JP6593825B2 - 非接触型センサー - Google Patents

非接触型センサー Download PDF

Info

Publication number
JP6593825B2
JP6593825B2 JP2018545233A JP2018545233A JP6593825B2 JP 6593825 B2 JP6593825 B2 JP 6593825B2 JP 2018545233 A JP2018545233 A JP 2018545233A JP 2018545233 A JP2018545233 A JP 2018545233A JP 6593825 B2 JP6593825 B2 JP 6593825B2
Authority
JP
Japan
Prior art keywords
coil
voltage
coils
target structure
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018545233A
Other languages
English (en)
Other versions
JP2019506618A (ja
Inventor
ワン、ビンナン
テオ、クーン・フー
オーリック、フィリップ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JP2019506618A publication Critical patent/JP2019506618A/ja
Application granted granted Critical
Publication of JP6593825B2 publication Critical patent/JP6593825B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/02Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with propagation of electric current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • G01D5/2026Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element constituting a short-circuiting element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • H03K17/952Proximity switches using a magnetic detector using inductive coils
    • H03K2017/9527Details of coils in the emitter or receiver; Magnetic detector comprising emitting and receiving coils

Description

本開示は、位置センサーに関し、より詳細には、センサーに近接している標的構造体の存在及び/又は相対位置を求める非接触型センサーに関する。
ブラシ、スリップリング又は電線導体等の位置センサーは、可動部材の位置を示す接点を使用することが多い。接点をなくすことが望ましく、それにより、電気接点を摺動させることによってもたらされる電気ノイズ及び外乱を低減させることができる。非接触型センサーは、センサーと標的構造体との間に間隙を維持しており、こうした物理的間隙がある場合に検知範囲を維持することは難題である可能性がある。
非接触型センサーの例としては、静電容量ベースの位置センサー、レーザーベースの位置センサー、渦電流検知位置センサー及びリニア変位変換器ベースの位置センサーが挙げられる。各タイプの位置センサーがその利点を有するが、各タイプのセンサーは、特定の用途に最も適している可能性がある。例えば、位置センサーのサイズが小さくなければならない場合、コンデンサーのサイズによりセンサーが実際的でなくなる可能性がある。光センサーは、汚損及び油脂が存在する場合、機能しなくなる可能性がある。磁気センサーは、磁石又はセンサーの位置のずれによってもたらされる誤差を回避するために精密なハウジング及び機械的アセンブリが必要であり、それは、いくつかの用途では困難である可能性がある。さらに、いくつかの用途では、センサーと標的構造体との間の間隙のサイズが時間の経過によって変化する可能性があり、標的構造体の位置により、いくつかのリニア位置センサーの精度に問題がもたらされる可能性がある。
したがって、センサーから異なる距離に配置された標的構造体の存在及び/又は相対位置を求める非接触型センサーが必要とされている。
いくつかの実施の形態は、誘導結合中に発生する近傍電磁界の磁束が、近傍電磁界のあらゆる変動の影響を受けやすい、という認識に基づく。磁束の変化によってもたらされる近傍電磁界の変動は、例えば、誘導結合を介して磁束によって誘導される電流によってもたらされる、コイルの両端の電圧を測定することにより検出することができる。
いくつかの実施の形態は、近傍電磁界内で移動する外部電磁構造体の存在が磁場を乱し、したがって、電圧の測定値の変化に基づいてその存在を検出することができる、という認識に基づく。例えば、標的構造の結合は、近傍磁界の形状を変化させ、それにより、その近傍界によって発生する接続されたコイルの電流が変化する。さらに、こうした存在の影響はまた、近傍界全体に作用し、それにより、こうした検出が、近傍界を発生させる発生源、すなわち検知コイルと標的構造体との間の距離によってそれほど影響を受けなくなる。言い換えれば、近傍界を発生させる発生源、すなわち検知コイルと標的構造体との間の距離が増大する。このように、発生源から比較的遠い距離にあっても、近傍界内の標的構造体の存在を検出することができる。しかしながら、いくつかの実施の形態は、いくつかの応用では、この距離を更に増大させることが望ましいという認識に基づく。
いくつかの実施の形態は、複数の誘導結合されたコイルの組が、より大量の近傍電磁界を誘導し、したがって、標的構造体の存在を検知する範囲を広げることができる、という認識に基づく。さらに、磁束が複数の誘導結合されたコイルにわたって電流を誘導する場合、異なるコイルの電圧の大きさ及び/又はそれらの電圧の間の差は、近傍界内の標的構造体の相対位置を示す。例えば、標的構造体のあり得る移動の軌跡をサンプリングして、その軌跡における標的構造体の具体的な位置に対応する接続されたコイルの電圧の組合せを求めることができる。本開示は、包括的には位置センサーに関し、より詳細には、センサーに近接している標的構造体の存在及び/又は相対位置を求める非接触型センサーに関する。
したがって、本開示の1つの実施の形態は、一組のコイルを備えるセンサーを開示する。一組のコイルは、第1のコイル及び第2のコイルを含み、第1のコイルは、エネルギーを受け取ると、近傍電磁界を発生させ、それにより、近傍電磁界は、誘導結合を介して第2のコイルにエネルギーの少なくとも一部を提供し、一組のコイルを通過するように電流を誘導する。さらに、第1のコイル又は第2のコイルのうちの少なくとも一方の両端の電圧を測定する検出器を備える。最後に、電圧の値の変化を検出すると、一組のコイルに近接した標的構造体の存在を検出するプロセッサを備え、標的構造体は、一組のコイルから距離をおいて移動している電磁構造体である。
本開示の別の実施の形態は、一組のコイルを備えるセンサーを開示する。一組のコイルは、第1のコイル及び第2のコイルを含み、第1のコイルは、エネルギーを受け取ると、近傍電磁界を発生させ、それにより、近傍電磁界は、誘導結合を介して第2のコイルにエネルギーの少なくとも一部を提供し、一組のコイルを通過するように電流を誘導する。さらに、第2のコイルの外面領域の少なくとも10パーセントは、第1のコイルの外面領域に隣接している。さらに、第1のコイル及び第2のコイルのうちの少なくとも一方の両端の電圧を測定する検出器を備える。最後に、電圧の値の変化を検出すると、一組のコイルに近接した標的構造体の存在を検出するプロセッサを備え、標的構造体は、一組のコイルから距離をおいて移動している電磁構造体である。
