JP6583517B2 - Ferritic stainless steel - Google Patents
Ferritic stainless steel Download PDFInfo
- Publication number
- JP6583517B2 JP6583517B2 JP2018218816A JP2018218816A JP6583517B2 JP 6583517 B2 JP6583517 B2 JP 6583517B2 JP 2018218816 A JP2018218816 A JP 2018218816A JP 2018218816 A JP2018218816 A JP 2018218816A JP 6583517 B2 JP6583517 B2 JP 6583517B2
- Authority
- JP
- Japan
- Prior art keywords
- content
- less
- stainless steel
- corrosion
- condensed water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 34
- 238000011084 recovery Methods 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 6
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 description 67
- 238000005260 corrosion Methods 0.000 description 67
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 42
- 238000005219 brazing Methods 0.000 description 31
- 229910000831 Steel Inorganic materials 0.000 description 27
- 230000000694 effects Effects 0.000 description 27
- 239000010959 steel Substances 0.000 description 27
- 239000007789 gas Substances 0.000 description 22
- 238000000137 annealing Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 9
- 238000005554 pickling Methods 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 238000005097 cold rolling Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 238000007670 refining Methods 0.000 description 6
- 230000035515 penetration Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 3
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/007—Heat treatment of ferrous alloys containing Co
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車の排気ガス凝縮水環境で使用されるフェライト系ステンレス鋼に関する。より具体的には、本発明は、例えば、排熱回収器やEGR(Exhaust Gas Recirculation)クーラーなどの排気ガス再循環装置に用いるフェライト系ステンレス鋼に関する。 The present invention relates to a ferritic stainless steel used in an automobile exhaust gas condensate environment. More specifically, the present invention relates to a ferritic stainless steel used in an exhaust gas recirculation device such as an exhaust heat recovery unit or an EGR (Exhaust Gas Recirculation) cooler.
近年、自動車分野における排気ガス環境規制の強化が進められると共に、さらなる燃費向上が要求されている。このため、排熱回収器やEGRクーラーといった熱交換器の自動車への適用が増大しつつある。 In recent years, exhaust gas environmental regulations in the automobile field have been strengthened, and further improvement in fuel efficiency has been demanded. For this reason, application of heat exchangers such as exhaust heat recovery units and EGR coolers to automobiles is increasing.
排熱回収器は、排気ガスの熱を回収して再利用する装置であり、ハイブリッド車を中心に搭載されている。排熱回収器を用いたシステムでは、熱交換器を通じて排気ガスの熱をエンジン冷却水に伝えることで、エンジン暖気の促進をして燃費および暖房性能を向上させている。 An exhaust heat recovery device is a device that recovers and reuses the heat of exhaust gas, and is mounted mainly on hybrid vehicles. In the system using the exhaust heat recovery device, the heat of the exhaust gas is transmitted to the engine cooling water through the heat exchanger, so that the engine warm-up is promoted and the fuel consumption and the heating performance are improved.
また、EGRクーラーは、排気ガスを再循環させる装置である。EGRクーラーを用いたシステムでは、排気側の高温の排気ガスを熱交換器によって冷却し、冷却された排気ガスを再度吸気させることでエンジンの燃焼温度を低下させ、NOxの生成を抑制する。 The EGR cooler is a device that recirculates exhaust gas. In a system using an EGR cooler, high-temperature exhaust gas on the exhaust side is cooled by a heat exchanger, and the cooled exhaust gas is re-intaken to lower the combustion temperature of the engine, thereby suppressing NOx generation.
このような排熱回収器やEGRクーラーの熱交換部は、凝縮水が生成し、厳しい腐食環境にさらされる。熱交換部では、ステンレス鋼を介して排気ガスと冷却水が接しており、腐食により穴あきが発生すると冷却水の漏れにつながるため、高い耐凝縮水腐食性が求められる。 In such a heat exchanger and the heat exchange part of the EGR cooler, condensed water is generated and exposed to a severe corrosive environment. In the heat exchanging part, exhaust gas and cooling water are in contact with each other through stainless steel, and if perforation occurs due to corrosion, it leads to leakage of cooling water, so high resistance to condensed water corrosion is required.
特許文献1には、精製が不十分でS濃度の高い燃料が用いられる場合のEGRクーラーおよび排熱回収装置用オーステナイト系ステンレス鋼が開示されている。しかし、オーステナイト系ステンレス鋼は、Niを多量に含むために高コストになることや、エキゾーストマニホールド周囲部品のように、高温で激しい振動で拘束力をうける使用環境での疲労特性、高温での熱疲労特性が低いという点に問題があった。 Patent Document 1 discloses an austenitic stainless steel for an EGR cooler and an exhaust heat recovery device in the case of using a fuel with insufficient refining and high S concentration. However, austenitic stainless steel is expensive because it contains a large amount of Ni, as well as fatigue characteristics in environments where it is restrained by intense vibrations at high temperatures, such as parts around exhaust manifolds, and heat at high temperatures. There was a problem in that the fatigue characteristics were low.
そこで、排熱回収器やEGRクーラーの熱交換部にオーステナイト系ステンレス鋼以外の鋼を用いることが検討されている。 Therefore, it has been studied to use a steel other than the austenitic stainless steel for the heat exchange part of the exhaust heat recovery unit or the EGR cooler.
例えば、特許文献2には、フェライト系ステンレス鋼を素材として構成された自動車排熱回収装置が開示されている。ここでは、18mass%以上のCrにMoを添加することで、排気ガスの凝縮−蒸発環境における耐孔食性および耐隙間腐食性を確保している。 For example, Patent Document 2 discloses an automobile exhaust heat recovery device configured using ferritic stainless steel as a material. Here, by adding Mo to 18 mass% or more of Cr, pitting corrosion resistance and crevice corrosion resistance in an exhaust gas condensation-evaporation environment are secured.
また、上記のEGRクーラーの熱交換部等の接合には、ろう付け接合が適用されており、これらの部材には、耐凝縮水腐食性を向上させることのみならず、優れたろう付け性も求められている。 Also, brazing joining is applied to the joining of the above-mentioned EGR cooler such as a heat exchange part, and these members are required not only to improve the resistance to condensed water corrosion but also to have excellent brazing ability. It has been.
この点、例えば、特許文献3には、EGRクーラーフェライト系ステンレス鋼が開示されている。ここでは、Cr+2.3Cu≧18を満足するようにCrにCuを添加することで優れたろう付け性と排気ガス凝縮水に対する耐食性とを確保している。 In this regard, for example, Patent Document 3 discloses EGR cooler ferritic stainless steel. Here, by adding Cu to Cr so as to satisfy Cr + 2.3Cu ≧ 18, excellent brazing property and corrosion resistance against exhaust gas condensed water are ensured.
特許文献4には、ろう付け後の排気ガス凝縮水に対する耐食性を備えた排熱回収器用フェライト系ステンレス鋼が開示されている。ここでは、ろう付け後の耐食性の観点から、ろう付け熱処理後に形成される皮膜中のカチオン分率を規定していることを特徴としている。 Patent Document 4 discloses a ferritic stainless steel for exhaust heat recovery equipment having corrosion resistance against exhaust gas condensed water after brazing. Here, from the viewpoint of corrosion resistance after brazing, the cation fraction in the film formed after brazing heat treatment is defined.
しかし、特許文献2〜4のようなステンレス鋼では、凝縮水の生成と蒸発、加熱が繰り返される実際の環境を模擬した試験を行った際に、耐凝縮水腐食性が不十分である場合がある。このように、従来技術では、十分なろう付け性を確保しつつ所望の耐凝縮水腐食性を得ているとはまだ言えなかった。 However, in stainless steels such as Patent Documents 2 to 4, when a test simulating an actual environment in which condensed water generation, evaporation, and heating are repeated, the resistance to condensed water corrosion may be insufficient. is there. As described above, it has not been said that the conventional technology has obtained the desired condensate corrosion resistance while securing sufficient brazing properties.
そこで、本発明は、優れたろう付け性を有すると共に、排熱回収器またはEGRクーラーに使用される環境において、優れた耐凝縮水腐食性を有するフェライト系ステンレス鋼を提供することを目的とする。 Therefore, an object of the present invention is to provide a ferritic stainless steel having excellent brazing properties and excellent resistance to condensed water corrosion in an environment used for an exhaust heat recovery device or an EGR cooler.
なお、ここで、優れたろう付け性とは、重ねた2枚の鋼板の片側の端面にろう材BNi−5(Ni−19Cr−10Si)を1.2g塗布し、10−2Paの真空雰囲気、1170℃×600sの加熱条件でろう付け処理を行った後、ろう材の浸透が2枚の板の重なり長さの50%以上であることを指す。 Here, excellent brazeability means that 1.2 g of brazing material BNi-5 (Ni-19Cr-10Si) is applied to one end face of two stacked steel plates, and a vacuum atmosphere of 10 −2 Pa, After the brazing treatment is performed under a heating condition of 1170 ° C. × 600 s, it indicates that the penetration of the brazing material is 50% or more of the overlapping length of the two plates.
