JP6598449B2 - Radiation imaging apparatus and radiation imaging system - Google Patents

Radiation imaging apparatus and radiation imaging system Download PDF

Info

Publication number
JP6598449B2
JP6598449B2 JP2014216357A JP2014216357A JP6598449B2 JP 6598449 B2 JP6598449 B2 JP 6598449B2 JP 2014216357 A JP2014216357 A JP 2014216357A JP 2014216357 A JP2014216357 A JP 2014216357A JP 6598449 B2 JP6598449 B2 JP 6598449B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber reinforced
reinforced resin
plate
radiation imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014216357A
Other languages
Japanese (ja)
Other versions
JP2016085063A (en
Inventor
元気 多川
正隆 鈴木
弘人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014216357A priority Critical patent/JP6598449B2/en
Publication of JP2016085063A publication Critical patent/JP2016085063A/en
Application granted granted Critical
Publication of JP6598449B2 publication Critical patent/JP6598449B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、医療用画像診断装置、非破壊検査装置、放射線を用いた分析装置などに応用される撮像装置及び放射線撮像システムに関するものである。   The present invention relates to an imaging apparatus and a radiation imaging system applied to a medical diagnostic imaging apparatus, a nondestructive inspection apparatus, an analysis apparatus using radiation, and the like.

近年、医療画像診断や非破壊検査等の放射線撮像システムに用いられる放射線撮像装置としては、装置の小型化及び軽量化が進められ、可搬型の放射線撮像装置が用いられている。可搬型の放射線撮像装置は、任意の姿勢での放射線撮影が可能となり、病室や屋外等での放射線撮影に用いられ得る。可搬型の放射線撮像装置においては、軽量化による可搬性に加えて、外力によって装置の変形による破損等が生じないような強度が要求される。そのため、装置の筐体には、アルミニウムやマグネシウム等の低比重で且つ高強度の合金に加えて、近年ではCFRP(炭素繊維強化プラスチック)といった炭素繊維強化樹脂複合材(以下、炭素繊維強化樹脂と示す)が用いられ得る。特許文献1には、可搬性を確保しつつ外部応力による筒状筐体の変形を抑制するために、筐体の放射線入射面及びその対向面の炭素繊維強化樹脂の繊維方向が放射線入射面と対向面との間の側面に対して傾斜し且つ傾斜方向が互いに異なる装置が開示されている。炭素繊維強化樹脂は、繊維方向とその繊維方向と異なる方向とで伸縮率に異方性を有しており、対向する2面の繊維方向が異なるように側面に対して2面の繊維方向を傾斜させることにより、外部応力に対する耐久性を向上させている。   In recent years, as a radiation imaging apparatus used in a radiation imaging system such as medical image diagnosis and nondestructive inspection, the apparatus has been reduced in size and weight, and a portable radiation imaging apparatus has been used. The portable radiation imaging apparatus can perform radiation imaging in an arbitrary posture and can be used for radiation imaging in a hospital room or outdoors. In a portable radiation imaging apparatus, in addition to portability due to weight reduction, a strength that prevents damage due to deformation of the apparatus due to external force is required. Therefore, in addition to low specific gravity and high strength alloys such as aluminum and magnesium, the device casing has recently been made of a carbon fiber reinforced resin composite material (hereinafter referred to as carbon fiber reinforced resin) such as CFRP (carbon fiber reinforced plastic). Can be used. In Patent Document 1, in order to suppress the deformation of the cylindrical housing due to external stress while securing portability, the fiber direction of the carbon fiber reinforced resin on the radiation incident surface of the housing and the opposite surface is the radiation incident surface. An apparatus that is inclined with respect to the side surface between the opposing surfaces and has different inclination directions is disclosed. The carbon fiber reinforced resin has anisotropy in the stretching ratio between the fiber direction and a direction different from the fiber direction, and the two fiber directions are different from the side surfaces so that the fiber directions of the two opposing surfaces are different. By inclining, durability against external stress is improved.

一方、放射線撮像装置はその装置内部に、放射線センサパネルの動作制御や放射線センサパネルの画素アレイからの信号を処理する集積回路を収容しており、この集積回路はその動作によって発熱し得る。集積回路は装置内部に局所的に配置されるものであるため、集積回路による装置内部の局所的な温度上昇により画素アレイの温度分布にムラが生じ、画素アレイから得られる信号に基づく画像に温度分布が反映されたムラが生じ得る。そのため、装置の温度分布のムラを抑制するために、集積回路によって発生した熱を画素アレイ外に効率的に伝導する必要がある。筐体に炭素繊維強化樹脂複合材が用いられる場合には、合金材料に比べて熱伝導率が低く、また炭素繊維強化樹脂複合材の熱伝導率は炭素繊維の方向により高い熱伝導性を示す異方性を有しているため、装置内部で発生する熱に対する対策に工夫が必要である。特許文献2には、熱に起因した画像ムラを低減するために、筐体の放射線入射面及び対向面の炭素繊維強化樹脂の繊維方向が複数の集積回路が配置される方向である装置の一側面と平行な方向に沿うように炭素繊維強化樹脂が配置される装置が開示されている。   On the other hand, the radiation imaging apparatus contains therein an integrated circuit for controlling the operation of the radiation sensor panel and processing signals from the pixel array of the radiation sensor panel, and this integrated circuit can generate heat by the operation. Since the integrated circuit is locally arranged in the device, the temperature distribution of the pixel array is uneven due to the local temperature rise inside the device by the integrated circuit, and the image based on the signal obtained from the pixel array has a temperature. Unevenness reflecting the distribution may occur. Therefore, in order to suppress unevenness in the temperature distribution of the device, it is necessary to efficiently conduct heat generated by the integrated circuit to the outside of the pixel array. When a carbon fiber reinforced resin composite material is used for the housing, the thermal conductivity is lower than that of the alloy material, and the thermal conductivity of the carbon fiber reinforced resin composite material shows higher thermal conductivity in the direction of the carbon fiber. Since it has anisotropy, it is necessary to devise countermeasures against heat generated inside the apparatus. In Patent Document 2, in order to reduce image unevenness caused by heat, a device in which the fiber direction of the carbon fiber reinforced resin on the radiation incident surface and the opposing surface of the housing is a direction in which a plurality of integrated circuits are arranged is disclosed. An apparatus in which a carbon fiber reinforced resin is disposed along a direction parallel to a side surface is disclosed.

国際公開第2009/122808号International Publication No. 2009/122808 特開2013−002828号公報JP 2013-002828 A

しかしながら、いずれの特許文献も、高い剛性の確保と高い熱均一性の確保の両立のためには、検討の余地がある。特許文献1の装置は、装置内で発生した熱は傾斜した方向に伝導されるため、特許文献2の装置の構成と比較すると、画素アレイの外側までの距離が長くなるため、画素アレイの外側に排熱する効率では不利である。一方、特許文献2の装置は、側面に対して傾斜した方向、すなわち斜め方向、に対する剛性が側面に平行な方向に比べて低く、捻じれ変形等に対しては、特許文献1の装置と比較すると、不利である。   However, in any of the patent documents, there is room for study in order to ensure both high rigidity and high thermal uniformity. In the device of Patent Document 1, since heat generated in the device is conducted in an inclined direction, the distance to the outside of the pixel array is longer than that of the device of Patent Document 2, so that the outside of the pixel array. It is disadvantageous in the efficiency of exhausting heat. On the other hand, the device of Patent Document 2 has a lower rigidity with respect to the direction inclined with respect to the side surface, that is, the oblique direction, compared to the direction parallel to the side surface, and compared with the device of Patent Document 1 for torsional deformation and the like. Then it is disadvantageous.

そこで本発明は、高い剛性の確保と高い熱均一性の確保の両立が可能な放射線撮像装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a radiation imaging apparatus capable of ensuring both high rigidity and high thermal uniformity.

本発明に係る放射線撮像装置は、複数の画素が2次元に配列された画素アレイを有する第1表面と該第1表面と対向する第2表面とを有する放射線センサパネルと、前記放射線センサパネルに電気的に接続された集積回路と、前記放射線センサパネルが正射影された領域よりも広い面を有する、正方形や長方形、それらの角部を一部欠いた形状、及び、それらの角部が丸みを帯びた形状を含む形状である略方形の板状部材を含み前記放射線センサパネルと前記集積回路とを収容する筐体と、を有する放射線撮像装置であって、前記板状部材は、第1炭素繊維強化樹脂と、第2炭素繊維強化樹脂と、前記第1炭素繊維強化樹脂と前記第2炭素繊維強化樹脂の間に配置された第3炭素繊維強化樹脂と、を含み、前記第1炭素繊維強化樹脂の繊維方向及び前記第2炭素繊維強化樹脂の繊維方向のうちの少なくとも一方が前記板状部材の一辺と垂直な第1方向に対する角度よりも前記板状部材の一対角線と平行な第2方向に対する角度が小さく、前記第3炭素繊維強化樹脂の繊維方向が前記第1方向に対する角度よりも前記第2方向に対する角度が大きくなるように、前記第1炭素繊維強化樹脂と前記第2炭素繊維強化樹脂と前記第3炭素繊維強化樹脂とが配置されており、前記放射線センサパネルは、前記第1表面にシンチレータが備えられており、前記筐体の一部を構成し、前記放射線センサパネルの前記第2表面側を支持する支持部材を更に含み、前記板状部材は、前記支持部材であることを特徴とする。 A radiation imaging apparatus according to the present invention includes a radiation sensor panel having a first surface having a pixel array in which a plurality of pixels are two-dimensionally arranged and a second surface facing the first surface, and the radiation sensor panel An electrically connected integrated circuit, a square or rectangle having a surface wider than a region in which the radiation sensor panel is orthogonally projected, a shape partially lacking the corners, and the corners being rounded A radiation imaging apparatus including a substantially square plate-like member having a shape including a shape and including a housing that houses the radiation sensor panel and the integrated circuit, wherein the plate-like member is a first member. A carbon fiber reinforced resin; a second carbon fiber reinforced resin; and a third carbon fiber reinforced resin disposed between the first carbon fiber reinforced resin and the second carbon fiber reinforced resin. Fiber method of fiber reinforced resin And at least one of the fiber directions of the second carbon fiber reinforced resin has a smaller angle with respect to the second direction parallel to the pair of diagonal lines of the plate-like member than an angle with respect to the first direction perpendicular to one side of the plate-like member. The first carbon fiber reinforced resin, the second carbon fiber reinforced resin, and the first carbon fiber reinforced resin, the fiber direction of the third carbon fiber reinforced resin, and the second carbon fiber reinforced resin and the second carbon fiber reinforced resin, so 3 carbon fiber reinforced resin is disposed, the radiation sensor panel is provided with a scintillator on the first surface, constitutes a part of the housing , and is on the second surface side of the radiation sensor panel The plate-shaped member is the support member.