本開示の別の実施の形態によれば、センサーに近接した標的構造体の存在及び相対位置又はこれらのいずれか一方を求める方法がある。センサーは一組のコイルを備え、一組のコイルは第1のコイル及び第2のコイルを含む。第1のコイルは、エネルギーを受け取ると、近傍電磁界を発生させ、近傍電磁界は、誘導結合を介して第2のコイルにエネルギーの少なくとも一部を提供し、一組のコイルを通過するように電流を誘導する。また、第1のコイル又は第2のコイルのうちの少なくとも一方の両端の電圧を測定する検出器を備える。本方法は、電圧の値の変化を検出すると、一組のコイルに近接した標的構造体の存在を検出するようにプロセッサを使用することを含む。標的構造体は、一組のコイルから距離をおいて移動している電磁構造体である。さらに、プロセッサにより、一組のコイルに対する電圧の値に変化がない場合、記録するとともに、メモリに記憶することであって、メモリは、プロセッサと通信すること、検出ユニットにより、一組のコイルの電圧の測定値を検出するとともに、一組のコイルの電圧の測定値をプロセッサに送ること、プロセッサにより、一組のコイルの電圧の測定値を履歴的に記憶された基準値と比較すること、プロセッサにより、一組のコイルに対する電圧の値に変化がないか否かを判断し、変化がない場合、センサーに近接した標的構造体の存在がない及び相対位置がないまたはこれらのいずれか一方がないと判断すること、プロセッサにより、一組のコイルに対する電圧の値の変化が検出されたか否かを判断することであって、変化の検出を判断すると、標的構造体が存在し、標的構造体の位置は、標的構造体がゼロ位置にあるか又は別の位置にあることを示す、一組のコイルの電圧の値の変化の量によって求められるものと、を含む。
更なる特徴及び利点は、以下の詳細な説明を添付図面とともに取り入れると、この詳細な説明からより容易に明らかになる。
ここに開示されている実施の形態は、添付図面を参照して更に説明される。示されている図面は、必ずしも一律の縮尺というわけではなく、その代わり、一般的に、ここに開示されている実施の形態の原理を示すことに強調が置かれている。
本開示の1つの実施の形態によるセンサーの概略図である。 図1の実施の形態による、センサーに対する標的構造体の相対位置を求める、図1のセンサーのブロック図である。 本開示の実施の形態による、標的構造体の相対位置を求める方法のブロック図である。 本開示のいくつかの実施の形態による、電圧の値及び標的構造体の相対位置のマッピングの一例の図である。 本開示の一実施の形態による、第2のコイル及び第3のコイルを有するセンサーの概略図である。 従来技術において既知であるような、標的構造体が金属板である、従来の単一渦電流コイルセンサーを示す図である。 本開示の一実施の形態による、標的構造体が金属板である、第2のコイルと第3のコイルとの間に配置された渦電流コイルセンサーを示す図である。 従来技術において既知であるような、標的構造体がコイルである、従来の誘導センサーを示す図である。 本開示の一実施の形態による、標的構造体がコイルである、第2のコイルと第3のコイルとの間に配置された誘導センサーを示す図である。 本開示の一実施の形態による、図6Dの構成により、受信信号強度のスペクトルが一対のコイルによって、追加の結合項に起因して変更されることを示す図である。 本開示の実施の形態による、渦電流又は誘導検知のための検知コイルの一例の図である。 本開示の実施の形態による、渦電流又は誘導検知のためとすることができる、図7の複数のセンサーの一例を示す図である。 本開示の実施の形態による、渦電流又は誘導検知のためとすることができる、図7の複数のセンサーの更なる例を示す図である。
上記で明らかにされた図面は、ここに開示されている実施の形態を記載しているが、この論述において言及されるように、他の実施の形態も意図されている。この開示は、限定ではなく代表例として例示の実施の形態を提示している。ここに開示されている実施の形態の原理の範囲及び趣旨に含まれる非常に多くの他の変更及び実施の形態を当業者は考案することができる。
以下の説明は、例示的な実施の形態のみを提供し、本開示の範囲も、適用範囲も、構成も限定することを意図していない。そうではなく、例示的な実施の形態の以下の説明は1つ以上の例示的な実施の形態を実施することを可能にする説明を当業者に提供する。添付の特許請求の範囲に明記されているような開示された主題の趣旨及び範囲から逸脱することなく要素の機能及び配置に行うことができる様々な変更が意図されている。
以下の説明では、実施の形態の十分な理解を提供するために、具体的な詳細が与えられる。しかしながら、当業者は、これらの具体的な詳細がなくても実施の形態を実施することができることを理解することができる。例えば、開示された主題におけるシステム、プロセス、及び他の要素は、実施の形態を不必要な詳細で不明瞭にしないように、ブロック図形式の構成要素として示される場合がある。それ以外の場合において、よく知られたプロセス、構造、及び技法は、実施の形態を不明瞭にしないように不必要な詳細なしで示される場合がある。さらに、様々な図面における同様の参照符号及び名称は、同様の要素を示す。
また、個々の実施の形態は、フローチャート、フロー図、データフロー図、構造図、又はブロック図として描かれるプロセスとして説明される場合がある。フローチャートは、動作を逐次的なプロセスとして説明することができるが、これらの動作の多くは、並列又は同時に実行することができる。加えて、これらの動作の順序は、再配列することができる。プロセスは、その動作が完了したときに終了することができるが、論述されない又は図に含まれない追加のステップを有する場合がある。さらに、特に説明される任意のプロセスにおける全ての動作が全ての実施の形態において行われ得るとは限らない。プロセスは、方法、関数、手順、サブルーチン、サブプログラム等に対応することができる。プロセスが関数に対応するとき、その関数の終了は、呼び出し側関数又はメイン関数へのその機能の復帰に対応することができる。
さらに、開示された主題の実施の形態は、少なくとも一部は手動又は自動のいずれかで実施することができる。手動実施又は自動実施は、マシン、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、又はそれらの任意の組み合わせを用いて実行することもできるし、少なくとも援助することができる。ソフトウェア、ファームウェア、ミドルウェア又はマイクロコードで実施されるとき、必要なタスクを実行するプログラムコード又はプログラムコードセグメントは、マシン可読媒体に記憶することができる。プロセッサ(複数の場合もある)が、それらの必要なタスクを実行することができる。
図1は、本開示の1つの実施の形態によるセンサー100の概略図を示す。センサー100は、エネルギーを受け取ると近傍電磁界を発生させる電磁構造体を備える第1のコイル110、例えば、検知コイルを備える。センサー100は、第2のコイル120A、例えば、受動コイルを更に備え、それは、近傍電磁界が誘導結合を介して第1のコイル110及び第2のコイル120Aを通過する電流を誘導するように、第1のコイル110に近接して又は隣接して配置される。センサー100はまた、第1のコイル110又は第2のコイル120Aの両端の電圧を表すデータを測定する電圧計を備えることができる検出器130も備える。いくつかの実施の形態では、検出器130は、特に、電流等、第1のコイル110又は第2のコイル120Aに関連するデータを測定する1つ以上の測定装置、すなわち、オーム計とすることができる。代替実施の形態では、電圧は、電圧を分析的に画定する他の測定値、例えば電流の測定値を通して測定することができる。
本開示のいくつかの実施の形態は、検知コイル110及び第2のコイル120Aの近傍電磁界内で移動している標的構造体160等の外部電磁構造体の存在が、磁界を乱し、したがって、電圧の測定値の変化に基づいてその存在を検出することができる、という認識に基づく。例えば、標的構造体160の結合により、近傍磁界の形状が変化し、それにより、磁界に近接しているとき、その近傍界によって発生する接続されたコイル、すなわち、検知コイル110及び第2のコイル120Aの電流が変化する。さらに、こうした存在の影響は、近傍界全体において感知され、それにより、こうした検出が、近傍界を発生させる検知コイル110及び/又は第2のコイル120Aと標的構造体160との間の距離によってそれほど影響を受けなくなる(すなわち、距離又は間隙99が増大する)。このように、検知コイル110及び/又は第2のコイル120Aから比較的遠い距離にあっても、近傍界内の標的構造体の存在を検出することができる。