また、優れた耐凝縮水腐食性とは、pH8.0の200ppmCl−+600ppmSO4 2−溶液への試験片の全浸漬、80℃の保持、24時間の浸漬−蒸発試験、250℃の炉内での24時間の加熱保持の全てを4サイクル行った後(以下、凝縮水腐食試験とも記す)、最大腐食深さが100μm未満であることを指す。 Excellent corrosion resistance to condensed water means that the test piece is fully immersed in a 200 ppm Cl − +600 ppm SO 4 2- solution at pH 8.0, kept at 80 ° C., immersed for 24 hours in an evaporation test, and in a furnace at 250 ° C. After 24 cycles of heating and holding for 4 hours (hereinafter also referred to as a condensed water corrosion test), the maximum corrosion depth is less than 100 μm.
本発明者らは、前述した凝縮水腐食試験を行い、Cr、Mo、C、Nに加えてNiを適量含有させることで、優れた耐凝縮水腐食性が得られることを見出した。さらに、Al含有量を調整することで、ろう付け性も確保できることを知見した。 The inventors of the present invention conducted the condensed water corrosion test described above, and found that excellent condensed water corrosion resistance can be obtained by adding an appropriate amount of Ni in addition to Cr, Mo, C, and N. Furthermore, it discovered that brazing property was securable by adjusting Al content.
上記課題を解決することを目的とした本発明の要旨は、以下のとおりである。
[1]質量%で、
C:0.025%以下、
Si:0.01%以上0.40%未満、
Mn:0.05〜1.5%、
P:0.05%以下、
S:0.01%以下、
Cr:17.0〜30.0%、
Mo:1.10〜3.0%、
Ni:0.80%超3.0%以下、
Nb:0.20〜0.80%、
Al:0.001〜0.10%、
N:0.025%以下を含有し、
かつ、以下の式(1)および式(2)を満たし、
残部がFeおよび不可避的不純物からなる組成を有することを特徴とするフェライト系ステンレス鋼。
C+N≦0.030% ・・・(1)
Cr+Mo≧19.0% ・・・(2)
(式(1)、式(2)中のC、N、Cr、Moは、各元素の含有量(質量%)を示す。)
[2]さらに質量%で、
Cu:0.01〜1.0%、
W:0.01〜1.0%、
Co:0.01〜1.0%
のうちから選ばれる1種または2種以上を含有することを特徴とする前記[1]に記載のフェライト系ステンレス鋼。
[3]さらに質量%で、
Ti:0.01〜0.10%、
V:0.01〜0.50%、
Zr:0.01〜0.30%、
B:0.0003〜0.005%、
Ca:0.0003〜0.003%、
Mg:0.0003〜0.003%、
REM:0.001〜0.10%
のうちから選ばれる1種または2種以上を含有することを特徴とする前記[1]または[2]に記載のフェライト系ステンレス鋼。
[4]自動車の排熱回収器用または排気ガス再循環装置用であることを特徴とする前記[1]〜[3]の何れかに記載のフェライト系ステンレス鋼。
The gist of the present invention aimed at solving the above problems is as follows.
[1] By mass%
C: 0.025% or less,
Si: 0.01% or more and less than 0.40%,
Mn: 0.05 to 1.5%,
P: 0.05% or less,
S: 0.01% or less,
Cr: 17.0 to 30.0%,
Mo: 1.10 to 3.0%,
Ni: more than 0.80% and 3.0% or less,
Nb: 0.20 to 0.80%,
Al: 0.001 to 0.10%,
N: 0.025% or less,
And the following formulas (1) and (2) are satisfied,
A ferritic stainless steel characterized in that the balance has a composition comprising Fe and inevitable impurities.
C + N ≦ 0.030% (1)
Cr + Mo ≧ 19.0% (2)
(C, N, Cr, and Mo in Formula (1) and Formula (2) indicate the content (mass%) of each element.)
[2] Further, by mass%,
Cu: 0.01 to 1.0%,
W: 0.01 to 1.0%
Co: 0.01 to 1.0%
The ferritic stainless steel according to [1] above, which contains one or more selected from among the above.
[3] Further, by mass%,
Ti: 0.01-0.10%,
V: 0.01 to 0.50%,
Zr: 0.01 to 0.30%,
B: 0.0003 to 0.005%,
Ca: 0.0003 to 0.003%,
Mg: 0.0003 to 0.003%,
REM: 0.001 to 0.10%
The ferritic stainless steel according to [1] or [2] above, which contains one or more selected from among the above.
[4] The ferritic stainless steel according to any one of [1] to [3], wherein the ferritic stainless steel is used for an exhaust heat recovery device of an automobile or an exhaust gas recirculation device.
本発明によれば、優れたろう付け性を有すると共に、排熱回収器またはEGRクーラー等の凝縮水腐食環境にさらされる自動車部品に使用される場合において、優れた耐凝縮水腐食性を有するフェライト系ステンレス鋼を提供することができる。 According to the present invention, a ferrite system having excellent brazing resistance and excellent condensate corrosion resistance when used for automobile parts exposed to a condensate corrosive environment such as an exhaust heat recovery unit or an EGR cooler. Stainless steel can be provided.
以下、本発明の実施形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
排熱回収器やEGRクーラーの熱交換部の排気ガス側は、従来のマフラーと同様に、排気ガスの凝縮および蒸発が繰り返される環境にある。生成した凝縮水は排気ガスにより加熱され、水分が蒸発するとともにイオン種の濃化とpHの低下が起こり、ステンレス鋼の腐食を促進する。近年では、燃料の多様化に伴い排気ガスも多様化しており、耐食性に大きな影響を及ぼす塩化物イオン、硫酸イオンが増加したり、pHが中性から弱酸性に変化したりするなど、腐食環境は過酷なものが想定されている。 The exhaust gas side of the heat exchange part of the exhaust heat recovery unit or the EGR cooler is in an environment where the exhaust gas is repeatedly condensed and evaporated in the same manner as a conventional muffler. The produced condensed water is heated by the exhaust gas, and moisture is evaporated, and ionic species are concentrated and pH is lowered to promote corrosion of stainless steel. In recent years, exhaust gas has been diversified with the diversification of fuels. Corrosion environment such as increase of chloride ion and sulfate ion that greatly affect corrosion resistance, pH change from neutral to weak acid, etc. Is expected to be harsh.
こうした背景を鑑み、本発明者らは、排気ガス凝縮水環境におけるステンレス鋼の耐凝縮水腐食性向上について、鋭意検討した。 In view of such a background, the present inventors diligently studied on improving the corrosion resistance of stainless steel in a condensed water environment of exhaust gas.
その結果、優れた耐凝縮水腐食性を有するステンレス鋼を得るには、所定範囲の含有量に調整したCr、Mo、C、Nに加えて適量のNiを含有させることが有効であることがわかった。 As a result, in order to obtain stainless steel having excellent condensation water corrosion resistance, it is effective to contain an appropriate amount of Ni in addition to Cr, Mo, C, and N adjusted to a predetermined range of content. all right.
凝縮水腐食の腐食形態は孔食である。本発明では、孔食の発生を抑制すること、孔食の成長速度を低減すること、および孔食の成長を停止させることで耐凝縮水腐食性を向上させた。1つ目の孔食の発生の抑制については、CrとMoを含有させることで抑制効果を強化している。2つ目の孔食の成長速度の低減は、適量のNi含有で大幅に低減している。さらに、3つ目の孔食の成長の停止については、CrとMoの含有に加え、さらに、適量のNiを含有させることでより効果的に成長を停止させている。 The corrosion form of condensed water corrosion is pitting corrosion. In the present invention, the resistance to condensed water corrosion is improved by suppressing the occurrence of pitting corrosion, reducing the growth rate of pitting corrosion, and stopping the growth of pitting corrosion. About suppression of the generation | occurrence | production of the 1st pitting corrosion, the suppression effect is strengthened by containing Cr and Mo. The reduction in the growth rate of the second pitting corrosion is greatly reduced by containing an appropriate amount of Ni. Furthermore, about the stop of the growth of the third pitting corrosion, the growth is stopped more effectively by adding an appropriate amount of Ni in addition to the inclusion of Cr and Mo.
さらに、Al含有量を調整することで、ろう付け性が確保できることを知見した。 Furthermore, it discovered that brazing property was securable by adjusting Al content.
以上の各過程への元素の異なる寄与により、ろう付け性を確保しつつ、耐凝縮水腐食性が飛躍的に向上することを見出し、本発明に至った。 As a result of different contributions of elements to the above processes, it has been found that the resistance to condensed water corrosion is drastically improved while securing brazing properties, and the present invention has been achieved.
