JP6583247B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP6583247B2
JP6583247B2 JP2016248524A JP2016248524A JP6583247B2 JP 6583247 B2 JP6583247 B2 JP 6583247B2 JP 2016248524 A JP2016248524 A JP 2016248524A JP 2016248524 A JP2016248524 A JP 2016248524A JP 6583247 B2 JP6583247 B2 JP 6583247B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
light
phosphor
radiant flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016248524A
Other languages
Japanese (ja)
Other versions
JP2018101753A (en
Inventor
森川 武
武 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2016248524A priority Critical patent/JP6583247B2/en
Priority to US15/848,695 priority patent/US10014449B1/en
Publication of JP2018101753A publication Critical patent/JP2018101753A/en
Application granted granted Critical
Publication of JP6583247B2 publication Critical patent/JP6583247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Led Device Packages (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)

Description

本開示は、発光装置に関する。   The present disclosure relates to a light emitting device.

例えば特許文献1には、1つのパッケージと、パッケージ内に配された赤色LED、緑色LED、及び青色LEDと、これら三色のLEDを覆うようにパッケージの内に配された透光性の封止樹脂部と、を含み、パッケージが、青色LEDより発される光により励起されて光を発する蛍光体を含んでなる、発光装置が記載されている。   For example, Patent Document 1 discloses a single package, a red LED, a green LED, and a blue LED arranged in the package, and a translucent seal arranged in the package so as to cover these three colors of LEDs. And a light-emitting device comprising a phosphor that emits light when excited by light emitted from a blue LED.

また、特許文献1において先行技術文献として挙げられている特許文献2には、画像表示パネルに表示する画像の3原色の色情報に同期して、赤色LEDと緑色LEDと青白色LEDへの供給電力をそれぞれ動的に制御することが記載されている。   Further, in Patent Document 2 cited as a prior art document in Patent Document 1, supply to a red LED, a green LED, and a blue-white LED is performed in synchronization with color information of three primary colors of an image displayed on an image display panel. It is described that each power is dynamically controlled.

国際公開第2012/046661号International Publication No. 2012/046661 特開2009−099334号公報JP 2009-099334 A

上記従来の発光装置では、優れた色再現性を得られるとしても、三色のLEDへの供給電力をそれぞれ動的に制御するために、少なくとも4つの外部接続端子が必要であり、駆動回路の構成も複雑になる。   In the conventional light emitting device, even if excellent color reproducibility can be obtained, at least four external connection terminals are required to dynamically control the power supplied to the three colors of LEDs, and the drive circuit The configuration is also complicated.

そこで、本発明の一実施の形態は、給電用の外部接続端子が最少2つでよい、色再現性に優れる発光装置を提供することを目的とする。   An object of one embodiment of the present invention is to provide a light-emitting device with excellent color reproducibility, which requires at least two external connection terminals for power supply.

本発明の一実施の形態の発光装置は、赤色発光する第1発光素子と、緑色発光する第2発光素子と、青色発光する第3発光素子と、前記第3発光素子の光を吸収して発光する波長変換物質を含み、前記第1乃至第3発光素子を覆う透光性部材と、を備え、前記第1発光素子、前記第2発光素子、及び第3発光素子が直列接続されており、同一順電流値における前記第3発光素子の放射束が前記第1発光素子の放射束及び前記第2発光素子の放射束より大きく、前記波長変換物質が緑色乃至赤色発光する蛍光体であることを特徴とする。   A light emitting device according to an embodiment of the present invention absorbs light of a first light emitting element that emits red light, a second light emitting element that emits green light, a third light emitting element that emits blue light, and the third light emitting element. A translucent member that includes a wavelength converting substance that emits light and covers the first to third light emitting elements, wherein the first light emitting element, the second light emitting element, and the third light emitting element are connected in series. The radiant flux of the third light emitting element at the same forward current value is greater than the radiant flux of the first light emitting element and the radiant flux of the second light emitting element, and the wavelength converting material is a phosphor that emits green to red light. It is characterized by.

本発明の一実施の形態によれば、給電用の外部接続端子が最少2つでよく、色再現性に優れる発光装置が得られる。   According to one embodiment of the present invention, a minimum of two external connection terminals for power supply is required, and a light emitting device having excellent color reproducibility can be obtained.

本発明の一実施の形態に係る発光装置の概略上面図である。1 is a schematic top view of a light emitting device according to an embodiment of the present invention. 図1AにおけるA−A断面における概略断面図である。It is a schematic sectional drawing in the AA cross section in FIG. 1A. 本発明の一実施の形態に係る発光装置における波長変換物質の構成の別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the wavelength conversion substance in the light-emitting device which concerns on one embodiment of this invention. 本発明の一実施の形態に係る発光装置の概略下面図である。1 is a schematic bottom view of a light emitting device according to an embodiment of the present invention. 本発明の一実施の形態に係る発光装置の概略上面図である。1 is a schematic top view of a light emitting device according to an embodiment of the present invention. 図2AにおけるB−B断面における概略断面図である。It is a schematic sectional drawing in the BB cross section in FIG. 2A. 本発明の一実施の形態に係る発光装置の概略下面図である。1 is a schematic bottom view of a light emitting device according to an embodiment of the present invention.

以下、発明の実施の形態について適宜図面を参照して説明する。但し、以下に説明する発光装置は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light-emitting device described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following unless otherwise specified. The contents described in one embodiment and example are applicable to other embodiments and examples. In addition, the size, positional relationship, and the like of members illustrated in the drawings may be exaggerated for clarity of explanation.

なお、可視波長域は波長が380nm以上780nm以下の範囲とし、青色域は波長が420nm以上480nm以下の範囲、緑色域は波長が500nm以上560nm以下の範囲、黄色域は波長が560nmより長く590nm以下の範囲、橙色域は波長が590nmより長く610nmより短い範囲、赤色域は波長が610nm以上750nm以下の範囲とする。   The visible wavelength range is a wavelength range of 380 nm to 780 nm, the blue range is a wavelength range of 420 nm to 480 nm, the green range is a wavelength range of 500 nm to 560 nm, and the yellow range is longer than 560 nm to 590 nm. The orange region has a wavelength longer than 590 nm and shorter than 610 nm, and the red region has a wavelength between 610 nm and 750 nm.

<実施の形態1>
図1Aは、実施の形態1に係る発光装置100の概略上面図である。図1Bは、図1AのA−A断面における概略断面図である。図1Cは、発光装置100における波長変換物質の構成の別の例を示す概略断面図である。図1Dは、発光装置100の概略下面図である。
<Embodiment 1>
1A is a schematic top view of light-emitting device 100 according to Embodiment 1. FIG. 1B is a schematic cross-sectional view taken along a line AA in FIG. 1A. FIG. 1C is a schematic cross-sectional view illustrating another example of the configuration of the wavelength converting substance in the light emitting device 100. FIG. 1D is a schematic bottom view of the light emitting device 100.

図1A〜1Dに示すように、実施の形態1の発光装置100は、赤色発光する第1発光素子20Rと、緑色発光する第2発光素子20Gと、青色発光する第3発光素子20Bと、透光性部材40と、を備えている。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは、直列接続されている。透光性部材40は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを覆っている。透光性部材40は、第3発光素子20Bの光を吸収して発光する波長変換物質30を含んでいる。そして、波長変換物質30は、緑色乃至赤色発光する蛍光体である。   As shown in FIGS. 1A to 1D, the light-emitting device 100 of Embodiment 1 includes a first light-emitting element 20R that emits red light, a second light-emitting element 20G that emits green light, a third light-emitting element 20B that emits blue light, The optical member 40 is provided. The first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are connected in series. The translucent member 40 covers the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B. The translucent member 40 includes a wavelength conversion material 30 that absorbs light from the third light emitting element 20B and emits light. The wavelength converting substance 30 is a phosphor that emits green to red light.

より詳細には、発光装置100は、基体10を更に備えている。基体10は、表面実装型発光ダイオード用のパッケージである。基体10は、第1リード電極11aと、第2リード電極11cと、樹脂成形体15と、を備えている。樹脂成形体15は、第1リード電極11a及び第2リード電極11cを保持している。基体10は、底面が素子載置面となる凹部を有している。基体10の凹部底面の一部は、第1リード電極11aの表面、及び第2リード電極11cの表面により構成されている。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは、基体10の素子載置面上に載置されている。第2発光素子20G及び第3発光素子20Bは電気的絶縁性の接着部材60で、第1発光素子20Rは導電性の接着部材65で、其々素子載置面に接着されている。また、第1発光素子20Rと第3発光素子20B、並びに第2発光素子20Gと第3発光素子20Bは、ワイヤ50によって互いに直列に接続されている。第1発光素子20Rは、正極端子となる第1リード電極11aと接着部材65で接続されている。第2発光素子20Gは、負極端子となる第2リード電極11cとワイヤ50で接続されている。透光性部材40は、基体10の凹部内に充填されている。   More specifically, the light emitting device 100 further includes a base 10. The substrate 10 is a package for a surface mount type light emitting diode. The substrate 10 includes a first lead electrode 11a, a second lead electrode 11c, and a resin molded body 15. The resin molded body 15 holds the first lead electrode 11a and the second lead electrode 11c. The base 10 has a recess whose bottom surface is an element placement surface. A part of the bottom surface of the recess of the base 10 is constituted by the surface of the first lead electrode 11a and the surface of the second lead electrode 11c. The first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are mounted on the element mounting surface of the base 10. The second light emitting element 20G and the third light emitting element 20B are electrically insulating adhesive members 60, and the first light emitting element 20R is an electrically conductive adhesive member 65, which are adhered to the element mounting surface. Further, the first light emitting element 20R and the third light emitting element 20B, and the second light emitting element 20G and the third light emitting element 20B are connected to each other in series by a wire 50. The first light emitting element 20 </ b> R is connected to the first lead electrode 11 a serving as a positive terminal by an adhesive member 65. The second light emitting element 20G is connected to the second lead electrode 11c serving as a negative terminal by a wire 50. The translucent member 40 is filled in the recess of the base 10.

このような発光装置100は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bが其々、蛍光体の発光に比べてスペクトル線幅の狭い半導体発光素子であるため、色再現性に極めて優れている。また、発光装置100は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bが直列接続されているので、給電用の外部接続端子が最少2つ、すなわち1つの正極端子と1つの負極端子でよい。よって、発光装置100の駆動回路を簡素に構成することができる。   In such a light-emitting device 100, the first light-emitting element 20R, the second light-emitting element 20G, and the third light-emitting element 20B are semiconductor light-emitting elements that each have a narrow spectral line width compared to the light emission of the phosphor. Excellent reproducibility. In the light emitting device 100, since the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are connected in series, at least two external connection terminals for feeding, that is, one positive terminal and One negative terminal may be sufficient. Therefore, the drive circuit of the light emitting device 100 can be configured simply.

