JP6590209B2 - Seismic isolation building - Google Patents

Seismic isolation building Download PDF

Info

Publication number
JP6590209B2
JP6590209B2 JP2015248994A JP2015248994A JP6590209B2 JP 6590209 B2 JP6590209 B2 JP 6590209B2 JP 2015248994 A JP2015248994 A JP 2015248994A JP 2015248994 A JP2015248994 A JP 2015248994A JP 6590209 B2 JP6590209 B2 JP 6590209B2
Authority
JP
Japan
Prior art keywords
laminated rubber
rubber bearing
virtual
seismic isolation
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015248994A
Other languages
Japanese (ja)
Other versions
JP2017115325A (en
Inventor
徹也 半澤
徹也 半澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2015248994A priority Critical patent/JP6590209B2/en
Publication of JP2017115325A publication Critical patent/JP2017115325A/en
Application granted granted Critical
Publication of JP6590209B2 publication Critical patent/JP6590209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、免震建物に関するものである。   The present invention relates to a base-isolated building.

一般に、大空間を覆う大屋根の大梁は、支点を固定するか、または滑り支承で支持されている。例えば、トラス構造の屋根架構を、屋根支承部において下部構造に支持させる建物で、屋根支承部として、下部構造に支持されるベースプレートと、トラス構造を構成するトラス部材が集合する節点に配置された球継手と、を備えたものが提案されている(下記特許文献1参照)。この構造は、地震時に、屋根架構を滑動させ、滑り荷重以上の荷重は生じさせず、下部構造が負担する地震力を抑える構成とされている。   Generally, a large beam of a large roof covering a large space has a fulcrum fixed or is supported by a sliding bearing. For example, in a building where a roof structure of a truss structure is supported by a lower structure at a roof support part, the base plate supported by the lower structure and the truss members constituting the truss structure are arranged as the roof support part. A ball joint has been proposed (see Patent Document 1 below). This structure is configured to suppress the seismic force borne by the lower structure without causing a load exceeding the sliding load by sliding the roof frame during an earthquake.

また、ゴム板と鋼板とを交互に重ねて接着した積層ゴムと、ダンパーとを併用した免震装置も知られている。この免震装置は、地震時の変位量を抑制することができる構成である。   There is also known a seismic isolation device using a laminated rubber in which rubber plates and steel plates are alternately stacked and bonded together with a damper. This seismic isolation device has a configuration that can suppress the amount of displacement during an earthquake.

特開2001−152696号公報JP 2001-152696 A

しかしながら、上記の特許文献1に記載の免震建物では、屋根架構を単に滑動させるだけであり、変位量が過大になってしまう可能性がある。
また、大スパンの建物に、積層ゴムと、ダンパーとを併用した免震装置を設置すると、積層ゴムの配置位置によっては、積層ゴムが大屋根の大梁に生じる応力を受け、積層ゴムに引張力が生じる場合がある。積層ゴムは、積層ゴム自体に圧縮力が作用する状態で、力学的特性が期待されているため、地震時に引張力が生じることは好ましくない。よって、大スパンの建物では、地震時に、引張力が生じた積層ゴムが大屋根を安定的に支持することができないという問題点がある。
However, in the base-isolated building described in Patent Document 1, the roof frame is simply slid, and the displacement amount may be excessive.
Also, if a seismic isolation device that uses laminated rubber and a damper is installed in a large span building, depending on the location of the laminated rubber, the laminated rubber will receive stress generated in the large beam on the large roof, and the tensile strength will be applied to the laminated rubber. May occur. Since the laminated rubber is expected to have mechanical properties in a state where a compression force acts on the laminated rubber itself, it is not preferable that a tensile force is generated during an earthquake. Therefore, in a large-span building, there is a problem that the laminated rubber having a tensile force cannot stably support the large roof during an earthquake.

そこで、本発明は、上記事情に鑑みてなされたものであり、大スパンの大屋根架構であっても、地震時に安定的に支持することができる免震建物を提供する。   Accordingly, the present invention has been made in view of the above circumstances, and provides a seismic isolation building that can be stably supported even in the case of a large-span large roof frame.

