JP6585174B2 - 狭帯域化レーザ装置 - Google Patents

狭帯域化レーザ装置 Download PDF

Info

Publication number
JP6585174B2
JP6585174B2 JP2017534030A JP2017534030A JP6585174B2 JP 6585174 B2 JP6585174 B2 JP 6585174B2 JP 2017534030 A JP2017534030 A JP 2017534030A JP 2017534030 A JP2017534030 A JP 2017534030A JP 6585174 B2 JP6585174 B2 JP 6585174B2
Authority
JP
Japan
Prior art keywords
duty
spectrum width
laser
narrow
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017534030A
Other languages
English (en)
Other versions
JPWO2017026000A1 (ja
Inventor
博志 古里
博志 古里
石田 啓介
啓介 石田
太田 毅
毅 太田
貴仁 熊▲崎▼
貴仁 熊▲崎▼
若林 理
理 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gigaphoton Inc
Original Assignee
Gigaphoton Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gigaphoton Inc filed Critical Gigaphoton Inc
Publication of JPWO2017026000A1 publication Critical patent/JPWO2017026000A1/ja
Application granted granted Critical
Publication of JP6585174B2 publication Critical patent/JP6585174B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0078Frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/134Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1398Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length by using a supplementary modulation of the output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

本開示は、狭帯域化レーザ装置に関する。
半導体集積回路の微細化、高集積化につれて、半導体露光装置においては解像力の向上が要請されている。半導体露光装置を以下、単に「露光装置」という。このため露光用光源から出力される光の短波長化が進められている。露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられている。現在、露光用のガスレーザ装置としては、波長248nmの紫外線を出力するKrFエキシマレーザ装置ならびに、波長193nmの紫外線を出力するArFエキシマレーザ装置が用いられている。
現在の露光技術としては、露光装置側の投影レンズとウエハ間の間隙を液体で満たして、当該間隙の屈折率を変えることによって、露光用光源の見かけの波長を短波長化する液浸露光が実用化されている。ArFエキシマレーザ装置を露光用光源として用いて液浸露光が行われた場合は、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光という。ArF液浸露光はArF液浸リソグラフィーとも呼ばれる。
KrF、ArFエキシマレーザ装置の自然発振におけるスペクトル線幅は約350〜400pmと広いため、露光装置側の投影レンズによってウエハ上に縮小投影されるレーザ光(紫外線光)の色収差が発生して解像力が低下する。そこで色収差が無視できる程度となるまでガスレーザ装置から出力されるレーザ光のスペクトル線幅を狭帯域化する必要がある。スペクトル線幅はスペクトル幅とも呼ばれる。このためガスレーザ装置のレーザ共振器内には狭帯域化素子を有する狭帯域化モジュール(Line Narrowing Module)が設けられ、この狭帯域化モジュールによりスペクトル幅の狭帯域化が実現されている。なお、狭帯域化素子はエタロンやグレーティング等であってもよい。このようにスペクトル幅が狭帯域化されたレーザ装置を狭帯域化レーザ装置という。
米国特許第7643522号明細書 特開2008−098282号公報 米国特許第6870865号明細書 米国特許第7903700号明細書
概要
本開示の1つの観点に係る狭帯域化レーザ装置は、第1のバースト発振と、第1のバースト発振の次に行われる第2のバースト発振と、を含む複数回のバースト発振を行ってパルスレーザ光を出力する狭帯域化レーザ装置であって、レーザ共振器と、レーザ共振器の間に配置されたチャンバと、チャンバに配置された一対の電極と、一対の電極にパルス電圧を印加する電源と、レーザ共振器に配置された波長選択素子と、レーザ共振器に配置されたスペクトル幅可変部と、第2のバースト発振が開始される時より前の所定期間におけるデューティーと、第1のバースト発振が終了した時から第2のバースト発振が開始される時までの休止時間と、を計測し、デューティーと休止時間とに基づいて、スペクトル幅可変部を制御する制御部と、を備え、制御部は、所定期間より短い所定の時間が経過するごとに、デューティーを新たに計測して、デューティーを更新してもよい。
本開示の他の1つの観点に係る狭帯域化レーザ装置は、第1のバースト発振と、第1のバースト発振の次に行われる第2のバースト発振と、を含む複数回のバースト発振を行ってパルスレーザ光を出力する狭帯域化レーザ装置であって、レーザ共振器と、レーザ共振器の間に配置された第1のチャンバと、第1のチャンバに配置された第1の一対の電極と、第1の一対の電極にパルス電圧を印加する第1の電源と、レーザ共振器に配置された波長選択素子と、レーザ共振器から出力されたパルスレーザ光の光路に配置された第2のチャンバと、第2のチャンバに配置された第2の一対の電極と、第2の一対の電極にパルス電圧を印加する第2の電源と、第2のバースト発振が開始される時より前の所定期間におけるデューティーと、第1のバースト発振が終了した時から第2のバースト発振が開始される時までの休止時間と、を計測し、デューティーと休止時間とに基づいて、第1の一対の電極の間における放電のタイミングと第2の一対の電極の間における放電のタイミングとの差を制御する制御部と、を備え、制御部は、所定期間より短い所定の時間が経過するごとに、デューティーを新たに計測して、デューティーを更新してもよい。
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係る狭帯域化レーザ装置の構成を模式的に示す。 図2は、図1に示されるスペクトル幅検出器16dに含まれるエタロン分光器の具体的構成の例を示す。 図3は、スペクトル幅の定義の例を説明する図である。 図4は、スペクトル幅制御部30aによるスペクトル幅の制御の基本概念を説明する図である。 図5は、スペクトル幅制御部30aによるスペクトル幅の制御の基本概念を説明する図である。 図6は、休止時間Trの長さと、スペクトル幅変化ΔE95sとの関係の例を示す。 図7は、図1に示されるスペクトル幅制御部30aによるスペクトル幅制御の処理を示すフローチャートである。 図8は、図7に示されるフローチャートの一部の処理について、そのサブルーチンを示すフローチャートである。 図9は、図7に示されるフローチャートの一部の処理について、そのサブルーチンを示すフローチャートである。 図10は、図7に示されるフローチャートの一部の処理について、そのサブルーチンを示すフローチャートである。 図11は、休止時間Trに対するスペクトル幅変化ΔE95sの関係を示すデータテーブルの構造を示す。 図12は、本開示の課題を説明する図である。 図13は、本開示の課題を説明する図である。 図14は、本開示の第1の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。 図15は、前回のバースト発振時のデューティーDの値ごとに、休止時間Trの長さと、スペクトル幅変化ΔE95sとの関係を示す。 図16は、前回のバースト発振中のデューティーDと、休止時間Trとに対するスペクトル幅変化ΔE95sの関係を示すデータテーブルの構造を示す。 図17は、図14に示されるスペクトル幅制御部30aによるスペクトル幅制御の処理を示すフローチャートである。 図18は、図17に示されるフローチャートの一部の処理について、そのサブルーチンを示すフローチャートである。 図19は、図17に示されるフローチャートの一部の処理について、そのサブルーチンを示すフローチャートである。 図20は、図14に示されるデューティー計測部30cによるデューティー計測の処理を示すフローチャートである。 図21Aは、図14に示されるスペクトル幅可変部15の構成を模式的に示す。 図21Bは、図14に示されるスペクトル幅可変部15の構成を模式的に示す。 図22は、本開示の第2の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。 図23は、図22に示されるスペクトル幅制御部30aの処理を示すフローチャートである。 図24は、図23に示される調整発振の処理の詳細を示すフローチャートである。 図25は、図24に示される調整発振の処理の詳細を示すフローチャートである。 図26は、本開示の第3の実施形態に係る狭帯域化レーザ装置におけるスペクトル幅制御部30aの処理を示すフローチャートである。 図27は、本開示の第3の実施形態に係る狭帯域化レーザ装置におけるスペクトル幅制御部30aの処理を示すフローチャートである。 図28は、本開示の第3の実施形態に係る狭帯域化レーザ装置におけるスペクトル幅制御部30aの処理を示すフローチャートである。 図29は、第1〜第3の実施形態におけるデューティー計測部の処理の第1の変形例を示すフローチャートである。 図30は、第1〜第3の実施形態におけるデューティー計測部の処理の第2の変形例を示すフローチャートである。 図31は、本開示の第4の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。 図32は、MOPO方式のレーザ装置におけるマスターオシレータとパワーオシレータの放電タイミングの遅延時間と、パルスエネルギー及びスペクトル幅との関係を示す。 図33は、制御部の概略構成を示すブロック図である。