なお、同一順電流値において、第3発光素子20Bの放射束は、第1発光素子20Rの放射束より大きく、且つ第2発光素子20Gの放射束より大きい。このような第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを直列接続した場合、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bには同一値の順電流が流れて、第3発光素子20Bが最も大きい放射束で発光する。そこで、第3発光素子20Bが発する青色光の一部を波長変換物質30に吸収させることによって、発光装置100の赤色、緑色、青色の各色の放射束の均衡を図ることができる。また、波長変換物質30が発する緑色域及び赤色域の光の放射束は、第1発光素子20R及び第2発光素子20Gの放射束として加味することができる。これにより、発光装置100の好ましい色度範囲の白色発光が得られる。なお、ここでいう順電流値は、所定の順電流値であってよいが、1mA以上1000mA以下であることが好ましく、20mA以上200mA以下であることがより好ましい。   At the same forward current value, the radiant flux of the third light emitting element 20B is larger than the radiant flux of the first light emitting element 20R and larger than the radiant flux of the second light emitting element 20G. When the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are connected in series, the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B have the same value. A forward current flows, and the third light emitting element 20B emits light with the largest radiant flux. Therefore, by allowing the wavelength conversion material 30 to absorb a part of the blue light emitted from the third light emitting element 20B, it is possible to balance the radiant fluxes of the red, green, and blue colors of the light emitting device 100. Further, the radiant fluxes of the green and red light emitted from the wavelength conversion material 30 can be added as the radiant fluxes of the first light emitting element 20R and the second light emitting element 20G. Thereby, white light emission in a preferable chromaticity range of the light emitting device 100 is obtained. The forward current value here may be a predetermined forward current value, but is preferably 1 mA or more and 1000 mA or less, and more preferably 20 mA or more and 200 mA or less.

なお、本明細書における、「赤色発光する」、「緑色発光する」、「青色発光する」とは、第1発光素子20R、第2発光素子20G、第3発光素子20B、又は波長変換物質30の発光が、ヒトの視覚によってその光色に認識されることを意味する。それは、例えば、発光ピーク波長がその光色域にあることであるが、その光色域以外の波長成分を含んでいてもよい。特に、蛍光体の発光は、半導体発光素子に比べてスペクトル線幅が広く、多くの波長成分を含んでいる。このため、波長変換物質30の緑色乃至赤色発光は、第1発光素子20R及び/若しくは第2発光素子20Gの発光ピーク波長と同じ波長成分を含んでおり、それにより第1発光素子20R及び第2発光素子20Gの放射束を補うことができるのである。   In this specification, “red light emission”, “green light emission”, and “blue light emission” refer to the first light emitting element 20R, the second light emitting element 20G, the third light emitting element 20B, or the wavelength conversion substance 30. Means that the light color is recognized by human vision. For example, the emission peak wavelength is in the light color gamut, but may include wavelength components other than the light color gamut. In particular, the light emission of the phosphor has a wider spectral line width than that of the semiconductor light emitting device and includes many wavelength components. For this reason, the green to red light emission of the wavelength conversion material 30 includes the same wavelength component as the emission peak wavelength of the first light emitting element 20R and / or the second light emitting element 20G, and thereby the first light emitting element 20R and the second light emitting element 20G. The radiant flux of the light emitting element 20G can be supplemented.

また、透光性部材40の波長変換物質30の含有量は、発光装置100の発光色度が好ましい白色領域となる範囲の量であることが好ましく、さらに色再現性の観点からはその範囲内において少ないほど好ましい。発光装置100の発光色度(x値,y値)は、x値が0.2以上0.4以下でありy値が0.2以上0.4以下であることが好ましく、x値が0.22以上0.35下でありy値が0.22以上0.35以下であることがより好ましく、x値が0.25以上0.32以下でありy値が0.23以上0.33以下であることがよりいっそう好ましい。なお、この色度(x値,y値)は、国際照明委員会(CIE)のxyz表色系に準拠するものとする。   Further, the content of the wavelength converting substance 30 in the translucent member 40 is preferably an amount in a range where the light emission chromaticity of the light emitting device 100 is a preferable white region, and further within that range from the viewpoint of color reproducibility. The smaller the number, the better. The light emission chromaticity (x value, y value) of the light emitting device 100 is preferably such that the x value is 0.2 or more and 0.4 or less, the y value is 0.2 or more and 0.4 or less, and the x value is 0. More preferably, the value is 0.22 to 0.35 and the y value is 0.22 to 0.35, the x value is 0.25 to 0.32, and the y value is 0.23 to 0.33. It is even more preferable that: Note that the chromaticity (x value, y value) is based on the xyz color system of the International Commission on Illumination (CIE).

以下、発光装置100の好ましい形態について詳述する。   Hereinafter, the preferable form of the light-emitting device 100 is explained in full detail.

同一順電流値における、第3発光素子20Bの放射束が第2発光素子20Gの放射束より大きく、且つ第2発光素子20Gの放射束が第1発光素子20Rの放射束より大きい場合、波長変換物質30は、図1Bに示すように赤色発光する蛍光体30Rと緑色発光する蛍光体30Gの組み合わせであるか、又は、図1Cに示すように赤色発光する蛍光体30Rであるか、若しくは黄色発光する蛍光体30Yであることが好ましい。これにより、第1発光素子20R、又は第1発光素子20R及び第2発光素子20Gの放射束を補って、発光装置100の赤色、緑色、青色の各色の放射束の均衡を図りやすい。   When the radiant flux of the third light emitting element 20B is larger than the radiant flux of the second light emitting element 20G and the radiant flux of the second light emitting element 20G is larger than the radiant flux of the first light emitting element 20R at the same forward current value, wavelength conversion is performed. The substance 30 is a combination of a phosphor 30R that emits red light and a phosphor 30G that emits green light as shown in FIG. 1B, or a phosphor 30R that emits red light as shown in FIG. 1C, or yellow light emission. It is preferable that the phosphor 30Y. Thereby, the radiant flux of the first light emitting element 20R or the first light emitting element 20R and the second light emitting element 20G can be supplemented to easily balance the radiant fluxes of the red, green, and blue colors of the light emitting device 100.

同一順電流値における、第3発光素子20Bの放射束が第1発光素子20Rの放射束より大きく、且つ第1発光素子20Rの放射束が第2発光素子20Gの放射束より大きい場合、波長変換物質30は、図1Bに示すように赤色発光する蛍光体30Rと緑色発光する蛍光体30Gの組み合わせであるか、又は、図1Cに示すように緑色発光する蛍光体30Gであるか、若しくは黄色発光する蛍光体30Yであることが好ましい。これにより、第2発光素子20G、又は第1発光素子20R及び第2発光素子20Gの放射束を補って、発光装置100の赤色、緑色、青色の各色の放射束の均衡を図りやすい。   When the radiant flux of the third light emitting element 20B is larger than the radiant flux of the first light emitting element 20R and the radiant flux of the first light emitting element 20R is larger than the radiant flux of the second light emitting element 20G at the same forward current value, wavelength conversion is performed. The substance 30 is a combination of a phosphor 30R emitting red light and a phosphor 30G emitting green light as shown in FIG. 1B, or a phosphor 30G emitting green light as shown in FIG. 1C, or yellow light emission. It is preferable that the phosphor 30Y. This makes it easy to balance the radiant fluxes of the red, green, and blue colors of the light emitting device 100 by supplementing the radiant flux of the second light emitting element 20G or the first light emitting element 20R and the second light emitting element 20G.

図1A〜1Cに示すように、第1発光素子20R、第3発光素子20B、及び第2発光素子20Gは、この記載順に並置されていることが好ましい。このように、波長変換物質30の励起光を発する第3発光素子20Bが第1発光素子20Rと第2発光素子20Gの間に配置されることによって、赤色、緑色、青色の各色の配光の偏りを抑え、色斑の少ない発光が得られやすい。なお、ここでいう「並置」とは、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bが、上面視の第1方向(本実施の形態では基体10の上面視長手方向)において、順に配置されていることを意味する。なお、このとき、上面視の第1方向に垂直な第2方向(本実施の形態では基体10の上面視短手方向)における、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの位置(各発光素子の中心で定義する)は、異なっていてもよいが、同一直線上にあることが最も好ましい。   As shown in FIGS. 1A to 1C, the first light emitting element 20R, the third light emitting element 20B, and the second light emitting element 20G are preferably juxtaposed in the order of description. As described above, the third light emitting element 20B that emits the excitation light of the wavelength converting substance 30 is disposed between the first light emitting element 20R and the second light emitting element 20G, thereby allowing light distribution of each color of red, green, and blue. It is easy to obtain light emission with less unevenness and less bias. The term “parallel arrangement” used here means that the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are in a first direction in a top view (in this embodiment, a longitudinal direction in a top view of the substrate 10). ) In that order. At this time, the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element in a second direction perpendicular to the first direction in the top view (in the present embodiment, the short side view in the top view of the substrate 10). The position of the element 20B (defined by the center of each light emitting element) may be different, but is most preferably on the same straight line.

図1A〜1Dに示すように、第1発光素子20Rは第1リード電極11aに載置され、第2発光素子20G及び第3発光素子20Bは第2リード電極11cに載置されていることが好ましい。第1発光素子20Rは、正負一対の電極が互いに反対の面に各々設けられる対向電極構造を有する素子が多い。対向電極構造を有する素子は、正負一対の電極の一方が導電性の接着部材65を介してリード電極と接続される。このため、第1発光素子20Rを載置するリード電極と、第2発光素子20G及び第3発光素子20Bを載置するリード電極と、を異ならせることによって、各発光素子の放熱性において有利となる。また、発光装置100を小型に形成しやすい。なお、リード電極を2つとする場合でも、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの全てを1つのリード電極に載置し且つ直列接続することは可能である。また、リード電極を3つとして、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを其々、別々のリード電極に載置すれば、各発光素子の放熱性においてよりいっそう有利となる。   As shown in FIGS. 1A to 1D, the first light emitting element 20R is placed on the first lead electrode 11a, and the second light emitting element 20G and the third light emitting element 20B are placed on the second lead electrode 11c. preferable. In many cases, the first light emitting element 20R has an opposing electrode structure in which a pair of positive and negative electrodes are provided on opposite surfaces. In an element having a counter electrode structure, one of a pair of positive and negative electrodes is connected to a lead electrode through a conductive adhesive member 65. For this reason, it is advantageous in heat dissipation of each light emitting element by making the lead electrode on which the first light emitting element 20R is placed different from the lead electrode on which the second light emitting element 20G and the third light emitting element 20B are placed. Become. Further, the light emitting device 100 can be easily formed in a small size. Even when the number of lead electrodes is two, it is possible to place all of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B on one lead electrode and connect them in series. If the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are mounted on separate lead electrodes with three lead electrodes, the heat dissipation of each light emitting element is further enhanced. It will be advantageous.