このような知見に基づく本発明のフェライト系ステンレス鋼は、質量%で、C:0.025%以下、Si:0.01%以上0.40%未満、Mn:0.05〜1.5%、P:0.05%以下、S:0.01%以下、Cr:17.0〜30.0%、Mo:1.10〜3.0%、Ni:0.80%超3.0%以下、Nb:0.20〜0.80%、Al:0.001〜0.10%、N:0.025%以下を含有し、かつ、以下の式(1)および式(2)を満たし、残部がFeおよび不可避的不純物からなる組成を有することを特徴とし、優れたろう付け性を有すると共に、排熱回収器またはEGRクーラー等の凝縮水腐食環境にさらされる自動車部品に使用される場合において、優れた耐凝縮水腐食性を有する。
C+N≦0.030% ・・・(1)
Cr+Mo≧19.0% ・・・(2)
(式(1)、式(2)中のC、N、Cr、Moは、各元素の含有量(質量%)を示す。)
Based on such knowledge, the ferritic stainless steel of the present invention is, in mass%, C: 0.025% or less, Si: 0.01% or more and less than 0.40%, Mn: 0.05 to 1.5%. , P: 0.05% or less, S: 0.01% or less, Cr: 17.0 to 30.0%, Mo: 1.10 to 3.0%, Ni: more than 0.80% and 3.0% Hereinafter, Nb: 0.20 to 0.80%, Al: 0.001 to 0.10%, N: 0.025% or less, and satisfy the following formulas (1) and (2) In the case where the balance is used for an automobile part which has a composition composed of Fe and inevitable impurities, has excellent brazing properties, and is exposed to a condensed water corrosive environment such as an exhaust heat recovery unit or an EGR cooler. It has excellent condensate corrosion resistance.
C + N ≦ 0.030% (1)
Cr + Mo ≧ 19.0% (2)
(C, N, Cr, and Mo in Formula (1) and Formula (2) indicate the content (mass%) of each element.)
以下では、まず、本発明のフェライト系ステンレス鋼の成分組成について説明する。なお、各元素の含有量を示す%は、特に記載しない限り質量%とする。 Below, the component composition of the ferritic stainless steel of this invention is demonstrated first. In addition,% which shows content of each element shall be the mass% unless there is particular description.
C:0.025%以下
Cは、鋼に不可避的に含まれる元素である。C含有量が多いと強度が向上し、少なくなると加工性が向上する。強度を向上させるためには0.001%以上Cを含有することが好ましい。一方、C含有量が0.025%を超えると加工性の低下が顕著となるうえ、Cr炭化物が析出して局所的なCr欠乏による耐凝縮水腐食性の低下を起しやすくなる。よって、C含有量は0.025%以下とする。C含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下であり、さらに好ましくは0.010%以下である。また、C含有量は、より好ましくは0.003%以上であり、さらに好ましくは0.004%以上である。
C: 0.025% or less C is an element inevitably contained in steel. When the C content is large, the strength is improved, and when it is low, the workability is improved. In order to improve the strength, it is preferable to contain 0.001% or more of C. On the other hand, when the C content exceeds 0.025%, the workability is remarkably reduced, and Cr carbide precipitates, and the resistance to condensed water corrosion due to local Cr deficiency is likely to occur. Therefore, the C content is 0.025% or less. The C content is preferably 0.020% or less, more preferably 0.015% or less, and still more preferably 0.010% or less. Further, the C content is more preferably 0.003% or more, and further preferably 0.004% or more.
Si:0.01%以上0.40%未満
Siは、脱酸作用があり、その効果は0.01%以上のSiの含有で得られる。ただし、Siを0.40%以上含有すると製造時の酸洗性を低下させる。よって、Si含有量は0.01%以上0.40%未満とする。Si含有量は、好ましくは0.05%以上であり、より好ましくは0.10%以上であり、さらに好ましくは0.20%以上であり、さらにより好ましくは0.30%以上である。
Si: 0.01% or more and less than 0.40% Si has a deoxidizing action, and the effect can be obtained by containing 0.01% or more of Si. However, if Si is contained in an amount of 0.40% or more, the pickling property at the time of manufacture is lowered. Therefore, the Si content is 0.01% or more and less than 0.40%. The Si content is preferably 0.05% or more, more preferably 0.10% or more, still more preferably 0.20% or more, and even more preferably 0.30% or more.
Mn:0.05〜1.5%
Mnは、脱酸作用があり、その効果は0.05%以上のMnの含有で得られる。しかし、Mnの1.5%超えの含有は、固溶強化により加工性を損なわせる。また、Mnの1.5%超えの含有は、腐食の起点となるMnSの析出を促進して、耐凝縮水腐食性を低下させる。よって、Mn含有量は0.05〜1.5%の範囲とする。Mn含有量は、好ましくは0.10%以上である。また、Mn含有量は、好ましくは0.50%以下であり、より好ましくは0.30%以下である。
Mn: 0.05 to 1.5%
Mn has a deoxidizing action, and the effect is obtained with a Mn content of 0.05% or more. However, if Mn exceeds 1.5%, workability is impaired by solid solution strengthening. Further, when Mn is contained in excess of 1.5%, precipitation of MnS which is a starting point of corrosion is promoted, and the resistance to condensed water corrosion is reduced. Therefore, the Mn content is in the range of 0.05 to 1.5%. The Mn content is preferably 0.10% or more. Further, the Mn content is preferably 0.50% or less, and more preferably 0.30% or less.
P:0.05%以下
Pは、鋼に不可避的に含まれる元素であり、0.05%超えのPの含有は溶接性を低下させ、粒界腐食を生じさせ易くする。そのため、P含有量は0.05%以下に限定する。好ましくは、P含有量は0.04%以下である。さらに好ましくは、P含有量は0.03%以下である。
P: 0.05% or less P is an element inevitably contained in steel, and the inclusion of P in excess of 0.05% reduces weldability and easily causes intergranular corrosion. Therefore, the P content is limited to 0.05% or less. Preferably, the P content is 0.04% or less. More preferably, the P content is 0.03% or less.
S:0.01%以下
Sは、鋼に不可避的に含まれる元素であり、0.01%超のSの含有は、MnSの析出を促進し、耐凝縮水腐食性を低下させる。よって、S含有量は0.01%以下とする。好ましくは、S含有量は0.008%以下である。より好ましくは、S含有量は0.005%以下である。
S: 0.01% or less S is an element inevitably contained in steel, and the inclusion of S in excess of 0.01% promotes precipitation of MnS and lowers the resistance to condensed water corrosion. Therefore, the S content is 0.01% or less. Preferably, the S content is 0.008% or less. More preferably, the S content is 0.005% or less.
Cr:17.0〜30.0%
Crは、耐凝縮水腐食性を確保するために重要な元素である。Cr含有量が17.0%未満では、耐凝縮水腐食性を十分に得られない。一方で、Crを30.0%超えで含有すると、加工性、製造性が低下する。よって、Cr含有量は17.0〜30.0%の範囲とする。Cr含有量は、好ましくは18.0%以上であり、より好ましくは19.0%以上であり、さらに好ましくは20.5%以上である。また、Cr含有量は、好ましくは24.0%以下であり、より好ましくは23.0%以下であり、さらに好ましくは22.0%以下である。
Cr: 17.0 to 30.0%
Cr is an important element for ensuring the resistance to condensed water corrosion. If the Cr content is less than 17.0%, sufficient resistance to condensed water corrosion cannot be obtained. On the other hand, when Cr is contained in excess of 30.0%, workability and manufacturability are lowered. Therefore, the Cr content is in the range of 17.0 to 30.0%. The Cr content is preferably 18.0% or more, more preferably 19.0% or more, and further preferably 20.5% or more. Moreover, Cr content becomes like this. Preferably it is 24.0% or less, More preferably, it is 23.0% or less, More preferably, it is 22.0% or less.
Mo:1.10〜3.0%
Moは、ステンレス鋼の不動態皮膜を安定化させて、耐凝縮水腐食性を向上させる効果を有する。排熱回収器やEGRクーラーでは、凝縮水による内面腐食や融雪剤などによる外面腐食を防止する効果がある。さらに、熱疲労特性の向上効果があり、エキゾーストマニホールド直下に取り付けられるEGRクーラーに使用する場合には、特に好適な元素である。これらの効果は、1.10%以上のMoの含有で得られる。しかし、Moは高価な元素であるためコストの増大を招く。さらに、Mo含有量が3.0%を超えると、加工性が低下する。よって、Mo含有量は1.10〜3.0%の範囲とする。Mo含有量は、好ましくは1.50%以上であり、より好ましくは1.60%以上である。また、Mo含有量は、好ましくは2.50%以下であり、より好ましくは2.00%以下である。
Mo: 1.10 to 3.0%
Mo has the effect of stabilizing the passive film of stainless steel and improving the resistance to condensed water corrosion. The exhaust heat recovery device and the EGR cooler are effective in preventing internal corrosion due to condensed water and external corrosion due to a snow melting agent. Furthermore, it has an effect of improving thermal fatigue characteristics, and is a particularly suitable element when used for an EGR cooler attached directly under an exhaust manifold. These effects can be obtained with a Mo content of 1.10% or more. However, since Mo is an expensive element, the cost increases. Furthermore, if the Mo content exceeds 3.0%, the workability decreases. Therefore, the Mo content is in the range of 1.10 to 3.0%. Mo content becomes like this. Preferably it is 1.50% or more, More preferably, it is 1.60% or more. Moreover, Mo content becomes like this. Preferably it is 2.50% or less, More preferably, it is 2.00% or less.