更に図1を参照すると、検知コイル110に隣接して又は近接して第2のコイル120Aを配置することができ、それにより、特に、検知コイル110のみを有することによって発生する近傍電磁界の量と比較して、第2のコイル120Aは、検知コイル110に隣接して配置されたときにより大量の近傍電磁界を誘導する、ということが企図される。多くの効果のうち、少なくとも1つの効果は、検知コイル110のみを有する間隙と比較して、標的構造体160と検知コイル110及び第2のコイル120Aとの間の間隙99が増大し、したがって、センサー100の動作を改善することができる、ということである。
例えば、追加のコイル、すなわち第2のコイル120Aは、検知コイル110の共振周波数に調整され、検知コイル110に更に結合される。追加のコイル、すなわち第2のコイル120Aと検知コイル110との間の結合により、検知コイル110と標的構造体160との間の結合が容易になる。さらに、追加のコイル、すなわち第2のコイル120Aは、受動コイルとすることができる。この強化された結合は、システムの周波数応答を変更し、周波数に応じてインピーダンスを変更することによって達成される。いくつかの周波数では、結合は以前より強い可能性があり、他の周波数では、結合は以前より弱い可能性がある。結合が強化された周波数で動作することにより、結果は、検知コイル110による受信信号強度を有効に向上させることができる。特に、検知コイル110によって発生する磁界と標的構造体160において誘導される磁界との間の結合が増大すると、検知コイル110のインピーダンスに対する変更もまた、それに応じて増大する。したがって、検知コイル110と標的構造体160との間の同じ距離において、センサー100が、標的構造体の近接に起因した変化をより容易に検出することができるようになる。有効には、検知コイル110と標的構造体160との間で検知範囲を拡張することができ、それにより、特に、既知のセンサー関連技術が技術的に改善されることになる。
特に、センサーが本開示に従って動作するために、第2のコイルの外面領域の少なくとも10パーセントが、第1のコイルの外面領域に隣接するべきである。第2のコイルは、標的構造体の正面に対して垂直又は水平のうちの一方で第1のコイルに隣接して配置される場合、第1のコイルの外面領域に隣接する、第2のコイルの外面領域の少なくとも15%、又は少なくとも20%、又は少なくとも30%を含むことができる。ということが更に企図される。例えば、検知コイルに隣接する第2のコイルの表面領域の量は、2つのコイルの間の結合係数に正比例する。これは、相互インダクタンスMと自己インダクタンスL1及びL2の乗算の平方根との比と定義することができ、すなわち、
k=M√(L)
である。例えば、2つのコイルの隣接する表面領域の15%という割合は、結合係数が約0.15であることを示す。そして、結合係数は、第2のコイル(120A)が提供することができるインピーダンス変化の量に直接関連する。
更に図1を参照すると、標的構造体160は、金属板、又は構成される用途に応じて1つ以上のスロットを備えた金属板として設計することができる。この場合、センサーは、通常、渦電流センサーと呼ぶことができる。本開示による渦電流センサーは、標的構造体160によってもたらされるコイルインピーダンスの変化に基づいて、金属標的又は標的構造体160の位置を検出する。インピーダンスの変化の量は、標的構造体160の位置の一次関数である。しかしながら、標的構造体160はまた、別のコイルである可能性もあり、それは、検知コイル110又は第2のコイル120Aと同一のタイプであるか又は異なるタイプである可能性がある。この場合、センサーは、誘導センサーと呼ぶことができ、そこでは、誘導センサーは、渦電流センサーと同様に機能し、標的構造体は、金属板の代わりに誘導コイルである。
したがって、プロセッサ170を使用して、電圧の値の変化135を検出すること145又は検出しないこと155に基づいて、検知コイル110及び/又は第2のコイル120Aに近接する標的構造体160の存在140又は不在150を判断することができる。用途に応じて、2つ以上のプロセッサ170を使用することができ、それにより、プロセッサは、センサーと無線で又は配線を介して通信することができることが企図される。
更に図1を参照すると、異なる実施の形態では、検知コイル110は異なる形態をとることができる。例えば、検知コイル110は、異なる形状及び材料のコアの周囲に、より多くの巻数で巻回することができる。コアは、プラスチック等、誘電体コアとするか、又は鉄若しくはフェライト等、磁気コアとすることができる。検知コイル110は、回路基板等の誘電体基板上の銅等、薄い金属材料から作製することができる。検知コイル110に対して、単層基板又は多層基板を設計することができる。検知コイル110は、巻線間のそのインダクタンス及びキャパシタンスに起因して自己共振する可能性があり、又は、検知コイル110に接続されたコンデンサー等の追加の部品によって共振に同調する可能性がある。
図2は、標的構造体160の相対位置180を求める、図1のセンサー100のブロック図を示す。いくつかの実施態様では、標的構造体160及びセンサー100は、互いに面する平坦面を含む。標的構造体160は、或る特定の無線周波数fで共振する少なくとも1つの受動共振構造体又は受動構造体を含む。いくつかの実施の形態では、標的構造体160の移動は制限されない場合がある。代替実施の形態では、標的構造体160は、例えば、センサー100の平坦面に対して平行な平面において、軌跡125に従って移動することができる。
センサー100は、検知コイル110、第2のコイル120A及び検出器130を備える。検出器130は、検出構造体(図示せず)を備えることができる。検知コイル110は、上述したように、エネルギーを受け取ると近傍電磁界を発生させる電磁構造体とすることができる。例えば、検知コイル110は通電コイルである。
更に図2を参照すると、検知コイル110は、検出器130に誘導結合することができ(122)、検知コイル110と第2のコイル120Aとの相対位置を固定することができるように、1つの誘電体基板の上に集積することができる。検知コイル110に対して、高周波電源115によって電力を供給することができる。例えば、1つの実施の形態では、電源115は、標的構造体160と同じ共振周波数を有する電力信号を介して検知コイル110にエネルギーを供給することができる。この実施の形態では、検知コイル110に標的構造体160を結合することができる(162)。
エネルギーを受け取ると、磁束は、各コイル、すなわち検知コイル110及び第2のコイル120Aを通過し、各コイルの両端に誘導電圧を発生させる。コイル対の誘導電圧は、検出器によって記録され、検出器130は、電圧計、又は他の同様のタイプの測定ユニットを備えることができる。電圧情報は、処理ユニット170に提出され、電圧の大きさ及び/又は電圧の差を用いて、標的構造体160の位置180が求められる。
図3は、本開示の1つの実施の形態による標的構造体の相対位置を求める方法のブロック図を示す。検知コイル又は第2のコイルに近接して標的構造体がない場合(310)、検知コイルのV1という測定電圧は変化しない。第2のコイルのV2という測定電圧を測定して、検知コイル又は第2のコイルに近接して標的構造体がないか否かを特定することができることが企図されることに留意されたい。検出器は、検知コイルのV1を測定して、電圧の変化(ΔV)を検出し、その情報は、基準値、すなわち基準データとしての処理ユニットに記憶することができる(330)。検出器は、第2のコイルのV2を測定して、電圧の変化(ΔV)を検出することができることが企図され、その情報は、基準値、すなわち基準データとして処理ユニットに記憶することができることに留意されたい。センサーは、検知コイルのV1及び/又は第2のコイルのV2を連続的に測定して、電圧の変化(ΔV)を検出し(340)、それは、記憶された基準値とともに処理ユニットに送られる。いかなる変化も検出されない場合、範囲内に標的構造体はない(370)。V1若しくはV2又は両方の測定値350に変化がある場合、これらの値は、処理ユニットによって分析される。V1及び/又はV2のいずれかが変化する場合、電圧の新たな変化ΔV’360は、基準値、すなわち基準データに基づいて、近傍界内の標的構造体の位置とともに標的構造体の存在を決定する。
本開示のいくつかの実施の形態は、磁束が複数の結合されたコイルを通して電流を誘導する場合、検知コイル及び/又は第2のコイルの電圧の大きさ及び/又は変化が、基準値、すなわち基準データに基づいて、近傍界内の標的構造体の相対位置を示す、という認識に基づく。例えば、標的構造体のあり得る移動の軌跡をサンプリングして、軌跡における標的構造体の具体的な位置に対応するコイル、すなわち、検知コイル及び/又は第2のコイルの電圧を求めることができる。したがって、本開示のいくつかの実施の形態により、標的構造体の相対位置として、コイル、すなわち、検知コイル及び/又は第2のコイルの一方又は両方の電圧の値を示す情報のマッピングが求められる。