図1A〜1Cに示すように、発光装置100は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを其々1つのみ備えている。これにより、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの電気的接続を簡素に構成することができ、ひいては発光装置100を小型に形成しやすい。また、図1Dに示すように、発光装置100の外部接続端子は2つであって、その両方が第1発光素子20R、第2発光素子20G、及び第3発光素子20Bへの給電用である。これにより、発光装置100を簡素、小型に構成することができる。なお、発光装置の給電用の外部接続端子の数は、2つに限られず、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの配置及び/若しくは電気的接続を考慮して適宜選択でき、例えば3つであってもよい。   As shown in FIGS. 1A to 1C, the light emitting device 100 includes only one first light emitting element 20R, second light emitting element 20G, and third light emitting element 20B. Thereby, the electrical connection of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B can be simply configured, and as a result, the light emitting device 100 can be easily formed in a small size. Further, as shown in FIG. 1D, the light emitting device 100 has two external connection terminals, both of which are for supplying power to the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B. . Thereby, the light-emitting device 100 can be configured to be simple and small. Note that the number of external connection terminals for supplying power to the light emitting device is not limited to two, and the arrangement and / or electrical connection of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are considered. For example, there may be three.

<実施の形態2>
図2Aは、実施の形態2に係る発光装置200の概略上面図である。図2Bは、図2AのB−B断面における概略断面図である。図2Cは、発光装置200の概略下面図である。
<Embodiment 2>
FIG. 2A is a schematic top view of light-emitting device 200 according to Embodiment 2. FIG. 2B is a schematic cross-sectional view taken along the line BB in FIG. 2A. FIG. 2C is a schematic bottom view of the light emitting device 200.

図2A〜2Cに示すように、実施の形態2の発光装置200もまた、赤色発光する第1発光素子20R、緑色発光する第2発光素子20G、青色発光する第3発光素子20Bと、透光性部材42と、を備えている。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは、直列接続されている。透光性部材42は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを覆っている。透光性部材42は、第3発光素子20Bの光を吸収して発光する波長変換物質30を含んでいる。そして、波長変換物質30は、緑色乃至赤色発光する蛍光体である。なお、同一順電流値において、第3発光素子20Bの放射束は、第1発光素子20Rの放射束より大きく、且つ第2発光素子20Gの放射束より大きい。   As shown in FIGS. 2A to 2C, the light emitting device 200 according to the second embodiment also includes a first light emitting element 20R that emits red light, a second light emitting element 20G that emits green light, a third light emitting element 20B that emits blue light, And a sex member 42. The first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are connected in series. The translucent member 42 covers the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B. The translucent member 42 includes the wavelength conversion material 30 that absorbs the light of the third light emitting element 20B and emits light. The wavelength converting substance 30 is a phosphor that emits green to red light. At the same forward current value, the radiant flux of the third light emitting element 20B is larger than the radiant flux of the first light emitting element 20R and larger than the radiant flux of the second light emitting element 20G.

より詳細には、発光装置200は、実施の形態1のような基体10を備えていない。発光装置200は、「チップ・サイズ・パッケージ(CSP)型」とも呼ばれる表面実装型の発光ダイオードである。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは其々、フリップチップ実装型の素子である。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの下面に設けられた正負一対の電極には、それぞれ一対の突起電極80が接続されている。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの上面には、1つの平板状(シート状)の透光性部材42が接合されている。波長変換物質30は、赤色発光する蛍光体30Rと緑色発光する蛍光体30Gの組み合わせからなっている。樹脂成形体17は、第1発光素子20R、第2発光素子20G、第3発光素子20Bの側面及び下面、透光性部材42の側面、並びに突起電極80の側面を被覆している。樹脂成形体17の下面には、各突起電極80に接続した、1つの第1配線膜13a、1つの第2配線膜13c、及び複数の第3配線膜13eが成膜されている。そして、第1発光素子20Rと第3発光素子20B、並びに第2発光素子20Gと第3発光素子20Bは、第3配線膜13eによって互いに直列に接続されている。第1発光素子20Rは、正極端子となる第1配線膜13aと突起電極80を介して接続されている。第2発光素子20Gは、負極端子となる第2配線膜13cと突起電極80を介して接続されている。   More specifically, the light emitting device 200 does not include the base body 10 as in the first embodiment. The light-emitting device 200 is a surface-mounted light-emitting diode that is also called a “chip size package (CSP) type”. The first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are each a flip-chip mounting type element. A pair of protruding electrodes 80 is connected to a pair of positive and negative electrodes provided on the lower surfaces of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B. One flat (sheet-like) translucent member 42 is bonded to the upper surfaces of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B. The wavelength converting material 30 is composed of a combination of a phosphor 30R that emits red light and a phosphor 30G that emits green light. The resin molded body 17 covers the side surfaces and the bottom surface of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B, the side surface of the translucent member 42, and the side surface of the protruding electrode 80. On the lower surface of the resin molded body 17, one first wiring film 13a, one second wiring film 13c, and a plurality of third wiring films 13e connected to each protruding electrode 80 are formed. The first light emitting element 20R and the third light emitting element 20B, and the second light emitting element 20G and the third light emitting element 20B are connected to each other in series by the third wiring film 13e. The first light emitting element 20 </ b> R is connected to the first wiring film 13 a serving as a positive terminal via the protruding electrode 80. The second light emitting element 20G is connected to the second wiring film 13c serving as a negative electrode terminal via the protruding electrode 80.

このような構成を有する発光装置200もまた、給電用の外部接続端子が最少2つでよく、色再現性に極めて優れている。   The light emitting device 200 having such a configuration is also extremely excellent in color reproducibility because it requires a minimum of two external connection terminals for power feeding.

図2A,2Cに示すように、発光装置200において、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは其々、2つの素子で構成されている。このように、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは其々、1つの素子のみに限定されず、複数の素子で構成されてもよい。すなわち、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bのうちの少なくとも1つが複数の素子で構成されていても、第1発光素子20R(群)、第2発光素子20G(群)、及び第3発光素子20B(群)が全体として直列接続されていればよい。また、その場合、一群を構成する複数の素子間の接続は、直列接続でもよいし、並列接続でもよい。放射束については、一群を構成する全素子の放射束の総和で考えるものとする。このように、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bのうちの少なくとも1つを複数の素子で構成し、その配置を工夫することによって、赤色、緑色、青色の各色の配光の偏りをよりいっそう抑え、色斑の少ない発光がよりいっそう得られやすくなる。本実施の形態2では、上面視の行列配置として、1行目に第2発光素子20G、第3発光素子20B、第1発光素子20Rが左側からこの記載順に並置されており、2行目に第1発光素子20R、第3発光素子20B、第2発光素子20Gが左側からこの記載順に並置されている。   As shown in FIGS. 2A and 2C, in the light emitting device 200, the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are each composed of two elements. Thus, each of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B is not limited to one element, and may be composed of a plurality of elements. That is, even if at least one of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B is composed of a plurality of elements, the first light emitting element 20R (group) and the second light emitting element 20G. (Group) and the 3rd light emitting element 20B (group) should just be connected in series as a whole. In this case, the connection between a plurality of elements constituting the group may be a serial connection or a parallel connection. The radiant flux is considered as the sum of the radiant fluxes of all elements constituting a group. As described above, at least one of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B is constituted by a plurality of elements, and by devising the arrangement, red, green, and blue The bias of the light distribution of each color is further suppressed, and light emission with less color spots is more easily obtained. In the second embodiment, as a matrix arrangement in a top view, the second light emitting element 20G, the third light emitting element 20B, and the first light emitting element 20R are juxtaposed in this order from the left side in the first row, and in the second row. The first light emitting element 20R, the third light emitting element 20B, and the second light emitting element 20G are juxtaposed in this order from the left.

図2B,2Cに示すように、発光装置200における給電用の外部接続端子は、第1配線膜13aと第2配線膜13cの2つである。第3配線膜13eは、外部接続端子として利用しなくともよいし、放熱用及び/若しくは半田付け補強用の外部接続端子として利用してもよい。このように、発光装置は、給電用以外の外部接続端子を備えていてもよい。このような給電用以外の外部接続端子の配置により、発光装置の実装姿勢を調整することもできる。   As shown in FIGS. 2B and 2C, there are two external connection terminals for power supply in the light emitting device 200: a first wiring film 13a and a second wiring film 13c. The third wiring film 13e may not be used as an external connection terminal, or may be used as an external connection terminal for heat dissipation and / or soldering reinforcement. As described above, the light emitting device may include external connection terminals other than those for power feeding. The mounting posture of the light emitting device can be adjusted by the arrangement of the external connection terminals other than those for power feeding.

以下、本発明の一実施の形態に係る発光装置における各構成要素について説明する。   Hereinafter, each component in the light-emitting device which concerns on one embodiment of this invention is demonstrated.

(発光装置100,200)
発光装置100,200は、例えば、発光ダイオード(LED)である。発光装置100,200は、外部接続端子の配置によって、上面発光型(「トップビュー型」とも呼ばれる)にすることも、側面発光型(「サイドビュー型」とも呼ばれる)にすることもできる。上面発光型の発光装置は、実装方向と主発光方向が互いに平行である。側面発光型の発光装置は、実装方向と主発光方向が互いに垂直である。上記実施の形態1,2の発光装置100,200は、上面発光型であって、下方が実装方向となっている。発光装置100,200の上面視形状は、適宜選択できるが、矩形状が量産性において好ましい。また、正方形状でもよいが、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの配置を考慮すれば、長手方向と短手方向を有する長方形状が好ましい。その場合、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの並置方向を長手方向とするのが良い。
(Light emitting device 100, 200)
The light emitting devices 100 and 200 are, for example, light emitting diodes (LEDs). The light emitting devices 100 and 200 can be a top emission type (also referred to as “top view type”) or a side emission type (also referred to as “side view type”) depending on the arrangement of external connection terminals. In the top emission type light emitting device, the mounting direction and the main light emitting direction are parallel to each other. In the side-emitting type light emitting device, the mounting direction and the main light emitting direction are perpendicular to each other. The light emitting devices 100 and 200 according to the first and second embodiments are of the top emission type, and the lower side is the mounting direction. The top view shape of the light emitting devices 100 and 200 can be selected as appropriate, but a rectangular shape is preferable in terms of mass productivity. Moreover, although a square shape may be sufficient, if the arrangement | positioning of the 1st light emitting element 20R, the 2nd light emitting element 20G, and the 3rd light emitting element 20B is considered, the rectangular shape which has a longitudinal direction and a transversal direction is preferable. In that case, the juxtaposed direction of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B is preferably set as the longitudinal direction.