上記目的を達成するために、本発明は以下の手段を採用している。
すなわち、本発明に係る免震建物は、下部構造物と、下部構造物に支持された下側積層ゴム支承と、該下側積層ゴム支承上に載置された支持体と、該支持体上において前記下部構造物の幅方向の両側に載置された複数の上側積層ゴム支承と、複数の該上側積層ゴム支承の上面に支持された上部構造物と、を備え、該上部構造物の下面は、下方に向かって膨らむ第一仮想円弧に沿って形成され、前記支持体の上面は、下方に向かって膨らみ、前記第一仮想円弧と略平行で、該第一仮想円弧の下方に位置する第二仮想円弧に沿って形成され、複数の前記上側積層ゴム支承の上面は前記第一仮想円弧に沿って配置されるとともに、複数の前記上側積層ゴム支承の下面は前記第二仮想円弧に沿って配置されることを特徴とする。
In order to achieve the above object, the present invention employs the following means.
That is, the seismic isolation building according to the present invention includes a lower structure, a lower laminated rubber bearing, which is supported by the lower structure, a support which is placed on the lower side laminated rubber bearing on, the support It includes a plurality of upper laminated rubber bearing which is placed on both sides in the width direction of the lower structure at the top, a superstructure supported on the upper surface of the plurality of the upper laminated rubber bearing, a upper structure The lower surface of the support is formed along a first virtual arc that bulges downward, and the upper surface of the support body bulges downward and is substantially parallel to the first virtual arc and below the first virtual arc. A plurality of upper laminated rubber bearings are formed along the second virtual arc, and upper surfaces of the plurality of upper laminated rubber bearings are arranged along the first virtual arc, and lower surfaces of the plurality of upper laminated rubber bearings are arranged on the second virtual arc. characterized Rukoto disposed along.

このように構成された免震建物では、複数の上側積層ゴム支承は、支持体上において下部構造物の幅方向の両側に載置されるとともに、上面が下方に向かって膨らむ第一仮想円弧に沿って配置されている。上部構造物の下面は、上側積層ゴム支承の上面と対応して第一仮想円弧に沿って形成され、上側積層ゴム支承の上面に支持されている。よって、地震時には、上側積層ゴム支承が第一仮想円弧に沿って変形し、上部構造物が第一仮想円弧に沿って回転移動するため、上部構造物の端部に作用する曲げモーメントが抑制され、上側積層ゴム支承に生じる引張力が緩和される。
また、水平力については、上側積層ゴム支承及び下側積層ゴム支承がそれぞれ、並進運動することで、免震性能を発揮することができる。したがって、地震時に、免震建物を安定的に支持することができる。
また、支持体は、上面が下方に向かって膨らみ、第一仮想円弧と略平行に、第一仮想円弧の下方に位置する第二仮想円弧に沿って形成されている。つまり、支持体上に載置される上側積層ゴム支承の下面は、第一仮想円弧と略平行な第二仮想円弧に沿って形成されている。よって、上側積層ゴム支承の上面及び下面は、略平行に形成されているため、平板状に形成された鋼板と平板状に形成された鋼板とを交互に積層するだけの簡易な構成で上側積層ゴム支承を構成することができる。
In the seismically isolated building configured as described above, the plurality of upper laminated rubber bearings are placed on both sides in the width direction of the lower structure on the support, and the first virtual arc whose upper surface swells downward is formed. Are arranged along. The lower surface of the upper structure is formed along the first virtual arc corresponding to the upper surface of the upper laminated rubber bearing, and is supported on the upper surface of the upper laminated rubber bearing. Therefore, in the event of an earthquake, the upper laminated rubber bearing is deformed along the first virtual arc and the upper structure rotates and moves along the first virtual arc, so that the bending moment acting on the end of the upper structure is suppressed. The tensile force generated in the upper laminated rubber bearing is relaxed.
As for the horizontal force, the upper laminated rubber bearing and the lower laminated rubber bearing can each exhibit a seismic isolation performance by translational movement. Therefore, it is possible to stably support the base-isolated building during an earthquake.
The support body is formed along a second virtual arc located below the first virtual arc, with the upper surface bulging downward and substantially parallel to the first virtual arc. In other words, the lower surface of the upper laminated rubber bearing placed on the support is formed along a second virtual arc that is substantially parallel to the first virtual arc. Therefore, since the upper surface and the lower surface of the upper laminated rubber support are formed substantially in parallel, the upper laminated layer can be simply laminated by simply laminating the steel plate formed in a flat plate shape and the steel plate formed in a flat plate shape. A rubber bearing can be constructed.

また、本発明に係る免震建物は、複数の前記上側積層ゴム支承の上面は、複数の前記第一仮想円弧で構成される球面上に沿って配置されていてもよい。   In the base-isolated building according to the present invention, the upper surfaces of the plurality of upper laminated rubber bearings may be arranged along a spherical surface constituted by the plurality of first virtual arcs.