図4は、本開示のいくつかの実施の形態による、少なくとも1つのコイル、すなわち、検知コイル及び/又は第2のコイルの電圧の値420と標的構造体の相対位置440とのマッピング410の一例を示す。いくつかの実施の形態において、マッピングは、センサーの周囲の空間における種々の位置に対して求められる。代替実施の形態では、マッピングは、例えば検知コイル又は第2のコイルの電磁構造体に対して平行な平面における軌跡450に対して求められる。
例えば、1つの実施の形態では、検出器は、検知コイルの両端の第1の電圧及び/又は第2のコイルの両端の第2の電圧を測定し、プロセッサは、その電圧の値に基づいて検知コイル又は第2のコイルに対する標的構造体の相対位置を求める。いくつかの実施態様では、標的構造体は、検知コイルの電磁構造体に対して平行な平面において軌跡に従って移動し、メモリ190は、軌跡における標的構造体の一組の位置と測定された電圧の一組の値とのマッピングを記憶する。
図5は、本開示の別の実施の形態によるセンサー500の概略図を示す。図5は、図1のセンサー100の概略構造を示すが、検知コイル110に近接して又は隣接して、第3のコイル520B又は追加のコイルが配置され、それにより、近傍電磁界は、誘導結合を介して、検知コイル110、第2のコイル120A及び第3のコイル520Bを通過する電流を誘導する。
検知コイル110に隣接して第3のコイル520Bを追加することにより、第3のコイル520Bが、特に、第2のコイル120Aとともに検知コイル110によって発生する誘導された近傍電磁界と比較して、近傍電磁界の増大をもたらすことが企図される。多くの効果のうち少なくとも1つの効果は、図1の間隙99と比較して、標的構造体160と検知コイル110、第2のコイル120A及び第3のコイル520Bとの間の間隙599を増大させることができ、したがって、センサー500の動作を改善することができる、ということである。
第2のコイル120Aと第3のコイル520Bとの間に検知コイル110の位置を、第2のコイル120A及び第3のコイル520Bが検知コイル110に隣接して又は近接して配置されるように、配置することができる。第2のコイル120Aを、検知コイル110に関して第3のコイル520Bに対して対称的に対向して配置することができることが企図される。しかしながら、代替的に、第2のコイル120Aは、検知コイル110に関して第3のコイル520Bに対して対称的に対向して配置されない場合があり、それにより、第2のコイル120A又は第3のコイル520Bは、異なるように、ただし依然として検知コイル110に隣接して配置することができる。例えば、第2のコイル120A及び第3のコイル520Bは、水平に又は垂直に検知コイル110の反対側に配置することができる。場合によっては、第2のコイル120A及び第3のコイル520Bは、検知コイル110の反対側に配置することができるが、第2のコイル120A及び第3のコイル520Bの少なくとも一方のコイルは、検知コイル110の側に角度をなして配置することができる。
更に図5を参照すると、例えば、標的構造体160の結合により近傍電磁界の形状が変化し、それにより、磁界に近接しているとき、近傍界によって発生する、接続されたコイル、すなわち、検知コイル110、第2のコイル120A及び第3のコイル520Bの電流が変化する。さらに、こうした存在の影響は、近傍界全体において感知され、それにより、こうした検出が、近傍界を発生させる検知コイル110及び/又は第2のコイル120Aと標的構造体160との間の距離によってそれほど影響を受けなくなる(すなわち、距離又は間隙599を増大させることができる)。このように、検知コイル110及び/又は第2のコイル120Aから比較的遠い距離にあっても、近傍界内の標的構造体160の存在を検出することができる。言い換えれば、距離が増大し、又は、図1のセンサー100の間隙99と比較して間隙599が増大する。
第2のコイル及び第3のコイルは、標的構造体の正面に対して垂直又は水平のうちの一方で第1のコイルに隣接して配置される場合、第1のコイルの外面領域に隣接する第2のコイル及び第3のコイルの外面領域の少なくとも15%、又は少なくとも20%、又は少なくとも30%を含むことができる、ということが企図される。例えば、検知コイルに隣接する第2のコイル及び第3のコイルの表面領域の量は、3つのコイルの間の結合係数に正比例する。これは、相互インダクタンスMと自己インダクタンスL1及びL2の乗算の平方根との比と定義することができ、すなわち、
k=M√(L)
である。例えば、3つのコイルの隣接する表面領域の15%という割合は、結合係数が約0.15であることを示す。そして、結合係数は、第2のコイル及び第3のコイルがもたらすことができるインピーダンス変化の量に直接関連する。
標的構造体の位置の関数としての検知コイルインピーダンスの変化
図6A及び図6Bは、標的構造体の位置の関数としての検知コイルインピーダンスの変化を示す。図6Aは、従来の単一渦電流コイル11と標的構造体60とを示す。従来の渦電流インピーダンスは、標的構造体60の位置の関数として示されている。図6Aは、金属板であり、かつ矢印を含む点線で示すように1つの方向に沿って摺動する、標的構造体60を示す。標的構造体60のおよそ中間に、検知コイル11が配置される場所がある。図6Aのグラフを検討すると、追加のコイルのない、従来の単一渦電流コイル11により、インピーダンス変化は1オーム未満となる。
図6Bは、1つの実施の形態による、標的位置の関数としての渦電流コイルインピーダンスを示す。図6Bは、標的構造体660とともに、第2のコイル620Aと第3のコイル620Bとの間に配置された、渦電流コイル610又は検知コイルを示す。図6Bにおいて、渦電流インピーダンスは、標的構造体660の位置の関数として示されている。図6Bは、金属板であり、かつ矢印を含む点線で示すように1つの方向に沿って摺動する、標的構造体660を示す。図6Bのグラフを検討すると、コイルの対、すなわち、第2のコイル620A及び第3のコイル620Bは、検知コイル610の2つの側面に隣接して配置された場合、かつ、上記図6Aにおいて完了したものと同じ測定プロセスを行った場合を考える。測定結果は、図6Aと同じ距離の変化に対して、図6Bでは、100オームを超えるインピーダンスの変化が観察されることになる。本開示のシステムを検討すると、図6Aのグラフの従来のシステムの結果と比較して、図6Bのグラフの結果となる。図6Bの本開示のシステムは、図6Aの従来のシステムと比較して、標的構造の位置を求めるプロセスにおいて著しい改善を示す。(図6Aにおいて60として示し、図6Bにおいて660として示す)標的構造体に対して、位置の同じ変化は、図6Bにおける本開示のシステムに対する実験的に測定可能なパラメーター(インピーダンス)のはるかに大きい変化に対応する。したがって、図6Bに示すような本開示のシステムは、図6Aの従来のシステムと比較して、特に、標的構造体の位置をはるかに容易に検出することができ、ノイズの影響をはるかに受けにくい。
コイルのインピーダンスは周波数の関数であり、共振の周囲で著しく変化する
図6Cは、標的構造体が、図6Aにおいて従来の渦電流コイルとともに上述したような金属板ではなく、コイルである、従来の誘導センサーを示す。実施の形態によれば、図6Dは、標的構造体がコイル構造体であることを示す。図6Aの従来のシステムの結果を著しく超える、図6Bの本開示のシステムの予測されない結果を示す経験的データに関して上述したように、標的構造体としてコイル構造体を使用して、図6Cに示す従来のシステムと比較して、図6Dの本開示のシステムにおいて、測定可能な変化の同様の改善が観察される。
したがって、図6Dに示すような標的コイルのインダクタンスは、概して、金属板である標的構造体のインダクタンスよりはるかに高く、それにより、図6Bに示すような渦電流センサーの場合より著しいインピーダンス変化がもたらされる。したがって、コイルのインピーダンスは、周波数の関数であり、共振の周囲で著しく変化する。
図6Cは、標的構造体がコイルである、標的構造体61とともに従来の誘導コイル11を示す。図6Cにおいて、標的構造体が、検知構造体11から離れた位置から検知構造体11に位置合わせされた位置まで移動しているとき、測定可能な変化は約17%である。