(基体10)
基体10は、主として、パッケージ又は配線基板である。基体10は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを収容する凹部を有してもよいし、平板状でもよい。凹部の上面視形状は、矩形、角が丸みを帯びた矩形、円形、楕円形などが挙げられる。なかでも、凹部の上面視形状は、凹部開口が大きく設けられやすく、発光素子及び波長変換物質の光を効率良く取り出しやすい、矩形状又は角が丸みを帯びた矩形状であることが好ましい。凹部の側壁面は、第1発光素子20R、第2発光素子20G、及び第3発光素子20B及び波長変換物質30の光を効率良く取り出すために、底面から開口側に向かって口径が大きくなるように傾斜(湾曲を含む)していることが好ましい。凹部の側壁面の傾斜角は、適宜選択できるが、凹部底面から95°以上135°以下が好ましく、100°以上120°以下がより好ましい。凹部の深さは、適宜選択できるが、0.1mm以上1mm以下が好ましく、0.25mm以上0.5mm以下がより好ましい。
(Substrate 10)
The base 10 is mainly a package or a wiring board. The base 10 may have a recess that accommodates the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B, or may have a flat plate shape. The top view shape of the recess includes a rectangle, a rectangle with rounded corners, a circle, and an ellipse. In particular, the shape of the concave portion as viewed from above is preferably a rectangular shape or a rectangular shape with rounded corners so that the opening of the concave portion is easily provided, and the light of the light emitting element and the wavelength converting material can be easily extracted. In order to efficiently extract the light of the first light emitting element 20R, the second light emitting element 20G, the third light emitting element 20B, and the wavelength converting material 30, the side wall surface of the recess has a diameter that increases from the bottom surface toward the opening side. It is preferable to be inclined (including a curve). Although the inclination angle of the side wall surface of the recess can be selected as appropriate, it is preferably from 95 ° to 135 °, more preferably from 100 ° to 120 ° from the bottom of the recess. Although the depth of a recessed part can be selected suitably, 0.1 mm or more and 1 mm or less are preferable, and 0.25 mm or more and 0.5 mm or less are more preferable.

(第1リード電極11a,第2リード電極11c)
第1リード電極11a及び第2リード電極11cは、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bに導電可能な金属部材(ここでいう「金属」は合金を含む)を用いることができる。具体的には、銅、アルミニウム、金、銀、パラジウム、クロム、チタン、タングステン、鉄、ニッケル、コバルト、モリブデン、若しくはこれらの合金、又は燐青銅、鉄入り銅などが挙げられる。第1リード電極11a及び第2リード電極11cの諸形状は、上記金属の板材(母体)に、プレス、圧延、エッチングなどの加工を施すことで形成することができる。また、その表面に、銀、アルミニウム、ロジウム又はこれらの合金などの光反射膜が設けられていてもよく、なかでも光反射性に優れる銀又は銀合金が好ましい。なお、第1リード電極11a及び第2リード電極11cは、配線基板の配線であってもよい。この場合の第1リード電極11a及び第2リード電極11cは、めっき、スパッタ、蒸着、印刷、コファイア法、ポストファイア法などにより形成することができる。
(First lead electrode 11a, second lead electrode 11c)
The first lead electrode 11a and the second lead electrode 11c are metal members that can conduct electricity to the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B (herein, “metal” includes an alloy). Can be used. Specifically, copper, aluminum, gold, silver, palladium, chromium, titanium, tungsten, iron, nickel, cobalt, molybdenum, or an alloy thereof, phosphor bronze, iron-containing copper, or the like can be given. Various shapes of the first lead electrode 11a and the second lead electrode 11c can be formed by subjecting the metal plate (base material) to processing such as pressing, rolling, and etching. Further, a light reflecting film such as silver, aluminum, rhodium or an alloy thereof may be provided on the surface, and silver or a silver alloy excellent in light reflectivity is particularly preferable. The first lead electrode 11a and the second lead electrode 11c may be wiring on a wiring board. In this case, the first lead electrode 11a and the second lead electrode 11c can be formed by plating, sputtering, vapor deposition, printing, a cofire method, a postfire method, or the like.

(第1配線膜13a,第2配線膜13c,第3配線膜13e)
第1配線膜13a,第2配線膜13c,第3配線膜13eは、上記第1リード電極11a及び第2リード電極11cと同じ金属部材を用いることができる。第1配線膜13a,第2配線膜13c,第3配線膜13eは、単層膜でもよいが、多層膜であることが好ましい。多層膜の例としては、ニッケル/金、ニッケル/パラジウム/金、ニッケル/パラジウム/金/銀などが挙げられる。第1配線膜13a,第2配線膜13c,第3配線膜13eは、めっき、スパッタ、蒸着、印刷などにより形成することができる。
(First wiring film 13a, second wiring film 13c, third wiring film 13e)
The first wiring film 13a, the second wiring film 13c, and the third wiring film 13e can use the same metal member as the first lead electrode 11a and the second lead electrode 11c. The first wiring film 13a, the second wiring film 13c, and the third wiring film 13e may be single layer films, but are preferably multilayer films. Examples of the multilayer film include nickel / gold, nickel / palladium / gold, nickel / palladium / gold / silver, and the like. The first wiring film 13a, the second wiring film 13c, and the third wiring film 13e can be formed by plating, sputtering, vapor deposition, printing, or the like.

(樹脂成形体15,17)
樹脂成形体15,17の母材は、熱硬化性樹脂又は熱可塑性樹脂を用いることができる。なお、以下に示す樹脂は、その変性樹脂(ハイブリッド樹脂を含む)も含むものとする。熱硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂、ポリビスマレイミドトリアジン樹脂、ポリイミド樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂などが挙げられる。なかでも、エポキシ樹脂、シリコーン樹脂、不飽和ポリエステルのうちのいずれか1つが好ましい。熱可塑性樹脂としては、脂肪族ポリアミド樹脂、半芳香族ポリアミド樹脂、芳香族ポリフタルアミド樹脂、ポリシクロへキシレンジメチレンテレフタレート、ポリエチレンテレフタレート、ポリシクロヘキサンテレフタレート、液晶ポリマー、ポリカーボネート樹脂などが挙げられる。なかでも、芳香族ポリフタルアミド樹脂、脂肪族ポリアミド樹脂、ポリシクロヘキサンテレフタレート、ポリシクロへキシレンジメチレンテレフタレートのうちのいずれか1つが好ましい。また、これらの母材中に、充填剤(強化繊維を含む)又は着色顔料として、ガラス、酸化珪素、酸化チタン、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、水酸化カルシウム、珪酸カルシウム、珪酸マグネシウム、ワラストナイト、マイカ、酸化亜鉛、チタン酸バリウム、チタン酸カリウム、ホウ酸アルミニウム、酸化アルミニウム、酸化亜鉛、炭化珪素、酸化アンチモン、スズ酸亜鉛、ホウ酸亜鉛、酸化鉄、酸化クロム、酸化マンガン、カーボンブラックなどの粒子又は繊維を混入させることができる。なかでも、充填剤として酸化珪素を、着色顔料(反射材)として酸化チタン又は酸化亜鉛を用いることが好ましい。樹脂成形体15,17中の着色顔料の含有量は、適宜選択でき、樹脂成形体15,17の光学的機能の観点では多いほうが良いが、流動性への影響を考慮して、20wt%以上70wt%以下が好ましく、30wt%以上60wt%以下がより好ましい。なお、「wt%」は、重量パーセントであり、全構成材料の総重量に対する当該材料の重量の比率を表す。樹脂成形体15,17は、前方への光取り出し効率の観点から、第3発光素子20Bの発光ピーク波長における光反射率が、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがよりいっそう好ましい。さらに、樹脂成形体15,17は、白色であることが好ましい。樹脂成形体15,17は、硬化若しくは固化前には流動性を有する状態つまり液状(ゾル状又はスラリー状を含む)を経る。樹脂成形体15,17は、トランスファ成形又は射出成形により成形することができる。なお、基体10が配線基板である場合の母体の材料としては、酸化アルミニウム、窒化アルミニウム若しくはこれらの混合物を含むセラミックス、又はエポキシ樹脂、BTレジン、ポリイミド樹脂などの樹脂若しくはこれらの繊維強化樹脂(強化繊維はガラスなど)が挙げられる。
(Resin moldings 15 and 17)
A thermosetting resin or a thermoplastic resin can be used for the base material of the resin molded bodies 15 and 17. In addition, the resin shown below shall also contain the modified resin (a hybrid resin is included). Examples of the thermosetting resin include epoxy resin, silicone resin, polybismaleimide triazine resin, polyimide resin, polyurethane resin, and unsaturated polyester resin. Especially, any one of an epoxy resin, a silicone resin, and an unsaturated polyester is preferable. Examples of the thermoplastic resin include aliphatic polyamide resin, semi-aromatic polyamide resin, aromatic polyphthalamide resin, polycyclohexylenedimethylene terephthalate, polyethylene terephthalate, polycyclohexane terephthalate, liquid crystal polymer, and polycarbonate resin. Among these, any one of aromatic polyphthalamide resin, aliphatic polyamide resin, polycyclohexane terephthalate, and polycyclohexylene dimethylene terephthalate is preferable. Further, in these base materials, as a filler (including reinforcing fibers) or a color pigment, glass, silicon oxide, titanium oxide, magnesium oxide, magnesium carbonate, magnesium hydroxide, calcium carbonate, calcium hydroxide, calcium silicate, Magnesium silicate, wollastonite, mica, zinc oxide, barium titanate, potassium titanate, aluminum borate, aluminum oxide, zinc oxide, silicon carbide, antimony oxide, zinc stannate, zinc borate, iron oxide, chromium oxide, Particles or fibers such as manganese oxide and carbon black can be mixed. Among these, it is preferable to use silicon oxide as a filler and titanium oxide or zinc oxide as a color pigment (reflecting material). The content of the color pigment in the resin moldings 15 and 17 can be selected as appropriate, and it is better from the viewpoint of the optical function of the resin moldings 15 and 17, but considering the influence on fluidity, it is 20 wt% or more. 70 wt% or less is preferable, and 30 wt% or more and 60 wt% or less is more preferable. Note that “wt%” is weight percent and represents the ratio of the weight of the material to the total weight of all the constituent materials. From the viewpoint of forward light extraction efficiency, the resin molded bodies 15 and 17 preferably have a light reflectance at the emission peak wavelength of the third light emitting element 20B of 70% or more, more preferably 80% or more. Preferably, 90% or more is even more preferable. Furthermore, the resin molded bodies 15 and 17 are preferably white. The resin molded bodies 15 and 17 are in a fluid state, that is, in a liquid state (including a sol form or a slurry form) before being cured or solidified. The resin moldings 15 and 17 can be molded by transfer molding or injection molding. The base material in the case where the substrate 10 is a wiring board is made of ceramics containing aluminum oxide, aluminum nitride or a mixture thereof, or resin such as epoxy resin, BT resin, polyimide resin, or fiber reinforced resin (reinforced resin). Examples of the fiber include glass.