本発明により、高い剛性の確保と高い熱均一性の確保の両立が可能な放射線撮像装置を提供することが可能となる。   According to the present invention, it is possible to provide a radiation imaging apparatus capable of ensuring both high rigidity and high thermal uniformity.

第1の実施形態に係る放射線撮像装置の平面図及び断面模式図である。It is the top view and cross-sectional schematic diagram of the radiation imaging device which concern on 1st Embodiment. 第1の実施形態に係る放射線撮像装置の断面模式図及び断面斜視図である。It is the cross-sectional schematic diagram and cross-sectional perspective view of the radiation imaging device which concern on 1st Embodiment. 第1の実施形態に係る放射線撮像装置の層構成を説明するための分解斜視図及び平面図である。It is the disassembled perspective view and top view for demonstrating the layer structure of the radiation imaging device which concerns on 1st Embodiment. 第1の実施形態に係る放射線撮像装置の層構成を説明するための分解斜視図及び平面図である。It is the disassembled perspective view and top view for demonstrating the layer structure of the radiation imaging device which concerns on 1st Embodiment. 第2の実施形態に係る放射線撮像装置の平面図及び断面模式図である。It is the top view and cross-sectional schematic diagram of the radiation imaging device which concern on 2nd Embodiment. 放射線撮像装置の支持部材の構成を説明する模式図である。It is a schematic diagram explaining the structure of the support member of a radiation imaging device. 第3の実施形態に係る放射線撮像装置の断面模式図である。It is a cross-sectional schematic diagram of the radiation imaging device which concerns on 3rd Embodiment. 放射線撮像装置を用いた放射線撮像システムを説明する概念図である。It is a conceptual diagram explaining the radiation imaging system using a radiation imaging device.

以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。なお、本明細書では、放射線は、α線、β線、γ線、X線、粒子線、宇宙線を含むものとする。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. In the present specification, radiation includes α rays, β rays, γ rays, X rays, particle rays, and cosmic rays.

(第1の実施形態)
図1(a)、図1(b)、図2(a)及び図2(b)を用いて、第1の実施形態に係る放射線撮像装置について説明する。図1(a)は、第1の実施形態に係る放射線撮像装置の平面図であり、図1(b)は、図1(a)のA−A箇所に係る断面模式図である。図2(a)は、図1(a)のB−B箇所に係る断面模式図であり、図2(b)は、第1の実施形態に係る放射線撮像装置を構成する筒状筐体130の構成を説明するための断面斜視図である。
(First embodiment)
A radiation imaging apparatus according to the first embodiment will be described with reference to FIGS. 1A, 1 </ b> B, 2 </ b> A, and 2 </ b> B. FIG. 1A is a plan view of the radiation imaging apparatus according to the first embodiment, and FIG. 1B is a schematic cross-sectional view taken along a line AA in FIG. 2A is a schematic cross-sectional view taken along the line BB in FIG. 1A, and FIG. 2B is a cylindrical housing 130 that constitutes the radiation imaging apparatus according to the first embodiment. It is a cross-sectional perspective view for demonstrating the structure of this.

第1の実施形態に係る放射線撮像装置100は、放射線センサパネル140と、集積回路144及び145と、筐体101と、を含む。放射線センサパネル140は、複数の画素が2次元に配列された画素アレイを有する。集積回路144及び145は、放射線センサパネル140に電気的に接続されている。筐体101は、放射線センサパネル140が正射影された領域よりも広い面を有する略方形の板状部材を含み、少なくとも放射線センサパネル140と集積回路144及び145とを収容する。筐体101に含まれる板状部材は、集積回路144及び145で発生した熱を放射線センサパネル140の画素アレイ外に効率良く排熱することによる高い熱均一性と、外部からの衝撃に対する高い破壊強度を確保するための剛性と、を備える必要がある。そこで、本願発明の板状部材は、少なくとも3層以上の炭素繊維強化樹脂が積層された構成とする。すなわち、本願発明の板状部材は、第1炭素繊維強化樹脂と、第2炭素繊維強化樹脂と、第1炭素繊維強化樹脂と2炭素繊維強化樹脂の間に配置された第3炭素繊維強化樹脂と、を含む。ここで、誠意検討の結果、3層以上の炭素繊維強化樹脂が積層された構成とした場合、板状部材の剛性は最表面層の剛性に強く影響され、板状部材の排熱は内層の熱伝導率によって制御可能であることを見出した。そこで、本願発明の板状部材では、以下のような構成とする。第1炭素繊維強化樹脂及び第2炭素繊維強化樹脂の少なくとも一方は、板状部材の一辺と垂直な第1方向に対する剛性よりも板状部材の一対角線と平行な第2方向に対する剛性が高くなるように配置される。そのために、第1炭素繊維強化樹脂の繊維方向及び第2炭素繊維強化樹脂の繊維方向のうちの少なくとも一方が、板状部材の一辺と垂直な第1方向に対する角度よりも板状部材の一対角線と平行な第2方向に対する角度が小さくなるように、第1炭素繊維強化樹脂と第2炭素繊維強化樹脂が配置されている。好ましくは、第1炭素繊維強化樹脂及び第2炭素繊維強化樹脂のいずれもが、板状部材の一辺と垂直な第1方向に対する剛性よりも板状部材の一対角線と平行な第2方向に対する剛性が高くなるように配置される。すなわち、第1炭素繊維強化樹脂の繊維方向及び第2炭素繊維強化樹脂の繊維方向が、板状部材の一辺と垂直な第1方向に対する角度よりも板状部材の一対角線と平行な第2方向に対する角度が小さくなるように、第1炭素繊維強化樹脂と第2炭素繊維強化樹脂が配置されている。一方、第3炭素繊維強化樹脂は、板状部材の一対角線と平行な第2方向に対する熱伝導率よりも板状部材の一辺と垂直な第1方向に対する熱伝導率が高くなるように配置される。そのために、第3炭素繊維強化樹脂の繊維方向が板状部材の一辺と垂直な第1方向に対する角度よりも板状部材の一対角線と平行な第2方向に対する角度が大きくなるように、第3炭素繊維強化樹脂が配置されている。このような構成によって、最表面層により高い剛性が確保されつつ内層により高い熱均一性が確保されることとなり、高い剛性の確保と高い熱均一性の確保の両立が可能な放射線撮像装置を提供することが可能となる。   The radiation imaging apparatus 100 according to the first embodiment includes a radiation sensor panel 140, integrated circuits 144 and 145, and a housing 101. The radiation sensor panel 140 has a pixel array in which a plurality of pixels are two-dimensionally arranged. The integrated circuits 144 and 145 are electrically connected to the radiation sensor panel 140. The housing 101 includes a substantially square plate-like member having a surface wider than a region where the radiation sensor panel 140 is orthogonally projected, and accommodates at least the radiation sensor panel 140 and the integrated circuits 144 and 145. The plate-like member included in the housing 101 has high thermal uniformity by efficiently exhausting heat generated in the integrated circuits 144 and 145 to the outside of the pixel array of the radiation sensor panel 140, and high destruction due to external impact. It is necessary to provide rigidity for ensuring strength. Therefore, the plate member of the present invention has a configuration in which at least three or more layers of carbon fiber reinforced resin are laminated. That is, the plate-like member of the present invention includes a first carbon fiber reinforced resin, a second carbon fiber reinforced resin, and a third carbon fiber reinforced resin disposed between the first carbon fiber reinforced resin and the two carbon fiber reinforced resin. And including. Here, as a result of sincerity studies, when the structure is formed by laminating three or more layers of carbon fiber reinforced resin, the rigidity of the plate member is strongly influenced by the rigidity of the outermost layer, and the exhaust heat of the plate member is in the inner layer. It was found that it can be controlled by thermal conductivity. Therefore, the plate-like member of the present invention has the following configuration. At least one of the first carbon fiber reinforced resin and the second carbon fiber reinforced resin has higher rigidity in the second direction parallel to the diagonal of the plate member than the rigidity in the first direction perpendicular to one side of the plate member. Are arranged as follows. Therefore, at least one of the fiber direction of the first carbon fiber reinforced resin and the fiber direction of the second carbon fiber reinforced resin is a diagonal line of the plate member rather than an angle with respect to the first direction perpendicular to one side of the plate member. The first carbon fiber reinforced resin and the second carbon fiber reinforced resin are arranged so that the angle with respect to the second direction parallel to the first direction becomes smaller. Preferably, both the first carbon fiber reinforced resin and the second carbon fiber reinforced resin are rigid in the second direction parallel to the diagonal of the plate member rather than in the first direction perpendicular to one side of the plate member. Is arranged to be higher. That is, the second direction in which the fiber direction of the first carbon fiber reinforced resin and the fiber direction of the second carbon fiber reinforced resin are parallel to the diagonal of the plate member rather than the angle to the first direction perpendicular to one side of the plate member. 1st carbon fiber reinforced resin and 2nd carbon fiber reinforced resin are arrange | positioned so that the angle with respect to may become small. On the other hand, the third carbon fiber reinforced resin is arranged such that the thermal conductivity in the first direction perpendicular to one side of the plate-like member is higher than the thermal conductivity in the second direction parallel to the diagonal line of the plate-like member. The Therefore, the third carbon fiber reinforced resin has a third direction so that the fiber direction of the third carbon fiber reinforced resin is larger than the angle of the first direction perpendicular to one side of the plate-shaped member and the second direction parallel to the diagonal line of the plate-shaped member. Carbon fiber reinforced resin is disposed. With such a configuration, high rigidity is ensured by the outermost surface layer while high thermal uniformity is ensured by the inner layer, and a radiation imaging apparatus capable of ensuring both high rigidity and high thermal uniformity is provided. It becomes possible to do.