実施形態
<内容>
1.比較例に係る狭帯域化レーザ装置
1.1 レーザチャンバ
1.2 狭帯域化モジュール
1.3 スペクトル幅可変部
1.4 エネルギーセンサ
1.5 エタロン分光器
1.6 制御部
1.7 動作
1.8 課題
2.デューティーに基づいてスペクトル幅を制御する狭帯域化レーザ装置(第1の実施形態)
2.1 構成
2.2 動作
2.3 スペクトル幅可変部の詳細
3.調整発振によるデータ更新を行う狭帯域化レーザ装置(第2の実施形態)
3.1 構成
3.2 動作
3.2.1 メインフロー
3.2.2 調整発振の詳細
4.近似曲線を用いてスペクトル幅を制御する狭帯域化レーザ装置(第3の実施形態)
4.1 スペクトル幅の制御
4.2 調整発振
5.デューティー計測の変形例
5.1 第1の変形例
5.2 第2の変形例
6.MOPO間の同期によりスペクトル幅を制御する狭帯域化レーザ装置(第4の実施形態)
7.制御部の構成
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例に係る狭帯域化レーザ装置
図1は、比較例に係る狭帯域化レーザ装置の構成を模式的に示す。図1に示される狭帯域化レーザ装置は、レーザチャンバ10と、一対の放電電極11a及び11bと、充電器12と、パルスパワーモジュール(PPM)13と、狭帯域化モジュール14と、スペクトル幅可変部15と、を含んでもよい。狭帯域化レーザ装置は、さらに、センサユニット16と、レーザ制御部30と、を含んでもよい。狭帯域化レーザ装置は、露光装置4に入射させるためのパルスレーザ光を出力するエキシマレーザ装置であってもよい。
図1においては、一対の放電電極11a及び11bの間の放電方向に略平行な方向からみた狭帯域化レーザ装置が示されている。放電電極11bは、放電電極11aよりも紙面の奥行側に位置してもよい。狭帯域化レーザ装置から出力されるパルスレーザ光の進行方向は、Z方向であってよい。一対の放電電極11a及び11bの間の放電方向は、V方向又は−V方向であってよい。これらの両方に垂直な方向は、H方向であってよい。
1.1 レーザチャンバ
レーザチャンバ10は、例えば、レアガスとしてアルゴンガスやクリプトンガス、ハロゲンガスとしてフッ素ガスや塩素ガス、バッファガスとしてネオンガスやヘリュームガスを含むレーザガスが封入されるチャンバでもよい。レーザチャンバ10の両端にはウインドウ10a及び10bが設けられてもよい。
一対の放電電極11a及び11bは、レーザ媒質を放電により励起するための電極として、レーザチャンバ10内に配置されてもよい。パルスパワーモジュール13には、充電器12が接続されてもよい。パルスパワーモジュール13は、図示しない充電コンデンサと、スイッチ13aと、を含んでいてもよい。充電器12の出力は、充電コンデンサに接続され、この充電コンデンサは、一対の放電電極11a及び11b間に高電圧を印加するための電気エネルギーを保持し得る。レーザ制御部30からスイッチ13aにトリガ信号が入力されて、スイッチ13aがOFFからONになると、パルスパワーモジュール13は、充電器12に保持されていた電気エネルギーからパルス状の高電圧を生成し得る。このパルス状の高電圧が、一対の放電電極11a及び11b間に印加されてもよい。
一対の放電電極11a及び11b間に高電圧が印加されると、一対の放電電極11a及び11b間に放電が起こり得る。この放電のエネルギーにより、レーザチャンバ10内のレーザ媒質が励起されて高エネルギー準位に移行し得る。励起されたレーザ媒質が、その後低エネルギー準位に移行するとき、そのエネルギー準位差に応じた光を放出し得る。
図1に示されるように、ウインドウ10a及び10bは、これらのウインドウに対する光の入射面とHZ平面とが略一致し、かつ、この光の入射角度が略ブリュースター角となるように配置されてもよい。レーザチャンバ10内で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射してもよい。
1.2 狭帯域化モジュール
狭帯域化モジュール14は、2つのプリズム14a及び14bと、グレーティング14cと、を含んでもよい。プリズム14a、プリズム14b、及びグレーティング14cは、それぞれ図示しないホルダに支持されてもよい。狭帯域化モジュール14は、本開示の波長選択素子を構成し得る。
プリズム14a及び14bは、レーザチャンバ10のウインドウ10aから出射された光のH方向のビーム幅を拡大させて、その光をグレーティング14cに入射させてもよい。また、プリズム14a及び14bは、グレーティング14cからの反射光のH方向のビーム幅を縮小させるとともに、その光を、ウインドウ10aを介して、レーザチャンバ10内の放電空間に戻してもよい。
グレーティング14cは、表面の物質が高反射率の材料によって構成され、表面に多数の溝が所定間隔で形成されていてもよい。各溝は例えば直角三角形の溝であってもよい。プリズム14a及び14bからグレーティング14cに入射した光は、これらの溝によって反射されるとともに、光の波長に応じた方向に回折させられてもよい。グレーティング14cは、プリズム14a及び14bからグレーティング14cに入射する光の入射角と、所望波長の回折光の回折角とが一致するようにリトロー配置されてもよい。これにより、所望波長付近の光がプリズム14a及び14bを介してレーザチャンバ10に戻されてもよい。
1.3 スペクトル幅可変部
スペクトル幅可変部15は、平凹シリンドリカルレンズ15aと、平凸シリンドリカルレンズ15bとを含んでもよい。平凹シリンドリカルレンズ15aは、平凸シリンドリカルレンズ15bよりもレーザチャンバ10に近い位置に配置されてもよい。平凹シリンドリカルレンズ15aの凹面と、平凸シリンドリカルレンズ15bの凸面とが向き合うように、これらのレンズが配置されてもよい。平凹シリンドリカルレンズ15aは、リニアステージ15cによって、Z方向又は−Z方向に移動可能とされていてもよい。リニアステージ15cは、ドライバ15dによって駆動されてもよい。平凸シリンドリカルレンズ15bの平面には、部分反射膜がコーティングされていてもよい。従って、平凸シリンドリカルレンズ15bを含むスペクトル幅可変部15は、レーザチャンバ10のウインドウ10bから出力される光のうちの一部を透過させて出力し、他の一部を反射させてレーザチャンバ10内に戻してもよい。
平凹シリンドリカルレンズ15aをZ方向又は−Z方向に移動させることにより、レーザチャンバ10からスペクトル幅可変部15に入射してレーザチャンバ10に戻される光の波面が調節されてもよい。波面が調節されることにより、狭帯域化モジュール14によって選択される光のスペクトル幅が変更されてもよい。
レーザチャンバ10と狭帯域化モジュール14との間に、ビーム幅を制限するスリット10cが配置されてもよい。レーザチャンバ10とスペクトル幅可変部15との間に、ビーム幅を制限するスリット10dが配置されてもよい。
狭帯域化モジュール14とスペクトル幅可変部15とが、光共振器を構成してもよい。レーザチャンバ10から出射した光は、狭帯域化モジュール14とスペクトル幅可変部15との間で往復し、放電電極11a及び11bの間の放電空間を通過する度に増幅されレーザ発振し得る。レーザ光は、狭帯域化モジュール14で折り返される度にスペクトル幅が狭帯域化され得る。さらに、上述したウインドウ10a及び10bの配置によって、H方向の偏光成分が選択され得る。こうして増幅されたレーザ光が、スペクトル幅可変部15から露光装置4に向けて出力され得る。
1.4 エネルギーセンサ
スペクトル幅可変部15と露光装置4との間のパルスレーザ光の光路には、センサユニット16が配置されてもよい。センサユニット16は、ビームスプリッタ16a及び16bと、パルスエネルギー検出器16cと、スペクトル幅検出器16dと、を含んでもよい。ビームスプリッタ16aは、スペクトル幅可変部15から出力されたパルスレーザ光を高い透過率で透過させ、スペクトル幅可変部15から出力されたパルスレーザ光の一部を反射してもよい。ビームスプリッタ16bは、ビームスプリッタ16aによって反射されたパルスレーザ光の光路に配置されていてもよい。ビームスプリッタ16bは、ビームスプリッタ16aによって反射されたパルスレーザ光の一部を透過させ、ビームスプリッタ16aによって反射されたパルスレーザ光の他の一部を反射してもよい。
パルスエネルギー検出器16cは、ビームスプリッタ16bによって反射されたパルスレーザ光の光路に配置されてもよい。パルスエネルギー検出器16cは、ビームスプリッタ16bによって反射されたパルスレーザ光のパルスエネルギーを検出してもよい。パルスエネルギー検出器16cは、検出されたパルスエネルギーのデータを、レーザ制御部30に出力してもよい。パルスエネルギー検出器16cは、フォトダイオード、光電管、あるいは焦電素子であってもよい。
スペクトル幅検出器16dは、ビームスプリッタ16bを透過したパルスレーザ光の光路に配置されてもよい。スペクトル幅検出器16dは、ビームスプリッタ16bを透過したパルスレーザ光のスペクトル幅を検出してもよい。スペクトル幅検出器16dは、検出されたスペクトル幅のデータを、レーザ制御部30に出力してもよい。スペクトル幅検出器16dは、エタロン分光器を含んでもよい。エタロン分光器の具体的構成については、図2を参照しながら後述する。
1.5 エタロン分光器
図2は、図1に示されるスペクトル幅検出器16dに含まれるエタロン分光器の具体的構成の例を示す。エタロン分光器は、拡散プレート16eと、エタロン16fと、集光レンズ16gと、ラインセンサ16hと、を含んでもよい。
拡散プレート16eは、表面に多数の凹凸を有する透過型の光学素子であってもよい。拡散プレート16eは、拡散プレート16eに入射したパルスレーザ光を散乱光として透過させてもよい。拡散プレート16eを透過した散乱光は、エタロン16fに入射してもよい。
エタロン16fは、2枚の所定の反射率Rの部分反射ミラーを含むエアギャップエタロンであってもよい。このエアギャップエタロンにおいては、2枚の部分反射ミラーが、所定距離のエアギャップdを有して対向し、スペーサを介して貼りあわせられていてもよい。
