JP6602595B2 - 車種判別装置、及び車種判別方法 - Google Patents

車種判別装置、及び車種判別方法 Download PDF

Info

Publication number
JP6602595B2
JP6602595B2 JP2015165045A JP2015165045A JP6602595B2 JP 6602595 B2 JP6602595 B2 JP 6602595B2 JP 2015165045 A JP2015165045 A JP 2015165045A JP 2015165045 A JP2015165045 A JP 2015165045A JP 6602595 B2 JP6602595 B2 JP 6602595B2
Authority
JP
Japan
Prior art keywords
vehicle
unit
information
vehicle type
type identification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015165045A
Other languages
English (en)
Other versions
JP2017045137A (ja
Inventor
泰浩 青木
俊雄 佐藤
順一 中村
秀樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015165045A priority Critical patent/JP6602595B2/ja
Publication of JP2017045137A publication Critical patent/JP2017045137A/ja
Application granted granted Critical
Publication of JP6602595B2 publication Critical patent/JP6602595B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Description

本願は、車種判別装置、及び車種判別方法に関する。
道路の疲弊等を守るため、道路交通法で取締対象の車種区分は、細かく区分され、例えばタンクローリー等の大型車では、車種ごとに許可される車両の幅、長さ、高さ、重量等の規定条件が定められている。
特開2014−164601号公報 特開2002−008188号公報 特開2006−012178号公報
しかしながら、従来技術では、上述した取り締まりを自動化するための大型車等の車種判別は不十分であり、高精度な車種判別が求められていた。
そこで、車種判別の精度を向上させる車種判別装置、及び車種判別方法を提供する。
実施形態の車種判別装置は、車両の後方に存在する荷台、荷物、又は客車の形状を表した第1の形状情報を記憶する記憶部と、撮像部から撮像された車両の画像を取得する取得部と、前記取得部から得られる画像に表されている前記車両の後方領域と、前記記憶部に記憶されている前記第1の形状情報と、を用いた照合を行い、前記車両の後方に存在する荷台、荷物、又は客車の形状の組み合わせから、前記車両の車種を判別する車種判別部と、を有する。
図1は、第1の実施形態における車種判別システムの概略構成の一例を示す図である。 図2は、単眼カメラから得られるカメラ画像の一例を示す図である。 図3は、第1の実施形態における車種判別装置の機能構成の一例を示す図である。 図4は、第1の実施形態の車両検知用の辞書パターンを例示した図である。 図5は、第1の実施形態のトレーラ部品DBを例示した図である。 図6は、第1の実施形態における車種判別処理の一例を示すフローチャートである。 図7は、認証対象となる大型車両を例示した図である。 図8は、トラクタ部を消去して生成した画像を例示した図である。 図9は、第2の実施形態における車種判別システムの概略構成の一例を示す図である。 図10は、第2の実施形態における車種判別装置の機能構成の一例を示す図である。 図11は、第2の実施形態の3次元形状のクレーン部品群を例示した図である。 図12は、第2の実施形態の車両の側面から見た部分画像DBを例示した図である。 図13は、第2の実施形態の3次元形状の牽引棒部品群を例示した図である。 図14は、第2の実施形態における車種判別処理の一例を示すフローチャートである。 図15は、クレーン部分の検出例を示す図である。 図16は、トラクタ後部の空間計測例を示す図である。 図17は、牽引棒の検出例を示す図である。
(第1の実施形態)
第1の実施形態における車種判別システムについて説明する。
(車種判別システムの概略構成例)
図1は、第1の実施形態における車種判別システムの概略構成の一例を示す図である。図1に示す車種判別システム1は、単眼カメラ(撮像部)10と、車両検知器20と、電子計算機(情報処理装置)の一例である車種判別装置30と、車重計40とを有する。単眼カメラ10と、車両検知器20と、車種判別装置30と、車重計40とは、有線又は無線の通信ネットワーク50によりデータの送受信が可能な状態で接続されている。
図1の例に示す車種判別システム1は、例えば大型の車両60が通行する道路70や、駐車場の出入口、高速道路の料金所等に設置されるが、これに限定されるものではない。
単眼カメラ10は、車両60の斜め上方を撮影するよう設置されているが、設置位置については、これに限定されるものではない。単眼カメラ10は、例えば車両60に対して上方から高さ5〜7m程度(車高の法定上の高さは3.8m)、俯角25〜45度程度で見下ろすように調整されている。単眼カメラ10を設置する場合には、視野内を移動する車両60に対して、車両60の全景が映るように画角の設定を行う。
撮像対象の車両60の全景は、車両60が単眼カメラ10のカメラ画角に対して所定の位置まで移動した際に、車種判別装置30に転送される。
車両検知器20は、例えば道路70に設置されたレーザセンサ(赤外センサ等)であるが、これに限定されるものではない。例えば、車両検知器20は、単眼カメラ10からのカメラ画像を走査することにより、車両の進入を検知しても良い。車両検知器20は、車両60が進入すると単眼カメラ10で撮影する撮影トリガを生成し、単眼カメラ10に送信する。
車種判別装置30は、例えば内部アルゴリズム(車種判別プログラム等)により、車種情報を判別する。車種判別装置30は、例えば車両検知器20から得られる検知結果のタイミングで、単眼カメラ10から得られるカメラ画像や、車重計40から得られる車重を取得し、取得した各種情報に基づいて車種判別を行う。