以下に、第1の実施形態の構成について、具体的に説明する。放射線センサパネル140の画素アレイを構成する各画素は、例えばフォトダイオード等の光電変換素子とTFT等のスイッチ素子とを含む。ガラス基板等の絶縁性基板上に配置された光電変換素子の上に、放射線を光電変換素子が感知可能な光に変換するシンチレータ141が配され得る。ただし、画素アレイはそれに限定されるものではなく、各画素の光電変換素子及びシンチレータ141に代えて、放射線を直接電荷に変換する変換素子を各画素に用いてもよい。このような画素が2次元行列状に複数配列され、画素アレイが構成される。すなわち、放射線センサパネル140の第1表面に、画素アレイが配列されている。集積回路144は、プリント回路基板143に設けられており、画素アレイからの画像信号の処理及び画素アレイの制御の少なくともいずれか一方を行う。集積回路145は、プリント回路基板143に搭載されており、画素アレイからの画素アレイからのアナログ信号をデジタル信号に変換した画像信号を出力する。プリント回路基板143は、フレキシブルプリント基板142を介して放射線センサパネル140と電気的に接続されており、放射線センサパネル140の第1表面と対向する第2表面側に配置される。すなわち、集積回路144及び145は、後述する放射線センサパネル140の第1板状部材側とは反対側に配置されたプリント回路基板に搭載される。   The configuration of the first embodiment will be specifically described below. Each pixel constituting the pixel array of the radiation sensor panel 140 includes, for example, a photoelectric conversion element such as a photodiode and a switch element such as a TFT. A scintillator 141 that converts radiation into light that can be sensed by the photoelectric conversion element may be disposed on the photoelectric conversion element disposed on an insulating substrate such as a glass substrate. However, the pixel array is not limited thereto, and instead of the photoelectric conversion element and scintillator 141 of each pixel, a conversion element that directly converts radiation into electric charges may be used for each pixel. A plurality of such pixels are arranged in a two-dimensional matrix to form a pixel array. That is, a pixel array is arranged on the first surface of the radiation sensor panel 140. The integrated circuit 144 is provided on the printed circuit board 143, and performs at least one of processing of an image signal from the pixel array and control of the pixel array. The integrated circuit 145 is mounted on the printed circuit board 143, and outputs an image signal obtained by converting an analog signal from the pixel array from the pixel array into a digital signal. The printed circuit board 143 is electrically connected to the radiation sensor panel 140 via the flexible printed circuit board 142 and is disposed on the second surface side facing the first surface of the radiation sensor panel 140. That is, the integrated circuits 144 and 145 are mounted on a printed circuit board disposed on the side opposite to the first plate member side of the radiation sensor panel 140 described later.

放射線撮像装置100の筐体101は、炭素繊維強化樹脂部材(以下CFRPと示す)を用いて筒状に成形した筒状筐体130と、筐体101の側面となる側面部材120と、を含む。筒状部材130のうち、放射線センサパネル140の第1表面と対向する側の第1領域、及び/又は、放射線センサパネル140の第1表面と対向する第2表面と対向する側、すなわち、第1領域と反対側の第2領域とが、板状部材に相当する。本実施形態では、筒状筐体130の第1領域が第1板状部材に相当し、第2領域が第2板状部材に相当する。第1板状部材及び第2板状部材は、画素アレイの形状に対応して、略方形の形状である。ここで、略方形の形状とは、正方形や長方形、それらの角部を一部欠いた形状、及び、それらの角部が丸みを帯びた形状を含む形状である。筐体の大部分を占める筒状筐体130にCFRPを用いることで、落下や衝撃などに対する強度確保、および、運搬時の負担軽減を目的とした軽量化の両立が可能となる。また、CFRPは高い放射線透過性を有するため、放射線センサパネル140の放射線入射面側に配置しても、放射線減衰の低い画像を取得することが可能となる。放射線撮像装置100の放射線入射面側には、放射線センサパネル140の読取中心(画素アレイの中心)が分かる指標133、読取範囲(画素アレイの配置範囲)が分かる指標134が記されている。放射線撮像装置100の内部には、放射線センサパネル140の第2表面側を支持する支持部材110が備えらえている。支持部材110は、緩衝部材160を介して筒状筐体130の第2板状部材に結合されており、すなわち支持部材110は筐体の一部を構成し得る。放射線センサパネル140は、外部からの荷重や運搬時の振動などによって変形や割れが生じないよう、第2表面側に剛性を持つ支持部材110が固定されている。支持部材110には、強度と軽量化の両立のためにCFRPを用い得る。また、必要に応じて、集積回路144及び145の放射線劣化の抑制や放射線撮像装置100の後方からの散乱線除去などの役割をもつ放射線遮蔽部材(不図示)が支持部材110と放射線センサパネル140との間に備えられ得る。放射線遮蔽部材には、例えばモリブデンや鉄、鉛などの高比重材料が用いられ得る。緩衝部材160は、例えば放射線センサパネル140の第1表面に備えられたシンチレータと第1板状部材の間等、筺体101と内部の各部材の間に適宜設けられ、外部からの荷重の分散効果や、衝撃に対する緩衝効果が得られる。緩衝部材160は、たとえばシリコンまたはウレタン系の発泡材や、シリコンゲルや、気体を封入した気嚢などからなる。 The casing 101 of the radiation imaging apparatus 100 includes a cylindrical casing 130 formed into a cylindrical shape using a carbon fiber reinforced resin member (hereinafter referred to as CFRP), and a side member 120 serving as a side surface of the casing 101. . Of the cylindrical member 130, the first region on the side facing the first surface of the radiation sensor panel 140 and / or the side facing the second surface facing the first surface of the radiation sensor panel 140, that is, the first The 1st area | region and the 2nd area | region on the opposite side correspond to a plate-shaped member. In the present embodiment, the first region of the cylindrical housing 130 corresponds to the first plate member, and the second region corresponds to the second plate member. The first plate-like member and the second plate-like member have a substantially square shape corresponding to the shape of the pixel array. Here, the substantially square shape is a shape including a square or a rectangle, a shape lacking a part of those corners, and a shape where those corners are rounded. By using CFRP for the cylindrical housing 130 that occupies most of the housing, it is possible to achieve both strength securing for dropping and impact and weight reduction for the purpose of reducing the burden during transportation. In addition, since CFRP has high radiation transparency, an image with low radiation attenuation can be acquired even if it is disposed on the radiation incident surface side of the radiation sensor panel 140. On the radiation incident surface side of the radiation imaging apparatus 100, an index 133 that indicates the reading center (center of the pixel array) of the radiation sensor panel 140 and an index 134 that indicates the reading range (pixel array arrangement range) are written. The radiation imaging apparatus 100 includes a support member 110 that supports the second surface side of the radiation sensor panel 140. The support member 110 is coupled to the second plate-shaped member of the cylindrical housing 130 via the buffer member 160, that is, the support member 110 can constitute a part of the housing. The radiation sensor panel 140 has a rigid support member 110 fixed to the second surface side so as not to be deformed or cracked by an external load or vibration during transportation. For the support member 110, CFRP can be used to achieve both strength and weight reduction. Further, if necessary, a radiation shielding member (not shown) having a role of suppressing radiation deterioration of the integrated circuits 144 and 145 or removing scattered radiation from the rear of the radiation imaging apparatus 100 is provided with the support member 110 and the radiation sensor panel 140. Can be provided between. For the radiation shielding member, for example, a high specific gravity material such as molybdenum, iron, or lead can be used. The buffer member 160 is appropriately provided between the housing 101 and each of the internal members, for example, between the scintillator provided on the first surface of the radiation sensor panel 140 and the first plate member, and the effect of dispersing the load from the outside In addition, a shock absorbing effect against impact can be obtained. The buffer member 160 is made of, for example, silicon or urethane-based foam material, silicon gel, an air sac enclosing gas, or the like.

次に、図3(a)〜(c)、図4(a)〜(c)を用いて、筒状筐体130及び/又は支持部材110に用いられる板状部材の詳細な構成を説明する。ここで、図3(a)は、例として筒状部材130に用いられるCFRPの層構成を説明するための分解斜視図、図3(b)はCFRPを構成する第1及び第2炭素繊維強化樹脂131の平面図、図3(c)は、第3炭素繊維強化樹脂132の平面図である。また、図4(a)は、例として支持部材110に用いられるCFRPの層構成を説明するための分解斜視図、図4(b)はCFRPを構成する第1及び第2炭素繊維強化樹脂111の平面図、図4(c)は、第3炭素繊維強化樹脂112の平面図である。   Next, with reference to FIGS. 3A to 3C and FIGS. 4A to 4C, a detailed configuration of the plate-like member used for the cylindrical housing 130 and / or the support member 110 will be described. . Here, FIG. 3 (a) is an exploded perspective view for explaining the layer structure of CFRP used for the cylindrical member 130 as an example, and FIG. 3 (b) is the first and second carbon fiber reinforcements constituting the CFRP. A plan view of the resin 131 and FIG. 3C are plan views of the third carbon fiber reinforced resin 132. 4A is an exploded perspective view for explaining a layer structure of CFRP used for the support member 110 as an example, and FIG. 4B is a first and second carbon fiber reinforced resin 111 constituting the CFRP. FIG. 4C is a plan view of the third carbon fiber reinforced resin 112.