図6Dは、1つの実施の形態による、標的構造体がコイルである、標的構造体661とともに第2のコイル621Aと第3のコイル621Bとの間に配置された誘導コイル611を示す。図6Dのグラフを検討すると、一対のコイル、すなわち、第2のコイル621A及び第3のコイル621Bが検知コイル611に追加された場合、観察されるインピーダンスは、図6Cの従来の単一誘導コイル11よりはるかに高い。図6Dにおいて、標的構造体661が、検知構造体661から離れた位置から検知構造体661に位置合わせされた位置まで移動しているとき、測定可能な変化は約50%である。したがって、実験的データから、図6Dの本開示のシステムが、標的構造体としてコイル構造体を使用して、図6Cの従来のシステムの結果を著しく超える予測されない結果を提供することが示される。
更に図6Dを参照すると、上述したように、コイルのインピーダンスは、周波数の関数であり、共振の周囲で著しく変化する。追加のコイル、すなわち、第2のコイル621A及び第3のコイル621Bは、検知コイル611に結合されると、各コイルに振幅及び位相が異なる電流が誘導されて、振幅及び位相の異なる磁界を発生させる。これらの誘導磁界は、検知コイル611からの磁界の上に重ね合わさり、インピーダンスの著しい変化をもたらす。したがって、図6Dに示すシステムの結果は、図6Cの従来のシステムと比較して、特に、標的構造体の位置を求めるプロセスにおいて著しい改善である。(図6Cにおいて61として示し、図6Dにおいて661として示す)標的構造体の場合、位置の同じ変化は、図6Dにおける本開示のシステムに対する経験的に予測可能なパラメーター(インピーダンス)のはるかに大きい変化に対応する。したがって、図6Dに示すシステムは、特に、標的構造体の位置をより容易に検出することができ、ノイズを受けにくい。
更に図6Dを参照すると、検知コイルと並んで追加の一対のコイルを使用することにより、いくつかの周波数範囲において、周波数スペクトルに対する磁界を変更することができ、標的構造体コイルにおける磁界強度が強化される。一対のコイルは、寄生コイル又は受動コイルとすることができることに留意されたい。
図6Eは、検知コイルが、コイル標的構造体に近接して第2のコイルと第3のコイルとの間に配置されている図6Dの構成により、受信信号強度のスペクトルが、一対のコイル、すなわち、第2のコイル及び第3のコイルによって、追加の結合項に起因して、変更される結果となることを示す。ピークもまた高くなり、それは、標的コイルへのより強い結合を示す。したがって、ピーク周波数で動作することにより、追加のコイルでより高い信号強度を達成することができる。
検知コイルは、2つの端子で電源に接続される、銅線の単巻正方形ループとすることができることが企図される。さらに、検知コイルは、非限定的な例により、第2のコイルとして印刷回路基板の上に配置することができる、複巻銅コイルとすることができる。さらにまた、検知コイルは、複巻の金属線によって形成することができ、それは、印刷回路基板で使用されるように薄くかつ平坦な形態とすることができ、又は、撚線若しくはリッツ線によって構築することができる。検知コイルは、異なる幾何学的パターンを有することができる。第2のコイル及び標的コイルは、検知コイルと同じとすることができることに留意されたい。第2のコイルは、検知コイルと形状が同じである場合があり、又は異なる場合がある。標的構造体は、検知コイルと同じ形状を有するコイルである場合があり、若しくは異なるコイルである場合があり、又は、全くコイル形態ではなく、すなわち、金属板、スリット等である場合がある。
図7は、本開示の実施の形態による渦電流又は誘導検知用のセンサー700の一例である。検知コイル710は、コンデンサー723Bに接続されかつ高周波電源715によって通電される、平面複巻渦巻構造とすることができる。本開示の実施の形態によれば、1つ以上の追加のコイル、すなわち、第2のコイル720A及び第3のコイル720Bは、通電された検知コイル710に隣接して配置される。第2のコイル720A及び第3のコイル720Bは、検知コイル710と同様の共振周波数に同調される。
図8及び図9は、本開示の実施の形態による、図7の複数のセンサーの例であり、複数のセンサー800、900は、渦電流又は誘導検知用とすることができる。例えば、図8は、アレイで配置された複数の渦電流センサー又は誘導センサーを示す。アレイにおける各センサーは、標的構造体に応じて読取値を提供する。標的構造体は、渦電流センサーの場合、複数のスロットの金属板とすることができる。誘導センサーの場合、標的は、アレイで配置された複数のコイルとすることができる。位置情報は、標的構造体において符号化することができる。アレイにおける各センサーは、標的構造体に対する相対位置によって決まる読取値を提供する。したがって、アレイにおける全てのセンサーの読取値によって、コードを生成することができる。例えば、標的構造体が移動すると、複数の検知コイルにより、新たなコードを得ることができる。こうしたセンサーアレイの場合、図9に示すように、アレイにおける各センサーの性能を向上させるために、提案される方法を適用することもできる。各センサーに対して、アナログ読取値は、読取値の振幅に応じて、0又は1のデジタル信号に変換される。そのため、各位置において、センサーは、0又は1の符号化ビットを有する。検知システムに複数のセンサーが含まれる場合、各センサーは、標的構造体に対するそれらの相対位置が異なることに起因して、異なる読取値を有する。したがって、各センサーは、0又は1の符号化ビットを生成し、読取値を合わせることにより、各位置における符号化シーケンスを得るという結果をもたらす。さらに、本開示の態様によれば、システムにより、特に、信号強度が増大し、信号対雑音比が改善され、それにより、精度を向上させることができる。
本開示によれば、一組のコイルはコイルのアレイとすることができ、このコイルのアレイに提供されるエネルギーは、共振周波数を有する電力信号を介した少なくとも1つの電源からのものである。さらに、プロセッサは、電圧の値の変化を検出すると、コイルのアレイの各コイルの組に近接した、標的構造体のアレイ内の標的構造体の存在を検出する。さらにまた標的構造体のアレイの各標的構造体は、コイルのアレイの一組のコイルから距離をおいて移動している電磁構造体であり、センサーのアレイにおけるコイルの各組は、標的構造体のアレイ内の相対位置に応じて位置読取値を提供し、センサーのアレイにおける各一組のコイルの読取値によって、コードを生成することができる。
いくつかの実施の形態では、構造体は、同じ設計とするか又は異なる設計とすることができ、同じか又は異なる共振周波数を有することができる。標的構造体における誘導磁界は、位置が異なると異なり、誘導電圧に異なるように影響を与える。したがって、標的構造体は、異なる位置に対応するスケールとしての役割を果たし、位置情報を求めるためにセンサーによって利用することができる。例えば、3つの測定チャネルは、標的構造体の位置を独立して求めることができる。したがって、追加のチャネルは、第1のチャネルと同様の、冗長としての役割を果たすことができる。1つのチャネルに近接してかつ測定に影響を与える物体がある場合、冗長チャネルは、正確な位置情報を取得するのに役立つ。3つの測定チャネル間の相対位置が既知であるため、複数のチャネルは、合わせて機能し、リニアエンコーダーの一部としての役割を果たすこともできる。
本開示の上記で説明した実施の形態は、多数の方法のうちの任意のもので実施することができる。例えば、実施の形態は、ハードウェア、ソフトウェア又はそれらの組合せを用いて実施することができる。請求項の要素を修飾する、特許請求の範囲における「第1」、「第2」等の序数の使用は、それ自体で、1つの請求項の要素の別の請求項の要素に対する優先順位も、優位性も、順序も暗示するものでもなければ、方法の動作が実行される時間的な順序も暗示するものでもなく、請求項の要素を区別するために、単に、或る特定の名称を有する1つの請求項の要素を、同じ(序数の用語の使用を除く)名称を有する別の要素と区別するラベルとして用いられているにすぎない。
本開示は、いくつかの特定の好ましい実施の形態に関して説明されてきたが、本開示の趣旨及び範囲内において様々な他の適応及び変更を行うことができることが理解されるべきである。したがって、添付の特許請求の範囲の態様は、本開示の真の趣旨及び範囲に含まれる全ての変形及び変更を包含するものである。
本発明のセンサーに近接した標的構造体の存在及び/又は相対位置を求めるセンサー及び方法は、多くの種類の分野におけるセンサーに適用可能である。