エタロン16fに入射した光の入射角θに応じて、2枚の部分反射ミラーの間で往復せずにエタロン16fを透過する光と、2枚の部分反射ミラーの間で1回往復した後でエタロン16fを透過する光と、の光路差は異なり得る。この光路差が波長λの整数m倍の時に、エタロン16fに入射した光は、2枚の部分反射ミラーの間で往復せずにエタロン16fを透過する光と、2枚の部分反射ミラーの間で1回、2回、・・・、k回往復した後でエタロン16fをそれぞれ透過する複数の光と、が干渉し、高い透過率でエタロン16fを透過し得る。
エタロンの基本式を以下に示す。
mλ=2ndcosθ (1)
ここで、nはエアギャップ間での屈折率であってもよい。
エタロン16fに入射した波長λの光は、(1)式を満たす入射角θになった時に、高い透過率でエタロンを通過し得る。
従って、エタロン16fに入射する光の波長に応じて、エタロン16fを高い透過率で透過する光の入射角θが異なり得る。エタロン16fを透過した光は、集光レンズ16gに入射してもよい。
集光レンズ16gは、集光性能を有する光学素子であってもよい。集光レンズ16gを透過した光は、集光レンズ16gから集光レンズ16gの焦点距離fに相当する位置に配置されたラインセンサ16hに入射してもよい。集光レンズ16gを透過した光は、ラインセンサ16hにおいて干渉縞を形成し得る。
上述の(1)式から、この干渉縞の半径の2乗は、パルスレーザ光の波長λと比例関係となり得る。
ラインセンサ16hは、集光レンズ16gを透過した光を受光し、干渉縞を検出してもよい。この干渉縞に基づいて、スペクトル幅検出器16dに含まれている図示しない演算回路が、パルスレーザ光に含まれる波長成分を検出し、スペクトル幅を算出してもよい。スペクトル幅のデータが、レーザ制御部30に出力されてもよい。あるいは、上述の演算回路の機能の全部又は一部がレーザ制御部30に備えられていてもよい。また、ラインセンサ16hの代わりに、図示しない1次元または2次元のイメージセンサが用いられてもよい。
図3は、スペクトル幅の定義の例を説明する図である。図3には、パルスレーザ光のスペクトル波形が示されている。図3に示されるように、パルスレーザ光の全エネルギーのうち、ピーク波長λを中心として95%を占める部分の全幅を、本明細書においてはスペクトル幅E95と称する。スペクトル幅E95は、スペクトル純度とも言われる。スペクトル幅E95は、以下の式におけるΔλに相当する。なお、g(λ+λ)は、スペクトル波形のうちの波長(λ+λ)におけるエネルギーである。
Figure 0006585174
1.6 制御部
図1を再び参照し、露光装置4は、露光装置制御部40を含んでいてもよい。露光装置制御部40は、図示しないウエハステージの移動などの制御を行ってもよい。露光装置制御部40は、レーザ制御部30に対し、目標パルスエネルギーのデータと、目標スペクトル幅のデータと、トリガ信号とを出力してもよい。
レーザ制御部30は、パルスエネルギー検出器16cから受信したパルスエネルギーのデータと、露光装置制御部40から受信した目標パルスエネルギーのデータとに基づいて、充電器12の充電電圧を設定してもよい。これにより、狭帯域化レーザ装置から出力されるパルスレーザ光のパルスエネルギーが目標パルスエネルギーに近づけられてもよい。
レーザ制御部30は、スペクトル幅制御部30aを含んでいてもよい。スペクトル幅制御部30aは、レーザ制御部30に含まれる後述のメモリ1002にロードされたプログラムモジュールとして構成されていてもよい。
スペクトル幅制御部30aは、スペクトル幅検出器16dから受信したスペクトル幅のデータと、露光装置制御部40から受信した目標スペクトル幅のデータとに基づいて、ドライバ15dを介してスペクトル幅可変部15を制御してもよい。これにより、狭帯域化レーザ装置から出力されるパルスレーザ光のスペクトル幅が目標スペクトル幅に近づけられてもよい。
レーザ制御部30は、休止時間計測部30bを含んでいてもよい。休止時間計測部30bは、レーザ制御部30に含まれる後述のメモリ1002にロードされたプログラムモジュールとして構成されていてもよい。
レーザ制御部30は、露光装置制御部40から受信したトリガ信号を、パルスパワーモジュール13のスイッチ13aに出力してもよい。トリガ信号は、さらに、休止時間計測部30bに入力されてもよい。休止時間計測部30bは、トリガ信号に基づいて、狭帯域化レーザ装置の休止時間を計測してもよい。休止時間は、1つのトリガ信号を受信してから次のトリガ信号を受信するまでの期間であってもよい。
図4及び図5は、スペクトル幅制御部30aによるスペクトル幅の制御の基本概念を説明する図である。図4及び図5における個々の小円は、トリガ信号に基づいて生成されたパルスレーザ光の個々のパルスに対応する。狭帯域化レーザ装置は、繰り返し周波数が所定の閾値以上で行われるバースト発振と、バースト発振の休止とを交互に繰り返してもよい。バースト発振の期間は、例えば、露光装置4において、半導体ウエハの個々のチップ領域の露光が行われる期間であってもよい。バースト発振を休止する期間は、例えば、第1のチップ領域の露光が終了した後、第2のチップ領域の露光が開始されるまでの、図示しないウエハステージの移動を行うための期間であったり、ウエハステージに搭載された半導体ウエハを交換するための期間であったりしてもよい。半導体ウエハを交換するための期間においては、後述の調整発振が行われてもよい。
バースト発振の期間においては、上述のスペクトル幅検出器16dから受信したスペクトル幅のデータと、露光装置制御部40から受信した目標スペクトル幅のデータとに基づくスペクトル幅可変部15の制御が行われてもよい。
バースト発振を休止する期間においては、スペクトル幅検出器16dからスペクトル幅のデータを受信できないことがあり得る。前回のバースト発振の終了時におけるスペクトル幅可変部15の制御値を維持したままにしておくと、次のバースト発振を開始するときに、スペクトル幅がシフトすることがあり得る。スペクトル幅がシフトした様子が、図4及び図5に破線の小円で示されている。スペクトル幅がシフトすると、露光装置4における集光性能が変化し、露光品質に悪影響が出るおそれがあり得る。
バースト発振を休止する期間中にスペクトル幅がシフトする原因の1つは、バースト発振を休止している間に光学素子の温度が変化することにより、光学素子の特性が変化することであると推測される。スペクトル幅のシフトは、休止時間の長さによって変化し得る。例えば、図4に示されるように、休止時間Trが比較的短い場合は、スペクトル幅変化は比較的小さく、図5に示されるように、休止時間Trが比較的長い場合は、スペクトル幅変化は比較的大きくなる場合がある。
図6に、休止時間Trの長さと、スペクトル幅変化ΔE95sとの関係の例を示す。休止時間Trの長さに対して、スペクトル幅変化ΔE95sは、一次遅れの減衰関数に近似した関係を有し得る。
そこで、スペクトル幅制御部30aは、前回のバースト発振が終了した後、次回のバースト発振が開始されるまでに、予めスペクトル幅可変部15を制御しておいてもよい。この制御は、休止時間Trの長さに応じて、スペクトル幅変化ΔE95sを補償するように行われてもよい。これにより、図4及び図5に実線で示されるように、次回のバースト発振の先頭から、目標のスペクトル幅E95tに近いスペクトル幅のパルスレーザ光が出力され得る。
1.7 動作
図7は、図1に示されるスペクトル幅制御部30aによるスペクトル幅制御の処理を示すフローチャートである。図8〜図10は、図7に示されるフローチャートの一部の処理について、そのサブルーチンを示すフローチャートである。スペクトル幅制御部30aは、以下の処理により、バースト発振を休止する期間における制御(S800)と、バースト発振期間における制御(S600)と、を行ってもよい。
まず、図7のS200において、スペクトル幅制御部30aは、休止時間Trに対するスペクトル幅変化ΔE95sの関係を示すデータを、図示しない記憶装置から読込んでもよい。休止時間Trに対するスペクトル幅変化ΔE95sの関係は、図6を参照しながら説明した一次遅れの減衰関数に近似した関係であってもよい。
図8に示されるS200のサブルーチンを参照し、スペクトル幅制御部30aは、S210において、休止時間Trに対するスペクトル幅変化ΔE95sの関係を示すデータテーブルを読込んでもよい。
図11に、休止時間Trに対するスペクトル幅変化ΔE95sの関係を示すデータテーブルの構造が示されている。図11に示されるデータテーブルにおいては、休止時間Trとスペクトル幅変化ΔE95sとは1対1に対応していてもよい。
図7を再び参照し、S200の次のS400において、スペクトル幅制御部30aは、休止時間計測部30bにおいて計測された休止時間Trを読込んでもよい。上述のように、休止時間Trは、1つのトリガ信号を受信してから次のトリガ信号を受信するまでの期間であってもよい。
次に、S500において、スペクトル幅制御部30aは、計測された休止時間Trに基づいて、バースト発振中か否かを判定してもよい。例えば、休止時間Trが、所定の閾値Tb以下である場合に、スペクトル幅制御部30aは、バースト発振中であると判定し(S500;YES)、処理をS600に進めてもよい。所定の閾値Tbは、0.01秒以上、0.05秒以下であってもよい。所定の閾値Tbは、例えば、0.02秒程度であってもよい。すなわち、50Hz以上の繰り返し周波数でトリガ信号が入力されている場合に、スペクトル幅制御部30aは、バースト発振中であると判定してもよい。
休止時間Trが、所定の閾値Tbを超えている場合に、スペクトル幅制御部30aは、バースト発振中ではなく、バースト発振を休止している期間であると判定し(S500;NO)、処理をS800に進めてもよい。
S800において、スペクトル幅制御部30aは、計測された休止時間Trに基づいて、スペクトル幅可変部15を制御してもよい。すなわち、スペクトル幅制御部30aは、スペクトル幅のフィードフォワード制御を行ってもよい。
S800の後、スペクトル幅制御部30aは、処理を上述のS400に戻してその後の処理を繰り返してもよい。もし、休止時間Trがさらに長引いた場合は、新たに休止時間Trが計測される度に、S800においてスペクトル幅可変部15を制御してもよい。
図9に示されるS800のサブルーチンを参照し、まず、スペクトル幅制御部30aは、S810において、計測された休止時間Trに基づいて、データテーブルからスペクトル幅変化ΔE95sを読み出してもよい。次に、スペクトル幅制御部30aは、S830において、スペクトル幅変化ΔE95sが補償されるように、スペクトル幅可変部15を制御してもよい。休止時間Trに対するスペクトル幅変化ΔE95sの関係が、図6を参照しながら説明した一次遅れの減衰関数に近似した関係である場合、スペクトル幅変化ΔE95sを補償する制御とは、スペクトル幅を広くする制御であってもよい。すなわち、前回のバースト発振終了後にまったくスペクトル幅可変部15を制御しないと仮定した場合のスペクトル幅に対して、ΔE95sの絶対値である|ΔE95s|だけスペクトル幅が広くなるように、スペクトル幅可変部15が制御されてもよい。