本実施形態の車種とは、車両を区別するための情報である。車種としては、例えば大型車、乗用車、自動二輪自動車等があるが、これに限定されるものではない。また、車種は、車両の区分に加えて、車両の形状に関する情報(例えば、車両の幅、高さ、及び長さのいずれか1つ以上の形状に関する情報等)を含めたものとする。
車重計40は、道路70に埋め込まれていても良く、道路70上に設置された板状、鉄板状等の平面等であっても良く、タイヤを乗せる溝等があってもよい。車重計40は、車両60のタイヤが車重計40上を通過する際に、その車両の重さを測定する。
図2は、単眼カメラから得られるカメラ画像の一例を示す図である。図2に示すように、単眼カメラ10の画角は、例えば、車両60の前面のトラクタ部の下端と、車両60のうちトラクタ部より後方に存在するトレーラ部の後端と、がカメラ画像80の上下方向に収まるように設定される。車両60は、例えば大型車の場合には、全長も長い。したがって、単眼カメラ10は、図2に示す車両60の上下方向が広く撮れるように、例えばroll方向に90度傾けて撮影すると良い。
第1の実施形態の車種判別装置30は、図2に示すカメラ画像80から、車両60の運転席等を含む所定の形状を有するトラクタ部(前方領域)61と、車両60の後段(荷台)のトレーラ部(後方領域)62と、を識別し、後方領域62を車種判別に用いる。第1の実施形態では、共通形状であることが多い大型車両の前方領域61の代わりに、特徴部分である後方領域62を車種判別に用いることで、より高精度な車種判別を実現することが可能となる。
(車種判別装置30の機能構成例)
次に、上述した車種判別装置30の機能構成例について説明する。図3は、第1の実施形態における車種判別装置の機能構成の一例を示す図である。図3の例に示す車種判別装置30は、記憶部90と、取得部91と、車両検知部92と、トラクタ部検出部93と、トレーラ部切出部(切出部)94と、マッチング部95と、車種判別部96と、ネットワーク接続部97と、制御部98とを有する。
ところで、大型車両は、道路を走行する際に、通常の車両と比べて、道路に負担を掛ける場合も多い。このため、大型車両に含まれる特殊車両の無許可運行や、過積載運行等の問題が生じる。これに伴い、近年、大型車両の車種の判別を精度良く行うことが求められている。
そこで、第1の実施形態の車種判別装置30は、大型車両について詳細に車種を判別する。
第1の実施形態では、大型車両がトラクタ部とトレーラ部とを含むように構成されるものとする。トラクタ部とは、大型車のうち、荷台や、客車を牽引するために設けられた運転席を含む、前方の部分(先頭部分、牽引車両)とする。トレーラ部とは、大型車のうち、荷台や、荷物、客車を含み、トラクタ部により牽引される、後方の部分(後続部分、被牽引車両)とする。なお、荷台に載せられた荷物もトレーラ部に含めても良い。なお、上述した被牽引車両を含む大型車を牽引車両として説明する。
記憶部90は、第1の実施形態において必要な各種情報を記憶する。例えば、記憶部90は、車種判別処理を実行するための各種プログラム(アプリケーション、ソフトウェア等)や、各種設定情報等を記憶する。
記憶部90は、車両検知用の辞書パターン101を記憶する。図4は、第1の実施形態の車両検知用の辞書パターンを例示した図である。図4に示すように、車両検知用の辞書パターン101は、車両のトラクタ部の形状を示した形状パターン(第2の形状情報)が格納されたデータベースである。
他には、記憶部90は、トレーラ部品データベース(DB)201を記憶する。トレーラ部品DB201は、車両のトレーラ部に含まれる、荷台、荷物、客車(コンテナ等の部品群)等の基本的な形状を示した形状パターン(第1の形状情報)を記憶したデータベースとする。図5は、第1の実施形態のトレーラ部品DBを例示した図である。図5に示すように、トレーラ部品DB201は、車種に応じた、車両の荷台、荷物、客車を表した形状パターンが格納されている。これにより、トレーラ部の形状を特定する際に、車種の特定が可能となる。
なお、記憶部90に記憶される情報は、例えばインターネットやLAN(Local Area Network)等に代表される通信ネットワークを介して接続される他の装置(例えば、データベースサーバ)等から取得しても良い。
取得部91は、単眼カメラ10、車両検知器20、及び車重計40のそれぞれから得られる情報を取得する。なお、取得部91は、車両検知器20により車両60を検知したタイミングで単眼カメラ10の画像及び車重計40の車重情報を取得しても良い。
取得部91は、単眼カメラ10から撮像された車両の前面を含み、車両の全景が撮像された画像を取得する。本実施形態では、車両の前面を含む車両の全景を撮像する例について説明するが、取得部91は、車両の後面を含んだ画像データを取得しても良い。
車両検知部92は、単眼カメラ10から得られたカメラ画像から車両60の検知を行う。具体的には、画像中に含まれている物体の大まかな大きさから、車両であるか否か、また車両の大きさ(例えば、大型車、小型車、バイク)等を検知する。
トラクタ部検出部93は、車両60が大型車の場合、上述した図2に示すような車両60のトラクタ部である前方領域61を検出する。
トラクタ部検出部93は、記憶部90の車両検知用の辞書パターン101に記憶された形状パターンとマッチングを行うことで、前方領域61を検出する。なお、車両検出用の辞書パターン101には、車両の進入速度や単眼カメラ10の設置パラメータ等により、トラクタ部の見え方を推定したパターン(仮想モデル)を登録しておくと良い。
トレーラ部切出部94は、識別対象のトレーラ部を切り出す。例えば、トレーラ部切出部94は、単眼カメラ10から取得したカメラ画像のうち、トラクタ部検出部93より検出された前方領域61や、カメラ画像に写る背景や周辺の道路部分を分離して、トレーラ部である後方領域62を切り出す。
マッチング部95は、注視領域としてトレーラ部切出部94により得られた後方領域62を、記憶部90のトレーラ部品DB201に予め記憶されたコンテナ等の部品群(後続で牽引している貨物(荷物)を分類する基本的な形状を示した形状パターン)と照合(マッチング)する。
また、分類対象となる車種には、車両運搬用コンテナのように複数の部品が組み合わされた複合的な構成も存在する。そこで、マッチング部95は、複数の部品の組み合わせが可能となる部品群に対してそれぞれマッチングを行うことでマッチングスコアを算出しても良い。
車種判別部96は、マッチング部95から得られたマッチングスコアに基づいて、車種を判別する。また、車種判別部96は、各部品の組み合わせにより加算(又は累積)したマッチングスコアに基づいて車種を判別しても良い。なお、車種判別部96は、上述した車両検出用の辞書パターンや基本的な形状を示した形状パターンに基づいて、判別した車種に対応する幅、長さ、高さ等の形状情報を取得することも可能である。
