014-12-15 2020-09-01 Posco Grain-oriented electrical steel sheet and manufacturing method of grain-oriented electrical steel sheet
JP2017095735A (en) * 2015-11-18 2017-06-01 新日鐵住金株式会社 Oriented magnetic steel sheet and manufacturing method thereof
US11560603B2 (en) 2016-09-21 2023-01-24 Jfe Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
WO2018056379A1 (en) * 2016-09-21 2018-03-29 Jfeスチール株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
JP2018048377A (en) * 2016-09-21 2018-03-29 Jfeスチール株式会社 Oriented electromagnetic steel sheet and manufacturing method therefor
CN109715840A (en) * 2016-09-21 2019-05-03 杰富意钢铁株式会社 Orientation electromagnetic steel plate and its manufacturing method
CN109715840B (en) * 2016-09-21 2021-02-09 杰富意钢铁株式会社 Grain-oriented electromagnetic steel sheet and method for producing same
JP7307354B2 (en) 2018-06-21 2023-07-12 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic properties
JPWO2019245044A1 (en) * 2018-06-21 2021-06-17 日本製鉄株式会社 Directional electrical steel sheet with excellent magnetic properties
WO2019245044A1 (en) * 2018-06-21 2019-12-26 日本製鉄株式会社 Grain-oriented electrical steel sheet with excellent magnetic characteristics
JP2021123754A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123753A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123752A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP2021123755A (en) * 2020-02-05 2021-08-30 日本製鉄株式会社 Grain-oriented electromagnetic steel sheet
JP7492111B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7492110B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7492112B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP7492109B2 (en) 2020-02-05 2024-05-29 日本製鉄株式会社 Grain-oriented electrical steel sheet
JP2021183722A (en) * 2020-05-20 2021-12-02 Jfeスチール株式会社 Grain-oriented electromagnetic steel sheet and method for producing the same and strain introduction device
JP7318675B2 (en) 2020-05-20 2023-08-01 Jfeスチール株式会社 Grain-oriented electrical steel sheet, manufacturing method thereof, and strain introduction device

Similar Documents

Publication Publication Date Title
JP2012087374A (en) Method for manufacturing grain-oriented electromagnetic steel sheet
WO2018056379A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP6319605B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP6191826B2 (en) Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP6132103B2 (en) Method for producing grain-oriented electrical steel sheet
JP4120121B2 (en) Method for producing grain-oriented electrical steel sheet
JP2013047382A (en) Method of producing grain-oriented electromagnetic steel sheet
JP6607010B2 (en) Method for producing grain-oriented electrical steel sheet
JP6344263B2 (en) Method for producing grain-oriented electrical steel sheet
JP6601649B1 (en) Low iron loss grain-oriented electrical steel sheet and manufacturing method thereof
JP6856179B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2013133503A (en) Method of producing grain-oriented electromagnetic steel sheet
JP6432671B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2020218328A1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5888525B2 (en) Method for producing grain-oriented electrical steel sheet
EP3395959B1 (en) Oriented electrical steel sheet and manufacturing method therefor
JP7028215B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP5846390B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003193131A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6041110B2 (en) Method for producing grain-oriented electrical steel sheet with excellent iron loss characteristics
JP7197068B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7463976B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6116793B2 (en) Method for producing grain-oriented electrical steel sheet
JP6866901B2 (en) Manufacturing method of grain-oriented electrical steel sheet