(第1発光素子20R,第2発光素子20G,第3発光素子20B)
第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは、発光ダイオード素子などの半導体発光素子を用いることができる。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは、種々の半導体で構成される素子構造と、正負一対の電極と、を有するものであればよい。第1発光素子20Rは、砒化ガリウム乃至燐化ガリウム系半導体の発光素子が好ましい。砒化ガリウム乃至燐化ガリウム系半導体は、可視域における長波長の高効率発光が可能である。第1発光素子20Rの発光ピーク波長は、適宜選択できるが、620nm以上660nm以下が好ましく、620nm以上640nm以下がより好ましい。第1発光素子20Rの上面視における大きさは、第2発光素子20G及び第3発光素子20Bより小さいことが多い。また、同一順電流値における第1発光素子20Rの順電圧は、第2発光素子20Gの順電圧及び第3発光素子20Bの順電圧より小さいことが多い。第2発光素子20G及び第3発光素子20Bは、窒化ガリウム系半導体(InAlGa1−x−yN、0<x、0<y、x+y<1)の発光素子が好ましい。窒化ガリウム系半導体は、可視域における短波長の高効率発光が可能である。第2発光素子20Gの発光ピーク波長は、適宜選択できるが、520nm以上560nm以下が好ましく、540nm以上560nm以下がより好ましい。第3発光素子20Bの発光ピーク波長は、適宜選択できるが、435nm以上465nm以下が好ましく、440nm以上460nm以下がより好ましい。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは、多くの場合、基板を有する。基板は、透光性であることが好ましいが、これに限定されない。基板の母材としては、サファイア、スピネル、窒化ガリウム、窒化アルミニウム、シリコン、炭化珪素、砒化ガリウム、燐化ガリウム、燐化インジウム、硫化亜鉛、酸化亜鉛、セレン化亜鉛などが挙げられる。第1発光素子20R、第2発光素子20G、及び第3発光素子20Bは、正負一対の電極が同一面側に設けられている場合、各電極をワイヤでリード電極と接続する「フェイスアップ実装」を採用することができる。また、各電極を導電性の接着部材でリード電極と接着する「フェイスダウン(フリップチップ)実装」を採用することもできる。正負一対の電極が互いに反対の面に各々設けられている対向電極構造の場合、下面電極が導電性の接着部材でリード電極に接着され、上面電極がワイヤでリード電極と接続される。
(First light emitting element 20R, second light emitting element 20G, third light emitting element 20B)
As the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B, a semiconductor light emitting element such as a light emitting diode element can be used. The 1st light emitting element 20R, the 2nd light emitting element 20G, and the 3rd light emitting element 20B should just have the element structure comprised with various semiconductors, and a pair of positive and negative electrodes. The first light emitting element 20R is preferably a light emitting element of gallium arsenide or gallium phosphide-based semiconductor. Gallium arsenide or gallium phosphide-based semiconductors can emit light with high efficiency at a long wavelength in the visible range. The emission peak wavelength of the first light emitting element 20R can be selected as appropriate, but is preferably 620 nm or more and 660 nm or less, and more preferably 620 nm or more and 640 nm or less. The size of the first light emitting element 20R in a top view is often smaller than the second light emitting element 20G and the third light emitting element 20B. Further, the forward voltage of the first light emitting element 20R at the same forward current value is often smaller than the forward voltage of the second light emitting element 20G and the forward voltage of the third light emitting element 20B. The second light emitting element 20G and the third light emitting element 20B are preferably light emitting elements of a gallium nitride based semiconductor (In x Al y Ga 1-xy N, 0 <x, 0 <y, x + y <1). Gallium nitride semiconductors can emit light with high efficiency at short wavelengths in the visible range. The emission peak wavelength of the second light emitting element 20G can be appropriately selected, but is preferably 520 nm or more and 560 nm or less, and more preferably 540 nm or more and 560 nm or less. The emission peak wavelength of the third light emitting element 20B can be selected as appropriate, but is preferably 435 nm or more and 465 nm or less, and more preferably 440 nm or more and 460 nm or less. In many cases, the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B have a substrate. The substrate is preferably translucent, but is not limited thereto. Examples of the base material of the substrate include sapphire, spinel, gallium nitride, aluminum nitride, silicon, silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, zinc sulfide, zinc oxide, and zinc selenide. When the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B are provided with a pair of positive and negative electrodes on the same surface side, “face-up mounting” in which each electrode is connected to the lead electrode with a wire. Can be adopted. Further, “face-down (flip chip) mounting” in which each electrode is bonded to the lead electrode with a conductive adhesive member may be employed. In the case of a counter electrode structure in which a pair of positive and negative electrodes are provided on opposite surfaces, the lower electrode is bonded to the lead electrode with a conductive adhesive member, and the upper electrode is connected to the lead electrode with a wire.

(波長変換物質30)
波長変換物質30は、第3発光素子20Bが発する一次光の少なくとも一部を吸収して、一次光とは異なる波長の二次光を発する。これにより、可視波長の一次光及び二次光の混色光(例えば白色光)を発する発光装置とすることができる。波長変換物質30は、以下に示す具体例のうちの1種を単独で、又は2種以上を組み合わせて用いることができる。
(Wavelength converting material 30)
The wavelength converting substance 30 absorbs at least a part of the primary light emitted from the third light emitting element 20B and emits secondary light having a wavelength different from that of the primary light. Thereby, it can be set as the light-emitting device which emits the mixed color light (for example, white light) of the primary light of the visible wavelength, and secondary light. The wavelength conversion substance 30 can be used individually by 1 type in the specific example shown below, or in combination of 2 or more types.

(第1蛍光体30R)
第1蛍光体30Rは、赤色発光する。第1蛍光体30Rの発光ピーク波長は、適宜選択できるが、620nm以上660nm以下が好ましく、620nm以上640nm以下がより好ましい。具体的には、窒素含有アルミノ珪酸カルシウム(CASN又はSCASN)系蛍光体(例えば(Sr,Ca)AlSiN:Eu)などが挙げられる。また、マンガン賦活フッ化物蛍光体(一般式A[M1−aMn]で表される蛍光体(但し、上記一般式中、Aは、K、Li、Na、Rb、Cs及びNHからなる群から選ばれる少なくとも1種であり、Mは、第4族元素及び第14族元素からなる群から選ばれる少なくとも1種の元素であり、aは0<a<0.2を満たす))は、スペクトル線幅の比較的狭い発光が可能であり、色再現性の観点において好ましい。このマンガン賦活フッ化物蛍光体の代表例としては、マンガン賦活フッ化珪酸カリウムの蛍光体(例えばKSiF:Mn)がある。
(First phosphor 30R)
The first phosphor 30R emits red light. The emission peak wavelength of the first phosphor 30R can be selected as appropriate, but is preferably 620 nm or more and 660 nm or less, and more preferably 620 nm or more and 640 nm or less. Specific examples include nitrogen-containing calcium aluminosilicate (CASN or SCASN) phosphors (for example, (Sr, Ca) AlSiN 3 : Eu). Further, a manganese-activated fluoride phosphor (a phosphor represented by the general formula A 2 [M 1-a Mn a F 6 ] (where A represents K, Li, Na, Rb, Cs and At least one selected from the group consisting of NH 4 , M is at least one element selected from the group consisting of Group 4 elements and Group 14 elements, and a satisfies 0 <a <0.2. Satisfying)) is capable of light emission with a relatively narrow spectral line width, which is preferable in terms of color reproducibility. A typical example of the manganese-activated fluoride phosphor is a manganese-activated potassium fluorosilicate phosphor (for example, K 2 SiF 6 : Mn).

(第2蛍光体30G)
第2蛍光体30Gは、緑色発光する。第2蛍光体30Gの発光ピーク波長は、適宜選択できるが、520nm以上560nm以下が好ましく、540nm以上560nm以下がより好ましい。具体的には、イットリウム・アルミニウム・ガーネット系蛍光体(例えばY(Al,Ga)12:Ce)、ルテチウム・アルミニウム・ガーネット系蛍光体(例えばLu(Al,Ga)12:Ce)、テルビウム・アルミニウム・ガーネット系蛍光体(例えばTb(Al,Ga)12:Ce)系蛍光体、シリケート系蛍光体(例えば(Ba,Sr)SiO:Eu)、クロロシリケート系蛍光体(例えばCaMg(SiOCl:Eu)、βサイアロン系蛍光体(例えばSi6−zAl8−z:Eu(0<z<4.2))、SGS系蛍光体(例えばSrGa:Eu)などが挙げられる。
(Second phosphor 30G)
The second phosphor 30G emits green light. The emission peak wavelength of the second phosphor 30G can be appropriately selected, but is preferably 520 nm or more and 560 nm or less, and more preferably 540 nm or more and 560 nm or less. Specifically, an yttrium / aluminum / garnet phosphor (for example, Y 3 (Al, Ga) 5 O 12 : Ce), a lutetium / aluminum / garnet phosphor (for example, Lu 3 (Al, Ga) 5 O 12 : Ce), terbium / aluminum / garnet phosphors (eg, Tb 3 (Al, Ga) 5 O 12 : Ce) phosphors, silicate phosphors (eg (Ba, Sr) 2 SiO 4 : Eu), chlorosilicates -Based phosphors (for example, Ca 8 Mg (SiO 4 ) 4 Cl 2 : Eu), β-sialon-based phosphors (for example, Si 6-z Al z O z N 8-z : Eu (0 <z <4.2)) And SGS-based phosphors (for example, SrGa 2 S 4 : Eu).