ネットワーク接続部97は、通信ネットワーク50を介して、単眼カメラ10と、車両検知器20と、車重計40とのデータの送受信を行う。また、ネットワーク接続部97は、インターネットやLAN等を介して管理サーバ等と接続されても良く、車種判別装置30で取得した車種判別結果等を管理サーバに送信したり、管理サーバから上述したマッチングで用いるパターン等を取得したりしても良い。
制御部98は、車種判別装置30の各構成部全体の制御を行う。また、制御部98は、例えば第1の実施形態における各種処理の開始や終了等の制御やエラー発生時の制御等を行っても良い。
また、第1の実施形態では、車種判別部96において、取得部91から得られる車重が、車種判別により判別された車種の制限重量以下か否かを判別しても良い。この場合、取得部91から取得した車重が、車種の制限重量を超えていた場合には、規定違反車として管理サーバ等に通知することも可能である。
(第1の実施形態における車種判別処理の一例)
次に、第1の実施形態における車種判別処理の一例について説明する。図6は、第1の実施形態における車種判別処理の一例を示すフローチャートである。
図6に示すように、車種判別装置30の車両検知部92は、単眼カメラ10から得られたカメラ画像から大型車である車両60を検知する(S10)。
次に、トラクタ部検出部93は、単眼カメラ10により撮影されたカメラ画像から、車両検知用の辞書パターン101を参照して、車両60のトラクタ部(前方領域)61を検出する(S11)。
次に、トレーラ部切出部94は、単眼カメラ10で取得したカメラ画像から、トレーラ部(後方領域)62を切り出す(S12)。
次に、マッチング部95は、S12の処理で切り出されたトレーラ部62について、予め設定された認識対象であるコンテナ等の部品群(基本的な形状を示した形状パターン)とのマッチングを行う(S13)。S13の処理では、マッチングスコアを算出する。
次に、車種判別部96は、S13の処理で得られたマッチングスコアに基づいて、車種を判別して(S14)、処理を終了する。例えば車両運搬用コンテナの場合、橋状フレームに乗用車を搭載する複合的な部品構成となるため、橋状フレーム及び乗用車の双方のマッチングスコアが相対的に大きくなる。
そこで、S14の処理では、橋状フレーム及び乗用車のそれぞれ単独のマッチングスコアを比較するのに加えて、双方の組み合わせが可能である場合には、複合部品候補としてそれぞれのマッチングスコアを加算して比較対象に加える。これにより、より高精度な車種判別が可能となる。
なお、上述したS11及びS13の処理において、マッチングする対象の学習パターンを増やすことで精度を向上させても良い。また、S14の処理において、認識対象の大型の車両から切り出したトレーラ部のサンプルを教示し、新たに学習サンプルに加えることで、車種の判別精度を向上させることも可能である。
(辞書パターンとの照合とトレーラ部切り出しの具体例)
次に、上述したS11及びS12の処理における辞書パターンとの照合や、トレーラ部の切り出しの具体例について説明する。
例えば、トラクタ部検出部93は、図4に示される車両検出用の辞書パターン101を参照して、車両60のトラクタ部に最もマッチングする形状パターン102を選出する。
上述したように、単眼カメラ10の画面に写る車両60のトラクタ部61の下端位置や車両60が進入するときのトラクタ部61の見え方は、単眼カメラ10の設置パラメータや車両60の進入速度等により変化する。このため、車両検出用の辞書パターン101には、予め上述した変化を想定した形状パターン(仮想モデル)を格納している。
図7は、認証対象となる大型車両を例示した図である。図7に示される例では、トラクタ部検出部93は、車両検出用の辞書パターン101に記憶されている形状パターン102と、車両60に含まれる前方領域61と、が最もマッチングしていると判定する。これにより、トラクタ部検出部93は、車両60に含まれる前方領域61を、トラクタ部として検出する(以下、「前方領域61」を「トラクタ部61」とも称す)。
トレーラ部切出部94は、図7に示された車両60に、トラクタ部61として選出された形状パターン102を当てはめて、重なり部分を消去する。図8は、トラクタ部を消去して生成した画像を例示した図である。トレーラ部切出部94は、図8に示される画像データ81では、トラクタ部が消去され、トレーラ部62が表されている。
そこで、トレーラ部切出部94は、トレーラ部62の画像を切り出す。なお、トレーラ部切出部94は、車両60のトラクタ部をより詳細に合わせたい場合には、頻出するトラクタのパターンを予め登録しておき、トラクタ部の下端位置と単眼カメラ10の角度により決定される幾何計算によって、トレーラ部との境界を求めても良い。
(形状パターンとの照合による車種判別の具体例)
次に、上述したS13及びS14の処理における形状パターンとの照合による車種判別の具体例について説明する。
マッチング部95は、図5に示されるようなトレーラ部品DB201を参照して、トレーラ部切出部94により切り出された、図8で示されるようなトレーラ部62とマッチングを行う。上述したように、トレーラ部品DB201には、コンテナ等の部品群(基本的な形状を示した形状パターン)が格納されている。
車両60のトレーラ部には、車両運搬用コンテナのように橋状フレームに乗用車を組み合わせた複合的な部品構成も存在する。したがって、トレーラ部品DB201には、橋状フレーム202や乗用車203等の形状パターンを用意しておくと良い。
上述した車両運搬用コンテナの場合、橋状フレーム202や乗用車203の双方の形状パターンのマッチングスコアが相対的に大きくなる。そこで、車種判別部96は、橋状フレーム202や乗用車203の形状パターンとのマッチングスコアを比較するとともに、双方の組み合わせが可能である場合には、複合部品候補としてそれぞれを加算したマッチングスコアを比較対象とすると良い。
上述した第1の実施形態の車種判別装置30は、単眼カメラ10から取得したカメラ画像のうちトラクタ部とトレーラ部とを分離し、トレーラ部の形状に基づいて大型車の車種判別を行う。これにより、大型車の車種判別の精度を向上させることが可能となる。
(第2の実施形態)
次に、第2の実施形態における車種判別システムについて説明する。なお、以下の説明において、第1の実施形態における車種判別システム1と同様の構成については、同様の符号を付し、ここでの具体的な説明は省略する。
(車種判別システムの概略構成例)
図9は、第2の実施形態における車種判別システムの概略構成の一例を示す図である。図9に示す車種判別システム2は、ステレオカメラ11と、電子計算機(情報処理装置)の一例である車種判別装置31と、車重計40とを有する。ステレオカメラ11と、車種判別装置31と、車重計40とは、有線又は無線の通信ネットワーク50によりデータの送受信が可能な状態で接続されている。