まず、図3(a)〜(c)を用いて筒状筐体130に用いられ得る板状部材の構成を説明する。図3(a)に示すCFRPは、カーボン繊維にマトリクス樹脂を含浸させたプリプレグと呼ばれる薄いシート状の材料(以下、炭素繊維強化樹脂と称する)を4層積層し、加熱硬化させて得られる。筒状筺体130は、炭素繊維強化樹脂を型に複数層、本実施形態では4層巻いて、加熱硬化して成型することによって得られる。図3(b)に示すように、ここで、CFRPの最表面層を構成する第1及び第2炭素繊維強化樹脂131は、その繊維方向が側辺に対して傾斜するように配置されている。例えば、繊維方向131aが、板状部材の一辺と垂直な第1方向131bに対する角度θa−bよりも、板状部材の一対角線と平行な第2方向131cに対する角度θa−cが小さくなるように、第1及び第2炭素繊維強化樹脂131が配置される。第1及び第2炭素繊維強化樹脂131の繊維方向は、板状部材の一対角線と平行な方向である第2方向131cと平行であることがより好ましい。炭素繊維強化樹脂は、その繊維方向に沿って高い剛性を示し、最表面層の炭素繊維強化樹脂が板状部材の剛性に最も寄与する。そのため、板状部材の斜め方向の変形に対して高い剛性を持った筒状筐体130が得られる。また、筒状筐体であるため、第1板状部材と第2板状部材とでは、その繊維方向の傾斜が逆向きとなる。そのため、第1板状部材と第2板状部材とで高い剛性を示す傾斜方向が逆になるため、それぞれが反対向きの捻じれに対して高い剛性を付与することが可能となり、より高い剛性を持った筒状筐体130が得られる。一方で、第1方向の材料剛性は弱いが、筒状筺体130や側面部材120によって形成される筺体側面がそれぞれの方向の剛性を確保する。これにより、十分な剛性を有する筺体構造を得ることが可能となる。   First, the structure of the plate-like member that can be used for the cylindrical housing 130 will be described with reference to FIGS. The CFRP shown in FIG. 3A is obtained by laminating four layers of a thin sheet-like material called a prepreg (hereinafter referred to as a carbon fiber reinforced resin) in which carbon fibers are impregnated with a matrix resin, and then heat-curing them. The cylindrical housing 130 is obtained by winding a carbon fiber reinforced resin into a mold in a plurality of layers, in this embodiment, four layers, heat curing, and molding. As shown in FIG. 3B, here, the first and second carbon fiber reinforced resins 131 constituting the outermost surface layer of the CFRP are arranged such that the fiber direction is inclined with respect to the side. . For example, the angle θa-c with respect to the second direction 131c parallel to the pair of diagonal lines of the plate member is smaller than the angle θa-b with respect to the first direction 131b perpendicular to the one side of the plate member. First and second carbon fiber reinforced resins 131 are disposed. More preferably, the fiber directions of the first and second carbon fiber reinforced resins 131 are parallel to a second direction 131c that is a direction parallel to the pair of diagonal lines of the plate-like member. The carbon fiber reinforced resin exhibits high rigidity along the fiber direction, and the carbon fiber reinforced resin in the outermost surface layer contributes most to the rigidity of the plate-like member. Therefore, the cylindrical housing 130 having high rigidity with respect to the deformation of the plate member in the oblique direction is obtained. Moreover, since it is a cylindrical housing | casing, in the 1st plate-shaped member and the 2nd plate-shaped member, the inclination of the fiber direction becomes reverse direction. Therefore, the first plate-like member and the second plate-like member have opposite directions of inclination showing high rigidity, so that it is possible to give high rigidity against twisting in the opposite direction, and higher rigidity. A cylindrical housing 130 having the above is obtained. On the other hand, although the material rigidity in the first direction is weak, the side faces of the casing formed by the cylindrical casing 130 and the side member 120 ensure the rigidity in the respective directions. Thereby, it is possible to obtain a frame structure having sufficient rigidity.

一方、図3(c)に示すように、第3炭素繊維強化樹脂132は、その側辺に直交した繊維方向を有している。例えば、繊維方向132aが、板状部材の一対角線と平行な第2方向132cに対する角度θa−cよりも、板状部材の一辺と垂直な第1方向132bに対する角度θa−bが小さくなるように、第3炭素繊維強化樹脂132が配置される。第3の炭素繊維強化樹脂132の繊維方向は、板状部材の一辺と垂直な第1方向132bと平行であることがより好ましい。炭素繊維強化樹脂は、その繊維方向に沿って高い熱伝導率を示し、内層の炭素繊維強化樹脂が板状部材の熱伝導性を制御可能とする。そのため、第2方向に比べて辺部に対してより近い距離で、集積回路144等で発生した熱を画素アレイ外に効率良く排熱できる。   On the other hand, as shown in FIG.3 (c), the 3rd carbon fiber reinforced resin 132 has a fiber direction orthogonal to the side. For example, the angle θa-b with respect to the first direction 132b perpendicular to one side of the plate-like member is smaller than the angle θa-c with respect to the second direction 132c parallel to the diagonal line of the plate-like member. A third carbon fiber reinforced resin 132 is disposed. The fiber direction of the third carbon fiber reinforced resin 132 is more preferably parallel to the first direction 132b perpendicular to one side of the plate-like member. The carbon fiber reinforced resin exhibits high thermal conductivity along the fiber direction, and the carbon fiber reinforced resin in the inner layer can control the thermal conductivity of the plate-like member. Therefore, heat generated in the integrated circuit 144 and the like can be efficiently exhausted outside the pixel array at a distance closer to the side than in the second direction.

なお、第1及び第2炭素繊維強化樹脂131のうちの少なくとも一方にはPAN系の炭素繊維を、第3炭素繊維強化樹脂132にはピッチ系の炭素繊維を用いるのが好ましい。ピッチ系の炭素繊維に比べてPAN系の炭素繊維の方が高い破壊強度を持つため、変形時等に大きな応力が発生する最表面層への配置に適している。また、PAN系の炭素繊維に比べてピッチ系の炭素繊維の方が高い熱伝導率を持つため、排熱機能を必要とする内側層への配置に適している。なお、図3(a)〜(c)の構成は、筒形筐体130に適用される場合に限られるものではなく、支持部材110に適用してもよい。   It is preferable to use PAN-based carbon fibers for at least one of the first and second carbon fiber reinforced resins 131 and pitch-based carbon fibers for the third carbon fiber reinforced resin 132. Since the PAN-based carbon fiber has a higher breaking strength than the pitch-based carbon fiber, it is suitable for placement on the outermost surface layer where a large stress is generated during deformation or the like. In addition, since pitch-based carbon fibers have higher thermal conductivity than PAN-based carbon fibers, they are suitable for placement in an inner layer that requires an exhaust heat function. 3A to 3C are not limited to being applied to the cylindrical housing 130, and may be applied to the support member 110.

次に、図4(a)〜(c)を用いて支持部材110に用いられ得る板状部材の構成を説明する。図4(a)に示すCFRPは、炭素繊維強化樹脂を5層積層し、加熱硬化させて得られる。支持部材110の最表面層となる第1及び第2炭素繊維強化樹脂111は、炭素繊維が交差して編み込まれたクロスプリプレグとよばれる樹脂を用いている。そのため、交差する2つの繊維方向に平行な2方向に高い剛性を示す。図4(b)に示すように、ここで、CFRPの最表面層を構成する第1及び第2炭素繊維強化樹脂111は、その2つの繊維方向が側辺に対して傾斜するように配置されている。例えば、第1繊維方向111aが、板状部材の一辺と垂直な第1方向111bに対する角度θa−bよりも、板状部材の一対角線と平行な第2方向111cに対する角度θa−cが小さくなるように、第1及び第2炭素繊維強化樹脂111が配置される。また、第2繊維方向111a’が、板状部材の一辺と垂直な第1方向111bに対する角度θa’−bよりも、板状部材の他の対角線と平行な第3方向111c’に対する角度θa’−c’が小さくなるように、第1及び第2炭素繊維強化樹脂111が配置される。繊維方向111aは、板状部材の一対角線と平行な方向である第2方向131cと平行であり、繊維方向111a’は、板状部材の他の対角線と平行な方向である第3方向131c’と平行であることがより好ましい。このような構成により十分な剛性を有する支持部材を含む筺体構造を得ることが可能となる。   Next, the structure of the plate-like member that can be used for the support member 110 will be described with reference to FIGS. The CFRP shown in FIG. 4A is obtained by laminating five layers of carbon fiber reinforced resin and heat-curing them. As the first and second carbon fiber reinforced resins 111 which are the outermost surface layers of the support member 110, a resin called a cross prepreg in which carbon fibers are crossed and woven is used. Therefore, high rigidity is shown in two directions parallel to the two intersecting fiber directions. As shown in FIG. 4 (b), here, the first and second carbon fiber reinforced resins 111 constituting the outermost surface layer of the CFRP are arranged so that the two fiber directions are inclined with respect to the side. ing. For example, the first fiber direction 111a has a smaller angle θa-c with respect to the second direction 111c parallel to the pair of diagonal lines of the plate-like member than the angle θa-b with respect to the first direction 111b perpendicular to one side of the plate-like member. Thus, the 1st and 2nd carbon fiber reinforced resin 111 is arrange | positioned. In addition, the second fiber direction 111a ′ has an angle θa ′ with respect to the third direction 111c ′ parallel to the other diagonal line of the plate member, rather than an angle θa′−b with respect to the first direction 111b perpendicular to one side of the plate member. The first and second carbon fiber reinforced resins 111 are arranged so that −c ′ becomes small. The fiber direction 111a is parallel to the second direction 131c, which is a direction parallel to the diagonal line of the plate member, and the fiber direction 111a 'is the third direction 131c', which is a direction parallel to the other diagonal line of the plate member. It is more preferable that the With such a configuration, it is possible to obtain a housing structure including a support member having sufficient rigidity.