このように構成された免震建物では、地震時には、上側積層ゴム支承が複数の前記第一仮想円弧で構成される球面に沿って変形するため、上部構造物の端部に作用する曲げモーメントが効果的に抑制され、上側積層ゴム支承に生じる引張力が効果的に緩和される。   In the base-isolated building configured as described above, the upper laminated rubber bearing is deformed along the spherical surface constituted by the plurality of first virtual arcs at the time of an earthquake, so that a bending moment acting on the end portion of the upper structure is generated. It is effectively suppressed and the tensile force generated in the upper laminated rubber bearing is effectively relaxed.

また、本発明に係る免震建物は、前記下部構造物は、柱であり、前記上部構造物は、梁であってもよい。   In the base-isolated building according to the present invention, the lower structure may be a pillar, and the upper structure may be a beam.

このように構成された免震建物では、地震時には、柱が屋根を支持する梁を安定的に支持することができる。   In the base-isolated building configured as described above, the column can stably support the beam supporting the roof during an earthquake.

本発明に係る免震建物によれば、大スパンの大屋根架構であっても、地震時に安定的に支持することができる。   According to the base-isolated building according to the present invention, even a large-span large roof frame can be stably supported during an earthquake.

本発明の一実施形態の免震建物の下部構造物の配置を模式的に示した平面図である。It is the top view which showed typically arrangement | positioning of the lower structure of the seismic isolation building of one Embodiment of this invention. 本発明の一実施形態の免震建物の構成を模式的に示した立面図である。It is the elevation which showed typically the composition of the base isolation building of one embodiment of the present invention. 図2のA部拡大図である。It is the A section enlarged view of FIG. 本発明の一実施形態の免震建物の下部構造物と上部構造物との接合部分の分解斜視図である。It is a disassembled perspective view of the junction part of the lower structure and upper structure of the seismic isolation building of one Embodiment of this invention. 本発明の一実施形態の免震建物の上側積層ゴム支承の構成を示す正面図である。It is a front view which shows the structure of the upper laminated rubber bearing of the seismic isolation building of one Embodiment of this invention. 従来の免震建物の地震時の鉛直方向の挙動を説明する図である。It is a figure explaining the behavior of the perpendicular direction at the time of the earthquake of the conventional seismic isolation building. 従来の免震建物において、積層ゴム支承に引張力が発生する様子を示す図である。It is a figure which shows a mode that tensile force generate | occur | produces in a laminated rubber bearing in the conventional seismic isolation building. 本発明の一実施形態の免震建物において、発生する曲げモーメントを説明する図である。It is a figure explaining the bending moment which generate | occur | produces in the base-isolated building of one Embodiment of this invention. 本発明の一実施形態の免震建物において、下部構造物と上部構造物との接合部分の並進運動を示す図である。In the base-isolated building of one Embodiment of this invention, it is a figure which shows the translational motion of the junction part of a lower structure and an upper structure. 本発明の一実施形態の変形例の免震建物の構成を模式的に示した要部の立面図である。It is the elevation view of the principal part which showed typically the structure of the seismic isolation building of the modification of one Embodiment of this invention.

本発明の一実施形態に係る免震建物について、図面を用いて説明する。
図1は、本発明の一実施形態の免震建物の下部構造物の配置を模式的に示した平面図である。
図1に示すように、免震建物1は、柱(下部構造物)2間のスパンが100m程度の大スパンの建物である。
便宜上、水平方向の一方向をX方向とし、X方向と直交する水平方向をY方向とする。
The base-isolated building which concerns on one Embodiment of this invention is demonstrated using drawing.
FIG. 1 is a plan view schematically showing the arrangement of substructures of a base-isolated building according to an embodiment of the present invention.
As shown in FIG. 1, the seismic isolation building 1 is a large span building with a span between columns (substructures) 2 of about 100 m.
For convenience, one horizontal direction is defined as the X direction, and the horizontal direction orthogonal to the X direction is defined as the Y direction.

図2は、免震建物1の構成を模式的示し、X方向に沿った(Y方向から見た)立面図である。
図1及び図2に示すように、柱2は、X方向に2列、Y方向に2列、合計4箇所に設けられている。なお、柱2の配置位置、本数等は適宜設定可能である。
FIG. 2 schematically shows the configuration of the seismic isolation building 1 and is an elevational view along the X direction (viewed from the Y direction).
As shown in FIGS. 1 and 2, the pillars 2 are provided in a total of four places, two rows in the X direction and two rows in the Y direction. In addition, the arrangement position, the number, and the like of the pillars 2 can be set as appropriate.

X方向に離間した柱2間には、大梁(上部構造物)3Aが架設されている。本実施形態では、大梁3Aは、鋼材等によりトラス構造で構成されている。この大梁3Aが大屋根5を支持し、大屋根5の下方に大空間Tが形成されている。   A large beam (upper structure) 3A is installed between the pillars 2 spaced apart in the X direction. In the present embodiment, the large beam 3A has a truss structure made of steel or the like. The large beam 3 </ b> A supports the large roof 5, and a large space T is formed below the large roof 5.