図7を再び参照し、S600において、スペクトル幅制御部30aは、計測されたスペクトル幅に基づいて、スペクトル幅可変部15を制御してもよい。すなわち、スペクトル幅制御部30aは、スペクトル幅のフィードバック制御を行ってもよい。
S600の後、スペクトル幅制御部30aは、処理を上述のS400に戻してその後の処理を繰り返してもよい。もし、バースト発振が続いた場合には、新たにスペクトル幅が計測される度に、S600においてスペクトル幅可変部15が制御されてもよい。
図10に示されるS600のサブルーチンを参照し、まず、スペクトル幅制御部30aは、S610において、計測されたスペクトル幅E95を読み出してもよい。次に、スペクトル幅制御部30aは、S620において、計測されたスペクトル幅E95とスペクトル幅の目標値E95tとの差が0に近づくように、スペクトル幅可変部15を制御してもよい。
1.8 課題
図12及び図13は、本開示の課題を説明する図である。上述の比較例においては、バースト発振の開始時のスペクトル幅を、前回のバースト発振の終了時からの休止時間Trに基づいて制御していたが、バースト発振の開始時のスペクトル幅は、必ずしも休止時間Trのみで決まるものではない。
例えば、図12に示されるように、前回のバースト発振が繰り返し周波数の小さい発振であった場合と、図13に示されるように、前回のバースト発振が繰り返し周波数の大きい発振であった場合とでは、同じ休止時間Trでも光学素子の特性が異なることがあり得る。前回のバースト発振の繰り返し周波数が小さい場合は、前回のバースト発振の繰り返し周波数が大きい場合ほど光学素子が高温にならず、スペクトル幅変化は比較的小さくなり得る。前回のバースト発振の繰り返し周波数が大きい場合は、スペクトル幅変化は比較的大きくなり得る。従って、休止時間Trのみに基づいてスペクトル幅変化ΔE95sを算出すると、次回のバースト発振の開始時に、スペクトル幅がばらついてしまう可能性がある。
なお、バースト発振の繰り返し周波数が同じであっても、休止時間が長いと、光学素子の熱負荷が小さくなり、スペクトル幅変化は比較的小さくなり得る。逆に、バースト発振の繰り返し周波数が同じであっても、休止時間が短いと、光学素子の熱負荷が大きくなり、スペクトル幅変化は比較的大きくなり得る。
以下に説明される実施形態においては、この課題を解決するために、レーザ発振のデューティーを計測し、計測されたデューティーに基づいて、スペクトル幅可変部15を制御してもよい。
2.デューティーに基づいてスペクトル幅を制御する狭帯域化レーザ装置(第1の実施形態)
2.1 構成
図14は、本開示の第1の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。第1の実施形態おいて、狭帯域化レーザ装置のレーザ制御部30は、図1を参照しながら説明した比較例の構成に加えて、デューティー計測部30cを備えていてもよい。デューティー計測部30cは、レーザ制御部30に含まれる後述のメモリ1002にロードされたプログラムモジュールとして構成されていてもよい。
デューティー計測部30cは、露光装置制御部40から出力されたトリガ信号に基づいて、パルスレーザ光のデューティーを計測してもよい。パルスレーザ光のデューティーは、例えば、一定時間にわたって最大繰り返し周波数でレーザ発振した場合のパルス数に対する、当該一定時間の実際のパルス数の比率であってもよい。計測されたデューティーの値は、スペクトル幅制御部30aに出力されてもよい。
図15は、前回のバースト発振時のデューティーDの値ごとに、休止時間Trの長さと、スペクトル幅変化ΔE95sとの関係を示す。デューティーDの値ごとにみると、休止時間Trの長さに対して、スペクトル幅変化ΔE95sは、一次遅れの減衰関数に近似した関係を有し得る。デューティーDが小さい場合には、スペクトル幅変化ΔE95sは小さく、デューティーDが大きい場合には、スペクトル幅変化ΔE95sは大きくなり得る。そこで、デューティーDと休止時間Trとの組合せに応じてスペクトル幅可変部15を制御することにより、次回のバースト発振の開始時におけるスペクトル幅を精度よく調整することができる。
図16に、前回のバースト発振中のデューティーDと、休止時間Trとに対するスペクトル幅変化ΔE95sの関係を示すデータテーブルの構造が示されている。図16に示されるデータテーブルにおいては、デューティーDと休止時間Trとの組合せは、スペクトル幅変化ΔE95sと1対1に対応していてもよい。
2.2 動作
図17は、図14に示されるスペクトル幅制御部30aによるスペクトル幅制御の処理を示すフローチャートである。図18及び図19は、図17に示されるフローチャートの一部の処理について、そのサブルーチンを示すフローチャートである。スペクトル幅制御部30aは、以下の処理により、パルスレーザ光のデューティーに基づいて、バースト発振を休止する期間における制御(S900)を行ってもよい。
まず、図17のS300において、スペクトル幅制御部30aは、各デューティーDについて、休止時間Trに対するスペクトル幅変化ΔE95sの関係を示すデータを、図示しない記憶装置から読込んでもよい。
図18に示されるS300のサブルーチンは、各デューティーについてデータテーブルを読込む点の他、図8を参照しながら説明したS200のサブルーチンと同様でよい。
図17を再び参照し、S300の次のS400及びS500の処理は、図7を参照しながら説明した比較例と同様でよい。
S500において、スペクトル幅制御部30aは、バースト発振中であると判定した場合に(S500;YES)、処理をS600に進めてもよい。S600の処理は、図7を参照しながら説明した比較例と同様でよい。
スペクトル幅制御部30aは、バースト発振中ではないと判定した場合に(S500;NO)、処理をS700に進めてもよい。
S700において、スペクトル幅制御部30aは、計測されたデューティーDの値をデューティー計測部30cから読込んでもよい。
次に、S900において、スペクトル幅制御部30aは、計測されたデューティーD及び計測された休止時間Trに基づいて、スペクトル幅可変部15を制御してもよい。すなわち、スペクトル幅制御部30aは、スペクトル幅のフィードフォワード制御を行ってもよい。
S900の後、スペクトル幅制御部30aは、処理を上述のS400に戻してその後の処理を繰り返してもよい。
図19に示されるS900のサブルーチンは、S910において、計測されたデューティーを用いる点が、図9のS810と異なり、その他は同じ処理であってもよい。S930は、図9のS830と同様であってもよい。
図20は、図14に示されるデューティー計測部30cによるデューティー計測の処理を示すフローチャートである。デューティー計測の処理は、図17を参照しながら説明したスペクトル幅の制御とは別に、デューティー計測部30cによって行われてもよい。デューティー計測部30cは、以下の処理により、パルスレーザ光のデューティーを計測してもよい。パルスレーザ光のデューティーを計測する処理は、バースト発振中に行われるものとしてもよく、バースト発振を休止する期間中には行われなくてもよい。
まず、S701において、デューティー計測部30cは、デューティーD=1の場合の一定時間Tsでのパルス数Nmaxを以下の式により計算してもよい。
Nmax=fmax・Ts
ここで、fmaxは、当該狭帯域化レーザ装置の最大繰り返し周波数であってもよい。
次に、S704において、デューティー計測部30cは、パルス数のカウンタNの値をN=0に初期設定してもよい。
次に、S707において、デューティー計測部30cは、タイマーTをリセット及びスタートさせてもよい。
次に、S708において、デューティー計測部30cは、トリガ信号が入力されたか否かを判定してもよい。トリガ信号が入力された場合(S708;YES)、デューティー計測部30cは、処理をS709に進めてもよい。
S709において、デューティー計測部30cは、カウンタNの値に1を加えて、カウンタNの値を更新してもよい。S709の後、デューティー計測部30cは、処理をS711に進めてもよい。
トリガ信号が入力されない場合(S708;NO)、デューティー計測部30cは、S709の処理をスキップして、処理をS711に進めてもよい。すなわち、カウンタNの値を更新しなくてもよい。
S711において、デューティー計測部30cは、タイマーTの値をTsと比較して、タイマーTがスタートしてから一定時間Tsが経過したか否かを判定してもよい。ここで、一定時間Tsは、例えば1分以上10分以下でもよい。
一定時間Tsが経過していない場合(S711;NO)、デューティー計測部30cは、処理を上述のS708に戻して、新たにトリガ信号が入力されたか否かを判定してもよい。
一定時間Tsが経過した場合(S711;YES)、デューティー計測部30cは、処理をS712に進めてもよい。
S712において、デューティー計測部30cは、現在のカウンタNの値を、一定時間Tsでのパルス数Nsとして図示しない記憶層に記憶させてもよい。
次に、S715において、デューティー計測部30cは、デューティーDを以下の式により計算してもよい。
D=Ns/Nmax
以上のようにして、一定時間Tsにわたって最大繰り返し周波数でレーザ発振した場合のパルス数に対する、当該一定時間Tsの実際のパルス数の比率が、デューティーDとして算出されてもよい。
2.3 スペクトル幅可変部の詳細
図21A及び図21Bは、図14に示されるスペクトル幅可変部15の構成を模式的に示す。図21Aは、スペクトル幅可変部15をH方向からみた図であり、図21Bは、図21Aに示されるXXIB−XXIB線における切断面と、当該切断面より下方の構成とをV方向からみた図である。
スペクトル幅可変部15は、平凹シリンドリカルレンズ15aと、平凸シリンドリカルレンズ15bとを含んでもよい。平凸シリンドリカルレンズ15bは、ホルダ15fによって、プレート15eに固定されていてもよい。
平凹シリンドリカルレンズ15aは、ホルダ15gに固定されていてもよい。図示しないガイド部材により、ホルダ15gは、その姿勢を維持したままプレート15eに対してZ方向及び−Z方向に移動可能とされていてもよい。
ホルダ15gには、傾斜部材15hと、バネ15iの一端とがそれぞれ固定されていてもよい。バネ15iの他端が、プレート15eに固定された固定部材15jに固定されていてもよい。ホルダ15gには、バネ15iによって、−Z方向の引っ張り力が常時作用していてもよい。