一方、図4(c)に示すように、第3炭素繊維強化樹脂112は、その側辺に直交した繊維方向を有している。例えば、繊維方向112aが、板状部材の一対角線と平行な第2方向112cに対する角度θa−cよりも、板状部材の一辺と垂直な第1方向111bに対する角度θa−bが小さくなるように、第3炭素繊維強化樹脂132が配置される。第3の炭素繊維強化樹脂112の繊維方向は、板状部材の一辺と垂直な第1方向112bと平行であることがより好ましい。そのため、第2方向に比べて辺部に対してより近い距離で、集積回路144等で発生した熱を画素アレイ外に効率良く排熱できる。なお、図4(a)〜(c)の構成は、支持部材110に適用される場合に限られるものではなく、筒形筐体130に適用してもよい。なお、第1板状部材や第2板状部材の第3炭素繊維強化樹脂の繊維方向と、支持部材110の第3炭素繊維強化樹脂の繊維方向とを、交差するように配置すれば、全辺に効率よく排熱できる構成となり得る。更に、支持部材110の第3炭素繊維強化樹脂112の繊維方向が、第1板状部材や第2板状部材の第3炭素繊維強化樹脂132の繊維方向と交差するように配置されることが好ましい。これにより、板状部材による排熱がより効率化され、また、装置全体の剛性も向上する。特に、支持部材110の第3炭素繊維強化樹脂112の繊維方向が、第1板状部材や第2板状部材の第3炭素繊維強化樹脂132の繊維方向と直交するように配置されることがより好ましい。   On the other hand, as shown in FIG.4 (c), the 3rd carbon fiber reinforced resin 112 has a fiber direction orthogonal to the side. For example, the angle θa-b with respect to the first direction 111b perpendicular to one side of the plate member is smaller than the angle θa-c with respect to the second direction 112c in which the fiber direction 112a is parallel to the diagonal line of the plate member. A third carbon fiber reinforced resin 132 is disposed. The fiber direction of the third carbon fiber reinforced resin 112 is more preferably parallel to the first direction 112b perpendicular to one side of the plate-like member. Therefore, heat generated in the integrated circuit 144 and the like can be efficiently exhausted outside the pixel array at a distance closer to the side than in the second direction. 4A to 4C are not limited to being applied to the support member 110, and may be applied to the cylindrical housing 130. If the fiber direction of the third carbon fiber reinforced resin of the first plate member or the second plate member and the fiber direction of the third carbon fiber reinforced resin of the support member 110 are arranged so as to intersect, all It can become the composition which can exhaust heat efficiently to a neighborhood. Further, the fiber direction of the third carbon fiber reinforced resin 112 of the support member 110 may be arranged so as to intersect the fiber direction of the third carbon fiber reinforced resin 132 of the first plate member or the second plate member. preferable. Thereby, the exhaust heat by a plate-shaped member is made more efficient, and the rigidity of the whole apparatus is also improved. In particular, the fiber direction of the third carbon fiber reinforced resin 112 of the support member 110 may be arranged so as to be orthogonal to the fiber direction of the third carbon fiber reinforced resin 132 of the first plate member or the second plate member. More preferred.

(第2の実施形態)
次に、図5(a)及び図5(b)を用いて、第2の実施形態に係る放射線撮像装置について説明する。図5(a)は、第2の実施形態に係る放射線撮像装置の平面図であり、図5(b)は、図5(a)のC−C箇所に係る断面模式図である。なお、第2の実施形態は以下の点で第1の実施形態と相違し、第2の実施形態と同様の箇所は同じ符号を付与して詳細な説明は省略する。
(Second Embodiment)
Next, a radiation imaging apparatus according to the second embodiment will be described with reference to FIGS. 5 (a) and 5 (b). FIG. 5A is a plan view of the radiation imaging apparatus according to the second embodiment, and FIG. 5B is a schematic cross-sectional view taken along the line CC in FIG. 5A. The second embodiment is different from the first embodiment in the following points, and the same parts as those in the second embodiment are denoted by the same reference numerals and detailed description thereof is omitted.

第2の実施形態に係る放射線撮像装置の筐体201は、第1板状部材230、第2板状部材250、及び、枠部材220によって構成される。第1板状部材230と第2板状部材250は、第1の実施形態と同様CFRPが用いられるが、第1の実施形態では第1板状部材と第2板状部材は一体的に構成されていたが、第2の実施形態では別々の部材である点で、第1の実施形態とは相違する。枠部材220は、たとえばアルミニウムやマグネシウム、樹脂材料などで形成する。側面部材120以外の放射線撮像装置100の側面をCFRPで形成する第1の実施形態と比べて、側面に複雑な形状を成型することが容易となる。また、第1板状部材230と第2板状部材250とが別々の部材であるため、第1板状部材230と第2板状部材250とでCFRPの層構成を変えることができる。そのため、強度と熱拡散性についてバランスの良い構造を作ることが可能となる。   A housing 201 of the radiation imaging apparatus according to the second embodiment includes a first plate member 230, a second plate member 250, and a frame member 220. CFRP is used for the first plate member 230 and the second plate member 250 as in the first embodiment, but in the first embodiment, the first plate member and the second plate member are integrally configured. However, the second embodiment is different from the first embodiment in that the second embodiment is a separate member. The frame member 220 is formed of, for example, aluminum, magnesium, or a resin material. Compared to the first embodiment in which the side surfaces of the radiation imaging apparatus 100 other than the side member 120 are formed of CFRP, it becomes easier to mold a complicated shape on the side surfaces. Further, since the first plate-like member 230 and the second plate-like member 250 are separate members, the CFRP layer configuration can be changed between the first plate-like member 230 and the second plate-like member 250. Therefore, it is possible to make a structure having a good balance between strength and thermal diffusivity.

また、本実施形態では、プリント回路基板143上の集積回路144と第2板状部材250の間に熱伝導部材260を配置する。熱伝導部材260としては、例えば熱伝導性のシリコンゴムなどが用いられる。集積回路144での発熱を第2板状部材250側に伝熱することで、放射線センサパネル140のある側への伝熱を少なくし、放射線センサパネル140の温度上昇を抑えることができる。ここで、第2板状部材250に集積回路144の熱を直接伝熱するため、第2板状部材250にヒートスポットが出来やすくなる。そのため、第2板状部材250は、第1の実施形態の第2板状部材と比較して熱拡散性が高いものが求められる。第2板状部材250の層構成は、第1の実施形態に比べて第3炭素繊維強化樹脂の数を増やし、第1及び第2炭素繊維強化樹脂は第1の実施形態と同様に側面に対して傾斜して配置して、熱拡散性を高める。すなわち、2以上の第3炭素繊維強化樹脂を、更に3以上に増やしており、本発明では第3炭素繊維強化樹脂は2以上含むことが好ましい。さらに本実施形態においては、第1及び第2炭素繊維強化樹脂に熱伝導性の高いピッチ系の炭素繊維を用いても良い。また、枠部材220を熱伝導性の高い金属で形成し、第2板状部材250と伝熱可能に接合することで、第2板状部材250の内側層で伝熱された熱を更に拡散する効果が得られる。なお、支持部材210についても同様であり、支持部材210と枠部材220の間に熱伝導部材260を配置すると排熱効果を高めることができる。   In the present embodiment, the heat conducting member 260 is disposed between the integrated circuit 144 on the printed circuit board 143 and the second plate member 250. As the heat conductive member 260, for example, heat conductive silicon rubber or the like is used. By transferring the heat generated in the integrated circuit 144 to the second plate member 250 side, the heat transfer to the side where the radiation sensor panel 140 is present can be reduced, and the temperature rise of the radiation sensor panel 140 can be suppressed. Here, since the heat of the integrated circuit 144 is directly transferred to the second plate-like member 250, a heat spot can be easily formed on the second plate-like member 250. For this reason, the second plate-like member 250 is required to have a higher thermal diffusibility than the second plate-like member of the first embodiment. The layer configuration of the second plate-like member 250 increases the number of third carbon fiber reinforced resins as compared to the first embodiment, and the first and second carbon fiber reinforced resins are arranged on the side surfaces in the same manner as in the first embodiment. Inclined with respect to the heat dispersibility. That is, 2 or more 3rd carbon fiber reinforced resin is further increased to 3 or more, and it is preferable that 2 or more 3rd carbon fiber reinforced resin is included in this invention. Further, in the present embodiment, pitch-based carbon fibers having high thermal conductivity may be used for the first and second carbon fiber reinforced resins. Further, the frame member 220 is formed of a metal having high thermal conductivity, and is joined to the second plate-like member 250 so that heat can be transferred, thereby further diffusing the heat transferred by the inner layer of the second plate-like member 250. Effect is obtained. The same applies to the support member 210. If the heat conduction member 260 is disposed between the support member 210 and the frame member 220, the heat exhaust effect can be enhanced.