大梁3Aは、X方向に延びる上弦材31と、上弦材31の下方に配置されX方向に延びる下弦材32と、上弦材31と下弦材32とを鉛直方向から傾いた斜め方向に連結する斜材33と、上弦材31と下弦材32とを鉛直方向に連結する鉛直材34と、を有している。   The large beam 3A includes an upper chord member 31 extending in the X direction, a lower chord member 32 disposed below the upper chord member 31 and extending in the X direction, and an oblique line connecting the upper chord member 31 and the lower chord member 32 in an oblique direction inclined from the vertical direction. It has the material 33 and the vertical material 34 which connects the upper chord material 31 and the lower chord material 32 in the perpendicular direction.

図3は、図2のA部拡大図である。図4は、免震建物1の柱2と大梁3Aとの接合部分の分解斜視図である。
図3及び図4に示すように、大梁3Aにおける柱2との接合部分には、曲がり部材4が設けられている。ここで、柱2の中心軸(柱2の平面視における中心(X方向の中心線とY方向の中心線の交点)を通る鉛直方向の軸)上の点P1を中心として、下方に膨らむ仮想円弧(第一仮想円弧)S1を形成する。複数の仮想円弧S1により、仮想球面B1を形成する。曲がり部材4の下面4Bは、この仮想球面B1上に配置されている。
FIG. 3 is an enlarged view of a portion A in FIG. FIG. 4 is an exploded perspective view of a joint portion between the column 2 of the base-isolated building 1 and the large beam 3A.
As shown in FIGS. 3 and 4, a bending member 4 is provided at a joint portion of the large beam 3 </ b> A with the column 2. Here, a hypothetical bulging downward centering on a point P1 on the central axis of the column 2 (vertical axis passing through the center in the plan view of the column 2 (the intersection of the center line in the X direction and the center line in the Y direction)) An arc (first virtual arc) S1 is formed. A virtual spherical surface B1 is formed by the plurality of virtual arcs S1. The lower surface 4B of the bending member 4 is disposed on the virtual spherical surface B1.

本実施形態では、曲がり部材4は、例えば一対の鋼材41が略直交に配置され、互いに溶接されて構成されている。各鋼材41は、下面4Bが仮想球面B1に沿うように形成されている。   In the present embodiment, the bending member 4 is configured by, for example, a pair of steel materials 41 being arranged substantially orthogonally and welded to each other. Each steel material 41 is formed such that the lower surface 4B is along the phantom spherical surface B1.

図1に示すように、Y方向に離間した柱2間には、大梁3Bが架設されている。なお、大梁3B間にも、大梁3Aのようなトラス構造の梁が架設されていてもよい。   As shown in FIG. 1, a large beam 3 </ b> B is installed between the columns 2 separated in the Y direction. Note that a beam having a truss structure like the large beam 3A may be provided between the large beams 3B.

図3及び図4に示すように、柱2と大梁3Aとの間には、免震装置6が設置されている。免震装置6は、柱2の上面2Tに設置される複数の下側積層ゴム支承7及びダンパー(不図示。以下同じ。)と、下側積層ゴム支承7の上面に設置される支持部材(支持体)8と、支持部材8の上面8Tに設置される複数の上側積層ゴム支承9及びダンパー(不図示。以下同じ。)と、を有している。   As shown in FIG.3 and FIG.4, the seismic isolation apparatus 6 is installed between the pillar 2 and the big beam 3A. The seismic isolation device 6 includes a plurality of lower laminated rubber bearings 7 and dampers (not shown; the same applies hereinafter) installed on the upper surface 2T of the column 2 and a support member (installed on the upper surface of the lower laminated rubber bearing 7). And a plurality of upper laminated rubber supports 9 and dampers (not shown; the same applies hereinafter) installed on the upper surface 8T of the support member 8.

各下側積層ゴム支承7は、柱2の上面2Tに固定される下部支承板71と、支持部材8の下面8Bに固定される上部支承板72、下部支承板71と上部支承板72との間に介装された積層ゴム73と、を有している。下部支承板71及び上部支承板72は、平板状に形成されている。積層ゴム73は、平板状の鋼板(不図示)と平板状のゴム(不図示)とが交互に積層されたものである。   Each of the lower laminated rubber supports 7 includes a lower support plate 71 fixed to the upper surface 2T of the column 2, an upper support plate 72 fixed to the lower surface 8B of the support member 8, a lower support plate 71, and an upper support plate 72. And a laminated rubber 73 interposed therebetween. The lower support plate 71 and the upper support plate 72 are formed in a flat plate shape. The laminated rubber 73 is obtained by alternately laminating flat steel plates (not shown) and flat rubber (not shown).