Ni:0.80%超3.0%以下
Niは、本発明において耐凝縮水腐食性向上のために重要な元素である。その効果は、0.80%超えのNiを含有することで得られる。しかし、Ni含有量が3.0%を超えると、応力腐食割れ感受性が高くなる。そのため、Ni含有量は0.80%超3.0%以下の範囲とする。Ni含有量は、好ましくは1.00%超であり、より好ましくは1.20%以上であり、さらに好ましくは1.50%以上である。また、Ni含有量は、好ましくは2.50%以下である。Ni含有量が1.20%以上の場合に、特に優れた耐凝縮水腐食性が得られる。
Ni: more than 0.80% to 3.0% or less Ni is an important element for improving the resistance to condensed water corrosion in the present invention. The effect is acquired by containing Ni exceeding 0.80%. However, when the Ni content exceeds 3.0%, the stress corrosion cracking sensitivity becomes high. Therefore, the Ni content is in the range of more than 0.80% and 3.0% or less. The Ni content is preferably more than 1.00%, more preferably 1.20% or more, and further preferably 1.50% or more. Further, the Ni content is preferably 2.50% or less. When the Ni content is 1.20% or more, particularly excellent resistance to condensed water corrosion is obtained.
Nb:0.20〜0.80%
Nbは、CおよびNと優先的に結合することにより、Cr炭窒化物の析出による耐凝縮水腐食性の低下を抑制する元素である。また、高温強度を高めて、熱疲労特性を向上させる効果を有する。これらの効果は、Nbの0.20%以上の含有で得られる。一方、Nb含有量が0.80%を超えると、靱性が低下する。そのため、Nb含有量は0.20〜0.80%の範囲とする。Nb含有量は、好ましくは0.25%以上である。また、Nb含有量は、好ましくは0.60%以下であり、より好ましくは0.50%以下であり、さらに好ましくは0.40%以下である。
Nb: 0.20 to 0.80%
Nb is an element that suppresses a decrease in resistance to condensed water corrosion due to precipitation of Cr carbonitride by preferentially bonding with C and N. It also has the effect of increasing the high temperature strength and improving thermal fatigue properties. These effects are obtained when the content of Nb is 0.20% or more. On the other hand, if the Nb content exceeds 0.80%, the toughness decreases. Therefore, Nb content is taken as 0.20 to 0.80% of range. The Nb content is preferably 0.25% or more. Moreover, Nb content becomes like this. Preferably it is 0.60% or less, More preferably, it is 0.50% or less, More preferably, it is 0.40% or less.
Al:0.001〜0.10%
Alは脱酸に有用な元素であり、その効果は0.001%以上のAlの含有で得られる。一方、Alの0.10%超えの含有はろう付け性を低下させることから、Al含有量は0.10%以下とする。よって、Al含有量は0.001〜0.10%とする。Al含有量は、好ましくは0.050%以下であり、より好ましくは0.025%以下であり、さらに好ましくは0.015%以下であり、さらにより好ましくは0.010%以下であり、特に好ましくは0.008%以下である。
Al: 0.001 to 0.10%
Al is an element useful for deoxidation, and the effect can be obtained by containing 0.001% or more of Al. On the other hand, the content of Al exceeding 0.10% lowers the brazing property, so the Al content is made 0.10% or less. Therefore, the Al content is 0.001 to 0.10%. The Al content is preferably 0.050% or less, more preferably 0.025% or less, still more preferably 0.015% or less, and even more preferably 0.010% or less. Preferably it is 0.008% or less.
N:0.025%以下
Nは、Cと同様に鋼に不可避的に含まれる元素であり、固溶強化により鋼の強度を上昇させる効果がある。その効果は、Nを0.001%以上含有することで得られる。一方、Nを0.025%超えで含有し、Cr窒化物として析出した場合には耐凝縮水腐食性を低下させる。よって、N含有量は0.025%以下とする。N含有量は、好ましくは0.020%以下であり、より好ましくは0.015%以下であり、さらに好ましくは0.010%以下である。また、N含有量は、好ましくは0.001%以上であり、より好ましくは0.003%以上であり、さらに好ましくは0.005%以上である。
N: 0.025% or less N is an element inevitably contained in steel like C, and has the effect of increasing the strength of steel by solid solution strengthening. The effect is acquired by containing N 0.001% or more. On the other hand, when N is contained in excess of 0.025% and precipitated as Cr nitride, the resistance to condensed water corrosion is reduced. Therefore, the N content is 0.025% or less. N content becomes like this. Preferably it is 0.020% or less, More preferably, it is 0.015% or less, More preferably, it is 0.010% or less. Further, the N content is preferably 0.001% or more, more preferably 0.003% or more, and further preferably 0.005% or more.
C+N:0.030%以下 ・・・(1)
(式(1)中のC、Nは、各元素の含有量(質量%)を示す。)
CおよびNの過剰含有は、耐凝縮水腐食性および加工性を低下させる。そのため、C含有量およびN含有量の夫々を前述した範囲とした上で、C+N(C含有量とN含有量の和)は0.030%以下とする。好ましくは、C+Nは0.025%以下である。より好ましくは、C+Nは0.020%以下である。
C + N: 0.030% or less (1)
(C and N in the formula (1) indicate the content (mass%) of each element.)
An excessive content of C and N decreases the resistance to condensed water corrosion and workability. Therefore, C + N (the sum of C content and N content) is set to 0.030% or less after setting each of the C content and the N content within the ranges described above. Preferably, C + N is 0.025% or less. More preferably, C + N is 0.020% or less.
Cr+Mo:19.0%以上 ・・・(2)
(式(2)中のCr、Moは、各元素の含有量(質量%)を示す。)
前述したように、本発明では、耐凝縮水腐食性の向上のためにCrおよびMoの夫々を所定の含有量にする。さらに本発明者らは、鋭意検討し、Cr+Mo(Cr含有量とMo含有量の和)が19.0%未満であると、所望の耐凝縮水腐食性が得られないことも知見した。そのため、本発明では、Cr含有量およびMo含有量の夫々を前述した範囲とした上で、Cr+Moを19.0%以上とする。より好ましくは、Cr+Moを21.0%以上とする。
Cr + Mo: 19.0% or more (2)
(Cr and Mo in formula (2) indicate the content (mass%) of each element.)
As described above, in the present invention, each of Cr and Mo is set to a predetermined content in order to improve the resistance to condensed water corrosion. Furthermore, the present inventors have intensively studied and found that when the Cr + Mo (the sum of the Cr content and the Mo content) is less than 19.0%, the desired condensate corrosion resistance cannot be obtained. Therefore, in this invention, after making each Cr content and Mo content into the range mentioned above, Cr + Mo shall be 19.0% or more. More preferably, Cr + Mo is 21.0% or more.
本発明のフェライト系ステンレス鋼では、残部はFeおよび不可避的不純物からなる。 In the ferritic stainless steel of the present invention, the balance consists of Fe and inevitable impurities.
本発明のフェライト系ステンレス鋼は、上記成分に加えて、さらに、Cu、W、Coのうちから選ばれる1種または2種以上を、下記の範囲で含有することができる。 In addition to the above components, the ferritic stainless steel of the present invention can further contain one or more selected from Cu, W, and Co in the following ranges.
Cu:0.01〜1.0%
Cuは、耐凝縮水腐食性を高める効果を有する元素である。その効果は、Cuを0.01%以上含有することで得られる。一方、Cu含有量が1.0%を超えると、熱間加工性が低下する場合がある。そのため、Cuを含有する場合は、Cu含有量は0.01〜1.0%の範囲とすることが好ましい。Cu含有量は、より好ましくは0.05%以上である。また、Cu含有量は、より好ましくは0.50%以下である。
Cu: 0.01 to 1.0%
Cu is an element having an effect of increasing the resistance to condensed water corrosion. The effect is acquired by containing 0.01% or more of Cu. On the other hand, if the Cu content exceeds 1.0%, the hot workability may decrease. Therefore, when it contains Cu, it is preferable to make Cu content into 0.01 to 1.0% of range. The Cu content is more preferably 0.05% or more. Further, the Cu content is more preferably 0.50% or less.