なお、第1板状部材230及び第2板状部材250のうち放射線が照射される面側となるいずれか一方では、放射線の照射の抑制を優先して上記CFRPの構成を採用しなくてもよい。例えば図5(b)の構成では、集積回路144の発熱が第1板状部材230側に伝熱されることが少ないので、第1板状部材230には熱拡散性はあまり必要ではない。そのため、第1板状部材230は第1及び第2炭素繊維強化樹脂のいずれか一方のみで構成して、斜め方向の剛性をより強いものとする。ただし、第1板状部材230の熱拡散性が低いため、第1板状部材230側から被写体が触れたときなどに、被写体の熱が放射線センサパネル140に伝熱して、放射線センサパネル140に温度ムラが生じるおそれがある。そこで、第1板状部材230とセンサパネル140の間に緩衝部材を兼ねた断熱部材270を配置して、熱が伝わらないような構成とすることがより好ましい。   One of the first plate-like member 230 and the second plate-like member 250 on the side irradiated with radiation does not adopt the above-described CFRP configuration with priority given to suppression of radiation irradiation. Good. For example, in the configuration of FIG. 5B, the heat generation of the integrated circuit 144 is rarely transferred to the first plate-like member 230 side, and therefore the first plate-like member 230 does not need much thermal diffusibility. Therefore, the 1st plate-shaped member 230 is comprised only in any one of 1st and 2nd carbon fiber reinforced resin, and shall make the rigidity of diagonal direction stronger. However, since the heat diffusibility of the first plate-like member 230 is low, when the subject touches from the first plate-like member 230 side, the heat of the subject is transferred to the radiation sensor panel 140 to the radiation sensor panel 140. There is a risk of uneven temperature. Therefore, it is more preferable to arrange a heat insulating member 270 that also serves as a buffer member between the first plate-like member 230 and the sensor panel 140 so that heat is not transmitted.

次に、図6を用いて、支持部材210とプリント回路基板143の配置について説明する。プリント回路基板143上に搭載された集積回路144は、支持部材210の中心よりも側面に近い位置に配置する。支持部材210の第3炭素繊維強化樹脂の繊維方向は、支持部材210の4辺のうち集積回路144が最も近い側面に直交する方向とする。これにより、集積回路144の発熱を短い距離で側面に伝熱できるため、効率の良い排熱が可能となる。また、プリント回路基板143は、放射線センサパネル140上の光電変換素子で得られた画像信号を増幅してA/D変換する集積回路145が複数個搭載されている。この集積回路145のそれぞれで温度差が生じると、温度特性の違いから画像にムラが生じるおそれがある。そのため、支持部材210の第3炭素繊維強化樹脂の繊維方向と平行して複数の集積回路145を並べて配置することで、各集積回路間の熱伝導性が良くなるため、温度差を低減することが可能となる。なお、支持部材210だけでなく、第2板状部材250の繊維方向も支持部材210と同様とすることができる。また、支持部材210だけでなく、第1の実施形態で用いた支持部材110も同様とすることができる。   Next, the arrangement of the support member 210 and the printed circuit board 143 will be described with reference to FIG. The integrated circuit 144 mounted on the printed circuit board 143 is disposed at a position closer to the side surface than the center of the support member 210. The fiber direction of the third carbon fiber reinforced resin of the support member 210 is a direction orthogonal to the side surface of the four sides of the support member 210 that is closest to the integrated circuit 144. As a result, since the heat generated by the integrated circuit 144 can be transferred to the side surface at a short distance, efficient exhaust heat can be obtained. The printed circuit board 143 is mounted with a plurality of integrated circuits 145 that amplify image signals obtained by the photoelectric conversion elements on the radiation sensor panel 140 and perform A / D conversion. If a temperature difference occurs in each of the integrated circuits 145, there is a risk that unevenness occurs in the image due to the difference in temperature characteristics. Therefore, by arranging a plurality of integrated circuits 145 in parallel with the fiber direction of the third carbon fiber reinforced resin of the support member 210, the thermal conductivity between the integrated circuits is improved, so that the temperature difference is reduced. Is possible. Note that not only the support member 210 but also the fiber direction of the second plate member 250 can be the same as that of the support member 210. Further, not only the support member 210 but also the support member 110 used in the first embodiment can be the same.

本実施形態によれば、第1の実施形態に比べて、集積回路での発熱を、より効率よく排熱することが可能となる。   According to the present embodiment, it is possible to exhaust heat generated in the integrated circuit more efficiently than in the first embodiment.

(第3の実施形態)
次に、図7を用いて、第3の実施形態に係る放射線撮像装置について説明する。図7は、第3の実施形態に係る放射線撮像装置の断面模式図である。なお、第3の実施形態は以下の点で第2の実施形態と相違し、第2の実施形態と同様の箇所は同じ符号を付与して詳細な説明は省略する。
(Third embodiment)
Next, a radiation imaging apparatus according to the third embodiment will be described with reference to FIG. FIG. 7 is a schematic cross-sectional view of a radiation imaging apparatus according to the third embodiment. Note that the third embodiment is different from the second embodiment in the following points, and the same parts as those in the second embodiment are denoted by the same reference numerals and detailed description thereof is omitted.

本実施形態に係る放射線撮像装置は、放射線センサパネル140を第1板状部材330に貼り付けた構成である。放射線センサパネル140の変形を抑える役割を第1板状部材330が担い、支持部材310は高い剛性を必要としないため、装置の薄型化、軽量化に寄与する。本実施形態の放射線撮像装置では、放射線センサパネル140の放射線入射面の反対側にシンチレータ141を構成する場合に特に効果的である。シンチレータ141を介さずに放射線センサパネル140を第1板状部材330に直接貼り付けることができるため、シンチレータ141の剥離強度などによらず強度を確保できるためである。このような構成では、画素アレイは放射線センサパネルの第2表面に配置される。   The radiation imaging apparatus according to the present embodiment has a configuration in which the radiation sensor panel 140 is attached to the first plate member 330. The first plate-like member 330 plays a role of suppressing the deformation of the radiation sensor panel 140, and the support member 310 does not require high rigidity, which contributes to reduction in thickness and weight of the apparatus. The radiation imaging apparatus of this embodiment is particularly effective when the scintillator 141 is configured on the opposite side of the radiation incident surface of the radiation sensor panel 140. This is because the radiation sensor panel 140 can be directly attached to the first plate-like member 330 without using the scintillator 141, so that the strength can be ensured regardless of the peel strength of the scintillator 141 or the like. In such a configuration, the pixel array is disposed on the second surface of the radiation sensor panel.

第1板状部材330側から被写体が触れたときなどにおいて、第1の実施形態のように緩衝部材やシンチレータを介さないため、被写体の熱が放射線センサパネル140に伝熱して、放射線センサパネル140に温度ムラが生じるおそれがある。そのため、第1板状部材330は、第1の実施形態の第1板状部材と比較して、熱拡散性が高いものが求められる。第1板状部材330の層構成は、第1の実施形態の第1板状部材に比べて、第3炭素繊維強化樹脂の数を増やし、第1及び第2炭素繊維強化樹脂は第1実施形態と同様に配置して、熱拡散性をより高めることが可能となる。更に、第1及び第2炭素繊維強化樹脂に熱伝導性の高いピッチ系の炭素繊維を用いることがより好ましい。   When the subject touches from the first plate-like member 330 side, since the buffer member and the scintillator are not interposed as in the first embodiment, the heat of the subject is transferred to the radiation sensor panel 140, and the radiation sensor panel 140 Temperature unevenness may occur. Therefore, the first plate-like member 330 is required to have a high thermal diffusivity compared to the first plate-like member of the first embodiment. The layer configuration of the first plate-like member 330 increases the number of third carbon fiber reinforced resins compared to the first plate-like member of the first embodiment, and the first and second carbon fiber reinforced resins are the first embodiment. Arranging in the same manner as the form makes it possible to further increase the thermal diffusibility. Furthermore, it is more preferable to use pitch-based carbon fibers having high thermal conductivity for the first and second carbon fiber reinforced resins.

本実施例によれば、第1板状部材330に放射線センサパネル140を貼り付けた構成においても、高い剛性の確保と高い熱均一性の確保の両立が可能な放射線撮像装置を提供することが可能となる。   According to the present embodiment, it is possible to provide a radiation imaging apparatus capable of ensuring both high rigidity and high thermal uniformity even in the configuration in which the radiation sensor panel 140 is attached to the first plate member 330. It becomes possible.

なお、上述の各実施形態において、第1板状部材、第2板状部材、及び、支持部材のいずれもがCFRPで形成される例を示したが、本願発明はこれに限定されるものではない。第1板状部材、第2板状部材、及び、支持部材のうちのいずれ1つだけがCFRPで形成されても良く、特許請求の範囲を逸脱することなく、多様に変形することが可能である。   In each of the above-described embodiments, the first plate member, the second plate member, and the support member are all formed of CFRP. However, the present invention is not limited to this. Absent. Only one of the first plate member, the second plate member, and the support member may be formed of CFRP, and can be variously modified without departing from the scope of the claims. is there.

(応用実施形態)
次に、図8を用いて、本発明の放射線撮像装置を用いた放射線撮像システムを説明する。
(Application embodiment)
Next, a radiation imaging system using the radiation imaging apparatus of the present invention will be described with reference to FIG.