(第3蛍光体30Y)
第3蛍光体30Yは、黄色発光する。具体的には、αサイアロン系蛍光体(例えばM(Si,Al)12(O,N)16(但し、0<z≦2であり、MはLi、Mg、Ca、Y、及びLaとCeを除くランタニド元素)などが挙げられる。このほか、上記第2蛍光体30Gの中には黄色発光する蛍光体もある。また例えば、イットリウム・アルミニウム・ガーネット系蛍光体は、Yの一部をGdで置換することで発光ピーク波長を長波長側にシフトさせることができ、黄色発光が可能である。また、これらの中には、橙色発光が可能な蛍光体もある。
(Third phosphor 30Y)
The third phosphor 30Y emits yellow light. Specifically, α sialon-based phosphor (for example, M z (Si, Al) 12 (O, N) 16 (where 0 <z ≦ 2 and M represents Li, Mg, Ca, Y, and La) In addition, there are phosphors that emit yellow light in the second phosphor 30G.For example, yttrium, aluminum, and garnet phosphors have a part of Y. By substituting with Gd, the emission peak wavelength can be shifted to the longer wavelength side and yellow emission is possible, and some of these phosphors can emit orange.

(透光性部材40,42)
透光性部材40,42は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを覆い、これらが発する光を装置外部へ透過させる部材である。透光性部材40,42は、電気的絶縁性を有し、第1発光素子20R、第2発光素子20G、第3発光素子20B、及び波長変換物質30が発する光に対して透光性(第3発光素子20Bの発光ピーク波長における光透過率が60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがよりいっそう好ましい)を有する部材であればよい。実施の形態1の透光性部材40は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを、封止して、埃や水分、外力などから保護する封止部材でもある。
(Translucent members 40 and 42)
The translucent members 40 and 42 are members that cover the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B and transmit light emitted from these to the outside of the apparatus. The translucent members 40 and 42 have electrical insulation, and are translucent to light emitted from the first light emitting element 20R, the second light emitting element 20G, the third light emitting element 20B, and the wavelength conversion material 30 ( The light transmittance at the emission peak wavelength of the third light emitting element 20B is preferably 60% or more, more preferably 70% or more, and even more preferably 80% or more. Good. The translucent member 40 of the first embodiment is a sealing member that seals the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B from each other and protects them from dust, moisture, external force, and the like. is there.

透光性部材40,42の母材は、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、ポリカーボネート樹脂、アクリル樹脂、TPX樹脂、ポリノルボルネン樹脂、又はこれらの変性樹脂(ハイブリッド樹脂を含む)が挙げられる。なかでも、シリコーン系樹脂(シリコーン樹脂及びその変性樹脂)は、低弾性率で、耐熱性及び耐光性に特に優れるため、好ましい。また、フェニル基を含むシリコーン系樹脂(メチル・フェニルシリコーン系樹脂〜ジフェニルシリコーン系樹脂)は、シリコーン系樹脂のなかでも耐熱性及びガスバリア性が比較的高く、より好ましい。   Examples of the base material of the translucent members 40 and 42 include silicone resin, epoxy resin, phenol resin, polycarbonate resin, acrylic resin, TPX resin, polynorbornene resin, and modified resins thereof (including hybrid resins). Of these, silicone resins (silicone resins and modified resins thereof) are preferable because they have a low elastic modulus and are particularly excellent in heat resistance and light resistance. Silicone resins containing a phenyl group (methyl-phenylsilicone resin to diphenylsilicone resin) are more preferable among silicone resins because of their relatively high heat resistance and gas barrier properties.

透光性部材40,42の充填剤は、酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛などが挙げられる。透光性部材40,42の充填剤は、これらのうちの1種を単独で、又はこれらのうちの2種以上を組み合わせて用いることができる。特に、透光性部材40,42の熱膨張係数の低減剤としては、酸化珪素が好ましい。透光性部材40,42の充填剤の形状は、適宜選択でき、不定形(破砕状)でもよいが、流動性の観点では球状が好ましい。透光性部材40,42中の充填剤の含有量は、適宜選択でき、透光性部材40,42の熱膨張係数、流動性等を考慮して適宜決めればよいが、0.1wt%以上50wt%以下が好ましく、1wt%以上30wt%以下がより好ましい。また、透光性部材40,42の充填剤として、ナノ粒子(粒径が1nm以上100nm以下の粒子)を用いることで、第3発光素子20Bの青色光の散乱(レイリー散乱を含む)を増大させ、波長変換物質30の使用量を低減することもできる。このナノ粒子の充填剤としては、例えば酸化珪素又は酸化ジルコニウムが好ましい。   Examples of the filler for the translucent members 40 and 42 include silicon oxide, aluminum oxide, zirconium oxide, and zinc oxide. The filler of the translucent members 40 and 42 can be used alone or in combination of two or more thereof. In particular, silicon oxide is preferable as a reducing agent for the coefficient of thermal expansion of the translucent members 40 and 42. The shape of the filler of the translucent members 40 and 42 can be selected as appropriate and may be indefinite (crushed), but is preferably spherical from the viewpoint of fluidity. The content of the filler in the translucent members 40 and 42 can be selected as appropriate, and may be determined as appropriate in consideration of the thermal expansion coefficient, fluidity, etc. of the translucent members 40 and 42, but 0.1 wt% or more 50 wt% or less is preferable, and 1 wt% or more and 30 wt% or less is more preferable. Further, by using nanoparticles (particles having a particle diameter of 1 nm or more and 100 nm or less) as fillers of the translucent members 40 and 42, the blue light scattering (including Rayleigh scattering) of the third light emitting element 20B is increased. Thus, the amount of the wavelength converting substance 30 used can be reduced. As the nanoparticle filler, for example, silicon oxide or zirconium oxide is preferable.

(ワイヤ50)
ワイヤ50は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bの電極どうし、又はこれら発光素子の電極とリード電極と、を接続する導線である。また、ワイヤ50は、保護素子70の電極と、リード電極と、の接続にも用いることができる。具体的には、金、銅、銀、白金、アルミニウム、パラジウム又はこれらの合金の金属線(ここでいう「金属」は合金を含む)を用いることができる。特に、透光性部材40からの応力による破断が生じにくく、熱抵抗などに優れる金線又は金合金線が好ましい。また、光反射性を高めるために、少なくとも表面が銀又は銀合金で構成されていてもよい。ワイヤ50の線径は、適宜選択できるが、5μm以上50μm以下が好ましく、10μm以上40μm以下がより好ましく、15μm以上30μm以下がよりいっそう好ましい。
(Wire 50)
The wire 50 is a conducting wire that connects the electrodes of the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B, or the electrodes of these light emitting elements and the lead electrodes. The wire 50 can also be used to connect the electrode of the protection element 70 and the lead electrode. Specifically, a metal wire of gold, copper, silver, platinum, aluminum, palladium, or an alloy thereof (herein, “metal” includes an alloy) can be used. In particular, a gold wire or a gold alloy wire that is less likely to break due to stress from the translucent member 40 and is excellent in thermal resistance or the like is preferable. In order to improve light reflectivity, at least the surface may be made of silver or a silver alloy. The wire diameter of the wire 50 can be selected as appropriate, but is preferably 5 μm or more and 50 μm or less, more preferably 10 μm or more and 40 μm or less, and even more preferably 15 μm or more and 30 μm or less.

(接着部材60,65)
接着部材60,65は、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bをリード電極に接着する部材である。接着部材65は、保護素子70のリード電極への接着にも用いることができる。電気的絶縁性の接着部材60は、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂、又はこれらの変性樹脂(ハイブリッド樹脂を含む)などを用いることができる。導電性の接着部材65は、銀、金、パラジウムなどの導電性ペーストのほか、錫−ビスマス系、錫−銅系、錫−銀系、金−錫系の半田などを用いることができる。
(Adhesive members 60 and 65)
The adhesive members 60 and 65 are members that adhere the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B to the lead electrodes. The adhesive member 65 can also be used for bonding the protective element 70 to the lead electrode. As the electrically insulating adhesive member 60, an epoxy resin, a silicone resin, a polyimide resin, a modified resin thereof (including a hybrid resin), or the like can be used. For the conductive adhesive member 65, in addition to conductive pastes such as silver, gold, and palladium, tin-bismuth, tin-copper, tin-silver, gold-tin, or the like can be used.

(保護素子70)
保護素子70は、静電気、高電圧サージなどから第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを保護するための素子である。具体的な保護素子70としては、例えばツェナーダイオードが挙げられる。保護素子70は、必ずしも要るとは限らず、発光装置に要求される信頼性に応じて備えられればよい。
(Protective element 70)
The protection element 70 is an element for protecting the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B from static electricity, high voltage surge, and the like. Specific examples of the protective element 70 include a Zener diode. The protection element 70 is not necessarily required, and may be provided according to the reliability required for the light emitting device.

(突起電極80)
突起電極80は、バンプ又はピラーなどとも呼ばれる。突起電極80は、金属又は合金の小片で構成することができる。具体的には、例えば、金、銀、銅、鉄、錫、白金、亜鉛、ニッケル、アルミニウム、タングステン、又はこれらの合金が挙げられる。なかでも、銅は、熱伝導性に優れ、比較的安価であるため、銅又は銅合金が特に好適である。また、金は、また化学的に安定であり表面酸化が少なく接合しやすい性質を有するため、金又は金合金も好ましい。突起電極80は、接合性の観点から、表面に金又は銀などの被膜を有してもよい。
(Projection electrode 80)
The protruding electrode 80 is also called a bump or a pillar. The protruding electrode 80 can be composed of a small piece of metal or alloy. Specific examples include gold, silver, copper, iron, tin, platinum, zinc, nickel, aluminum, tungsten, and alloys thereof. Especially, since copper is excellent in thermal conductivity and relatively inexpensive, copper or a copper alloy is particularly suitable. Gold or gold alloy is also preferable because it is chemically stable and has a property of being easily bonded with little surface oxidation. The protruding electrode 80 may have a coating such as gold or silver on the surface from the viewpoint of bondability.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1>
実施例1の発光装置は、図1A,1B,1Dに示す例の発光装置100の構造を有する、略直方体状の上面発光型且つ表面実装型の発光ダイオードである。
<Example 1>
The light-emitting device of Example 1 is a substantially rectangular parallelepiped top-emitting and surface-mounted light-emitting diode having the structure of the light-emitting device 100 of the example shown in FIGS. 1A, 1B, and 1D.