ここで、柱2の中心軸上の点P2を中心として、下方に膨らむ仮想円弧(第二仮想円弧)S2を形成する。複数の仮想円弧S2により、仮想球面B2を形成する。支持部材8の上面8Tは、この仮想球面B2上に配置されている。   Here, a virtual arc (second virtual arc) S <b> 2 that swells downward is formed around the point P <b> 2 on the central axis of the column 2. A virtual spherical surface B2 is formed by the plurality of virtual arcs S2. The upper surface 8T of the support member 8 is disposed on the phantom spherical surface B2.

本実施形態では、支持部材8は、例えば一対の鋼材81が略直交に配置され、互いに溶接されて構成されている。各鋼材81は、上面8Tが仮想球面B2に沿うように形成されている。   In the present embodiment, the support member 8 is configured by, for example, a pair of steel materials 81 being arranged substantially orthogonally and welded to each other. Each steel material 81 is formed such that the upper surface 8T is along the phantom spherical surface B2.

各上側積層ゴム支承9は、支持部材8の上面8Tに固定される下部支承板91と、大梁3Aの曲がり部材4の下面4Bに固定される上部支承板92と、下部支承板91と上部支承板92との間に介装された積層ゴム93と、を有している。   Each upper laminated rubber bearing 9 includes a lower bearing plate 91 fixed to the upper surface 8T of the support member 8, an upper bearing plate 92 fixed to the lower surface 4B of the bending member 4 of the large beam 3A, a lower bearing plate 91 and an upper bearing. And a laminated rubber 93 interposed between the plates 92.

図5は、免震建物1の上側積層ゴム支承9の構成を示す正面図である。
図5に示すように、下部支承板91の下面91Bは、支持部材8の上面8T(仮想球面B2)に沿って下方に膨らむ球面状に形成されている。上部支承板92の上面92Tは、大梁3Aの曲がり部材4の下面4B(仮想球面B1)に沿って下方に凹む球面状に形成されている。積層ゴム93は、平板状の鋼板(不図示)と平板状のゴム(不図示)とが交互に積層されたものである。
FIG. 5 is a front view showing the configuration of the upper laminated rubber bearing 9 of the seismic isolation building 1.
As shown in FIG. 5, the lower surface 91 </ b> B of the lower support plate 91 is formed in a spherical shape that swells downward along the upper surface 8 </ b> T (virtual spherical surface B <b> 2) of the support member 8. The upper surface 92T of the upper support plate 92 is formed in a spherical shape that is recessed downward along the lower surface 4B (virtual spherical surface B1) of the bending member 4 of the large beam 3A. The laminated rubber 93 is obtained by alternately laminating flat steel plates (not shown) and flat rubber (not shown).

次に、上記の免震建物1の地震時の挙動について説明する。
まず、本発明のように積層ゴムが上下に分かれて2層に配置されていない、従来の構成、つまり柱2Xと大梁3Xとの間に一層の積層ゴム支承が配置された場合の挙動について説明する。
Next, the behavior of the seismic isolation building 1 during an earthquake will be described.
First, a description will be given of a conventional configuration in which laminated rubber is not divided into two layers as in the present invention, that is, when a single laminated rubber bearing is arranged between the pillar 2X and the large beam 3X. To do.

図6は、従来の免震建物1の地震時の鉛直方向の挙動を説明する図である。
図6に示すように、地震時には、屋根の自重または上下地震動による屋根面の応答により、大梁3Xの端部3Yには大きな曲げモーメントが作用する。
FIG. 6 is a diagram for explaining the vertical behavior of the conventional base-isolated building 1 during an earthquake.
As shown in FIG. 6, during an earthquake, a large bending moment acts on the end portion 3Y of the large beam 3X due to the roof weight or the response of the roof surface due to vertical earthquake motion.

図7は、従来の免震建物において、積層ゴム支承6Xに引張力が発生する様子を示す図である。
図7に示すように、大梁3Xの端部3Yに作用する曲げモーメントを負担するために、積層ゴム支承6Xには鉛直力が生じ、一端部6Y側には引張力が作用する。
FIG. 7 is a diagram illustrating a state in which a tensile force is generated in the laminated rubber bearing 6X in a conventional seismic isolation building.
As shown in FIG. 7, in order to bear the bending moment acting on the end portion 3Y of the large beam 3X, a vertical force is generated in the laminated rubber support 6X, and a tensile force is applied on the one end portion 6Y side.