Claims (18)

  1. 第1のコイル及び第2のコイルを含む一組のコイルであって、前記第1のコイルは、エネルギーを受け取ると、近傍電磁界を発生させ、それにより、該近傍電磁界は、誘導結合を介して前記第2のコイルに前記エネルギーの少なくとも一部を提供し、該一組のコイルを通過するように電流を誘導するものと、
    前記第1のコイル又は前記第2のコイルのうちの少なくとも一方の両端の電圧を測定する検出器と、
    前記電圧の値の変化を検出すると、前記一組のコイルに近接した標的構造体の存在を検出するプロセッサであって、前記標的構造体は、前記一組のコイルから距離をおいて移動している電磁構造体であるものと、
    備え、
    前記第1のコイル及び前記第2のコイルのうちの一方、又は両方は、前記検出器と通信し、該検出器は、前記第1のコイル及び前記第2のコイルのうちの一方、又は両方の両端の電圧を検出する電圧計を含み、それにより、該電圧計によって測定される前記電圧の値は、前記第1のコイルの両端の第1の電圧及び前記第2のコイルの両端の第2の電圧のうちの一方、又は前記第1のコイルの両端の前記第1の電圧及び前記第2のコイルの両端の前記第2の電圧の両方を表し、前記プロセッサは、前記電圧の値に基づいて、前記第1のコイル及び前記第2のコイルのうちの一方、又は前記第1のコイル及び前記第2のコイルの両方に対して、前記標的構造体の相対位置を求める、センサー。
  2. 前記一組のコイルの各コイルは同じであり、前記標的構造体は、前記一組のコイルの各コイルと同じ標的コイルを含む、請求項1に記載のセンサー。
  3. 共振周波数を有する電力信号を介して前記第1のコイルに前記エネルギーを供給する電源であって、前記一組のコイルの各コイルは、共振周波数を有する電磁構造体であるものと、
    を更に備える、請求項1に記載のセンサー。
  4. 前記第2のコイルは、前記第1のコイルの共振周波数に近い共振周波数を有し、それにより、前記第1のコイルは検知コイルであり、前記第2のコイルは受動コイルである、請求項1に記載のセンサー。
  5. 前記標的構造体は、前記第1のコイル及び前記第2のコイルのうちの一方、又は前記第1のコイル及び前記第2のコイルの両方に対して平行な平面において、軌跡に従って移動し、前記センサーは、
    前記軌跡における前記標的構造体の一組の位置と前記電圧の一組の値との間のマッピングを記憶するメモリであって、前記プロセッサは、該マッピングを用いて前記標的構造体の前記相対位置を求めるもの、
    を更に備える、請求項1に記載のセンサー。
  6. 前記一組のコイルは、同じ形状を有し、それにより、前記標的構造体が前記近傍電磁界の外側にあるとき、前記第1の電圧及び前記第2の電圧のうちの一方、又は前記第1の電圧及び前記第2の電圧の両方は、閾値未満である、請求項1に記載のセンサー。
  7. 前記プロセッサは、前記近傍電磁界内に前記標的構造体が存在する間の、前記第1の電圧及び前記第2の電圧のうちの一方、又は前記第1の電圧及び前記第2の電圧の両方の大きさが、前記標的構造体が前記近傍電磁界の外側にあるときの、前記第1の電圧及び前記第2の電圧のうちの一方、又は前記第1の電圧及び前記第2の電圧の両方の大きさより小さいか又は大きい場合、前記一組のコイルに位置合わせされる前記標的構造体の前記相対位置を求める、請求項1に記載のセンサー。
  8. 前記プロセッサは、前記第1の電圧及び前記第2の電圧のうちの一方、又は前記第1の電圧及び前記第2の電圧の両方の大きさを、基準電圧と比較して、前記近傍電磁界内の前記標的構造体の存在を検出する、請求項1に記載のセンサー。
  9. 前記一組のコイルは、第3のコイルを含み、該第3のコイル及び前記第2のコイルは、前記第1のコイルに隣接し、前記第3のコイル及び前記第2のコイルは、前記第1のコイルの共振周波数に近い共振周波数を有する、請求項1に記載のセンサー。
  10. 前記第1のコイルは、前記標的構造体の正面に対して垂直又は水平のうちの一方で、前記第2のコイルと前記第3のコイルとの間に配置され、その際、前記第2のコイル及び前記第3のコイルの各々の外面領域の少なくとも15%が、前記第1のコイルの外面に隣接し、又は、前記第2のコイル及び前記第3のコイルの各々の外面領域の少なくとも20%が、前記第1のコイルの前記外面に隣接し、又は、前記第2のコイル及び前記第3のコイルの各々の外面領域の少なくとも30%が、前記第1のコイルの前記外面に隣接する、請求項9に記載のセンサー。
  11. 第1のコイル及び第2のコイルを含む一組のコイルであって、前記第1のコイルは、エネルギーを受け取ると、近傍電磁界を発生させ、それにより、該近傍電磁界が、誘導結合を介して前記第2のコイルに前記エネルギーの少なくとも一部を提供し、前記一組のコイルを通過するように電流を誘導し、前記第2のコイルの外面領域の少なくとも10%が、前記第1のコイルの外面に隣接するものと、
    前記第1のコイル及び前記第2のコイルのうちの少なくとも一方又は両方の両端の電圧を測定する検出器と、
    前記電圧の値の変化を検出すると、前記一組のコイルに近接した標的構造体の存在を検出するプロセッサであって、前記標的構造体は、前記一組のコイルから距離をおいて移動している電磁構造体であるものと、
    備え、
    前記第1のコイル及び前記第2のコイルのうちの一方、又は両方は、前記検出器と通信し、該検出器は、前記第1のコイル及び前記第2のコイルのうちの一方、又は両方の両端の電圧を検出する電圧計を含み、それにより、該電圧計によって測定される前記電圧の値は、前記第1のコイルの両端の第1の電圧及び前記第2のコイルの両端の第2の電圧のうちの一方、又は前記第1のコイルの両端の前記第1の電圧及び前記第2のコイルの両端の前記第2の電圧の両方を表し、前記プロセッサは、前記電圧の値に基づいて、前記第1のコイル及び前記第2のコイルのうちの一方、又は前記第1のコイル及び前記第2のコイルの両方に対して、前記標的構造体の相対位置を求める、センサー。