基体10は、大きさが縦1.4mm、横4.0mm、厚さ0.6mmであり、正負一対の第1及び第2リード電極11a,11cに、樹脂成形体15が一体に成形されて構成されたパッケージである。この基体10は、複数対の第1及び第2リード電極11a,11cが吊りリードを介して縦横に連なって成る加工金属板(リードフレーム)を、金型内に設置して、液状の樹脂成形体15の構成材料を注入して硬化、離型させた後、切断(個片化)することで作製される。   The base 10 has a length of 1.4 mm, a width of 4.0 mm, and a thickness of 0.6 mm, and a resin molded body 15 is integrally formed on a pair of positive and negative first and second lead electrodes 11a and 11c. It is a structured package. The base 10 is formed by placing a processed metal plate (lead frame) in which a plurality of pairs of first and second lead electrodes 11a and 11c are connected vertically and horizontally via a suspension lead in a mold, and forming a liquid resin It is manufactured by injecting the constituent material of the body 15, curing and releasing, and then cutting (dividing into pieces).

第1及び第2リード電極11a,11cは其々、表面に銀の鍍金が施された最大厚0.2mmの銅合金の板状小片である。それぞれ外部接続端子となる第1及び第2リード電極11a,11cの下面の露出領域は、樹脂成形体15の下面と実質的に同一面であって、基体10の下面を構成している。第1及び第2リード電極11a,11cは其々、基体10(樹脂成形体15)の4つの端面において、切断された吊りリードが露出している。   The first and second lead electrodes 11a and 11c are small pieces of copper alloy having a maximum thickness of 0.2 mm each having a surface plated with silver. The exposed areas of the lower surfaces of the first and second lead electrodes 11a and 11c, which are external connection terminals, are substantially the same as the lower surface of the resin molded body 15 and constitute the lower surface of the base body 10. In the first and second lead electrodes 11a and 11c, the cut suspension leads are exposed at the four end surfaces of the base body 10 (resin molded body 15).

樹脂成形体15は、上面視の外形が縦1.4mm、横4.0mmの矩形状であり、最大厚0.6mmであって、酸化珪素と酸化チタンを含有するエポキシ樹脂製である。樹脂成形体15の上面すなわち基体10の上面の略中央には、上面視で角が丸みを帯びた縦1.0mm、横3.7mmの矩形状の開口で、深さ0.4mmの凹部が形成されている。凹部の側壁面は、凹部の底面と111.3°の角度をなす傾斜面である。   The resin molding 15 has a rectangular shape with a top view of 1.4 mm in length and 4.0 mm in width, a maximum thickness of 0.6 mm, and is made of an epoxy resin containing silicon oxide and titanium oxide. At the approximate center of the upper surface of the resin molded body 15, that is, the upper surface of the substrate 10, there is a rectangular opening with a rounded corner of 1.0 mm and a width of 3.7 mm when viewed from above, and a recess with a depth of 0.4 mm. Is formed. The side wall surface of the recess is an inclined surface that forms an angle of 111.3 ° with the bottom surface of the recess.

基体10の凹部底面(素子載置面)における、正極側の第1リード電極11aの上面には、第1発光素子20Rが、銀ペーストの接着部材65により、基板側を接着されている。負極側の第2リード電極11cの上面には、第2発光素子20G及び第3発光素子20Bが、ジメチルシリコーン樹脂の接着部材60により、基板側を接着されている。第1発光素子20Rは、燐化ガリウム基板上に燐化ガリウム系半導体の素子構造が積層された、赤色(順電流120mAにて、順電圧2.1V、放射束85mW、発光ピーク波長約630nm)発光可能な、縦320μm、横320μmの上面視矩形状のLED素子である。第2発光素子20Gは、サファイア基板上に窒化ガリウム系半導体の素子構造が積層された、緑色(順電流120mAにて、順電圧3.1V、放射束105mW、発光ピーク波長約523nm)発光可能な、縦650μm、横650μmの上面視矩形状のLED素子である。第3発光素子20Bは、サファイア基板上に窒化ガリウム系半導体の素子構造が積層された、青色(順電流120mAにて、順電圧3.0V、放射束190mW、発光ピーク波長約453nm)発光可能な、縦650μm、横650μmの上面視矩形状のLED素子である。第1発光素子20Rは、p電極が接着部材65により第1リード電極11aに接着され、n電極が第3発光素子20Bのp電極にワイヤ50で接続されている。第3発光素子20Bは、n電極が第2発光素子20Gのp電極にワイヤ50で接続されている。第2発光素子20Gは、n電極が負極側の第2リード電極11cの上面にワイヤ50で接続されている。ワイヤ50は、線径25μmの金線である。   The first light emitting element 20R is bonded to the upper surface of the first lead electrode 11a on the positive electrode side on the bottom surface of the recess (element mounting surface) of the base 10 by an adhesive member 65 of silver paste. The second light emitting element 20G and the third light emitting element 20B are bonded to the upper surface of the second lead electrode 11c on the negative electrode side by a bonding member 60 of dimethyl silicone resin. The first light emitting element 20R is red (forward voltage of 120 V, forward voltage of 2.1 V, radiant flux of 85 mW, emission peak wavelength of about 630 nm) in which a gallium phosphide-based semiconductor element structure is stacked on a gallium phosphide substrate. This LED element is capable of emitting light and has a rectangular shape when viewed from above, having a length of 320 μm and a width of 320 μm. The second light emitting element 20G is capable of emitting green light (a forward current of 120 mA, a forward voltage of 3.1 V, a radiant flux of 105 mW, and an emission peak wavelength of about 523 nm) in which a gallium nitride based semiconductor element structure is stacked on a sapphire substrate. The LED element is 650 μm in length and 650 μm in width when viewed from above. The third light-emitting element 20B is capable of emitting blue light (forward voltage of 120 V, forward voltage of 3.0 V, radiant flux of 190 mW, emission peak wavelength of about 453 nm) in which a gallium nitride-based semiconductor element structure is stacked on a sapphire substrate. The LED element is 650 μm in length and 650 μm in width when viewed from above. In the first light emitting element 20R, the p electrode is bonded to the first lead electrode 11a by the adhesive member 65, and the n electrode is connected to the p electrode of the third light emitting element 20B by the wire 50. The third light emitting element 20B has an n electrode connected to the p electrode of the second light emitting element 20G by a wire 50. In the second light emitting element 20G, the n electrode is connected to the upper surface of the second lead electrode 11c on the negative electrode side by a wire 50. The wire 50 is a gold wire having a wire diameter of 25 μm.

基体10の凹部には、透光性部材40が充填され、第1発光素子20R、第2発光素子20G、及び第3発光素子20Bを被覆している。透光性部材40は、メチル・フェニルシリコーン樹脂を母材とし、その中に、マンガン賦活フッ化珪酸カリウムの第1蛍光体30R(発光ピーク波長約630nm)と、βサイアロンの第2蛍光体30G(発光ピーク波長約540nm)からなる波長変換物質30と、酸化珪素の充填剤と、を含有している。波長変換物質30は、沈降により、透光性部材40中における下方(凹部底面)側に偏在している。透光性部材40の上面は、基体10(樹脂成形体15)の上面と略同一面であり、略平坦面(厳密には硬化収縮により若干の凹面)になっている。この透光性部材40は、液状の構成材料がディスペンサなどにより基体10の凹部内に滴下され、加熱により硬化することで形成される。   The concave portion of the base 10 is filled with a translucent member 40 and covers the first light emitting element 20R, the second light emitting element 20G, and the third light emitting element 20B. The translucent member 40 uses a methyl phenyl silicone resin as a base material, and includes a manganese-activated potassium fluorosilicate first phosphor 30R (emission peak wavelength of about 630 nm) and a β sialon second phosphor 30G. It contains a wavelength converting substance 30 composed of (emission peak wavelength of about 540 nm) and a silicon oxide filler. The wavelength converting substance 30 is unevenly distributed on the lower side (the bottom surface of the recess) in the translucent member 40 due to sedimentation. The upper surface of the translucent member 40 is substantially the same surface as the upper surface of the substrate 10 (resin molded body 15), and is a substantially flat surface (strictly concave due to shrinkage due to curing). The translucent member 40 is formed by dropping a liquid constituent material into the recess of the substrate 10 by a dispenser or the like and curing it by heating.

以上のように構成された実施例1の発光装置は、順電流120mAにおいて、色度(x,y)=(0.28,0.28)、88lmで発光可能である。そして、この実施例1の発光装置は、実施の形態1の発光装置100と同様の効果を奏することができる。   The light emitting device of Example 1 configured as described above can emit light with chromaticity (x, y) = (0.28, 0.28), 88 lm at a forward current of 120 mA. And the light-emitting device of this Example 1 can have the same effect as the light-emitting device 100 of Embodiment 1.

本発明の一実施の形態に係る発光装置は、液晶ディスプレイのバックライト装置、各種照明器具、大型ディスプレイ、広告や行き先案内等の各種表示装置、プロジェクタ装置、さらには、デジタルビデオカメラ、ファクシミリ、コピー機、スキャナ等における画像読取装置などに利用することができる。   A light emitting device according to an embodiment of the present invention includes a backlight device for a liquid crystal display, various lighting fixtures, a large display, various display devices such as advertisements and destination guidance, a projector device, a digital video camera, a facsimile, a copy It can be used for an image reading apparatus in a machine, a scanner or the like.

10…基体
11a…第1リード電極、11c…第2リード電極
13a…第1配線膜、13c…第2配線膜、13e…第3配線膜
15,17…樹脂成形体
20R…第1発光素子(赤色発光の発光素子)
20G…第2発光素子(緑色発光の発光素子)
20B…第3発光素子(青色発光の発光素子)
30…波長変換物質
30R…赤色発光の蛍光体(第1蛍光体)
30G…緑色発光の蛍光体(第2蛍光体)
30Y…黄色発光の蛍光体(第3蛍光体)
40,42…透光性部材
50…ワイヤ
60,65…接着部材
70…保護素子
80…突起電極
100,200…発光装置
DESCRIPTION OF SYMBOLS 10 ... Base | substrate 11a ... 1st lead electrode, 11c ... 2nd lead electrode 13a ... 1st wiring film, 13c ... 2nd wiring film, 13e ... 3rd wiring film 15, 17 ... Resin molding 20R ... 1st light emitting element ( Red light emitting element)
20G ... Second light emitting element (green light emitting element)
20B ... 3rd light emitting element (light emitting element of blue light emission)
30 ... Wavelength converting material 30R ... Red light emitting phosphor (first phosphor)
30G ... Green-emitting phosphor (second phosphor)
30Y ... Yellow-emitting phosphor (third phosphor)
40, 42 ... Translucent member 50 ... Wire 60, 65 ... Adhesive member 70 ... Protection element 80 ... Projection electrode 100, 200 ... Light emitting device

Claims (6)