W:0.01〜1.0%
Wは、Moと同様に、耐凝縮水腐食性を向上させる効果がある。その効果は、Wを0.01%以上含有することで得られる。一方、W含有量が1.0%を超えると、製造性を低下させる場合がある。よって、Wを含有する場合は、W含有量は0.01〜1.0%とすることが好ましい。より好ましくは、W含有量は0.50%以下である。
W: 0.01 to 1.0%
W, like Mo, has the effect of improving the resistance to condensed water corrosion. The effect is acquired by containing 0.01% or more of W. On the other hand, if the W content exceeds 1.0%, productivity may be reduced. Therefore, when W is contained, the W content is preferably 0.01 to 1.0%. More preferably, the W content is 0.50% or less.
Co:0.01〜1.0%
Coは、耐凝縮水腐食性および靭性を向上させる元素である。その効果は、Coを0.01%以上含有することで得られる。一方、Co含有量が1.0%を超えると、製造性を低下させる場合がある。よって、Coを含有する場合は、Co含有量は0.01〜1.0%とすることが好ましい。Co含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.04%以上である。また、Co含有量は、より好ましくは0.50%以下であり、さらに好ましくは0.20%以下である。
Co: 0.01 to 1.0%
Co is an element that improves the resistance to condensed water corrosion and toughness. The effect is acquired by containing 0.01% or more of Co. On the other hand, if the Co content exceeds 1.0%, productivity may be reduced. Therefore, when Co is contained, the Co content is preferably 0.01 to 1.0%. The Co content is more preferably 0.02% or more, and further preferably 0.04% or more. Further, the Co content is more preferably 0.50% or less, and still more preferably 0.20% or less.
本発明のフェライト系ステンレス鋼は、さらに、Ti、V、Zr、B、Ca、Mg、REMのうちから選ばれる1種または2種以上を、下記の範囲で含有することができる。 The ferritic stainless steel of the present invention can further contain one or more selected from Ti, V, Zr, B, Ca, Mg, and REM in the following range.
Ti:0.01〜0.10%
Tiは、鋼中に含まれるCおよびNと結合し、鋭敏化を防止する効果を有する。その効果はTiの0.01%以上の含有で得られる。一方、Tiは酸素に対して活性な元素であり、0.10%超えのTiの含有はろう付け処理時に緻密で連続的なTi酸化皮膜を鋼の表面に生成して、ろう付け性を低下させる場合がある。よって、Ti含有量は0.01〜0.10%とすることが好ましい。Ti含有量は、より好ましくは0.02%以上であり、さらに好ましくは0.03%以上である。また、Ti含有量は、より好ましくは0.05%以下であり、さらに好ましくは0.04%以下である。
Ti: 0.01-0.10%
Ti combines with C and N contained in the steel and has an effect of preventing sensitization. The effect is obtained when the Ti content is 0.01% or more. On the other hand, Ti is an element active against oxygen, and the content of Ti exceeding 0.10% generates a dense and continuous Ti oxide film on the surface of the steel during the brazing process, thereby reducing the brazing property. There is a case to let you. Therefore, the Ti content is preferably 0.01 to 0.10%. The Ti content is more preferably 0.02% or more, and further preferably 0.03% or more. Further, the Ti content is more preferably 0.05% or less, and further preferably 0.04% or less.
V:0.01〜0.50%
Vは、Ti同様に、鋼中に含まれるCおよびNと結合し、鋭敏化を防止する効果を有する。その効果は、Vを0.01%以上含有することで得られる。一方、V含有量が0.50%を超えると、加工性が低下する場合がある。そのため、Vを含有する場合は、V含有量は0.01〜0.50%の範囲とすることが好ましい。V含有量は、より好ましくは0.03%以上であり、さらに好ましくは0.05%以上である。また、V含有量は、より好ましくは0.40%以下であり、さらに好ましくは0.25%以下である。
V: 0.01 to 0.50%
V, like Ti, combines with C and N contained in the steel and has the effect of preventing sensitization. The effect is acquired by containing V 0.01% or more. On the other hand, if the V content exceeds 0.50%, workability may be reduced. Therefore, when V is contained, the V content is preferably in the range of 0.01 to 0.50%. The V content is more preferably 0.03% or more, and even more preferably 0.05% or more. Further, the V content is more preferably 0.40% or less, and still more preferably 0.25% or less.
Zr:0.01〜0.30%
Zrは、C、Nと結合して、鋭敏化を抑制する効果がある。その効果は、Zrを0.01%以上含有することで得られる。一方、Zr含有量が0.30%を超えると、加工性を低下させるうえ、非常に高価な元素であるためコストの増大を招く場合がある。よって、Zrを含有する場合は、Zr含有量は0.01〜0.30%とすることが好ましい。Zr含有量は、より好ましくは0.05%以上である。また、Zr含有量は、より好ましくは0.20%以下である。
Zr: 0.01-0.30%
Zr combines with C and N and has the effect of suppressing sensitization. The effect is acquired by containing 0.01% or more of Zr. On the other hand, if the Zr content exceeds 0.30%, the workability is lowered and the cost may increase due to the extremely expensive element. Therefore, when Zr is contained, the Zr content is preferably 0.01 to 0.30%. The Zr content is more preferably 0.05% or more. Further, the Zr content is more preferably 0.20% or less.
B:0.0003〜0.005%
Bは、二次加工脆性を改善する元素である。その効果は、Bを0.0003%以上含有することで得られる。一方、B含有量が0.005%を超えると、固溶強化により延性が低下する場合がある。よって、Bを含有する場合は、B含有量は0.0003〜0.005%の範囲とすることが好ましい。B含有量は、より好ましくは0.0005%以上である。また、B含有量は、より好ましくは0.0030%以下である。
B: 0.0003 to 0.005%
B is an element that improves secondary work brittleness. The effect is acquired by containing B 0.0003% or more. On the other hand, if the B content exceeds 0.005%, the ductility may decrease due to solid solution strengthening. Therefore, when it contains B, it is preferable to make B content into the range of 0.0003 to 0.005%. The B content is more preferably 0.0005% or more. Further, the B content is more preferably 0.0030% or less.
Ca:0.0003〜0.003%
Caは、溶接部の溶け込み性を改善して溶接性を向上させる。その効果は、Caを0.0003%以上含有することで得られる。一方、Ca含有量が0.003%を超えると、Sと結合してCaSを生成し、耐凝縮水腐食性を低下させる場合がある。よって、Caを含有する場合は、Ca含有量は0.0003〜0.003%の範囲とすることが好ましい。Ca含有量は、より好ましくは0.0005%以上である。また、Ca含有量は、より好ましくは0.0020%以下である。
Ca: 0.0003 to 0.003%
Ca improves the weldability by improving the penetration of the weld. The effect is acquired by containing 0.0003% or more of Ca. On the other hand, if the Ca content exceeds 0.003%, it combines with S to produce CaS, which may reduce the resistance to condensed water corrosion. Therefore, when Ca is contained, the Ca content is preferably in the range of 0.0003 to 0.003%. The Ca content is more preferably 0.0005% or more. Further, the Ca content is more preferably 0.0020% or less.
Mg:0.0003〜0.003%
Mgは、脱酸効果等精錬上有用な元素であり、また、組織を微細化し、加工性、靭性の向上にも有用であり、必要に応じてMgを0.003%以下含有させることができる。Mgを含有させる場合、Mg含有量は、安定した効果が得られる0.0003%以上とすることが好ましい。すなわち、Mgを含有させる場合、Mg含有量は0.0003〜0.003%とすることが好ましい。Mg含有量は、より好ましくは0.0020%以下である。
Mg: 0.0003 to 0.003%
Mg is an element useful for refining such as a deoxidizing effect, and is also useful for improving the workability and toughness by refining the structure. If necessary, it can contain 0.003% or less of Mg. . When Mg is contained, the Mg content is preferably 0.0003% or more so that a stable effect is obtained. That is, when Mg is contained, the Mg content is preferably 0.0003 to 0.003%. The Mg content is more preferably 0.0020% or less.
REM:0.001〜0.10%
REM(希土類元素)は耐酸化性を向上させて、酸化スケールの形成を抑制し、溶接部のテンパーカラー直下のCr欠乏領域の形成を抑制する。その効果は、REMを0.001%以上含有することで得られる。一方、REM含有量が0.10%を超えると、酸洗性などの製造性を低下させるうえ、コストの増大を招く。よって、REMを含有する場合は、REM含有量は0.001〜0.10%とすることが好ましい。
REM: 0.001 to 0.10%
REM (rare earth element) improves oxidation resistance, suppresses the formation of oxide scale, and suppresses the formation of a Cr-deficient region immediately below the temper collar of the weld. The effect is acquired by containing REM 0.001% or more. On the other hand, when the REM content exceeds 0.10%, the productivity such as pickling properties is lowered and the cost is increased. Therefore, when REM is contained, the REM content is preferably 0.001 to 0.10%.