放射線源であるX線チューブ6050から出射されたX線6060は、患者あるいは被験者6061の胸部6062を透過し、本願発明の放射線撮像装置6040に含まれる各変換素子に入射する。この入射したX線には患者6061の体内部の情報が含まれている。X線の入射に対応して変換素子で放射線を電荷に変換して、電気的情報を得る。この情報はデジタルデータに変換され、信号処理手段となるイメージプロセッサ6070によりデジタルデータである画像信号が画像処理される。画像処理された信号に基づく画像は、制御室の表示手段となるディスプレイ6080で表示されて観察できる。また、この情報は電話回線6090等の伝送処理手段により遠隔地へ転送でき、別の場所のドクタールームなど表示手段となるディスプレイ6081に表示もしくは光ディスク等の記録手段に保存することができ、遠隔地の医師が診断することも可能である。また記録手段となるフィルムプロセッサ6100により記録媒体となるフィルム6110に記録することもできる。   X-rays 6060 emitted from the X-ray tube 6050 serving as a radiation source pass through the chest 6062 of the patient or subject 6061 and enter each conversion element included in the radiation imaging apparatus 6040 of the present invention. This incident X-ray includes information inside the body of the patient 6061. Corresponding to the incidence of X-rays, the conversion element converts radiation into electric charge to obtain electrical information. This information is converted into digital data, and an image signal which is digital data is subjected to image processing by an image processor 6070 serving as a signal processing means. An image based on the image-processed signal can be displayed and observed on a display 6080 serving as a display unit in the control room. Further, this information can be transferred to a remote place by transmission processing means such as a telephone line 6090, and can be displayed on a display 6081 serving as a display means such as a doctor room in another place or stored in a recording means such as an optical disk. It is also possible for a doctor to make a diagnosis. Moreover, it can also record on the film 6110 used as a recording medium by the film processor 6100 used as a recording means.

100 放射線撮像装置
101 筐体
140 放射線センサパネル
144 集積回路
145 集積回路
131 第1炭素繊維強化樹脂、第2炭素繊維強化樹脂
132 第3炭素繊維強化樹脂
DESCRIPTION OF SYMBOLS 100 Radiation imaging device 101 Case 140 Radiation sensor panel 144 Integrated circuit 145 Integrated circuit 131 1st carbon fiber reinforced resin, 2nd carbon fiber reinforced resin 132 3rd carbon fiber reinforced resin

Claims (17)

複数の画素が2次元に配列された画素アレイを有する放射線センサパネルと、
前記放射線センサパネルに電気的に接続された集積回路と、
前記放射線センサパネルが正射影された領域よりも広い面を有する、正方形や長方形、それらの角部を一部欠いた形状、及び、それらの角部が丸みを帯びた形状を含む形状である略方形の板状部材を含み前記放射線センサパネルと前記集積回路とを収容する筐体と、
を有する放射線撮像装置であって、
前記板状部材は、第1炭素繊維強化樹脂と、第2炭素繊維強化樹脂と、前記第1炭素繊維強化樹脂と前記第2炭素繊維強化樹脂の間に配置された第3炭素繊維強化樹脂と、を含み、
前記第1炭素繊維強化樹脂の繊維方向及び前記第2炭素繊維強化樹脂の繊維方向のうちの少なくとも一方が前記板状部材の一辺と垂直な第1方向に対する角度よりも前記板状部材の一対角線と平行な第2方向に対する角度が小さく、前記第3炭素繊維強化樹脂の繊維方向が前記第1方向に対する角度よりも前記第2方向に対する角度が大きくなるように、前記第1炭素繊維強化樹脂と前記第2炭素繊維強化樹脂と前記第3炭素繊維強化樹脂とが配置されており、
前記放射線センサパネルは、前記画素アレイを有する第1表面と、前記第1表面に対向する第2表面と、を有し、前記第1表面にシンチレータが備えられており、
前記筐体の一部を構成し、前記放射線センサパネルの前記第2表面側を支持する支持部材を更に含み、
前記板状部材は、前記支持部材であることを特徴とする放射線撮像装置。
A radiation sensor panel having a pixel array in which a plurality of pixels are two-dimensionally arranged;
An integrated circuit electrically connected to the radiation sensor panel;
The radiation sensor panel has a surface wider than an orthogonally projected region, a square or a rectangle, a shape in which those corners are partially omitted, and a shape including a shape in which those corners are rounded. A housing containing a rectangular plate-shaped member and housing the radiation sensor panel and the integrated circuit;
A radiation imaging apparatus comprising:
The plate member includes a first carbon fiber reinforced resin, a second carbon fiber reinforced resin, a third carbon fiber reinforced resin disposed between the first carbon fiber reinforced resin and the second carbon fiber reinforced resin. Including,
The diagonal line of the plate member is at least one of the fiber direction of the first carbon fiber reinforced resin and the fiber direction of the second carbon fiber reinforced resin with respect to a first direction perpendicular to one side of the plate member. And the first carbon fiber reinforced resin so that the angle of the third carbon fiber reinforced resin with respect to the second direction is smaller than the angle with respect to the first direction. The second carbon fiber reinforced resin and the third carbon fiber reinforced resin are arranged,
The radiation sensor panel has a first surface having the pixel array, and a second surface facing the first surface, and a scintillator is provided on the first surface,
Further comprising a support member that forms part of the housing and supports the second surface side of the radiation sensor panel;
The radiation imaging apparatus, wherein the plate-like member is the support member.
前記第1炭素繊維強化樹脂の繊維方向及び前記第2炭素繊維強化樹脂の繊維方向が前記第1方向に対する角度よりも前記第2方向に対する角度が小さくなるように、前記第1炭素繊維強化樹脂と前記第2炭素繊維強化樹脂が配置されていることを特徴とする請求項1に記載の放射線撮像装置。   The first carbon fiber reinforced resin and the first carbon fiber reinforced resin so that the fiber direction of the first carbon fiber reinforced resin and the fiber direction of the second carbon fiber reinforced resin have a smaller angle with respect to the second direction than the angle with respect to the first direction. The radiation imaging apparatus according to claim 1, wherein the second carbon fiber reinforced resin is disposed. 前記第1炭素繊維強化樹脂及び前記第2炭素繊維強化樹脂の少なくとも一方が、前記第1方向に対する角度よりも前記第2方向に対する角度が小さい第1繊維方向と、前記一対角線と異なる他の対角線と平行な第3方向に対する角度よりも前記第2方向に対する角度が小さい第2繊維方向と、を有するように炭素繊維が編み込まれた炭素繊維強化樹脂を含み、
前記第3炭素繊維強化樹脂の繊維方向が前記第1方向に対する角度よりも前記第2方向に対する角度が大きくなるように、前記第3炭素繊維強化樹脂が配置されていることを特徴とする請求項1又は2に記載の放射線撮像装置。
At least one of the first carbon fiber reinforced resin and the second carbon fiber reinforced resin has a first fiber direction in which an angle with respect to the second direction is smaller than an angle with respect to the first direction, and another diagonal line different from the diagonal line. A carbon fiber reinforced resin in which carbon fibers are knitted so as to have a second fiber direction having a smaller angle with respect to the second direction than an angle with respect to a third direction parallel to the first direction,
The third carbon fiber reinforced resin is disposed such that a fiber direction of the third carbon fiber reinforced resin has an angle with respect to the second direction larger than an angle with respect to the first direction. The radiation imaging apparatus according to 1 or 2.
前記第3炭素繊維強化樹脂の繊維方向が前記第1方向と平行であることを特徴とする請求項1から3のいずれか1項に記載の放射線撮像装置。   4. The radiation imaging apparatus according to claim 1, wherein a fiber direction of the third carbon fiber reinforced resin is parallel to the first direction. 5. 前記第1炭素繊維強化樹脂の繊維方向及び前記第2炭素繊維強化樹脂の繊維方向が前記第2方向と平行であることを特徴とする請求項1から4のいずれか1項に記載の放射線撮像装置。   The radiation imaging according to any one of claims 1 to 4, wherein a fiber direction of the first carbon fiber reinforced resin and a fiber direction of the second carbon fiber reinforced resin are parallel to the second direction. apparatus. 前記第3炭素繊維強化樹脂を2以上含むことを特徴とする請求項1から5のいずれか1項に記載の放射線撮像装置。   6. The radiation imaging apparatus according to claim 1, comprising two or more of the third carbon fiber reinforced resins. 前記筐体は、前記第1表面と対向する第1板状部材と前記第2表面と対向する第2板状部材とを有することを特徴とする請求項1から6のいずれか1項に記載の放射線撮像装置。   The said housing | casing has a 1st plate-shaped member facing the said 1st surface, and a 2nd plate-shaped member facing the said 2nd surface, The any one of Claim 1 to 6 characterized by the above-mentioned. Radiation imaging device. 前記板状部材は、前記支持部材及び前記第2板状部材には採用されており、前記第1板状部材には採用されていない、ことを特徴とする請求項7に記載の放射線撮像装置。   The radiation imaging apparatus according to claim 7, wherein the plate-like member is adopted for the support member and the second plate-like member, and is not adopted for the first plate-like member. . 前記第1板状部材と前記第1表面との間に、緩衝部材を兼ねた断熱部材が配置されていることを特徴とする請求項8に記載の放射線撮像装置。   The radiation imaging apparatus according to claim 8, wherein a heat insulating member that also serves as a buffer member is disposed between the first plate-like member and the first surface. 前記放射線センサパネルの前記第1板状部材側とは反対側に配置されたプリント回路基板と、前記放射線センサパネルと前記プリント回路基板とを電気的に接続するフレキシブルプリント基板と、を更に含み、
前記集積回路は、前記プリント回路基板に搭載されており、
前記板状部材は前記第2板状部材であり、
前記集積回路と前記第2板状部材の間に熱伝導部材が配置されており、
前記第3炭素繊維強化樹脂の繊維方向と平行して複数の前記集積回路が並べて配置されていることを特徴とする請求項7から9のいずれか1項に記載の放射線撮像装置。
A printed circuit board disposed on the opposite side of the radiation sensor panel from the first plate-like member side, and a flexible printed circuit board that electrically connects the radiation sensor panel and the printed circuit board;
The integrated circuit is mounted on the printed circuit board;
The plate member is the second plate member,
A heat conducting member is disposed between the integrated circuit and the second plate member;
10. The radiation imaging apparatus according to claim 7, wherein a plurality of the integrated circuits are arranged side by side in parallel with a fiber direction of the third carbon fiber reinforced resin.
前記放射線センサパネルの前記第1板状部材側とは反対側に配置されたプリント回路基板と、前記放射線センサパネルと前記プリント回路基板とを電気的に接続するフレキシブルプリント基板と、を更に含み、
前記集積回路は、前記フレキシブルプリント基板に搭載されており、
前記板状部材の一辺と平行な方向に沿って前記フレキシブルプリント基板が複数配列されていることを特徴とする請求項7から9のいずれか1項に記載の放射線撮像装置。
A printed circuit board disposed on the opposite side of the radiation sensor panel from the first plate-like member side, and a flexible printed circuit board that electrically connects the radiation sensor panel and the printed circuit board;
The integrated circuit is mounted on the flexible printed circuit board,
The radiation imaging apparatus according to claim 7, wherein a plurality of the flexible printed circuit boards are arranged along a direction parallel to one side of the plate-like member.
前記第1炭素繊維強化樹脂及び前記第2炭素繊維強化樹脂のうちの少なくとも一方はPAN系であり、前記第3炭素繊維強化樹脂はピッチ系であることを特徴とする請求項1から11のいずれか1項に記載の放射線撮像装置。   12. The system according to claim 1, wherein at least one of the first carbon fiber reinforced resin and the second carbon fiber reinforced resin is a PAN system, and the third carbon fiber reinforced resin is a pitch system. A radiation imaging apparatus according to claim 1. 複数の画素が2次元に配列された画素アレイを有する放射線センサパネルと、
前記放射線センサパネルに電気的に接続された集積回路と、
前記放射線センサパネルが正射影された領域よりも広い面を有する、正方形や長方形、それらの角部を一部欠いた形状、及び、それらの角部が丸みを帯びた形状を含む形状である略方形の板状部材を含み前記放射線センサパネルと前記集積回路とを収容する筐体と、
を有する放射線撮像装置であって、
前記板状部材は、第1炭素繊維強化樹脂と、第2炭素繊維強化樹脂と、前記第1炭素繊維強化樹脂と前記第2炭素繊維強化樹脂の間に配置された第3炭素繊維強化樹脂と、を含み、
前記第1炭素繊維強化樹脂及び前記第2炭素繊維強化樹脂のうちの少なくとも一方は、前記板状部材の一辺と垂直な第1方向に対する剛性よりも前記板状部材の一対角線と平行な第2方向に対する剛性が高くなるように配置され、
前記第3炭素繊維強化樹脂は、前記第1方向に対する熱伝導率が前記第2方向に対する熱伝導率よりも高くなるように配置されており、
前記放射線センサパネルは、前記画素アレイを有する第1表面と、前記第1表面に対向する第2表面と、を有し、前記第1表面にシンチレータが備えられており、
前記筐体の一部を構成し、前記放射線センサパネルの前記第2表面側を支持する支持部材を更に含み、
前記板状部材は、前記支持部材である
ことを特徴とする放射線撮像装置。
A radiation sensor panel having a pixel array in which a plurality of pixels are two-dimensionally arranged;
An integrated circuit electrically connected to the radiation sensor panel;
The radiation sensor panel has a surface wider than an orthographically projected area, is a square or rectangle, a shape that partially lacks the corners thereof, and a shape that includes a shape in which the corners are rounded. A housing containing a rectangular plate-shaped member and housing the radiation sensor panel and the integrated circuit;
A radiation imaging apparatus comprising:
The plate member includes a first carbon fiber reinforced resin, a second carbon fiber reinforced resin, and a third carbon fiber reinforced resin disposed between the first carbon fiber reinforced resin and the second carbon fiber reinforced resin. Including,
At least one of the first carbon fiber reinforced resin and the second carbon fiber reinforced resin is a second parallel to the diagonal line of the plate member rather than the rigidity in the first direction perpendicular to one side of the plate member. It is arranged so that the rigidity to the direction is high,
The third carbon fiber reinforced resin is disposed such that the thermal conductivity with respect to the first direction is higher than the thermal conductivity with respect to the second direction,
The radiation sensor panel has a first surface having the pixel array, and a second surface facing the first surface, and a scintillator is provided on the first surface,
Further comprising a support member that forms part of the housing and supports the second surface side of the radiation sensor panel;
The radiation imaging apparatus, wherein the plate-like member is the support member.
前記第1炭素繊維強化樹脂及び前記第2炭素繊維強化樹脂は、前記第1方向に対する剛性よりも前記第2方向に対する剛性が高くなるように配置されていることを特徴とする請求項13に記載の放射線撮像装置。   The said 1st carbon fiber reinforced resin and the said 2nd carbon fiber reinforced resin are arrange | positioned so that the rigidity with respect to the said 2nd direction may become higher than the rigidity with respect to the said 1st direction. Radiation imaging device. 前記筐体は、前記第1表面と対向する第1板状部材と前記第2表面と対向する第2板状部材とを有し、
前記板状部材は、前記支持部材及び前記第2板状部材には採用されており、前記第1板状部材には採用されていない、ことを特徴とする請求項13又は14に記載の放射線撮像装置。
The housing includes a first plate member facing the first surface and a second plate member facing the second surface,
The radiation according to claim 13 or 14, wherein the plate-like member is adopted for the support member and the second plate-like member, and is not adopted for the first plate-like member. Imaging device.
前記第1板状部材と前記第1表面との間に、緩衝部材を兼ねた断熱部材が配置されていることを特徴とする請求項15に記載の放射線撮像装置。   The radiation imaging apparatus according to claim 15, wherein a heat insulating member that also serves as a buffer member is disposed between the first plate-like member and the first surface. 請求項1乃至16のいずれか1項に記載の放射線撮像装置と、
前記放射線撮像装置からの信号を処理する処理装置と、
前記処理装置で処理された信号に基づく画像を表示する表示装置と、
を備えることを特徴とする放射線撮像システム。
A radiation imaging apparatus according to any one of claims 1 to 16,
A processing device for processing signals from the radiation imaging device;
A display device for displaying an image based on the signal processed by the processing device;
A radiation imaging system comprising:
JP2014216357A 2014-10-23 2014-10-23 Radiation imaging apparatus and radiation imaging system Active JP6598449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014216357A JP6598449B2 (en) 2014-10-23 2014-10-23 Radiation imaging apparatus and radiation imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014216357A JP6598449B2 (en) 2014-10-23 2014-10-23 Radiation imaging apparatus and radiation imaging system