赤色発光する第1発光素子と、
緑色発光する第2発光素子と、
青色発光する第3発光素子と、
前記第3発光素子の光を吸収して発光する波長変換物質を含み、前記第1乃至第3発光素子の上面に位置する1つの平板状の透光性部材と、
前記第1発光素子の側面と前記第3発光素子の側面の間に位置し、前記第3発光素子の発光ピーク波長における光反射率が70%以上である樹脂成型体と、
前記第1乃至第3発光素子は下面に正負一対の電極を有し、前記正負一対の電極とそれぞれ接続される一対の突起電極と、
前記樹脂成型体の下面に位置し、前記突起電極と接続される複数の配線膜と、
を備え、
前記第1発光素子、前記第2発光素子、及び第3発光素子が直列接続されており、
同一順電流値における前記第3発光素子の放射束が前記第1発光素子の放射束及び前記第2発光素子の放射束より大きく、
前記波長変換物質が赤色発光する蛍光体であるか、又は緑色発光する蛍光体であるか、又は赤色発光する蛍光体と緑色発光する蛍光体の組み合わせであるか、又は黄色発光する蛍光体であり、
前記樹脂成型体は、前記第1乃至第3発光素子の側面及び前記第1乃至第3発光素子の下面、前記透光性部材の側面、および前記突起電極の側面を被覆する発光装置。
A first light emitting element emitting red light;
A second light emitting element that emits green light;
A third light emitting element emitting blue light;
A flat plate-shaped translucent member that includes a wavelength converting material that absorbs and emits light from the third light-emitting element , and is positioned on an upper surface of the first to third light-emitting elements;
A resin molded body located between a side surface of the first light emitting element and a side surface of the third light emitting element, and having a light reflectance of 70% or more at an emission peak wavelength of the third light emitting element;
The first to third light emitting elements each have a pair of positive and negative electrodes on a lower surface, and a pair of protruding electrodes connected to the pair of positive and negative electrodes,
A plurality of wiring films located on the lower surface of the resin molded body and connected to the protruding electrodes;
With
The first light emitting element, the second light emitting element, and the third light emitting element are connected in series,
The radiant flux of the third light emitting element at the same forward current value is larger than the radiant flux of the first light emitting element and the radiant flux of the second light emitting element;
The wavelength converting substance is a phosphor emitting red light, a phosphor emitting green light, a combination of a phosphor emitting red light and a phosphor emitting green light, or a phosphor emitting yellow light. The
The resin molded body is a light-emitting device that covers the side surfaces of the first to third light-emitting elements, the lower surface of the first to third light-emitting elements, the side surface of the translucent member, and the side surfaces of the protruding electrodes .
同一順電流値における、前記第3発光素子の放射束が前記第2発光素子の放射束より大きく、且つ前記第2発光素子の放射束が前記第1発光素子の放射束より大きく、
前記波長変換物質が、赤色発光する蛍光体であるか、又は赤色発光する蛍光体と緑色発光する蛍光体の組み合わせであるか、又は黄色発光する蛍光体である、請求項1に記載の発光装置。
At the same forward current value, the radiant flux of the third light emitting element is larger than the radiant flux of the second light emitting element, and the radiant flux of the second light emitting element is larger than the radiant flux of the first light emitting element,
The light emitting device according to claim 1, wherein the wavelength converting substance is a phosphor that emits red light, a combination of a phosphor that emits red light and a phosphor that emits green light, or a phosphor that emits yellow light. .
同一順電流値における、前記第3発光素子の放射束が前記第1発光素子の放射束より大きく、且つ前記第1発光素子の放射束が前記第2発光素子の放射束より大きく、
前記波長変換物質が、緑色発光する蛍光体であるか、又は赤色発光する蛍光体と緑色発光する蛍光体の組み合わせであるか、又は黄色発光する蛍光体である、請求項1に記載の発光装置。
At the same forward current value, the radiant flux of the third light emitting element is larger than the radiant flux of the first light emitting element, and the radiant flux of the first light emitting element is larger than the radiant flux of the second light emitting element,
2. The light emitting device according to claim 1, wherein the wavelength converting substance is a phosphor emitting green light, a combination of a phosphor emitting red light and a phosphor emitting green light, or a phosphor emitting yellow light. .
前記赤色発光する蛍光体が、マンガン賦活フッ化物蛍光体である、請求項1乃至3のいずれか一項に記載の発光装置。   The light-emitting device according to claim 1, wherein the phosphor that emits red light is a manganese-activated fluoride phosphor. 前記第1発光素子、前記第3発光素子、前記第2発光素子が、この記載順に並置されている、請求項1乃至4のいずれか一項に記載の発光装置。   The light emitting device according to any one of claims 1 to 4, wherein the first light emitting element, the third light emitting element, and the second light emitting element are juxtaposed in the order of description. 前記樹脂成型体が前記第2発光素子の側面と前記第3発光素子の側面の間に位置する請求項1乃至5のいずれか一項に記載の発光装置。   The light emitting device according to any one of claims 1 to 5, wherein the resin molded body is positioned between a side surface of the second light emitting element and a side surface of the third light emitting element.
JP2016248524A 2016-12-21 2016-12-21 Light emitting device Active JP6583247B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016248524A JP6583247B2 (en) 2016-12-21 2016-12-21 Light emitting device
US15/848,695 US10014449B1 (en) 2016-12-21 2017-12-20 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016248524A JP6583247B2 (en) 2016-12-21 2016-12-21 Light emitting device

Publications (2)

Publication Number Publication Date
JP2018101753A JP2018101753A (en) 2018-06-28
JP6583247B2 true JP6583247B2 (en) 2019-10-02

Family

ID=62561968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016248524A Active JP6583247B2 (en) 2016-12-21 2016-12-21 Light emitting device

Country Status (2)

Country Link
US (1) US10014449B1 (en)
JP (1) JP6583247B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111868228A (en) 2017-11-28 2020-10-30 国立研究开发法人科学技术振兴机构 Novel microalgae and use thereof
TWI800538B (en) * 2018-10-08 2023-05-01 晶元光電股份有限公司 Light-emitting device
CN109669297A (en) * 2018-12-07 2019-04-23 业成科技(成都)有限公司 Display device and its manufacturing method
CN111463193B (en) * 2019-01-21 2021-11-12 光宝光电(常州)有限公司 Chip-level light-emitting diode packaging structure
JP7231450B2 (en) * 2019-03-18 2023-03-01 ローム株式会社 semiconductor light emitting device
EP3952616A4 (en) * 2019-03-29 2022-06-01 Sony Group Corporation Light emitting device, display device, and electronic instrument
JP7004948B2 (en) 2019-04-27 2022-01-21 日亜化学工業株式会社 Manufacturing method of light emitting module
CN110119225B (en) * 2019-05-20 2022-05-10 业成科技(成都)有限公司 Touch panel
EP4124793A1 (en) * 2021-07-28 2023-02-01 Chongyi Jingyi Lighting Products Co., Ltd. Led lamp manufactured by injection molding process

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329587A (en) 2001-05-01 2002-11-15 Toyoda Gosei Co Ltd Led lamp
US7855395B2 (en) 2004-09-10 2010-12-21 Seoul Semiconductor Co., Ltd. Light emitting diode package having multiple molding resins on a light emitting diode die
JP2006114854A (en) * 2004-10-18 2006-04-27 Sharp Corp Semiconductor light emitting device, and backlight device for liquid crystal display
KR20070016541A (en) * 2005-08-04 2007-02-08 삼성전자주식회사 Light generating unit and display device having the same
JP2007207834A (en) 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Light-emitting diode light source
KR100828891B1 (en) 2006-02-23 2008-05-09 엘지이노텍 주식회사 LED Package
TWI309480B (en) * 2006-07-24 2009-05-01 Everlight Electronics Co Ltd Led packaging structure
JP2008041699A (en) * 2006-08-01 2008-02-21 Showa Denko Kk Led package
JP5106862B2 (en) * 2007-01-15 2012-12-26 昭和電工株式会社 Light emitting diode package
JP5060172B2 (en) * 2007-05-29 2012-10-31 岩谷産業株式会社 Semiconductor light emitting device
JP2009016153A (en) * 2007-07-04 2009-01-22 Yohohama Electron Kk Led lamp for illumination
JP5220381B2 (en) 2007-10-16 2013-06-26 ミネベア株式会社 Surface lighting device
US9024340B2 (en) * 2007-11-29 2015-05-05 Nichia Corporation Light emitting apparatus and method for producing the same
JP4780203B2 (en) 2009-02-10 2011-09-28 日亜化学工業株式会社 Semiconductor light emitting device
JP2010212508A (en) * 2009-03-11 2010-09-24 Sony Corp Light emitting element mounting package, light emitting device, backlight, and liquid crystal display
US7956546B2 (en) * 2009-05-15 2011-06-07 Bridgelux, Inc. Modular LED light bulb
TWM388109U (en) * 2009-10-15 2010-09-01 Intematix Tech Center Corp Light emitting diode apparatus
JP5506531B2 (en) 2010-05-13 2014-05-28 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
KR101039994B1 (en) * 2010-05-24 2011-06-09 엘지이노텍 주식회사 Light emitting device and light unit having thereof
WO2012046661A1 (en) * 2010-10-07 2012-04-12 シャープ株式会社 Light-emitting element, light-emitting apparatus, and display apparatus
JP2014232826A (en) * 2013-05-30 2014-12-11 亞徳光機股▲ふん▼有限公司 Light emitting device
JP6107510B2 (en) 2013-07-25 2017-04-05 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
KR20150064463A (en) 2013-12-03 2015-06-11 삼성디스플레이 주식회사 Light emitting diode package and display device having the same as light source
JP2015233048A (en) * 2014-06-09 2015-12-24 船井電機株式会社 Light-emitting device

Also Published As

Publication number Publication date
US10014449B1 (en) 2018-07-03
JP2018101753A (en) 2018-06-28
US20180175255A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
JP6583247B2 (en) Light emitting device
US11038089B2 (en) Light emitting device
US10374136B2 (en) Light emitting apparatus
US10026718B2 (en) Light emitting device
TWI766841B (en) Light emitting device and method of manufacturing the same
US10825968B2 (en) Method for manufacturing light-emitting device
JP6662322B2 (en) Light emitting device
JP6191667B2 (en) Light emitting device
JP6524624B2 (en) Light emitting device
CN108807639B (en) Light emitting device
CN109216527B (en) Light emitting device
JP6326830B2 (en) Light emitting device and lighting device including the same
JP6658829B2 (en) Light emitting device manufacturing method
JP7189413B2 (en) light emitting device
JP2018117138A (en) Manufacturing method of light-emitting device
JP2019134150A (en) Light emitting device
JP6521017B2 (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6583247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250