図8は、上記に示す免震建物1において、作用する曲げモーメントを説明する図である。図9は、上記に示す免震建物1において、柱2と大梁3Aとの接合部分の並進運動を示す図である。
図8に示すように、上側積層ゴム支承9が仮想球面B1に沿って変形するため、免震建物1では大梁3Aの端部3Zに作用する曲げモーメントは抑えられるとともに、上側積層ゴム支承9に生じる引張力が緩和される。一方、地震時の水平動については、図9に示すように並進運動が可能であり、免震性能を発揮することができる。
FIG. 8 is a diagram for explaining the bending moment acting in the base-isolated building 1 described above. FIG. 9 is a diagram illustrating the translational motion of the joint portion between the column 2 and the large beam 3A in the base-isolated building 1 described above.
As shown in FIG. 8, since the upper laminated rubber bearing 9 is deformed along the phantom spherical surface B1, the bending moment acting on the end 3Z of the large beam 3A is suppressed in the base-isolated building 1, and the upper laminated rubber bearing 9 The resulting tensile force is relaxed. On the other hand, the horizontal movement at the time of an earthquake can be translated as shown in FIG. 9, and can exhibit seismic isolation performance.

このように構成された免震建物1では、複数の上側積層ゴム支承9は、支持部材8上において柱2のX方向及びY方向(幅方向)の両側に載置されるとともに、上面92Tが下方に向かって膨らむ仮想球面B1に沿って配置されている。大梁3Aの下面4Bは、上側積層ゴム支承9の上面92Tと対応して仮想球面B1に沿って形成され、上側積層ゴム支承9の上面92Tに支持されている。よって、地震時には、上側積層ゴム支承9が仮想球面B1に沿って変形し、大梁3Aが仮想球面B1に沿って回転移動するため、大梁3Aの端部3Zに作用する曲げモーメントが抑制され、上側積層ゴム支承9に生じる引張力が緩和される。したがって、柱2が大屋根5を支持する大梁3Aを安定的に支持することができる。
また、水平力については、上側積層ゴム支承9及び下側積層ゴム支承7がそれぞれ、並進運動することで、免震性能を発揮することができる。したがって、地震時に、免震建物1を安定的に支持することができる。
In the base-isolated building 1 configured as described above, the plurality of upper laminated rubber bearings 9 are placed on both sides of the pillar 2 in the X direction and the Y direction (width direction) on the support member 8, and the upper surface 92 </ b> T is formed. It arrange | positions along the virtual spherical surface B1 which swells toward the downward direction. The lower surface 4B of the large beam 3A is formed along the virtual spherical surface B1 corresponding to the upper surface 92T of the upper laminated rubber bearing 9, and is supported on the upper surface 92T of the upper laminated rubber bearing 9. Therefore, in the event of an earthquake, the upper laminated rubber bearing 9 is deformed along the phantom spherical surface B1, and the large beam 3A rotates and moves along the phantom spherical surface B1, so that the bending moment acting on the end 3Z of the large beam 3A is suppressed. The tensile force generated in the laminated rubber support 9 is relaxed. Accordingly, the pillar 2 can stably support the large beam 3A that supports the large roof 5.
As for the horizontal force, the upper laminated rubber bearing 9 and the lower laminated rubber bearing 7 can each exhibit a seismic isolation performance by translational movement. Therefore, the seismic isolation building 1 can be stably supported at the time of an earthquake.

また、支持部材8は、上面8Tが下方に向かって膨らみ、仮想球面B1と略平行に、仮想球面B1の下方に位置する仮想球面B2に沿って形成されている。つまり、支持部材8上に載置される上側積層ゴム支承9の下面91Bは、仮想球面B1と略平行な仮想球面B2に沿って形成されている。よって、上側積層ゴム支承9の上面92T及び下面91Bは、略平行に形成されているため、平板状に形成された鋼板と平板状に形成された鋼板とを交互に積層するだけの簡易な構成で上側積層ゴム支承9を構成することができる。 Further, the support member 8 is formed along a virtual spherical surface B2 positioned below the virtual spherical surface B1 so that the upper surface 8T swells downward and is substantially parallel to the virtual spherical surface B1. That is, the lower surface 91B of the upper laminated rubber bearing 9 placed on the support member 8 is formed along a virtual spherical surface B2 substantially parallel to the virtual spherical surface B1. Therefore, since the upper surface 92T and the lower surface 91B of the upper laminated rubber support 9 are formed substantially in parallel, a simple configuration in which the steel plates formed in a flat plate shape and the steel plates formed in a flat plate shape are stacked alternately. Thus, the upper laminated rubber bearing 9 can be configured.

(変形例)
次に、本発明の変形例について、主に図10を用いて説明する。
以下の変形例において、前述した実施形態で用いた部材と同一の部材には同一の符号を付して、その説明を省略する。
図10は、本発明の一実施形態の変形例の免震建物の構成を模式的に示した要部の立面図である。
図10に示すように、免震建物1Aでは、柱2の上部には、柱側曲がり部材10が設けられている。柱2の中心軸上の点を中心として、上方に膨らむ仮想円弧S3を形成する。複数の仮想円弧S3により、仮想球面B3を形成する。下側積層ゴム支承7Aの下面7Cは、柱側曲がり部材10の上面に沿って上方に凹む球面状に形成されている。支持部材8Aの下面8Cは、上方に膨らむ球面状に形成されている。下側積層ゴム支承7Aの上面は、支持部材8Aの下面8Cに沿って上方に膨らむ球面状に形成されている。積層ゴム73は、平板状の鋼板と平板状のゴムとが交互に積層されたものである。
(Modification)
Next, a modification of the present invention will be described mainly with reference to FIG.
In the following modifications, the same members as those used in the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.
FIG. 10 is an elevation view of the main part schematically showing the configuration of the base-isolated building according to the modification of the embodiment of the present invention.
As shown in FIG. 10, in the seismic isolation building 1 </ b> A, a column-side bending member 10 is provided on the top of the column 2. A virtual arc S3 that swells upward is formed around a point on the central axis of the column 2. A virtual spherical surface B3 is formed by the plurality of virtual arcs S3. A lower surface 7 </ b> C of the lower laminated rubber bearing 7 </ b> A is formed in a spherical shape that is recessed upward along the upper surface of the column side bending member 10. The lower surface 8C of the support member 8A is formed in a spherical shape that swells upward. The upper surface of the lower laminated rubber support 7A is formed in a spherical shape that swells upward along the lower surface 8C of the support member 8A. The laminated rubber 73 is obtained by alternately laminating flat steel plates and flat rubbers.

大きな地震や、大断面のメガ柱であって柱2間のスパンが大きい場合、またはメガ柱の頂部の回転量が大きい場合には、免震装置6Aには大きな回転量が求められる。この場合、免震建物1Aでは、上側積層ゴム支承9及び下側積層ゴム支承7Aがそれぞれ変形するため、大梁3Aの端部3Zに作用する曲げモーメントがさらに抑制され、上側積層ゴム支承9に生じる引張力がより緩和される。   In the case of a large earthquake, a mega pillar with a large cross section and a large span between the pillars 2 or a large amount of rotation of the top of the mega pillar, a large amount of rotation is required for the seismic isolation device 6A. In this case, in the seismic isolation building 1A, since the upper laminated rubber bearing 9 and the lower laminated rubber bearing 7A are respectively deformed, the bending moment acting on the end 3Z of the large beam 3A is further suppressed, and the upper laminated rubber bearing 9 is generated. The tensile force is more relaxed.

なお、上述した実施の形態において示した組立手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。   It should be noted that the assembly procedure shown in the above-described embodiment, or the shapes and combinations of the constituent members are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.

例えば、上記に示す実施形態では、上側積層ゴム支承9の下面91Bが仮想球面B2上に配置されているが、本発明はこれに限られない。X方向に沿う断面が同一の円弧状をなす半月状に沿って、上側積層ゴム支承の下面が配置されていてもよい。   For example, in the embodiment described above, the lower surface 91B of the upper laminated rubber bearing 9 is disposed on the phantom spherical surface B2, but the present invention is not limited to this. The lower surface of the upper laminated rubber bearing may be arranged along a half-moon shape in which the cross section along the X direction forms the same arc shape.

1…免震建物
2…柱(下部構造物)
3A…大梁(上部構造物)
4…曲がり部材
5…大屋根
6…免震装置
7…下側積層ゴム支承
8…支持部材(支持体)
9…上側積層ゴム支承
S1…仮想円弧(第一仮想円弧)
S2…仮想円弧(第二仮想円弧)
B1…仮想球面(球面)
1 ... Seismic isolation building 2 ... Pillar (substructure)
3A ... Large beam (superstructure)
4 ... Bending member 5 ... Large roof 6 ... Seismic isolation device 7 ... Lower laminated rubber bearing 8 ... Support member (support)
9 ... Upper laminated rubber bearing S1 ... Virtual arc (first virtual arc)
S2 ... Virtual arc (second virtual arc)
B1 ... Virtual spherical surface (spherical surface)

Claims (3)

下部構造物と、
下部構造物に支持された下側積層ゴム支承と、
該下側積層ゴム支承上に載置された支持体と、
該支持体上において前記下部構造物の幅方向の両側に載置された複数の上側積層ゴム支承と
複数の該上側積層ゴム支承の上面に支持された上部構造物と、を備え
該上部構造物の下面は、下方に向かって膨らむ第一仮想円弧に沿って形成され、
前記支持体の上面は、下方に向かって膨らみ、前記第一仮想円弧と略平行で、該第一仮想円弧の下方に位置する第二仮想円弧に沿って形成され、
複数の前記上側積層ゴム支承の上面は前記第一仮想円弧に沿って配置されるとともに、複数の前記上側積層ゴム支承の下面は前記第二仮想円弧に沿って配置されることを特徴とする免震建物。
A substructure,
A lower laminated rubber bearing, which is supported by the lower structure,
A support placed on the lower laminated rubber bearing;
A plurality of upper laminated rubber bearing which is placed on both sides in the width direction of the lower structure on the support,
With a superstructure which is supported on the upper surface of the plurality of the upper laminated rubber bearing, a,
The lower surface of the upper structure is formed along a first virtual arc that swells downward,
The upper surface of the support swells downward, is formed along a second virtual arc that is substantially parallel to the first virtual arc and is positioned below the first virtual arc,
Base upper surface of the plurality of the upper laminated rubber bearing with are disposed along the first virtual circle, the lower surface of the plurality of the upper laminated rubber bearing, characterized in Rukoto disposed along said second virtual circle Seismic building.
複数の前記上側積層ゴム支承の上面は、複数の前記第一仮想円弧で構成される球面上に沿って配置されていることを特徴とする請求項に記載の免震建物。 2. The base-isolated building according to claim 1 , wherein upper surfaces of the plurality of upper laminated rubber bearings are arranged along a spherical surface constituted by the plurality of first virtual arcs. 前記下部構造物は、柱であり、
前記上部構造物は、屋根を支持する梁であることを特徴とする請求項1または2に記載の免震建物。
The substructure is a pillar;
The upper structure, seismic isolation building according to claim 1 or 2, characterized in that a beam for supporting the roof.
JP2015248994A 2015-12-21 2015-12-21 Seismic isolation building Active JP6590209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248994A JP6590209B2 (en) 2015-12-21 2015-12-21 Seismic isolation building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248994A JP6590209B2 (en) 2015-12-21 2015-12-21 Seismic isolation building

Publications (2)

Publication Number Publication Date
JP2017115325A JP2017115325A (en) 2017-06-29
JP6590209B2 true JP6590209B2 (en) 2019-10-16

Family

ID=59233755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248994A Active JP6590209B2 (en) 2015-12-21 2015-12-21 Seismic isolation building

Country Status (1)

Country Link
JP (1) JP6590209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024311B2 (en) * 2017-10-17 2022-02-24 株式会社大林組 Structures and vibration control methods for structures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4439694B2 (en) * 2000-08-04 2010-03-24 株式会社竹中工務店 High-damping frame of high-rise building
JP5252189B2 (en) * 2007-08-03 2013-07-31 清水建設株式会社 Multilayer structure
JP6329388B2 (en) * 2014-02-24 2018-05-23 株式会社竹中工務店 Seismic isolation structure

Also Published As

Publication number Publication date
JP2017115325A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
EP2894365B1 (en) Seismic base isolation device
JP5757197B2 (en) Damping structure
JP2007191987A (en) Earthquake resisting brace
JP2020033693A (en) Wooden frame
JP6590209B2 (en) Seismic isolation building
JP2013060754A (en) Vibration control column and its structure
JP2013002192A (en) Tension type base-isolation bearing device
JP2007071243A (en) Friction damper
JP2010043415A (en) Seismic control device
JP2008075314A (en) Aseismic control structure of connected buildings
JP2011149229A (en) Structure and seismic strengthening method
JP6846219B2 (en) Building seismic isolation structure
JP5379590B2 (en) Diagonal column frame
JP2019082092A (en) Base-isolated building
JP2013221337A (en) Column base pin structure
JP5053554B2 (en) Vibration control device
JP2011190619A (en) Vibration control damper
JP2004225347A (en) Seismic control structure of structure
JP7286904B2 (en) building
JP7024311B2 (en) Structures and vibration control methods for structures
JP6896443B2 (en) Pillar structure
JP5613190B2 (en) Seismic control building
JP6718713B2 (en) Roof structure
JP6218217B2 (en) Frame and building
JP2015081448A (en) Structural member, frame body, and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6590209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150