第2の実施形態では、走行中の車両60を横方向から撮影して車両を判別する。ステレオカメラ11は、複数の撮像部(例えば、カメラ11A及びカメラ11B)を有する。ステレオカメラ11は、車両60の側面が撮影可能な位置に設けられ、車両60に対して高さ2〜3m程度、道路幅3.5m程度の視野範囲を見るように調整されているが、調整内容についてはこれに限定されるものではない。
ステレオカメラ11は、ステレオ方式を採用しているため、例えばカメラ11A及びカメラ11Bにより道路70上の立体物(車両60等の物体)を同時に検出することが可能である。本実施形態のステレオカメラ11は、静止画を撮像する撮像部に限定するものではなく、動画を撮像する撮像部であっても良い。
車種判別装置31は、ステレオカメラ11から取得したカメラ画像や、車重計40により得られる車両60の車重等に基づいて車種判別等を行う。
(車種判別装置の機能構成例)
次に、上述した車種判別装置31の機能構成例について説明する。図10は、第2の実施形態における車種判別装置の機能構成の一例を示す図である。
図10に示す車種判別装置31は、記憶部300と、取得部301と、画像特徴抽出部302と、距離計測部303と、基準区間変化量推定部304と、状態判定部305と、車両全景復元部306と、台数計数処理部307と、外郭情報取得部308と、クレーン検出部309と、トラクタ後部空間計測部(空間計測部)310と、牽引棒検出部311と、マッチング部312と、車種判別部313と、ネットワーク接続部314と、制御部315とを有する。
記憶部300は、例えば、車種判別処理を実行するための各種プログラム、各種設定情報等を記憶する。なお、記憶部300に記憶される情報は、例えばインターネットやLAN等に代表される通信ネットワークを介して接続される他の装置等から取得しても良い。
また、記憶部300は、3次元座標系において、車両の側面方向の、車両の部品の特徴部分を、立体的に表した第3の形状情報を記憶する。例えば、記憶部300は、車両の部品として、クレーン車両が搭載するクレーン部品形状や、牽引車両を特徴付けるトラクタ部やトレーラ部の部分画像、トレーラ部を牽引するための索引棒等を示した、第3の形状を記憶する。本実施形態では、記憶部300に記憶された、車両の部品の特徴部分を、3次元サーフェスモデルとして記憶する例について説明するが、車両の部品の特徴部分を、立体的に表していれば、どのようなモデルであっても良い。
記憶部300は、第3の形状情報の一例として、クレーン車両を側面から見たときの3次元形状のクレーン部品群401を記憶する。図11は、第2の実施形態の3次元形状のクレーン部品群を例示した図である。図11に示すように、3次元形状のクレーン部品群401には、クレーン車両の車種を特定する3次元形状の各クレーン部品402が1又は複数格納されている。なお、クレーン部品群は、図11に示すように、クレーン車両を特徴付けるための車両のフレームの形状、配置等の一部の特徴情報を含むがこれに限定されるものではない。
また、記憶部300は、第3の形状情報の一例として、車両の側面から見た部分画像データベース(DB)501を記憶する。図12は、第2の実施形態の車両の側面から見た部分画像DBを例示した図である。図12に示すように、車両の側面から見た部分画像DB501には、一般車両とトレーラを有する車両とを区別するためのトレーラ部分502を含む車両の側面を3次元形状で表した部分画像(構成パターン)が格納されている(以下、トレーラ部分502を必要に応じて「構成パターン502」という)。部分画像とは、車両の一部の領域を含む画像であり、例えば車両の先頭部分であるトラクタ部の運転席部分、車両の後続部分であるトレーラ部のコンテナの荷物を積載する荷台部分等であるが、これに限定されるものではない。
また、記憶部300は、第3の形状情報の一例として、牽引車両を側面から見たときの3次元形状の牽引棒部品群601を記憶する。図13は、第2の実施形態の3次元形状の牽引棒部品群を例示した図である。図13に示すように、3次元形状の牽引棒部品群601には、1又は複数のトレーラ等を牽引する車両の車種を特定する3次元形状の索引棒602が格納されている。牽引棒部品群とは、車両と車両が牽引する対象物との間の部品であり、横からの撮影画像では棒状に見えるものである。牽引棒の位置や向き、前後の物体の関係からその部品が牽引棒であるかを判別する。また、牽引棒の数等も判別する。牽引棒の判別結果により、対象車両が牽引車両か否かを判別することが可能となる。
取得部301は、ステレオカメラ11、及び車重計40のそれぞれから得られる情報を取得する。例えば、取得部301は、ステレオカメラ11により車両の側面を撮像した画像を取得する。ステレオカメラ11が動画を撮像可能な場合に、取得部301は、フレーム単位で、車両の側面を撮像した画像(以下、「フレーム画像」と称す)を取得する。
画像特徴抽出部302は、取得部301からステレオカメラ11により撮影された画像を取得すると、道路70上の立体物を抽出する。例えば、画像特徴抽出部302は、ステレオカメラ11の画像から車両60の外郭形状等の特徴等を抽出する。
距離計測部303は、取得部301からカメラ11A及びカメラ11Bにより撮影された画像を取得すると、それぞれの画像のマッチング処理により得られた視差情報から幾何計算を行う。これにより、距離計測部303は、例えばステレオカメラ11の位置から、車両60の側面上の各位置(画像から抽出された、車両60の側面上の特徴ごとの位置)までの距離値を計測する。
基準区間変化量推定部304は、フレーム画像内で表された撮像領域を、予め定められた領域を示した基準区間で分割する。基準区間変化量推定部304は、フレーム画像ごとに分割した基準区間内で、車両の側面上の特徴の移動量を計測する。これにより、基準区間変化量推定部304は、フレーム画像間の車両の変化量を推定する。
つまり、本実施形態は、基準区間変化量推定部304によりフレーム画像ごとに分割された基準区間を、車両の移動量を考慮して、つなぎ合わせることで、車両の全体が写っている全景画像を生成できる。
状態判定部305は、それぞれの基準区間における車両60の変化量に応じて、車両60の進入から退出までの車両60の存在位置を状態変化として把握する。
車両全景復元部306は、車両通行時に撮像された各フレーム画像から抽出された車両60の各特徴の遷移を、車両60の移動に合わせて追跡し、車両60の進行方向に重ね合わせて車両の側面を立体的に表した全景情報を生成する。
具体的には、車両全景復元部306は、車両60の縦エッジ及び円等の典型的な特徴量を車両の進行方向に走査させながら、直前及び直後のフレーム画像の特徴点を照合する。