  12. 前記標的構造体は、前記第1のコイル及び前記第2のコイルのうちの一方、又は前記第1のコイル及び前記第2のコイルの両方に対して平行な平面において、軌跡に従って移動し、前記センサーは、
    前記軌跡における前記標的構造体の一組の位置と前記電圧の一組の値との間のマッピングを記憶するメモリであって、前記プロセッサは、該マッピングを用いて前記標的構造体の前記相対位置を求めるもの、
    を更に備える、請求項11に記載のセンサー。
  13. 前記プロセッサは、前記近傍電磁界内に前記標的構造体が存在する間の、前記第1の電圧及び前記第2の電圧のうちの一方、又は前記第1の電圧及び前記第2の電圧の両方の大きさが、前記標的構造体が前記近傍電磁界の外側にあるときの、前記第1の電圧及び前記第2の電圧のうちの一方、又は前記第1の電圧及び前記第2の電圧の両方の大きさより小さいか又は大きい場合、前記一組のコイルに位置合わせされる前記標的構造体の前記相対位置を求める、請求項11に記載のセンサー。
  14. 前記プロセッサは、前記第1の電圧及び前記第2の電圧のうちの一方、又は前記第1の電圧及び前記第2の電圧の両方の大きさを、基準電圧と比較して、前記近傍電磁界内の前記標的構造体の存在を検出する、請求項13に記載のセンサー。
  15. 前記一組のコイルのうちの少なくとも1つのコイルは、該一組のコイルのうちの他のコイルと異なるタイプのコイルであり、それにより、前記標的構造体は、コイルであり、前記一組のコイルと同じタイプのコイル、又は該一組のコイルと異なるタイプのコイルのうちの一方である、請求項11に記載のセンサー。
  16. 前記一組のコイルはコイルのアレイであり、該コイルのアレイに提供される前記エネルギーは、共振周波数を有する電力信号を介した少なくとも1つの電源からのものであり、
    前記プロセッサは、前記電圧の値の変化を検出すると、前記コイルのアレイの各コイルの組に近接した、標的構造体のアレイ内の標的構造体の存在を検出し、前記標的構造体の前記アレイの各標的構造体は、前記コイルのアレイの一組のコイルから距離をおいて移動している電磁構造体であり、それにより、前記センサーのアレイにおけるコイルの各組は、前記標的構造体の前記アレイ内の相対位置に応じて位置読取値を提供し、それにより、前記センサーのアレイにおける各一組のコイルの読取値によって、コードが生成される、請求項11に記載のセンサー。
  17. 前記標的構造体の移動時、前記コイルのアレイによって新たなコードが取得され、各標的構造体は、前記標的構造体のアレイの各標的構造体において符号化された位置関連情報を含む、請求項16に記載のセンサー。
  18. センサーに近接した標的構造体の存在及び相対位置又はこれらのいずれか一方を求める方法であって、前記センサーは一組のコイルを備え、該一組のコイルは第1のコイル及び第2のコイルを含み、それにより、前記第1のコイルは、エネルギーを受け取ると、近傍電磁界を発生させ、該近傍電磁界は、誘導結合を介して前記第2のコイルに前記エネルギーの少なくとも一部を提供し、前記一組のコイルを通過するように電流を誘導し、前記第1のコイル又は前記第2のコイルのうちの少なくとも一方の両端の電圧を測定する検出器を備え、該方法は、
    前記電圧の値の変化を検出すると、前記一組のコイルに近接した標的構造体の存在を検出するようにプロセッサを使用することであって、前記標的構造体は、前記一組のコイルから距離をおいて移動している電磁構造体であるものと、
    前記プロセッサにより、前記一組のコイルに対する前記電圧の値に変化がない場合、記録するとともに、メモリに記憶することであって、該メモリは、前記プロセッサと通信するものと、
    検出ユニットにより、前記一組のコイルの前記電圧の測定値を検出するとともに、該一組のコイルの該電圧の該測定値を前記プロセッサに送ることと、
    前記プロセッサにより、前記一組のコイルの前記電圧の前記測定値を履歴的に記憶された基準値と比較することと、
    前記プロセッサにより、前記一組のコイルに対する前記電圧の値に変化がないか否かを判断し、変化がない場合、前記センサーに近接した前記標的構造体の存在がない及び相対位置がないまたはこれらのいずれか一方がないと判断することと、
    前記プロセッサにより、前記一組のコイルに対する前記電圧の値の変化が検出されたか否かを判断することであって、該変化の検出を判断すると、前記標的構造体が存在し、該標的構造体の位置は、前記標的構造体がゼロ位置にあるか又は別の位置にあることを示す、前記一組のコイルの前記電圧の値の変化の量によって求められるものと、
    を含む、方法。
JP2018545233A 2016-07-14 2017-05-29 非接触型センサー Active JP6593825B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/210,175 2016-07-14
US15/210,175 US10288759B2 (en) 2016-07-14 2016-07-14 Contactless semsor
PCT/JP2017/020732 WO2018012140A1 (en) 2016-07-14 2017-05-29 Contactless sensor