次に、本発明のフェライト系ステンレス鋼の製造方法について説明する。 Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
本発明のステンレス鋼の製造方法は、フェライト系ステンレス鋼の通常の製造方法であれば好適に用いることができ、特に限定されるものではない。例えば、転炉、電気炉等公知の溶解炉で鋼を溶製し、あるいはさらに取鍋精錬、真空精錬等の二次精錬を経て上述した本発明の成分組成を有する鋼とし、連続鋳造法あるいは造塊−分塊圧延法で鋼片(スラブ)とし、その後、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上げ焼鈍、酸洗等の各工程を経て冷延焼鈍板とする製造工程で製造することができる。上記冷間圧延は、1回または中間焼鈍を挟む2回以上の冷間圧延としてもよく、また、冷間圧延、仕上げ焼鈍、酸洗の各工程は、繰り返して行ってもよい。さらに、熱延板焼鈍は省略してもよく、鋼板の表面光沢や粗度調整が要求される場合には、冷間圧延後あるいは仕上げ焼鈍後、スキンパス圧延を施してもよい。 The method for producing stainless steel of the present invention can be suitably used as long as it is a normal method for producing ferritic stainless steel, and is not particularly limited. For example, the steel having the above-described composition of the present invention is obtained by melting steel in a known melting furnace such as a converter or electric furnace, or further through secondary refining such as ladle refining or vacuum refining. It is made into a steel slab (slab) by the ingot-making and ingot rolling method, and then made into a cold-rolled annealed plate through each process such as hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing, pickling. It can be manufactured in a manufacturing process. The cold rolling may be performed once or two or more cold rollings with intermediate annealing interposed therebetween, and the steps of cold rolling, finish annealing, and pickling may be repeated. Furthermore, hot-rolled sheet annealing may be omitted, and skin pass rolling may be performed after cold rolling or after finish annealing when surface gloss or roughness adjustment of the steel sheet is required.
上記製造方法における、好ましい製造条件について説明する。 Preferred production conditions in the production method will be described.
鋼を溶製する製鋼工程は、転炉あるいは電気炉等で溶解した鋼をVOD法等により二次精錬し、上記必須成分および必要に応じて添加される成分を含有する鋼とすることが好ましい。溶製した溶鋼は、公知の方法で鋼素材とすることができるが、生産性および品質面からは、連続鋳造法によることが好ましい。鋼素材は、その後、好ましくは1050〜1250℃に加熱され、熱間圧延により所望の板厚の熱延板とされる。もちろん、板材以外に熱間加工することもできる。上記熱延板は、その後必要に応じて900〜1150℃の温度で連続焼鈍を施した後、酸洗等により脱スケールし、熱延製品とすることが好ましい。なお、必要に応じて、酸洗前にショットブラストによりスケール除去してもよい。 In the steelmaking process for melting steel, it is preferable that the steel melted in a converter or an electric furnace is secondarily refined by a VOD method or the like, and the steel contains the above essential components and components added as necessary. . Although the molten steel can be made into a steel material by a known method, it is preferable to use a continuous casting method in terms of productivity and quality. Thereafter, the steel material is preferably heated to 1050 to 1250 ° C., and hot rolled into a desired thickness by hot rolling. Of course, hot working can be performed in addition to the plate material. The hot-rolled sheet is preferably subjected to continuous annealing at a temperature of 900 to 1150 ° C. as necessary, and then descaled by pickling or the like to obtain a hot-rolled product. If necessary, the scale may be removed by shot blasting before pickling.
さらに、上記熱延焼鈍板を、冷間圧延等の工程を経て冷延製品としてもよい。この場合の冷間圧延は、1回でもよいが、生産性や要求品質上の観点から中間焼鈍を挟む2回以上の冷間圧延としてもよい。1回または2回以上の冷間圧延の総圧下率は60%以上が好ましく、より好ましくは70%以上である。冷間圧延した鋼板は、その後、好ましくは900〜1150℃、さらに好ましくは950〜1150℃の温度で連続焼鈍(仕上げ焼鈍)し、酸洗し、冷延製品とするのが好ましい。なお、連続焼鈍を光輝焼鈍で行って酸洗を省略してもよい。さらに用途によっては、仕上げ焼鈍後、スキンパス圧延等を施して、鋼板の形状や表面粗度、材質調整を行ってもよい。 Furthermore, the hot-rolled annealed plate may be a cold-rolled product through a process such as cold rolling. In this case, the cold rolling may be performed once, but may be performed twice or more with intermediate annealing in view of productivity and required quality. The total rolling reduction of one or more cold rollings is preferably 60% or more, more preferably 70% or more. Thereafter, the cold-rolled steel sheet is preferably subjected to continuous annealing (finish annealing) at a temperature of 900 to 1150 ° C., more preferably 950 to 1150 ° C., pickling, and forming a cold-rolled product. In addition, pickling may be omitted by performing continuous annealing by bright annealing. Furthermore, depending on the application, after finish annealing, skin pass rolling or the like may be performed to adjust the shape, surface roughness, and material quality of the steel sheet.
以上説明した本発明のフェライト系ステンレス鋼は、自動車の排熱回収器やEGRクーラーなどの排気ガス再循環装置に好適に用いられる。 The ferritic stainless steel of the present invention described above is suitably used for exhaust gas recirculation devices such as automobile exhaust heat recovery devices and EGR coolers.
以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to examples.
表1、2に示したNo.1〜43の成分組成を有する鋼を真空溶解炉で溶製し、1100〜1200℃で1時間加熱した後、熱間圧延によって板厚4.0mmの熱延板を製造した。950〜1100℃にて熱延板焼鈍を行った後、スケールを除去して板厚1.0mmまで冷間圧延した。950〜1100℃にて仕上げ焼鈍を行って得られた冷延焼鈍板を、エメリー研磨紙で600番まで研磨し、アセトンによる脱脂を行って試験に供した。 No. shown in Tables 1 and 2. Steel having a component composition of 1 to 43 was melted in a vacuum melting furnace, heated at 1100 to 1200 ° C. for 1 hour, and then hot rolled into a plate thickness of 4.0 mm by hot rolling. After performing hot-rolled sheet annealing at 950 to 1100 ° C., the scale was removed and cold rolled to a sheet thickness of 1.0 mm. A cold-rolled annealed plate obtained by finish annealing at 950 to 1100 ° C. was polished up to No. 600 with emery abrasive paper, degreased with acetone, and used for the test.
<耐凝縮水腐食性>
耐凝縮水腐食性は、実環境を模擬したサイクル試験で評価した。冷延焼鈍板を25mm×100mmの大きさに切り出し、試験に供した。試験液は実車の排熱回収装置から採取した凝縮水の分析例を参考にし、腐食に特に寄与する塩化物イオンと硫酸イオンのみを用いた。試薬に塩酸、硫酸を用いて、200ppmCl−+600ppmSO4 2−の溶液を調整した後、アンモニア水を用いてpHを8.0に調整した。80℃に一定管理した上記溶液に試験片を浸漬させ、試験片を浸漬したまま浸漬溶液を24時間で蒸発させた。本工程を5回行った。続いて試験片を250℃の炉に入れて24時間加熱保持を行った。これを1サイクルとし、計4サイクル行った。試験終了後、腐食生成物を除去して、3Dマクロスコープにより腐食深さを測定した。最大腐食深さが80μm未満の場合を◎(合格、特に優れている)、最大腐食深さが80μm以上100μm未満の場合を○(合格)、最大腐食深さが100μm以上の場合を×(不合格)と評価した。
<Condensation water corrosion resistance>
Condensed water corrosion resistance was evaluated by a cycle test simulating a real environment. The cold-rolled annealed plate was cut into a size of 25 mm × 100 mm and used for the test. For the test solution, referring to the analysis example of the condensed water collected from the exhaust heat recovery system of the actual vehicle, only chloride ions and sulfate ions that contribute particularly to corrosion were used. After adjusting a solution of 200 ppm Cl − +600 ppm SO 4 2− using hydrochloric acid and sulfuric acid as reagents, the pH was adjusted to 8.0 using aqueous ammonia. The test piece was immersed in the above-described solution controlled at 80 ° C., and the immersion solution was evaporated in 24 hours while the test piece was immersed. This process was performed 5 times. Subsequently, the test piece was put in a furnace at 250 ° C. and kept heated for 24 hours. This was taken as one cycle, and a total of 4 cycles were performed. After completion of the test, the corrosion products were removed and the corrosion depth was measured with a 3D macroscope. The case where the maximum corrosion depth is less than 80 μm is ◎ (pass, especially excellent), the case where the maximum corrosion depth is 80 μm or more and less than 100 μm is ○ (pass), and the case where the maximum corrosion depth is 100 μm or more is × (not good). Passed).