更に、車両全景復元部306は、フレーム画像の各特徴点に対する距離計測部303により得られた距離値を参照することで、車両60の側面の特徴点の各位置を示した、3次元座標系における座標(例えば、ステレオカメラ11近傍を原点とした、当該原点からの距離座標)を有する全景情報を再現する。このように、車両60の全景情報は、ステレオカメラ11で撮像された車両60の側面片側の3次元形状を示している。
台数計数処理部307は、状態判定部305により把握される車両60の存在位置について、その状態変化が「退出」と判断された場合に、1台の車両60が通行したと判断する。なお、具体的な手法については、例えば特許第5651414号公報等に記載の手法を用いることができるが、これに限定されるものではない。
外郭情報取得部308は、車両60の全景情報に基づいて、ステレオカメラ11から得られる車両60の各特徴点との距離座標から算出される、3次元座標系で表した各特徴点の集合から、例えば平面射影変換を用いて、車両60の外郭を3次元の表面形状として表した3次元サーフェスモデル(以下、「外郭情報」と称す)を生成する。
つまり、本実施形態は、車両60の3次元形状を示した外郭情報で、車種の識別を行うことで、高い精度で車種の識別を可能とする。例えば、車両60の3次元形状を示した外郭情報と、記憶部300に記憶された、車両の部品の3次元形状を示した第3の形状と、の間で、3次元形状のマッチングを行うことで、高い精度で車両の部品を特定できる。これにより、高い精度の車種の識別を実現する。
クレーン検出部309は、クレーン車両等の工事車両に搭載されているクレーン部分を検出する。クレーン検出部309は、例えば外郭情報取得部308により得られた外郭情報を用いて、車体よりも前方の領域において地面と接触しない状態で、地面から所定以上の高さに車両の一部分が存在する場合に、その一部を含む領域をクレーン部分として検出する。なお、クレーン検出部309は、例えば、車両全景復元部306により生成された車両60の全景情報を、クレーン部品群401とマッチングすることでクレーン部分を検出しても良い。
トラクタ後部空間計測部310は、車両全景に含まれる空間を計測する。トラクタ後部空間計測部310は、例えば外郭情報取得部308により得られた外郭情報を用いて、車両60の先頭部分と車両60の後続部分との間の隙間に相当する空間(トラクタ後部の空間)を計測する。また、トラクタ後部空間計測部310は、計測した空間が所定の閾値以上である場合には、車両の外郭情報のうち、車両の先頭部分をトラクタ部として、車両の後続部分をトレーラ部や貨物部分として分離する。
牽引棒検出部311は、例えば外郭情報取得部308により得られた外郭情報から、牽引棒を検出する。
牽引棒検出部311は、外郭情報で示された3次元サーフェスモデルのうち、例えばトレーラ間に相当する隙間に対応するような、車両60の外郭(3次元サーフェスモデル)が予め定められた閾値以上変化する変化領域を抽出する。牽引棒検出部311は、当該変化領域から、牽引棒を検出する。なお、予め定められた閾値とは、実施態様に基づいて定められるものとする。また、牽引棒検出部311は、抽出された変化領域付近の計測距離を、距離計測部303の計測結果を用いて判定し、判定結果に基づいて牽引棒を検出しても良い。
マッチング部312は、トラクタ後部空間計測部310により分離されたトレーラ部の先端から後端までの領域を注視領域として設定し、車両の側面から見た部分画像DB501に登録された構成パターンとのマッチングを行う。マッチング部312は、部分画像のマッチングスコアを算出する。なお、部分画像の組み合わせ等がある場合にも予め登録しておくと良い。
車種判別部313は、上述した各検出部による検出結果や、マッチング部312によるマッチング結果に基づいて車種を判別する。なお、車種判別部313は、上述した外郭情報を用いることで、判別した車種の車長等の形状情報を取得しても良い。
ネットワーク接続部314は、通信ネットワーク50を介して、ステレオカメラ11と、車重計40とのデータの送受信を行う。また、ネットワーク接続部314は、インターネットやLAN等を介して管理サーバ等と接続されても良く、車種判別装置31で取得した車種判別結果等を管理サーバに送信したり、管理サーバから上述したマッチングで用いるパターン等を取得したりしても良い。
制御部315は、車種判別装置31の各構成部全体の制御を行う。また、制御部315は、例えば第2の実施形態における各種処理の開始や終了等の制御やエラー発生時の制御等を行っても良い。
また、第2の実施形態では、車種判別部313において、取得部301から得られる車重が、車種判別により判定された車種の制限重量以下か否かを判定しても良い。この場合、取得部301から取得した車重が、車種の制限重量を超えていた場合には、規定違反車として管理サーバ等に通知することも可能である。
(第2の実施形態における車種判別処理の一例)
次に、第2の実施形態における車種判別処理の一例について説明する。図14は、第2の実施形態における車種判別処理の一例を示すフローチャートである。
図14に示すように、車種判別装置31の画像特徴抽出部302は、ステレオカメラ11により撮影された画像から立体物(車両)の外郭形状等の特徴を抽出する(S20)。次に、距離計測部303は、カメラ11A及び11Bから得られた画像のマッチング処理を行い、視差情報から幾何計算を行い、例えばステレオカメラ11の位置から車両の側面上の各位置との距離を計測する(S21)。
次に、基準区間変化量推定部304は、フレーム画像ごとに分割した基準区間内で、車両の側面上の特徴の移動量を計測する。これにより、フレーム画像間の車両の変化量を推定する(S22)。次に、状態判定部305は、車両の進入から退出までの存在位置を状態変化として把握する(S23)。
次に、車両全景復元部306は、車両の側面上の特徴点を3次元座標系の位置座標で示すことで、立体的に表した車両の全景情報を生成する(S24)。S24の処理では、生成した全景情報を記憶部300に保存しておくと良い。
次に、台数計数処理部307は、状態判定部305により把握される車両の存在位置について、その状態変化が「退出」と判断された場合に、1台の車両が通過したと判断して、車両の台数計数処理を行う(S25)。
台数計数処理部307は、S25の処理の結果、車両が1台通過したか否か判断する(S26)。台数計数処理部307は、車両が1台通過していないと判断した場合(S26において、No)、S20の処理に戻る。
また、台数計数処理部307は、車両が1台通過したと判断した場合(S26において、Yes)、外郭情報取得部308は、車両が1台通過するまでの全景情報に基づいて、当該1台の車両の側面の外郭を、3次元の表面形状を表した外郭情報を取得する(S27)。
次に、クレーン検出部309は、S27の処理で取得した外郭情報を用いて、クレーン部分があるか否か判断する(S28)。クレーン検出部309は、クレーン部分がないと判断すると(S28において、No)、トラクタ後部空間計測部310は、外郭情報を用いて車両の先頭部分と車両の後続部分との間の隙間に相当する空間を計測する(S29)。
次に、トラクタ後部空間計測部310は、S29の処理で計測した空間のうち、所定の閾値以上となる空間があるか判断する(S30)。トラクタ後部空間計測部310は、所定の閾値以上となる空間があると判断すると(S30において、Yes)、マッチング部312は、トラクタ後部空間計測部310によりトレーラ部として分離された注視領域についてマッチングを行う(S31)。
また、トラクタ後部空間計測部310は、所定の閾値以上となる空間がないと判断すると(S30において、No)、牽引棒検出部311は、外郭情報を用いて、車両の外郭が所定の閾値以上変化する変化領域を抽出することにより牽引棒を検出する(S32)。
上述したS28の処理でクレーン部分があると判断された場合(S28において、Yes)、S31の処理の後、又はS32の処理の後、車種判別部313は、それぞれの結果に基づいて車種を判別し(S33)、処理を終了する。
(第2の実施形態の具体例)
(クレーン部分の検出)
次に、上述した第2の実施形態の具体例について説明する。図15は、クレーン部分の検出の具体例を示す図である。
クレーン検出部309は、例えば、車両60の外郭情報を用いて、図15(A)に示すようなクレーン車両等の工事車両701の車両の前方に搭載されているクレーン部分を検出する。図15(B)に示すように、クレーン検出部309は、例えば工事車両701の車体よりも前方の領域703において地面と接触しない状態で、地面から所定以上の高さで存在するクレーン部分702を検出する。
なお、クレーン車両に類似する車両として、ポール状の部品を搭載するトラックが考えられる。ポール状の部品とクレーン部分とを比較すると、クレーン部分のサイズが大きいため、例えば距離計測部303により計測されたクレーン部分の形状に関する情報を参照することで、ポール状の部品とクレーン部分とを区別しても良い。
また、クレーン検出部309は、例えば車両全景復元部306により生成された車両の全景情報を用いて、図11に示すクレーン部品群402とマッチングすることで、クレーン部分として検出しても良い。
なお、クレーン車両を判別する場合に、例えば単眼カメラを用いてクレーン車両の車両前面のマッチングを行っても良い。例えば、図11に示すように、クレーン車両の運転席部分は、片側に操縦席が存在するパターン403と、それよりも低い位置に座席が存在するパターン404等、他の車両と比較して非対称性が存在する。そのため、他の車両との相違が大きい。
つまり、類似パターンが少ないためマッチング精度が向上する。したがって、クレーン車両のトラクタ部をマッチングすることで、クレーン車両であることを判別することも可能である。
(トラクタ後部の空間計測及びトレーラ部のマッチング)
図16は、トラクタ後部の空間計測例を示す図である。トラクタ後部空間計測部310は、例えば図16(A)に示す大型車両のフレーム801〜805から抽出された車両の縦エッジや円等の特徴点806に基づき生成される画像の全景情報から算出された外郭情報を用いる。
具体的には、トラクタ後部空間計測部310は、上述した外郭情報のうち、図16(B)に示すように、大型車両の先頭部分と後続部分との間の隙間に相当する空間(トラクタ後部の空間)807を計測する。トラクタ後部空間計測部310は、例えば計測した空間807が所定の閾値以上である場合には、先頭部分をトラクタ部として、後続部分をトレーラ部や貨物部分として分離する。
マッチング部312は、トラクタ後部空間計測部310により分離されたトレーラ部の先端から後端までの領域を注視領域として設定し、上述した図12に示すような側面から見た部分画像DB501に登録された構成パターン502とのマッチングを行う。
マッチング部312は、上述した部分画像のマッチングスコアを算出する。この結果、車種判別部313は、例えば、図12に示すような牽引するトレーラがある車両503と一般車両504とを判別することが可能となる。
(索引棒の検出)
図17は、牽引棒の検出例を示す図である。牽引棒検出部311は、例えば図17(A)に示す車両通行時の動画フレーム1001〜1005から抽出された車両の特徴点1006に基づき生成される画像の全景情報から算出された外郭情報を用いる。
牽引棒検出部311は、上述した外郭情報である座標列を追跡し、図17(B)に示すトレーラ間の隙間1007において外郭(3次元サーフェスモデル)が予め定められた閾値以上変化する変化領域を抽出することで、牽引棒を検出する。また、牽引棒検出部311は、車両中に存在する牽引棒の数を計測する。
車種判別部313は、上述した図13に示す牽引棒部品群601を参照し、牽引棒の数が1つであればダブルス又は牽引車両603であるとして車種を判別する。また、車種判別部313は、牽引棒の数が2つ以上であればフルトレーラ604であるとして車種を判別する。また、車種判別部313は、上述したトラクタ部の隙間や索引棒がない場合には、通常の大型トラック605であるとして車種を判別する。
上述した第2の実施形態の車種判別装置31は、ステレオカメラ11から取得した画像から車両の全景情報を生成し、生成した全景情報に基づき、クレーン部分やトレーラ部、索引棒等の大型車両を側面から見たときの特徴的な部品形状を検出する。これにより、大型車両の車種判別の精度を向上させることが可能となる。
また、上述した仕組みは、車重計の情報と組み合わせれば、過積載車両の発見が可能となり、更にはロードプライシングを考慮した一般道にまで拡張可能である。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1,2…車種判別システム、10…単眼カメラ(第1の撮像部)、11…ステレオカメラ(第2の撮像部)、20…車両検知器、30,31…車種判別装置(情報処理装置)、40…車重計、50…通信ネットワーク、60…車両、61…前方領域、62…後方領域、70…道路、90,300…記憶部、91,301…取得部、92…車両検知部、93…トラクタ部検出部、94…トレーラ部切出部(切出部)、95,312…マッチング部、96,313…車種判別部、97,314…ネットワーク接続部、98,315…制御部、302…画像特徴抽出部、303…距離計測部、304…基準区間変化量推定部、305…状態判定部、306…車両全景復元部、307…台数計数処理部、308…外郭情報取得部、309…クレーン検出部、310…トラクタ後部空間計測部、311…牽引棒検出部。

Claims (16)

  1. 車両の後方に存在する荷台、荷物、又は客車の形状を表した第1の形状情報を記憶する記憶部と、
    撮像部から撮像された車両の画像を取得する取得部と、
    前記取得部から得られる画像に表されている前記車両の後方領域と、前記記憶部に記憶されている前記第1の形状情報と、を用いた照合を行い、前記車両の後方に存在する荷台、荷物、又は客車の形状の組み合わせから、前記車両の車種を判別する車種判別部と、
    を有する車種判別装置。
  2. 前記記憶部は、前記撮像部による撮影時の車両の進入速度及び前記撮像部のパラメータ情報に基づいて、車両の前方領域の見え方を表した第2の形状情報を記憶し、
    前記第2の形状情報を、前記取得部が取得した画像に表されている前記車両の前方領域に当てはめて、当該領域以外の前記車両の後方領域を切り出す切出部を有し、
    前記車種判別部は、前記切出部により切り出された前記車両の後方領域と、前記記憶部に記憶されている前記第1の形状情報と、を用いた照合を行う、
    請求項1に記載の車種判別装置。
  3. 前記車両の車種は、前記車両の幅、高さ、及び長さのいずれか1つ以上の形状に関する情報を含む、
    請求項1に記載の車種判別装置。
  4. 車両を構成する各部品の側面を立体的に表した第3の形状情報を記憶する記憶部と、
    複数の撮像部により車両の側面を撮像した複数の画像を取得する取得部と、
    前記取得部により取得した前記複数の画像に基づいて、前記車両の側面上の各位置との距離を計測する距離計測部と、
    前記距離計測部により得られる前記距離の情報と、前記複数の画像と、に基づいて、前記車両の側面を立体的に表した前記車両の全景情報を生成する車両全景復元部と、
    前記車両全景復元部により生成された前記車両の全景情報と、前記記憶部に記憶された前記第3の形状情報と、に基づいて、前記車両を構成する各部品から、前記車両の車種を判別する車種判別部と、
    を有する車種判別装置。
  5. 前記車両の全景情報に基づいて、前記車両の側面の外郭を、3次元の表面形状として示した外郭情報を取得する外部情報取得部を有する、
    請求項に記載の車種判別装置。
  6. 前記車両の外郭情報に基づいて、前記車両を構成する前記部品として、地面と接触しない状態で、前記地面から所定以上の高さを有するクレーン部を検出するクレーン検出部を有する、
    請求項に記載の車種判別装置。
  7. 前記車両の外郭情報に基づいて、前記車両を構成する前記部品として、前記車両の先頭部分と前記車両の後続部分との間の所定以上の空間を計測する空間計測部を有する、
    請求項に記載の車種判別装置。
  8. 前記車両の外郭情報に基づいて、前記車両の外郭が予め定められた閾値以上変化する変化領域を抽出することで、前記車両を構成する前記部品として、前記車両の牽引棒を検出する牽引棒検出部を有する、
    請求項に記載の車種判別装置。
  9. 撮像部から撮像された車両の画像を取得する取得ステップと、
    前記取得ステップで得られる画像に表されている前記車両の後方領域と、予め記憶部に記憶された前記車両の後方に存在する荷台、荷物、又は客車の形状を表した第1の形状情報と、を用いた照合を行い、前記車両の後方に存在する荷台、荷物、又は客車の形状の組み合わせから、前記車両の車種を判別する車種判別ステップと、
    を有する車種判別方法。
  10. 予め前記撮像部による撮影時の車両の進入速度及び前記撮像部のパラメータ情報に基づいて、前記記憶部に記憶された車両の前方領域の見え方を表した第2の形状情報を、前記取得ステップが取得した画像に表されている前記車両の前方領域に当てはめて、当該領域以外の前記車両の後方領域を切り出す切出ステップを有し、
    前記車種判別ステップは、前記切出ステップにより切り出された前記車両の後方領域と、前記記憶部に記憶されている前記第1の形状情報と、を用いた照合を行う、
    請求項に記載の車種判別方法。
  11. 前記車両の車種は、前記車両の幅、高さ、及び長さのいずれか1つ以上の形状に関する情報を含む、
    請求項に記載の車種判別方法。
  12. 複数の撮像部により車両の側面を撮像した複数の画像を取得する取得ステップと、
    前記取得ステップで取得した前記複数の画像に基づいて、前記車両の側面上の各位置との距離を計測する距離計測ステップと、
    前記距離計測ステップで得られる前記距離の情報と、前記複数の画像と、に基づいて、前記車両の側面を立体的に表した前記車両の全景情報を生成する車両全景復元ステップと、
    前記車両全景復元ステップで生成された前記車両の全景情報と、予め記憶部に記憶された前記車両を構成する各部品の側面を立体的に表した第3の形状情報と、に基づいて、前記車両を構成する各部品から、前記車両の車種を判別する車種判別部と、
    を有する車種判別方法。
  13. 前記車両の全景情報に基づいて、前記車両の側面の外郭を、3次元の表面形状として示した外郭情報を取得する外部情報取得ステップを有する、
    請求項12に記載の車種判別方法。
  14. 前記車両の外郭情報に基づいて、前記車両を構成する前記部品として、地面と接触しない状態で、前記地面から所定以上の高さを有するクレーン部を検出するクレーン検出ステップを有する、
    請求項13に記載の車種判別方法。
  15. 前記車両の外郭情報に基づいて、前記車両を構成する前記部品として、前記車両の先頭部分と前記車両の後続部分との間の所定以上の空間を計測する空間計測ステップを有する、
    請求項13に記載の車種判別方法。
  16. 前記車両の外郭情報に基づいて、前記車両の外郭が予め定められた閾値以上変化する変化領域を抽出することで、前記車両を構成する前記部品として、前記車両の牽引棒を検出する牽引棒検出ステップを有する、
    請求項13に記載の車種判別方法。
JP2015165045A 2015-08-24 2015-08-24 車種判別装置、及び車種判別方法 Active JP6602595B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015165045A JP6602595B2 (ja) 2015-08-24 2015-08-24 車種判別装置、及び車種判別方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015165045A JP6602595B2 (ja) 2015-08-24 2015-08-24 車種判別装置、及び車種判別方法