Publications (2)

Publication Number Publication Date
JP2019506618A JP2019506618A (ja) 2019-03-07
JP6593825B2 true JP6593825B2 (ja) 2019-10-23

Family

ID=59215843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018545233A Active JP6593825B2 (ja) 2016-07-14 2017-05-29 非接触型センサー

Country Status (6)

Country Link
US (1) US10288759B2 (ja)
EP (1) EP3485225A1 (ja)
JP (1) JP6593825B2 (ja)
KR (1) KR102184258B1 (ja)
CN (1) CN109690232B (ja)
WO (1) WO2018012140A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6900771B2 (ja) * 2017-05-09 2021-07-07 オムロン株式会社 近接センサおよび方法
US10760928B1 (en) * 2019-02-21 2020-09-01 Microsemi Corporation Planar linear inductive position sensor having edge effect compensation
CN110470205B (zh) * 2019-08-13 2021-07-09 森泰英格(成都)数控刀具股份有限公司 无源线圈感应检测自动识别刀柄的方法
US11502728B2 (en) * 2019-08-20 2022-11-15 Nxp B.V. Near-field wireless device for distance measurement
CN111168469A (zh) * 2019-11-12 2020-05-19 西安邮电大学 一种五轴数控机床空间热误差测量系统
CN110974136A (zh) * 2020-01-03 2020-04-10 深圳术为科技有限公司 一种在位检测装置、冷光源及内窥镜

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311973C2 (de) 1993-04-14 1997-09-11 Pepperl & Fuchs Magneto-induktives Sensorsystem für eine magnetische Positions- und/oder Wegbestimmung
US6727691B2 (en) 2000-06-26 2004-04-27 Jentek Sensors, Inc. High resolution inductive sensor arrays for material and defect characterization of welds
JP2005201740A (ja) * 2004-01-14 2005-07-28 Tsubakimoto Chain Co 物品検査装置及び物品検査方法
US7538544B2 (en) * 2004-04-09 2009-05-26 Ksr Technologies Co. Inductive position sensor
CN100445694C (zh) * 2004-04-09 2008-12-24 Ksr科技公司 感应位置传感器
US7276897B2 (en) * 2004-04-09 2007-10-02 Ksr International Co. Inductive position sensor
GB0427410D0 (en) 2004-12-14 2005-01-19 Kreit Darran Data acquisition system
US7449878B2 (en) 2005-06-27 2008-11-11 Ksr Technologies Co. Linear and rotational inductive position sensor
DE102006046531A1 (de) * 2006-09-29 2008-04-03 Dr. Johannes Heidenhain Gmbh Drehgeber und Verfahren zu dessen Betrieb
CN201145720Y (zh) * 2007-12-29 2008-11-05 深圳创维-Rgb电子有限公司 一种电感线圈极性测量装置
JP5482039B2 (ja) * 2009-09-07 2014-04-23 富士ゼロックス株式会社 検知装置
EP2537451A4 (en) * 2010-02-18 2015-09-16 Olympus Medical Systems Corp POSITION RECOGNITION SYSTEM AND POSITION DETECTION METHOD
DE102011004348A1 (de) * 2011-02-17 2012-08-23 Beckhoff Automation Gmbh Verfahren und Positionserfassungsvorrichtung zum Erfassen einer Position eines beweglichen Elements einer Antriebsvorrichtung
US8712710B2 (en) * 2011-05-13 2014-04-29 Honeywell International Inc. Method and apparatus for detection of LVDT core fallout condition
JP2013134227A (ja) * 2011-12-27 2013-07-08 Canon Electronics Inc 金属検知装置
GB2517152A (en) * 2013-08-12 2015-02-18 Gde Technology Ltd Position sensor
CN105445809B (zh) * 2014-08-19 2018-09-11 清华大学 对移动目标进行检查的设备及方法

Also Published As

Publication number Publication date
CN109690232B (zh) 2020-12-29
US20180017695A1 (en) 2018-01-18
JP2019506618A (ja) 2019-03-07
CN109690232A (zh) 2019-04-26
US10288759B2 (en) 2019-05-14
KR102184258B1 (ko) 2020-11-30
KR20190014088A (ko) 2019-02-11
WO2018012140A1 (en) 2018-01-18
EP3485225A1 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6593825B2 (ja) 非接触型センサー
JP6166227B2 (ja) 送電装置及び受電装置
US10571593B2 (en) Method for analysing measurement signal of metal sensor and detecting object via metal sensor
CN1332174C (zh) 多个方向上的距离的无接触测量设备
JP6364092B2 (ja) リニアアクチュエータにおける誘導位置センシング
Hashi et al. Wireless magnetic position-sensing system using optimized pickup coils for higher accuracy
US10495486B2 (en) Inductive touch input
US10545177B2 (en) Non-contact sensor based Rogowski coil
US20170234703A1 (en) Position sensor
CN109959399A (zh) 用于感应式位置编码器的绕组和刻度构造
JP6395942B2 (ja) 位置センサー
GB2528474A (en) Operation of an inductive power transfer system
US11340064B2 (en) Tilt switch based on differential sensing
Stadler Radiated magnetic field of a low-frequency ferrite rod antenna
US9329207B2 (en) Surface current probe
JP5139822B2 (ja) 磁界プローブ
CN115380475A (zh) 包括用于感应极化的模块的电容检测装置
WO2019142780A1 (ja) 位置検出装置
JP5290598B2 (ja) 核磁気共鳴装置とその信号取り出し方法
JP6962727B2 (ja) 位置検出装置
JP2016125940A (ja) 位置検出装置
RU95099U1 (ru) Индуктивный (трансформаторный) первичный измерительный преобразователь положения
Gheorghe et al. Finite element analysis, experimental validation and optimization of an electromagnetic linear displacement transducer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190917

R150 Certificate of patent or registration of utility model

Ref document number: 6593825

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250