傾斜部材15hの斜面には、ロッド15kの先端に取り付けられた車輪15mが接していてもよい。リニアモータ15nによって、ロッド15kが車輪15mとともにV方向及び−V方向に進退できるように構成されてもよい。リニアモータ15nは、固定部材15oによってプレート15eとの位置関係が固定されていてもよい。
車輪15mが−V方向に移動することにより、車輪15mが傾斜部材15hをZ方向に押してもよい。これにより、ホルダ15gが平凹シリンドリカルレンズ15aとともにZ方向に移動してもよい。
車輪15mがV方向に移動することにより、ホルダ15gは、バネ15iによって−Z方向に引っ張られて、平凹シリンドリカルレンズ15aとともに、−Z方向に移動してもよい。
このようにして、平凹シリンドリカルレンズ15aが、Z方向及び−Z方向に移動可能とされてもよい。
なお、ここでは平凸シリンドリカルレンズ15bに部分反射膜がコートされ、スペクトル幅可変部15が出力結合ミラーとしても機能する場合について説明したが、本開示はこれに限定されない。出力結合ミラーが別途設けられ、光共振器の内部にスペクトル幅可変部が配置されてもよい。
3.調整発振によるデータ更新を行う狭帯域化レーザ装置(第2の実施形態)
3.1 構成
図22は、本開示の第2の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。第1の実施形態において説明したデューティーDの値と休止時間Trの長さとに対するスペクトル幅変化ΔE95sの関係は、狭帯域化レーザ装置の運転状況などによって変化し得る。そこで、第2の実施形態においては、デューティーDの値と休止時間Trの長さとに対するスペクトル幅変化ΔE95sの関係に関するデータを改めて取得して更新するための調整発振を可能としてもよい。
第2の実施形態おいて、狭帯域化レーザ装置は、図14を参照しながら説明した第1の実施形態の構成に加えて、開閉可能なシャッタ17を備えていてもよい。シャッタ17は、調整発振の際に、閉状態とすることにより、パルスレーザ光が露光装置4に入力されるのを抑制し得る。
また、第2の実施形態において、レーザ制御部30と露光装置制御部40との間に、調整発振の制御信号を送受信するための信号線が接続されていてもよい。
3.2 動作
3.2.1 メインフロー
図23は、図22に示されるスペクトル幅制御部30aの処理を示すフローチャートである。以下に説明されるように、スペクトル幅制御部30aは、スペクトル幅を制御する他に、調整発振によるデータの更新を行ってもよい。
まず、S100において、スペクトル幅制御部30aは、調整発振を行い、デューティーDの値と休止時間Trの長さとに対するスペクトル幅変化ΔE95sの関係に関するデータを更新してもよい。
S100の処理の詳細については、図24を参照しながら後述する。
S100の後のS300からS900までの処理は、図17を参照しながら説明した第1の実施形態の処理と同様でよい。
S900の後、S1000において、スペクトル幅制御部30aは、調整発振を行ってデータを更新するか否かを判定してもよい。例えば、前回のデータ更新から所定時間経過した場合に、データを更新することとしてもよい。また、目標スペクトル幅とバースト発振開始時のスペクトル幅との差の絶対値が所定値を超えた場合に、データを更新することとしてもよい。
データを更新する場合(S1000;YES)、スペクトル幅制御部30aは、処理を上述のS100に戻して、調整発振を行ってもよい。データを更新しない場合(S1000;NO)、スペクトル幅制御部30aは、処理を上述のS400に戻して、計測済みのデータに基づいてスペクトル幅の制御を続けてもよい。
3.2.2 調整発振の詳細
図24は、図23に示される調整発振の処理の詳細を示すフローチャートである。図24に示される処理は、図23に示されるS100のサブルーチンとして、スペクトル幅制御部30aによって行われてもよい。
まず、S110において、スペクトル幅制御部30aは、調整発振要求信号を露光装置制御部40に出力してもよい。
次に、S120において、スペクトル幅制御部30aは、露光装置制御部40から調整発振OK信号を受信したか否かを判定してもよい。調整発振OK信号を受信していない場合(S120;NO)、スペクトル幅制御部30aは、調整発振OK信号を受信するまで待機してもよい。調整発振OK信号を受信した場合(S120;YES)、スペクトル幅制御部30aは、処理をS130に進めてもよい。露光装置制御部40は、調整発振が行われている間、ウエハステージの制御等を中止してもよい。
S130において、スペクトル幅制御部30aは、シャッタ17を閉めてもよい。
次に、S140において、スペクトル幅制御部30aは、調整発振を行って、デューティーDと休止時間Trとスペクトル幅変化ΔE95sとの関係を計測してもよい。
S140の処理の詳細については、図25を参照しながら後述する。
調整発振が終了したら、S160において、スペクトル幅制御部30aは、シャッタ17を開いてもよい。
次に、S170において、スペクトル幅制御部30aは、調整発振完了信号を露光装置制御部40に出力してもよい。
S170の後、スペクトル幅制御部30aは、本フローチャートの処理を終了してもよい。
図25は、図24に示される調整発振の処理の詳細を示すフローチャートである。図25に示される処理は、図24に示されるS140のサブルーチンとして、スペクトル幅制御部30aによって行われてもよい。以下に説明するように、スペクトル幅制御部30aは、デューティーDを変えながら、休止時間Trとスペクトル幅変化ΔE95sとの関係を計測してもよい。
まず、S141において、スペクトル幅制御部30aは、デューティーDの値をD=1に初期設定してもよい。
次に、S142において、スペクトル幅制御部30aは、設定されたデューティーDで、一定時間Ttにわたってトリガ信号を生成し、レーザ発振させてもよい。この時は、スペクトル幅制御部30aは、スペクトル幅のフィードバック制御を実施してもよい。
次に、S143において、スペクトル幅制御部30aは、発振終了直前のスペクトル幅E95を計測してもよい。
次に、S144において、スペクトル幅制御部30aは、計測した発振終了直前のスペクトル幅E95の値を、スペクトル幅変化の基準値E95oとして、図示しない記憶装置に記憶させてもよい。
次に、S145において、スペクトル幅制御部30aは、タイマーTmをリセット及びスタートしてもよい。
次に、S146において、スペクトル幅制御部30aは、所定の低デューティーでトリガ信号を出力することにより、低い繰り返し周波数によるレーザ発振を開始してもよい。この時は、スペクトル幅制御部30aは、スペクトル幅のフィードバック制御を実施しなくてもよい。ここで、所定の低デューティーは、スペクトル幅の変化への影響が実質的に無視できる程度の低いデューティーでもよい。例えば、最大繰り返し周波数が6000Hzである場合に、所定の低デューティーは、繰り返し周波数が100Hzであってもよい。
次に、S147において、スペクトル幅制御部30aは、所定の低デューティーでの発振中におけるスペクトル幅E95を計測してもよい。
次に、S148において、スペクトル幅制御部30aは、スペクトル幅E95を計測した時のタイマーTmの値を現在時刻Trとして図示しない記憶装置に記憶させてもよい。
次に、S149において、スペクトル幅制御部30aは、以下の式により、スペクトル幅変化ΔE95sを算出してもよい。
ΔE95s=E95o−E95
すなわち、スペクトル幅変化ΔE95sは、S144において計測したスペクトル幅変化の基準値E95oと、S147で計測したスペクトル幅E95との差であってもよい。
次に、S150において、スペクトル幅制御部30aは、デューティーD、現在時刻Tr、及び、スペクトル幅の変化ΔE95sの組合せをデータテーブルに記憶させてもよい。
次に、S151において、スペクトル幅制御部30aは、タイマーTmがスタートしてから所定時間TLが経過したか否かを判定してもよい。
所定時間TLが経過していない場合(S151;NO)、スペクトル幅制御部30aは、処理を上述のS147に戻して、所定の低デューティーでの発振中におけるスペクトル幅E95の計測を繰り返してもよい。
所定時間TLが経過した場合(S151;YES)、スペクトル幅制御部30aは、処理をS152に進めてもよい。
S152において、スペクトル幅制御部30aは、デューティーDの値から所定の正の値ΔDを減算することにより、デューティーDの設定値を現在の値よりも小さい値に更新してもよい。
次に、S153において、スペクトル幅制御部30aは、デューティーDの設定値が下限値DL以下であるか否かを判定してもよい。下限値DLは、例えば、0.1であってもよい。
デューティーDの設定値が下限値DL以下ではない場合(S153;NO)、スペクトル幅制御部30aは、処理を上述のS142に戻して、新たなデューティーの設定値を用いて休止時間Trとスペクトル幅変化ΔE95sとの関係を計測してもよい。
デューティーDの設定値が下限値DL以下である場合(S153;YES)、スペクトル幅制御部30aは、本フローチャートの処理を終了してもよい。
4.近似曲線を用いてスペクトル幅を制御する狭帯域化レーザ装置(第3の実施形態)
図26〜図28は、本開示の第3の実施形態に係る狭帯域化レーザ装置におけるスペクトル幅制御部30aの処理を示すフローチャートである。第3の実施形態に係る狭帯域化レーザ装置の構成は、上述の第2の実施形態に係る狭帯域化レーザ装置と同様でよい。第3の実施形態においては、デューティーDの値と休止時間Trの長さとに基づくスペクトル幅変化ΔE95sの算出を、近似曲線を用いて行ってもよい。
4.1 スペクトル幅の制御
図26は、第3の実施形態において、各デューティーDについての休止時間Trに対するスペクトル幅変化ΔE95sの関係を示すデータを読込む処理のサブルーチンを示す。図26のS320に示されるように、スペクトル幅制御部30aは、図16を参照しながら説明したデータテーブルを読込むのではなく、2つのパラメータα1及びβを読込んでもよい。
図27は、第3の実施形態において、計測されたデューティーD及び計測された休止時間Trに基づいて、スペクトル幅可変部15を制御する処理のサブルーチンを示す。図27のS920に示されるように、スペクトル幅制御部30aは、データテーブルからスペクトル幅変化ΔE95sを読込むのではなく、以下の式に基づいて、スペクトル幅変化ΔE95sを算出してもよい。
ΔE95s=D・α1・{exp(−Tr/β)−1}