Publications (2)

Publication Number Publication Date
JP2017045137A JP2017045137A (ja) 2017-03-02
JP6602595B2 true JP6602595B2 (ja) 2019-11-06

Family

ID=58211334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015165045A Active JP6602595B2 (ja) 2015-08-24 2015-08-24 車種判別装置、及び車種判別方法

Country Status (1)

Country Link
JP (1) JP6602595B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7525247B2 (ja) * 2019-03-08 2024-07-30 オムロン株式会社 車種判定装置、車種判定方法、および車種判定プログラム
JP6948358B2 (ja) * 2019-03-20 2021-10-13 ヤフー株式会社 情報処理装置、情報処理方法、情報処理プログラム
KR102131893B1 (ko) * 2019-10-24 2020-07-09 한국건설기술연구원 화물차 덮개 불량 자동 인지 장치 및 방법
JP2023046879A (ja) * 2021-09-24 2023-04-05 コベルコ建機株式会社 車両判別システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186899A (ja) * 1984-10-04 1986-05-02 オムロン株式会社 車種判別装置
US5717390A (en) * 1995-03-20 1998-02-10 Hasselbring; Richard E. Doppler-radar based automatic vehicle-classification system
JP3465531B2 (ja) * 1997-05-12 2003-11-10 オムロン株式会社 物体認識方法およびその装置
JPH11259792A (ja) * 1998-03-06 1999-09-24 Omron Corp 車輌認識方法およびその装置
JP2001195685A (ja) * 2000-01-12 2001-07-19 Nec Corp 車両識別装置
JP2003281686A (ja) * 2002-03-20 2003-10-03 Mitsubishi Heavy Ind Ltd 距離画像センサ及び車種判別装置
JP4326992B2 (ja) * 2004-03-17 2009-09-09 アルパイン株式会社 周辺車両識別方法及びこれを用いた走行支援システム
JP4720205B2 (ja) * 2005-02-17 2011-07-13 オムロン株式会社 軸重計測装置、軸重計測システムおよび計測精度の監視方法
CN107092856A (zh) * 2011-03-14 2017-08-25 加州大学评议会 用于车辆分类的方法和系统
JP5774457B2 (ja) * 2011-12-01 2015-09-09 株式会社東芝 通過車両検知装置及び通過車両検知方法
JP2016184316A (ja) * 2015-03-26 2016-10-20 株式会社東芝 車種判別装置および車種判別方法

Also Published As

Publication number Publication date
JP2017045137A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
JP7025912B2 (ja) 車載環境認識装置
CN106485233B (zh) 可行驶区域检测方法、装置和电子设备
US9047518B2 (en) Method for the detection and tracking of lane markings
CA2958832C (en) Method and axle-counting device for contact-free axle counting of a vehicle and axle-counting system for road traffic
CA2885019C (en) Robust windshield detection via landmark localization
WO2016129403A1 (ja) 物体検知装置
CN104916163B (zh) 泊车位检测方法
CN107750213B (zh) 前方车辆碰撞报警装置及报警方法
CN104778444B (zh) 道路场景下车辆图像的表观特征分析方法
WO2017113805A1 (zh) 列车车号和车型识别方法和系统及安全检查方法和系统
US10699567B2 (en) Method of controlling a traffic surveillance system
CN105716567B (zh) 通过单眼图像获取设备侦测物体与机动车辆距离的方法
JP6602595B2 (ja) 車種判別装置、及び車種判別方法
CN107527006B (zh) 用于检查机动车的介质损失的方法以及用于执行这样的方法的机动车和系统
JP2016184316A (ja) 車種判別装置および車種判別方法
CN108351207A (zh) 立体相机装置
JP6818626B2 (ja) 車種判別装置、車種判別方法、および車種判別システム
CN105128836A (zh) 自主紧急制动系统及其中识别行人的方法
CN102765365A (zh) 基于机器视觉的行人检测方法及行人防撞预警系统
CN107787496B (zh) 消失点修正装置及方法
JP2017220076A (ja) 車種判別装置および車種判別方法
CN110298300A (zh) 一种检测车辆违章压线的方法
CN109871728A (zh) 一种车型识别方法及装置
CN107924466A (zh) 用于机动车辆的视觉系统和方法
JP4674179B2 (ja) 影認識方法及び影境界抽出方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170911

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191009

R150 Certificate of patent or registration of utility model

Ref document number: 6602595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150