Publications (2)

Publication Number Publication Date
JP2016085063A JP2016085063A (en) 2016-05-19
JP6598449B2 true JP6598449B2 (en) 2019-10-30

Family

ID=55973594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014216357A Active JP6598449B2 (en) 2014-10-23 2014-10-23 Radiation imaging apparatus and radiation imaging system

Country Status (1)

Country Link
JP (1) JP6598449B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219214A (en) * 2016-06-03 2017-12-14 株式会社デンソー Heat exchanger
JP6762994B2 (en) 2018-07-31 2020-09-30 キヤノン株式会社 Radiation imaging device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4018725B2 (en) * 1996-02-22 2007-12-05 キヤノン株式会社 Photoelectric conversion device
JP4023515B2 (en) * 2002-12-27 2007-12-19 東レ株式会社 Preform using a base material for thermal bonding, and method for producing laminate
JP2011043390A (en) * 2009-08-20 2011-03-03 Toshiba Electron Tubes & Devices Co Ltd Radiation detection device
JP2011247826A (en) * 2010-05-28 2011-12-08 Fujifilm Corp Radiation detection panel and method for manufacturing the same
JP5647568B2 (en) * 2011-06-13 2014-12-24 富士フイルム株式会社 Radiation imaging device
JP5627049B2 (en) * 2013-06-07 2014-11-19 富士フイルム株式会社 Electronic cassette

Also Published As

Publication number Publication date
JP2016085063A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
US10648854B2 (en) Radiation imaging apparatus having housing and corner members of different materials and radiation imaging system
JP5705406B2 (en) Digital X-ray detector
US10061042B2 (en) Radiation imaging apparatus and radiation imaging system
JP5802007B2 (en) Digital X-ray detector
JP5743477B2 (en) Radiography equipment
JP5820579B2 (en) Method for assembling a digital X-ray detector assembly, method for assembling and maintaining a digital X-ray detector assembly
JP7071083B2 (en) Radiation imaging device
JP6707130B2 (en) Radiation detector and radiation image capturing device
JP2015200606A (en) radiation imaging apparatus and radiation imaging system
JP7010135B2 (en) Radiation imaging device
RU2637835C2 (en) Beam imaging system
JP6598449B2 (en) Radiation imaging apparatus and radiation imaging system
JP6472432B2 (en) Radiation imaging system
JP2016070890A (en) Radiographic imaging apparatus and radiographic imaging system
JP6626548B2 (en) Radiation image capturing apparatus and radiation image capturing system
US20160084704A1 (en) Radiation imaging apparatus
JP6071985B2 (en) Radiation imaging system
JP6590868B2 (en) Radiation imaging apparatus and radiation imaging system
JP6071986B2 (en) Radiation imaging system
JP7251667B2 (en) Radiation imaging device
JP6824365B2 (en) Radiation imaging equipment and radiation imaging system
JP2021041030A (en) Radiation detection device and radiographic device
JP2022076469A (en) Radiation detector structure
JP2011117760A (en) Planar x-ray detector
JP2019152677A (en) Radiographic imaging apparatus and radiographic imaging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191001

R151 Written notification of patent or utility model registration

Ref document number: 6598449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151