これによれば、2つのパラメータα1及びβを読込むだけで、計測されたデューティーD及び計測された休止時間Trに基づいて、スペクトル幅変化ΔE95sを算出することができる。なお、この式において、スペクトル幅変化ΔE95sがデューティーDに比例するものとして説明したが、本開示はこれに限定されない。スペクトル幅変化ΔE95sが以下の式で表されてもよい。
ΔE95s=α(D)・{exp(−Tr/β)−1}
ここで、α(D)はDの関数であってもよい。
S920の次のS930の処理は、図19に示されたものと同様でよい。
4.2 調整発振
図28は、第3の実施形態における調整発振の処理の詳細を示すフローチャートである。図28のS141からS151までの処理は、図25を参照しながら説明したものと同様でよい。すなわち、例えば、S150においては、計測結果がデータテーブルに記憶されてもよい。
図28においては、S151の後、S154において、データテーブルに記憶されたデータに基づいて、2つのパラメータα1及びβが算出されてもよい。パラメータα1及びβは、以下の式にデューティーD及び休止時間Trを代入したときのΔE95sの値が、計測結果と近似するように、最小二乗法によって算出されてもよい。
ΔE95s=D・α1・{exp(−Tr/β)−1}
他の点については、第2の実施形態と同様でよい。
5.デューティー計測の変形例
5.1 第1の変形例
図29は、第1〜第3の実施形態におけるデューティー計測部の処理の第1の変形例を示すフローチャートである。図29に示される処理は、図20を参照しながら説明したデューティー計測部の処理の代わりに行われてもよい。図29においては、デューティー計測部30cがデューティーの移動平均を計測してもよい。
まず、S701の処理は、図20を参照しながら説明したものと同様でよい。
S701の次のS703において、デューティー計測部30cは、直前に計測されたデューティーDを、図示しない記憶媒体から読込んでもよい。デューティーDは、以下の式によって算出されたものでもよい。
Figure 0006585174
ここで、iは連続する複数の期間のそれぞれを特定する整数でもよく、iの値が小さいほど過去の期間を示してもよい。iの値で特定されるそれぞれの期間を、以下ではブロックと称する。dは、デューティーの計測期間を複数のブロックに分けた場合の、各ブロック内のデューティーであってもよい。すなわち、dは第1のブロックにおけるデューティーであり、dは第1のブロックの次の第2のブロックにおけるデューティーであってもよい。dk−1は、現在の直前のブロックにおけるデューティーであってもよい。従って、上記の式に示されたデューティーDは、直近の連続する10回のブロックにおけるデューティーを相加平均したものであってもよい。10回のブロックにおけるデューティーに限らず、これより少ない数又は多い数のブロックにおけるデューティーを用いてもよい。
S703の次のS705において、デューティー計測部30cは、現在のブロックを示すブロック番号kの値に1を加えてkの値を更新してもよい。また、デューティー計測部30cは、パルス数のカウンタNの値をN=0に初期設定してもよい。
S705の次のS707からS711までの処理は、図20と同様でよい。これによりブロック内のパルス数をカウントしてもよい。
一定時間Tsが経過した場合(S711;YES)、デューティー計測部30cは、処理をS713に進めてもよい。ここで、一定時間Tsは、例えば3秒間でもよい。
S713において、デューティー計測部30cは、現在のカウンタNの値を、k−1番目のブロック内のパルス数Nk−1として図示しない記憶装置に記憶させてもよい。
次に、S716において、デューティー計測部30cは、k−1番目のブロック内のデューティーdk−1を、以下の式により計算してもよい。
k−1=Nk−1/Nmax
次に、S718において、デューティー計測部30cは、以下のようにデューティーDを計算してもよい。まず、上述のDの式から、以下の式が成立する。
Figure 0006585174
従って、差分をとることにより、以下の式が成立する。
=Dk−1+(dk−1−dk−11)/10
この式により、デューティー計測部30cは、デューティーDを計算してもよい。
その他の点については、図20に示された処理と同様でよい。
図29に示された処理によれば、最新のブロックにおけるデューティーdk−1を頻繁に反映させることができるので、最新データを頻繁に取得し得る。一方、デューティーDを計測するためのサンプル期間を、Tsの10倍に相当する期間とするので、安定したデータを取得し得る。
5.2 第2の変形例
図30は、第1〜第3の実施形態におけるデューティー計測部の処理の第2の変形例を示すフローチャートである。図30に示される処理は、図29を参照しながら説明した変形例の代わりに行われてもよい。図30においては、デューティー計測部30cが、パルス数ではなくパルスエネルギーを積算することにより、デューティーを計測してもよい。
まず、S702において、デューティー計測部30cは、デューティーD=1の場合の一定時間Tsでのパルスエネルギー積算値Emaxを以下の式により計算してもよい。
Emax=e・fmax・Ts
ここで、eは、当該狭帯域化レーザ装置の最大パルスエネルギーであってもよい。
次のS703の処理は、図29に示されたものと同様でよい。
次のS706において、デューティー計測部30cは、現在のブロックを示すブロック番号kの値に1を加えてkの値を更新してもよい。また、デューティー計測部30cは、パルスエネルギー積算値Eの値をE=0に初期設定してもよい。
S706の次のS707及びS708の処理は、図29と同様でよい。
S708においてトリガ信号が入力された場合(S708;YES)、デューティー計測部30cは、処理をS710に進めてもよい。
S710において、デューティー計測部30cは、パルスエネルギー検出器16cから出力されたパルスエネルギーeの値を読み取り、パルスエネルギー積算値Eの値にパルスエネルギーeの値を加えて、パルスエネルギー積算値Eの値を更新してもよい。S710の後、デューティー計測部30cは、処理をS711に進めてもよい。
S711の処理は、図29と同様でよい。
次に、S714において、デューティー計測部30cは、現在のパルスエネルギー積算値Eの値を、k−1番目のブロック内のパルスエネルギー積算値Ek−1として、図示しない記憶装置に記憶させてもよい。
次に、S717において、デューティー計測部30cは、k−1番目のブロック内のデューティーdk−1を以下の式により計算してもよい。
k−1=Ek−1/Emax
次に、S718において、デューティー計測部30cは、デューティーDを計算してもよい。S718の処理は、図29と同様でよい。
6.MOPO間の同期によりスペクトル幅を制御する狭帯域化レーザ装置(第4の実施形態)
図31は、本開示の第4の実施形態に係る狭帯域化レーザ装置の構成を概略的に示す。第4の実施形態においては、上述の第1の実施形態に係る狭帯域化レーザ装置のレーザチャンバ10とセンサユニット16との間に、出力結合ミラー15pと、高反射ミラー31及び32と、パワーオシレータと、が配置されていてもよい。スペクトル幅可変部15は、省略されてもよい。
出力結合ミラー15pは、部分反射ミラーであってもよく、波面を調節する機能を有しなくてもよい。出力結合ミラー15pは、当該狭帯域化レーザ装置の発振波長の光は部分反射し、一対の放電電極11a及び11b間で発生する可視の放電光を高い透過率で透過する膜がコートされていてもよい。第4の実施形態において、レーザチャンバ10と、一対の放電電極11a及び11bと、充電器12と、パルスパワーモジュール13と、狭帯域化モジュール14と、出力結合ミラー15pは、マスターオシレータ(MO)を構成してもよい。
高反射ミラー31及び32は、出力結合ミラー15pから出力されたパルスレーザ光を高い反射率で反射することにより、パワーオシレータ(PO)のリアミラー24に導いてもよい。高反射ミラー31及び32は、可視の放電光を透過する膜がコートされていてもよい。一対の放電電極11a及び11b間の放電によって発生した光のうち、可視光の一部は、出力結合ミラー15pと高反射ミラー31とを透過し、MO放電センサ18に導かれてもよい。MO放電センサ18は、出力結合ミラー15p及び高反射ミラー31を透過した可視光から、マスターオシレータの一対の放電電極11a及び11b間における放電のタイミングを検出するように構成されてもよい。放電タイミングを示す信号は同期制御部33に出力されてもよい。
パワーオシレータは、レーザチャンバ20と、一対の放電電極21a及び21bと、充電器22と、パルスパワーモジュール23と、を含んでもよい。これらの構成は、マスターオシレータの対応する構成と同様でよい。パワーオシレータは、さらにリアミラー24と出力結合ミラー25とを含んでもよい。リアミラー24及び出力結合ミラー25は、部分反射ミラーであり、光共振器を構成してもよい。出力結合ミラー25は、レーザ発振する波長の光が部分反射する膜がコートされていてもよい。ここで、出力結合ミラー25の部分反射膜の反射率は、10%〜30%であってもよい。
高反射ミラー32からリアミラー24に入射したパルスレーザ光の一部は、レーザチャンバ20内に導入され、出力結合ミラー25とリアミラー24とで往復する間に増幅されてもよい。増幅されたパルスレーザ光は、出力結合ミラー25から出力されもよい。このように、マスターオシレータから出力されたパルスレーザ光をパワーオシレータによって増幅して出力するレーザ装置を、MOPO方式のレーザ装置という。
リアミラー24は、レーザ発振する波長の光が部分反射し、可視の放電光を高い透過率で透過する膜がコートされていてもよい。ここで、リアミラー24の部分反射膜の反射率は、70%〜90%であってもよい。一対の放電電極21a及び21b間の放電により発生した光のうち、可視光の一部が、リアミラー24及び高反射ミラー32を介してPO放電センサ28に導かれてもよい。PO放電センサ28は、リアミラー24及び高反射ミラー32を透過した可視光から、パワーオシレータの一対の放電電極21a及び21b間における放電のタイミングを検出するように構成されてもよい。放電タイミングを示す信号は同期制御部33に出力されてもよい。
レーザ制御部30は、同期制御部33にトリガ信号を出力してもよい。同期制御部33は、レーザ制御部30から受信したトリガ信号に基づいて、マスターオシレータのパルスパワーモジュール13のスイッチ13aに第1のスイッチ信号を出力し、パワーオシレータのパルスパワーモジュール23のスイッチ23aに第2のスイッチ信号を出力してもよい。ここで、同期制御部33は、マスターオシレータにおける放電タイミングに対するパワーオシレータにおける放電タイミングの遅延時間が所望の遅延時間となるように、第1のスイッチ信号と第2のスイッチ信号のタイミングを制御してもよい。
図32は、MOPO方式のレーザ装置におけるマスターオシレータとパワーオシレータの放電タイミングの遅延時間と、パルスエネルギー及びスペクトル幅との関係を示す。図32に示されるように、マスターオシレータとパワーオシレータの放電タイミングの遅延時間が所定の許容範囲にあれば、パワーオシレータから出力されるパルスレーザ光のパルスエネルギーはほぼ一定となり得る。しかし、このような許容範囲内であっても、マスターオシレータとパワーオシレータの放電タイミングの遅延時間に応じて、パワーオシレータから出力されるパルスレーザ光のスペクトル幅が異なり得る。具体的には、遅延時間が長くなるのに応じて、スペクトル幅は狭くなり得る。そこで、第4の実施形態においては、マスターオシレータとパワーオシレータの放電タイミングの遅延時間を調整することにより、スペクトル幅を制御してもよい。
他の点については、第1〜第3の実施形態と同様でよい。
さらに、本実施形態では、パワーオシレータの光共振器として、ファブリペロ型の共振器の例を示したが、この実施形態に限定されることなく、リング型の共振器であってもよい。
7.制御部の構成
図33は、制御部の概略構成を示すブロック図である。
上述した実施の形態におけるレーザ制御部30、同期制御部33等の制御部は、コンピュータやプログラマブルコントローラ等汎用の制御機器によって構成されてもよい。例えば、以下のように構成されてもよい。
(構成)
制御部は、処理部1000と、処理部1000に接続される、ストレージメモリ1005と、ユーザインターフェイス1010と、パラレルI/Oコントローラ1020と、シリアルI/Oコントローラ1030と、A/D、D/Aコンバータ1040とによって構成されてもよい。また、処理部1000は、CPU1001と、CPU1001に接続された、メモリ1002と、タイマー1003と、GPU1004とから構成されてもよい。
(動作)
処理部1000は、ストレージメモリ1005に記憶されたプログラムを読出してもよい。また、処理部1000は、読出したプログラムを実行したり、プログラムの実行に従ってストレージメモリ1005からデータを読出したり、ストレージメモリ1005にデータを記憶させたりしてもよい。
パラレルI/Oコントローラ1020は、パラレルI/Oポートを介して通信可能な機器1021〜102xに接続されてもよい。パラレルI/Oコントローラ1020は、処理部1000がプログラムを実行する過程で行うパラレルI/Oポートを介した、デジタル信号による通信を制御してもよい。
シリアルI/Oコントローラ1030は、シリアルI/Oポートを介して通信可能な機器1031〜103xに接続されてもよい。シリアルI/Oコントローラ1030は、処理部1000がプログラムを実行する過程で行うシリアルI/Oポートを介した、デジタル信号による通信を制御してもよい。
A/D、D/Aコンバータ1040は、アナログポートを介して通信可能な機器1041〜104xに接続されてもよい。A/D、D/Aコンバータ1040は、処理部1000がプログラムを実行する過程で行うアナログポートを介した、アナログ信号による通信を制御してもよい。
ユーザインターフェイス1010は、オペレータが処理部1000によるプログラムの実行過程を表示したり、オペレータによるプログラム実行の中止や割り込み処理を処理部1000に行わせたりするよう構成されてもよい。
処理部1000のCPU1001はプログラムの演算処理を行ってもよい。メモリ1002は、CPU1001がプログラムを実行する過程で、プログラムの一時記憶や、演算過程でのデータの一時記憶を行ってもよい。タイマー1003は、時刻や経過時間を計測し、プログラムの実行に従ってCPU1001に時刻や経過時間を出力してもよい。GPU1004は、処理部1000に画像データが入力された際、プログラムの実行に従って画像データを処理し、その結果をCPU1001に出力してもよい。
パラレルI/Oコントローラ1020に接続される、パラレルI/Oポートを介して通信可能な機器1021〜102xは、露光装置制御部40、他の制御部等のトリガ信号やタイミングを示す信号の受送信に使用してもよい。
シリアルI/Oコントローラ1030に接続される、シリアルI/Oポートを介して通信可能な機器1031〜103xは、露光装置制御部40、他の制御部等のデータの受送信に使用してもよい。
A/D、D/Aコンバータ1040に接続される、アナログポートを介して通信可能な機器1041〜104xは、パルスエネルギー検出器16c、スペクトル幅検出器16d等の各種センサであってもよい。
以上のように構成されることで、制御部は各実施形態に示された動作を実現可能であってよい。
上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (16)

  1. 第1のバースト発振と、前記第1のバースト発振の次に行われる第2のバースト発振と、を含む複数回のバースト発振を行ってパルスレーザ光を出力する狭帯域化レーザ装置であって、
    レーザ共振器と、
    前記レーザ共振器の間に配置されたチャンバと、
    前記チャンバに配置された一対の電極と、
    前記一対の電極にパルス電圧を印加する電源と、
    前記レーザ共振器に配置された波長選択素子と、
    前記レーザ共振器に配置されたスペクトル幅可変部と、
    前記第2のバースト発振が開始される時より前の所定期間におけるデューティーと、前記第1のバースト発振が終了した時から前記第2のバースト発振が開始される時までの休止時間と、を計測し、前記デューティーと前記休止時間とに基づいて、前記スペクトル幅可変部を制御する制御部と、
    を備え
    前記制御部は、前記所定期間より短い所定の時間が経過するごとに、前記デューティーを新たに計測して、前記デューティーを更新す狭帯域化レーザ装置。
  2. 前記制御部は、前記パルスレーザ光の最大繰り返し周波数と前記所定期間の長さとの積に対する、前記所定期間に計測された前記パルスレーザ光のパルス数の比に基づいて、前記デューティーを計測する、請求項1記載の狭帯域化レーザ装置。
  3. 前記レーザ共振器から出力されたパルスレーザ光の光路に配置されたパルスエネルギー検出器をさらに備え、
    前記制御部は、前記パルスレーザ光の最大パルスエネルギーと最大繰り返し周波数と前記所定期間の長さとの積に対する、前記所定期間に計測された前記パルスレーザ光のパルスエネルギーの積算値の比に基づいて、前記デューティーを計測する、請求項1記載の狭帯域化レーザ装置。
  4. 前記制御部は、前記デューティーと前記休止時間とスペクトル幅の変化との関係を記憶した媒体にアクセス可能に構成され、前記媒体から取得したデータに基づいて前記スペクトル幅可変部を制御する、請求項1記載の狭帯域化レーザ装置。
  5. 前記媒体は、前記デューティーの値ごとに、前記休止時間とスペクトル幅の変化との関係を1次遅れの減衰関数として記憶している、請求項記載の狭帯域化レーザ装置。
  6. 前記レーザ共振器から出力されたパルスレーザ光の光路に配置されたスペクトル幅検出器をさらに備え、
    前記制御部は、前記スペクトル幅検出器の出力に基づいて前記デューティーと前記休止時間と前記スペクトル幅との関係を算出し、前記媒体に記憶させる、請求項記載の狭帯域化レーザ装置。
  7. 前記スペクトル幅可変部は、前記レーザ共振器で往復する光の波面を変化させる、請求項1記載の狭帯域化レーザ装置。
  8. 前記レーザ共振器から出力されたパルスレーザ光の光路に配置されたスペクトル幅検出器をさらに備え、
    前記制御部は、
    前記デューティーと前記休止時間とに基づく前記スペクトル幅可変部の前記制御を、前記第1のバースト発振が終了した後、前記第2のバースト発振が開始される前に行い、
    前記スペクトル幅検出器の出力に基づく前記スペクトル幅可変部の第2の制御を、前記第2のバースト発振中に行う、
    請求項1記載の狭帯域化レーザ装置。
  9. 第1のバースト発振と、前記第1のバースト発振の次に行われる第2のバースト発振と、を含む複数回のバースト発振を行ってパルスレーザ光を出力する狭帯域化レーザ装置であって、
    レーザ共振器と、
    前記レーザ共振器の間に配置された第1のチャンバと、
    前記第1のチャンバに配置された第1の一対の電極と、
    前記第1の一対の電極にパルス電圧を印加する第1の電源と、
    前記レーザ共振器に配置された波長選択素子と、
    前記レーザ共振器から出力されたパルスレーザ光の光路に配置された第2のチャンバと、
    前記第2のチャンバに配置された第2の一対の電極と、
    前記第2の一対の電極にパルス電圧を印加する第2の電源と、
    前記第2のバースト発振が開始される時より前の所定期間におけるデューティーと、前記第1のバースト発振が終了した時から前記第2のバースト発振が開始される時までの休止時間と、を計測し、前記デューティーと前記休止時間とに基づいて、前記第1の一対の電極の間における放電のタイミングと前記第2の一対の電極の間における放電のタイミングとの差を制御する制御部と、
    を備え
    前記制御部は、前記所定期間より短い所定の時間が経過するごとに、前記デューティーを新たに計測して、前記デューティーを更新す狭帯域化レーザ装置。
  10. 前記第1の一対の電極の間における放電のタイミングを計測する第1のセンサと、
    前記第2の一対の電極の間における放電のタイミングを計測する第2のセンサと、
    をさらに備え、
    前記制御部は、前記第1のセンサ及び前記第2のセンサの出力に基づいて、前記第1の電源に与えるトリガ信号と前記第2の電源に与えるトリガ信号とのタイミング差を制御する、請求項記載の狭帯域化レーザ装置。
  11. 前記制御部は、前記パルスレーザ光の最大繰り返し周波数と前記所定期間の長さとの積に対する、前記所定期間に計測された前記パルスレーザ光のパルス数の比に基づいて、前記デューティーを計測する、請求項記載の狭帯域化レーザ装置。
  12. 前記レーザ共振器から出力されたパルスレーザ光の光路に配置されたパルスエネルギー検出器をさらに備え、
    前記制御部は、前記パルスレーザ光の最大パルスエネルギーと最大繰り返し周波数と前記所定期間の長さとの積に対する、前記所定期間に計測された前記パルスレーザ光のパルスエネルギーの積算値の比に基づいて、前記デューティーを計測する、請求項記載の狭帯域化レーザ装置。
  13. 前記制御部は、前記デューティーと前記休止時間とスペクトル幅の変化との関係を記憶した媒体にアクセス可能に構成され、前記媒体から取得したデータに基づいて前記第1の一対の電極の間における放電のタイミングと前記第2の一対の電極の間における放電のタイミングとの差を制御する、請求項記載の狭帯域化レーザ装置。