<ろう付け性>
ろう付け性は、ろう材のすき間部への浸透性で評価した。各冷延焼鈍板について30mm角と25mm×30mmの板を切出し、この2枚の板を重ねて、一定のトルク力(170kgf)でクランプ冶具を用いてはさみ止めした。片側の端面にろう材BNi−5(Ni−19Cr−10Si)を1.2g塗布し、10−2Paの真空雰囲気でろう付け処理を行った。
熱処理温度パターンは、昇温温度10℃/s、均熱時間1(全体の温度を均一にする工程):1060℃×1800s、昇温温度10℃/s、均熱時間2(実際にろう材の融点以上の温度でろう付けを行う工程):1170℃×600sの処理を順に行った後、炉冷し、200℃に温度が下がったときに外気(大気)でパージするものとした。ろう付け処理後に板間にろう材がどの程度浸透したかを、重ねた板の側面部にて目視により確認し、以下の基準で評価した。ろう材の浸透が2枚の板の重なり長さの50%以上の場合を○(合格)、ろう材の浸透が2枚の板の重なり長さの50%未満の場合を×(不合格)とした。
<Brassability>
The brazing property was evaluated by the permeability of the brazing material into the gap. A 30 mm square and a 25 mm × 30 mm plate were cut out for each cold-rolled annealed plate, and the two plates were stacked and clamped using a clamp jig with a constant torque force (170 kgf). 1.2 g of brazing material BNi-5 (Ni-19Cr-10Si) was applied to one end face, and brazing was performed in a vacuum atmosphere of 10 −2 Pa.
The heat treatment temperature pattern is: temperature rising temperature 10 ° C./s, soaking time 1 (step of making the whole temperature uniform): 1060 ° C. × 1800 s, heating temperature 10 ° C./s, soaking time 2 (actually brazing material Step of brazing at a temperature equal to or higher than the melting point of: 1170 ° C. × 600 s in order, followed by furnace cooling and purging with outside air (atmosphere) when the temperature drops to 200 ° C. The degree of penetration of the brazing material between the plates after the brazing treatment was visually confirmed on the side surface of the stacked plates and evaluated according to the following criteria. When the penetration of the brazing material is 50% or more of the overlap length of the two plates, ○ (pass), and when the penetration of the brazing material is less than 50% of the overlap length of the two plates, × (fail) It was.
表1、2より、本発明例の鋼No.22、35、42、43は、いずれも優れた耐凝縮水腐食性およびろう付け性を示している。
特に、Ni含有量が1.20%以上の鋼No.22、35、42、43は耐凝縮水腐食性が特に優れていた。
From Tables 1 and 2, the steel No. of the present invention example. Nos. 22, 35, 42, and 43 all show excellent condensate corrosion resistance and brazing resistance.
In particular, steel No. 1 with Ni content of 1.20% or more. Nos. 22, 35, 42 and 43 were particularly excellent in resistance to condensed water corrosion.
一方、Cr、Mo、Ni、Nbの含有量のいずれかが本発明の範囲から外れる鋼No.23、24、25、26、式(1)を満足しない鋼No.28、式(2)を満足しない鋼No.29は、耐凝縮水腐食性が不合格となった。 On the other hand, any of the contents of Cr, Mo, Ni and Nb is out of the scope of the present invention. 23, 24, 25, 26, steel No. which does not satisfy the formula (1). 28, steel No. which does not satisfy the formula (2). No. 29 failed the resistance to condensed water corrosion.
また、Al、Tiの含有量のいずれかが本発明の範囲から外れる鋼No.27、30は、ろう付け性が不合格となった。 Further, steel No. 1 in which any of the contents of Al and Ti falls outside the scope of the present invention. Nos. 27 and 30 failed in brazing.
本発明のフェライト系ステンレス鋼は、自動車の排気ガスから生成する凝縮水にさらされる排熱回収器やEGRクーラーなどの排気ガス再循環装置に使用される部材として好適である。 The ferritic stainless steel of the present invention is suitable as a member used in an exhaust gas recirculation device such as an exhaust heat recovery unit or an EGR cooler exposed to condensed water generated from automobile exhaust gas.
Claims (3)
C:0.025%以下、
Si:0.10%以上0.40%未満、
Mn:0.05〜1.5%、
P:0.05%以下、
S:0.01%以下、
Cr:17.0〜30.0%、
Mo:1.50〜3.0%、
Ni:1.20〜3.0%、
Nb:0.20〜0.40%、
Al:0.001〜0.10%、
N:0.025%以下を含有し、
さらに、
Ti:0.01〜0.10%、
Zr:0.01〜0.30%、
B:0.0003〜0.005%、
Ca:0.0003〜0.003%、
Mg:0.0003〜0.003%、
REM:0.001〜0.018%
のうちから選ばれる1種または2種以上を含有し、
かつ、以下の式(1)および式(2)を満たし、
残部がFeおよび不可避的不純物からなる組成を有することを特徴とするフェライト系ステンレス鋼。
C+N≦0.030% ・・・(1)
Cr+Mo≧19.0% ・・・(2)
(式(1)、式(2)中のC、N、Cr、Moは、各元素の含有量(質量%)を示す。) % By mass
C: 0.025% or less,
Si: 0.10 % or more and less than 0.40%,
Mn: 0.05 to 1.5%,
P: 0.05% or less,
S: 0.01% or less,
Cr: 17.0 to 30.0%,
Mo: 1.50 to 3.0%,
Ni: 1.20 to 3.0 %,
Nb: 0.20 to 0.40 %,
Al: 0.001 to 0.10%,
N: 0.025% or less,
further,
Ti: 0.01-0.10%,
Zr: 0.01 to 0.30%,
B: 0.0003 to 0.005%,
Ca: 0.0003 to 0.003%,
Mg: 0.0003 to 0.003%,
REM: 0.001 to 0.018%
1 type or 2 types or more chosen from among,
And the following formulas (1) and (2) are satisfied,
A ferritic stainless steel characterized in that the balance has a composition comprising Fe and inevitable impurities.
C + N ≦ 0.030% (1)
Cr + Mo ≧ 19.0% (2)
(C, N, Cr, and Mo in Formula (1) and Formula (2) indicate the content (mass%) of each element.)
Cu:0.01〜1.0%、
W:0.01〜1.0%、
Co:0.01〜1.0%
のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼。 In addition,
Cu: 0.01 to 1.0%,
W: 0.01 to 1.0%
Co: 0.01 to 1.0%
The ferritic stainless steel according to claim 1, wherein the ferritic stainless steel contains one or more selected from among the above.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017104060 | 2017-05-26 | ||
JP2017104060 | 2017-05-26 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017562093A Division JP6517371B2 (en) | 2017-05-26 | 2017-08-25 | Ferritic stainless steel |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019056179A JP2019056179A (en) | 2019-04-11 |
JP2019056179A5 JP2019056179A5 (en) | 2019-07-11 |
JP6583517B2 true JP6583517B2 (en) | 2019-10-02 |
Family
ID=64396728
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017562093A Active JP6517371B2 (en) | 2017-05-26 | 2017-08-25 | Ferritic stainless steel |
JP2018218816A Active JP6583517B2 (en) | 2017-05-26 | 2018-11-22 | Ferritic stainless steel |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017562093A Active JP6517371B2 (en) | 2017-05-26 | 2017-08-25 | Ferritic stainless steel |
Country Status (6)
Country | Link |
---|---|
US (1) | US11365467B2 (en) |
EP (1) | EP3604589A4 (en) |
JP (2) | JP6517371B2 (en) |
KR (1) | KR102337567B1 (en) |
CN (1) | CN110678566A (en) |
WO (1) | WO2018216236A1 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2018009591A (en) | 2016-02-08 | 2018-09-11 | Jfe Steel Corp | High strength stainless steel seamless pipe for oil well and manufacturing method therefor. |
JP6699670B2 (en) * | 2016-09-02 | 2020-05-27 | Jfeスチール株式会社 | Ferritic stainless steel |
JP6418338B2 (en) | 2016-09-02 | 2018-11-07 | Jfeスチール株式会社 | Ferritic stainless steel |
BR112019013803A2 (en) | 2017-01-13 | 2020-01-21 | Jfe Steel Corp | high strength seamless stainless steel tube and production method |
US11306369B2 (en) | 2017-02-24 | 2022-04-19 | Jfe Steel Corporation | High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same |
ES2864725T3 (en) | 2017-03-30 | 2021-10-14 | Jfe Steel Corp | Ferritic stainless steel |
KR102337567B1 (en) | 2017-05-26 | 2021-12-08 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
JP7014754B2 (en) * | 2019-07-09 | 2022-02-01 | Jfeスチール株式会社 | Ferritic stainless steel sheet for collectors of sulfide-based solid-state batteries |
WO2023276411A1 (en) * | 2021-06-28 | 2023-01-05 | Jfeスチール株式会社 | Ferritic stainless steel |
US20240247354A1 (en) * | 2021-06-28 | 2024-07-25 | Jfe Steel Corporation | Ferritic stainless steel |
JP7548193B2 (en) | 2021-11-09 | 2024-09-10 | Jfeスチール株式会社 | Ferritic Stainless Steel |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3617258A (en) | 1966-10-21 | 1971-11-02 | Toyo Kogyo Co | Heat resistant alloy steel |
JPS59216736A (en) | 1983-05-23 | 1984-12-06 | Ikeda Bussan Co Ltd | Jump seat |
JPS64252A (en) * | 1987-02-27 | 1989-01-05 | Nippon Steel Corp | Ferritic stainless steel |
JP2696584B2 (en) | 1990-03-24 | 1998-01-14 | 日新製鋼株式会社 | Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance |
JP2739531B2 (en) | 1991-09-17 | 1998-04-15 | 日新製鋼株式会社 | Ferritic stainless steel with excellent weld corrosion resistance |
EP0547826A1 (en) | 1991-12-18 | 1993-06-23 | Raytheon Company | B-adaptive ADPCM image data compressor |
EP0547626B1 (en) * | 1991-12-19 | 1997-07-23 | Sumitomo Metal Industries, Ltd. | Exhaust manifold |