  14. 前記媒体は、前記デューティーの値ごとに、前記休止時間とスペクトル幅の変化との関係を1次遅れの減衰関数として記憶している、請求項13記載の狭帯域化レーザ装置。
  15. 前記レーザ共振器から出力されたパルスレーザ光の光路に配置されたスペクトル幅検出器をさらに備え、
    前記制御部は、前記スペクトル幅検出器の出力に基づいて前記デューティーと前記休止時間と前記スペクトル幅との関係を算出し、前記媒体に記憶させる、請求項13記載の狭帯域化レーザ装置。
  16. 前記レーザ共振器から出力されたパルスレーザ光の光路に配置されたスペクトル幅検出器をさらに備え、
    前記制御部は、
    前記デューティーと前記休止時間とに基づく前記第1の一対の電極の間における放電のタイミングと前記第2の一対の電極の間における放電のタイミングとの差の前記制御を、前記第1のバースト発振が終了した後、前記第2のバースト発振が開始される前に行い、
    前記スペクトル幅検出器の出力に基づく前記第1の一対の電極の間における放電のタイミングと前記第2の一対の電極の間における放電のタイミングとの差の第2の制御を、前記第2のバースト発振中に行う、
    請求項記載の狭帯域化レーザ装置。
JP2017534030A 2015-08-07 2015-08-07 狭帯域化レーザ装置 Active JP6585174B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/072456 WO2017026000A1 (ja) 2015-08-07 2015-08-07 狭帯域化レーザ装置

Publications (2)

Publication Number Publication Date
JPWO2017026000A1 JPWO2017026000A1 (ja) 2018-05-31
JP6585174B2 true JP6585174B2 (ja) 2019-10-02

Family

ID=57984483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017534030A Active JP6585174B2 (ja) 2015-08-07 2015-08-07 狭帯域化レーザ装置

Country Status (4)

Country Link
US (1) US10615565B2 (ja)
JP (1) JP6585174B2 (ja)
CN (1) CN107851958B (ja)
WO (1) WO2017026000A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643879A (zh) * 2017-08-08 2019-04-16 大族激光科技产业集团股份有限公司 倍频激光器及谐波激光产生方法
CN111433674B (zh) 2017-10-19 2024-01-09 西默有限公司 在单次光刻曝光通过过程中形成多个空间图像
CN107946889A (zh) * 2017-11-23 2018-04-20 黑龙江工程学院 一种多重脉宽压缩固体激光系统
CN107994455A (zh) * 2017-11-23 2018-05-04 黑龙江工程学院 一种多路末端泵浦窄脉宽薄片固体激光器
CN107968305A (zh) * 2017-11-23 2018-04-27 黑龙江工程学院 一种四端泵窄脉宽固体激光发生装置
WO2019111393A1 (ja) * 2017-12-07 2019-06-13 ギガフォトン株式会社 光学素子の移動装置、狭帯域化レーザ装置、及び電子デバイスの製造方法
CN111937256B (zh) 2018-03-30 2023-08-18 西默有限公司 脉冲光束的光谱特征选择和脉冲时序控制
CN117242657A (zh) * 2021-06-08 2023-12-15 极光先进雷射株式会社 激光装置、激光振荡方法以及电子器件的制造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898725A (en) * 1997-01-21 1999-04-27 Cymer, Inc. Excimer laser with greater spectral bandwidth and beam stability
US6424666B1 (en) * 1999-06-23 2002-07-23 Lambda Physik Ag Line-narrowing module for high power laser
US6414980B1 (en) * 1999-10-12 2002-07-02 Coherent, Inc. Laser rod thermalization
JP4497650B2 (ja) 2000-04-26 2010-07-07 キヤノン株式会社 レーザ発振装置、露光装置および半導体デバイス製造方法
DE10140903A1 (de) * 2000-08-25 2002-05-08 Lambda Physik Ag Oszillator-Verstärker-System mit schmaler Bandbreite
US6735225B2 (en) * 2001-06-07 2004-05-11 Lambda Physik Ag Chirp compensation method and apparatus
JP3822116B2 (ja) * 2002-02-25 2006-09-13 株式会社小松製作所 半導体露光光源用狭帯域エキシマレーザ装置
JP4798687B2 (ja) * 2004-07-09 2011-10-19 株式会社小松製作所 狭帯域化レーザ装置
US7643522B2 (en) 2004-11-30 2010-01-05 Cymer, Inc. Method and apparatus for gas discharge laser bandwidth and center wavelength control
JP4911558B2 (ja) * 2005-06-29 2012-04-04 株式会社小松製作所 狭帯域化レーザ装置
US7653095B2 (en) * 2005-06-30 2010-01-26 Cymer, Inc. Active bandwidth control for a laser
US7822084B2 (en) * 2006-02-17 2010-10-26 Cymer, Inc. Method and apparatus for stabilizing and tuning the bandwidth of laser light
US8259764B2 (en) * 2006-06-21 2012-09-04 Cymer, Inc. Bandwidth control device
JP5114767B2 (ja) * 2006-10-10 2013-01-09 株式会社小松製作所 狭帯域化レーザのスペクトル幅調整装置
US7835414B2 (en) * 2007-02-26 2010-11-16 Cymer, Inc. Laser gas injection system
JP6022837B2 (ja) * 2011-10-25 2016-11-09 ギガフォトン株式会社 エキシマレーザ装置及びエキシマレーザシステム
US8563956B1 (en) * 2012-07-28 2013-10-22 Cymer, Llc Intracavity loss element for power amplifier
WO2014205413A2 (en) * 2013-06-21 2014-12-24 Invenio Imaging Inc. Multi-photon systems and methods
CN103794982B (zh) * 2014-01-20 2016-03-30 山西大学 稳定1529nm光纤通信激光频率的方法及装置

Also Published As

Publication number Publication date
US10615565B2 (en) 2020-04-07
WO2017026000A1 (ja) 2017-02-16
US20180123312A1 (en) 2018-05-03
CN107851958A (zh) 2018-03-27
CN107851958B (zh) 2021-01-12
JPWO2017026000A1 (ja) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6585174B2 (ja) 狭帯域化レーザ装置
JP6549248B2 (ja) 狭帯域化レーザ装置及びスペクトル線幅計測装置
WO2016084755A1 (ja) 狭帯域化レーザ装置
JP6113426B2 (ja) マスタオシレータシステムおよびレーザ装置
JP6595012B2 (ja) 狭帯域化レーザ装置
JP6444489B2 (ja) 固体レーザシステム、及び露光装置用レーザ装置
WO2020110177A1 (ja) レーザシステム、及び電子デバイスの製造方法
US20150380893A1 (en) Laser device, and method of controlling actuator
JP2010038558A (ja) 光波干渉による距離測定方法及び装置
US10502623B2 (en) Line-narrowed KrF excimer laser apparatus
JPWO2018105002A1 (ja) レーザ装置
US9601893B2 (en) Laser apparatus
JP5832581B2 (ja) 狭帯域化レーザのスペクトル幅調整装置
WO2022172382A1 (ja) レーザシステム、スペクトル波形算出方法、及び電子デバイスの製造方法
WO2022157897A1 (ja) レーザシステムの制御方法、レーザシステム、及び電子デバイスの製造方法
WO2017195244A1 (ja) レーザ装置
JP2008016698A (ja) レーザ光源システムおよびレーザ光源の制御方法

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20180109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6585174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250