US5778714A (en) | 1995-05-19 | 1998-07-14 | Nkk Corporation | Method for manufacturing seamless pipe |
JP2001181798A (en) | 1999-12-20 | 2001-07-03 | Kawasaki Steel Corp | Hot rolled ferritic stainless steel sheet excellent in bendability, its manufacturing method, and method of manufacturing for cold rolled steel sheet |
KR100413822B1 (en) | 1999-12-28 | 2003-12-31 | 주식회사 포스코 | ferritic stainless steel with improved dissimilar materials crevice corrosion resistance |
JP4357694B2 (en) | 2000-04-18 | 2009-11-04 | 日新製鋼株式会社 | Ferritic stainless steel for exhaust gas path members of gas turbines |
JP2002146484A (en) | 2000-11-10 | 2002-05-22 | Sanyo Special Steel Co Ltd | High strength ferritic heat resistant steel |
EP1207214B1 (en) | 2000-11-15 | 2012-07-04 | JFE Steel Corporation | Soft Cr-containing steel |
JP3932020B2 (en) | 2001-11-19 | 2007-06-20 | 日新製鋼株式会社 | Ferritic stainless steel with excellent deep drawability and small in-plane anisotropy and method for producing the same |
EP1553198A1 (en) * | 2002-06-14 | 2005-07-13 | JFE Steel Corporation | Heat-resistant ferritic stainless steel and method for production thereof |
JP5390175B2 (en) * | 2007-12-28 | 2014-01-15 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent brazeability |
JP5252959B2 (en) | 2008-03-21 | 2013-07-31 | 日新製鋼株式会社 | Automobile exhaust heat recovery device |
KR20110018455A (en) * | 2008-07-23 | 2011-02-23 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Ferritic stainless steel for use in producing urea water tank |
JP5462583B2 (en) | 2008-10-24 | 2014-04-02 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet for EGR cooler |
JP2010202916A (en) | 2009-03-02 | 2010-09-16 | Nisshin Steel Co Ltd | Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel |
JP5610796B2 (en) * | 2010-03-08 | 2014-10-22 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas |
JP5856878B2 (en) | 2011-03-29 | 2016-02-10 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel for exhaust heat recovery and exhaust heat recovery |
WO2013100600A1 (en) | 2011-12-26 | 2013-07-04 | 주식회사 포스코 | Stainless steel having superior surface quality and moldability for fuel cell divider sheet, and method for manufacturing same |
JP5853287B2 (en) | 2012-03-23 | 2016-02-09 | 日新製鋼株式会社 | Austenitic stainless steel for exhaust gas flow path members |
CN104685089B (en) | 2012-12-07 | 2016-08-17 | 杰富意钢铁株式会社 | Ferrite series stainless steel plate |
JP5967066B2 (en) | 2012-12-21 | 2016-08-10 | Jfeスチール株式会社 | High strength stainless steel seamless steel pipe for oil well with excellent corrosion resistance and method for producing the same |
WO2014157104A1 (en) * | 2013-03-29 | 2014-10-02 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet having excellent brazability, heat exchanger, ferritic stainless steel sheet for heat exchangers, ferritic stainless steel, ferritic stainless steel for members of fuel supply systems, and member of fuel supply system |
JP6075349B2 (en) * | 2013-10-08 | 2017-02-08 | Jfeスチール株式会社 | Ferritic stainless steel |
US20170088912A1 (en) * | 2014-03-20 | 2017-03-30 | Jfe Steel Corporation | Ferritic stainless steel and production method therefor (as amended) |
KR20170018457A (en) | 2014-07-31 | 2017-02-17 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel sheet for plasma welding and welding method therefor |
ES2922207T3 (en) * | 2014-10-31 | 2022-09-09 | Nippon Steel Stainless Steel Corp | Ferrite-based stainless steel with high resistance to corrosion caused by exhaust gases and condensation and high brazing properties and manufacturing method thereof |
JP6159775B2 (en) * | 2014-10-31 | 2017-07-05 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent resistance to exhaust gas condensate corrosion and brazing, and method for producing the same |
US10876183B2 (en) | 2015-07-10 | 2020-12-29 | Jfe Steel Corporation | High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe |
MX2018009591A (en) * | 2016-02-08 | 2018-09-11 | Jfe Steel Corp | High strength stainless steel seamless pipe for oil well and manufacturing method therefor. |
US20190106775A1 (en) * | 2016-03-29 | 2019-04-11 | Jfe Steel Corporation | Ferritic stainless steel sheet |
CA3026612A1 (en) * | 2016-06-10 | 2017-12-14 | Jfe Steel Corporation | Stainless steel sheet for fuel cell separators, and production method therefor |
US10763517B2 (en) * | 2016-06-10 | 2020-09-01 | Jfe Steel Corporation | Stainless steel sheet for fuel cell separators, and production method therefor |
JP6418338B2 (en) * | 2016-09-02 | 2018-11-07 | Jfeスチール株式会社 | Ferritic stainless steel |
JP6699670B2 (en) * | 2016-09-02 | 2020-05-27 | Jfeスチール株式会社 | Ferritic stainless steel |
BR112019013803A2 (en) * | 2017-01-13 | 2020-01-21 | Jfe Steel Corp | high strength seamless stainless steel tube and production method |
US20200002779A1 (en) * | 2017-01-26 | 2020-01-02 | Jfe Steel Corporation | Hot-rolled ferritic stainless steel sheet and method for manufacturing same |
US11306369B2 (en) * | 2017-02-24 | 2022-04-19 | Jfe Steel Corporation | High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same |
KR102337567B1 (en) | 2017-05-26 | 2021-12-08 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
WO2019035329A1 (en) * | 2017-08-15 | 2019-02-21 | Jfeスチール株式会社 | High strength stainless seamless steel pipe for oil wells, and method for producing same |
-
2017
- 2017-08-25 KR KR1020197034717A patent/KR102337567B1/en active IP Right Grant
- 2017-08-25 EP EP17911063.0A patent/EP3604589A4/en active Pending
- 2017-08-25 JP JP2017562093A patent/JP6517371B2/en active Active
- 2017-08-25 WO PCT/JP2017/030440 patent/WO2018216236A1/en unknown
- 2017-08-25 CN CN201780091179.8A patent/CN110678566A/en active Pending
- 2017-08-25 US US16/615,883 patent/US11365467B2/en active Active
-
2018
- 2018-11-22 JP JP2018218816A patent/JP6583517B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2018216236A1 (en) | 2018-11-29 |
CN110678566A (en) | 2020-01-10 |
KR102337567B1 (en) | 2021-12-08 |
US11365467B2 (en) | 2022-06-21 |
EP3604589A4 (en) | 2020-04-29 |
EP3604589A1 (en) | 2020-02-05 |
JP2019056179A (en) | 2019-04-11 |
US20200080181A1 (en) | 2020-03-12 |
JP6517371B2 (en) | 2019-05-22 |
KR20200002991A (en) | 2020-01-08 |
JPWO2018216236A1 (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6583517B2 (en) | Ferritic stainless steel | |
JP6699670B2 (en) | Ferritic stainless steel | |
JP6159775B2 (en) | Ferritic stainless steel with excellent resistance to exhaust gas condensate corrosion and brazing, and method for producing the same | |
JP6607268B2 (en) | Ferritic stainless steel | |
KR102274976B1 (en) | Ferritic stainless hot-rolled steel sheet and manufacturing method thereof | |
KR20150110800A (en) | Ferritic stainless steel sheet having excellent brazability, heat exchanger, ferritic stainless steel sheet for heat exchangers, ferritic stainless steel, ferritic stainless steel for members of fuel supply systems, and member of fuel supply system | |
JP6112273B1 (en) | Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them | |
WO2018116792A1 (en) | Ferritic stainless steel | |
KR102389026B1 (en) | Ferritic stainless steel | |
KR20230142630A (en) | Ferrite stainless hot-rolled-and-annealed steel sheet and production method for same | |
JP2023146183A (en) | Ferritic stainless steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190605 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190605 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190605 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190620 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190806 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190819 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6583517 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |