JP6573332B2 - Circuit board and manufacturing method thereof - Google Patents

Circuit board and manufacturing method thereof Download PDF

Info

Publication number
JP6573332B2
JP6573332B2 JP2017152029A JP2017152029A JP6573332B2 JP 6573332 B2 JP6573332 B2 JP 6573332B2 JP 2017152029 A JP2017152029 A JP 2017152029A JP 2017152029 A JP2017152029 A JP 2017152029A JP 6573332 B2 JP6573332 B2 JP 6573332B2
Authority
JP
Japan
Prior art keywords
conductive layer
layer
circuit board
holes
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017152029A
Other languages
Japanese (ja)
Other versions
JP2018078273A (en
Inventor
振宏 ▲黄▼
振宏 ▲黄▼
賢傑 林
賢傑 林
Original Assignee
南亞電路板股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞電路板股▲ふん▼有限公司 filed Critical 南亞電路板股▲ふん▼有限公司
Publication of JP2018078273A publication Critical patent/JP2018078273A/en
Application granted granted Critical
Publication of JP6573332B2 publication Critical patent/JP6573332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は、回路板およびその製造方法に関し、特に、均一な厚さの導電層を有する回路板およびその製造方法に関するものである。   The present invention relates to a circuit board and a manufacturing method thereof, and more particularly to a circuit board having a conductive layer having a uniform thickness and a manufacturing method thereof.

プリント回路板(printed circuit board, PCB)は、作製しようとしている回路に応じて設計され、回路部品が実装される。プリント基板は、回路の配線図を作成した後、機械加工や化学加工、表面処理などの方法により、絶縁体でなる基板上に、当該配線図に基づいて電気導体でなる配線を形成する。より具体的には、このような回路配線は、プリント、リソグラフィー、エッチング、および電気めっきなどの技術を用いて、精密に形成され、電子部品および部品間の回路を相互接続するための実装プラットフォームとして用いられている。   A printed circuit board (PCB) is designed according to the circuit to be manufactured, and circuit components are mounted. In the printed circuit board, after creating a circuit wiring diagram, a wiring made of an electric conductor is formed on a substrate made of an insulator based on the wiring diagram by a method such as machining, chemical processing, or surface treatment. More specifically, such circuit wiring is precisely formed using techniques such as printing, lithography, etching, and electroplating, and as a mounting platform for interconnecting electronic components and circuits between components. It is used.

現在、基板に形成される貫通孔の数は、ますます増加している。製品が機能性の高い設計となっているために、貫通孔は、特に、チップ搭載領域に集中している。そのために、基板に形成される貫通孔の分布が不均一になっている。貫通孔の分布が不均一であるために、電気めっきプロセスで、貫通孔の密度が高い領域では電流が分散し、貫通孔の密度が低い領域では電流が集中することになる。その結果、貫通孔の密度が高い領域と貫通孔の密度が低い領域とで、電気めっきプロセスにより形成される導電層の厚さが不均一となり、このことは、製品のインピーダンスおよび抵抗に影響を与え、例えば、はんだボールマウント/はんだペースト印刷など後続の工程の安定性にも影響を与える。   Currently, the number of through holes formed in a substrate is increasing. Since the product has a highly functional design, the through holes are particularly concentrated in the chip mounting area. Therefore, the distribution of through holes formed in the substrate is not uniform. Since the distribution of the through holes is not uniform, in the electroplating process, the current is dispersed in the region where the density of the through holes is high, and the current is concentrated in the region where the density of the through holes is low. As a result, the thickness of the conductive layer formed by the electroplating process is uneven in the areas where the through-hole density is high and in the low-hole density, which affects the impedance and resistance of the product. For example, it affects the stability of subsequent processes such as solder ball mount / solder paste printing.

そのため、均一な厚さの導電層を有する回路板およびその製造方法を開発することが求められている。   Therefore, it is required to develop a circuit board having a conductive layer having a uniform thickness and a method for manufacturing the circuit board.

そこで本発明は、上記の事情に鑑み、均一な厚さの導電層を有する回路板およびその製造方法を提供する。   In view of the above circumstances, the present invention provides a circuit board having a conductive layer having a uniform thickness and a method for manufacturing the circuit board.

本発明の回路板は、基板と、前記基板表面に設けられた金属層と、前記金属層の表面に設けられ、第1の導電層および第2の導電層を含む導電層と、前記導電層、前記金属層、および前記基板を貫通する複数の貫通孔とを含み、前記貫通孔の密度が高い領域と、前記貫通孔の密度が低い領域とがあり、前記導電層は、略平坦な上面を有し、且つ前記第1の導電層および前記第2の導電層の隣接部に、界面が存在する。   The circuit board of the present invention includes a substrate, a metal layer provided on the surface of the substrate, a conductive layer provided on the surface of the metal layer and including a first conductive layer and a second conductive layer, and the conductive layer. , The metal layer, and a plurality of through holes penetrating the substrate, the region having a high density of the through holes and a region having a low density of the through holes, and the conductive layer having a substantially flat top surface And an interface exists in an adjacent portion of the first conductive layer and the second conductive layer.

本発明の回路板の製造方法は、基板の表面に金属層を形成するステップと、前記金属層および前記基板を貫通する貫通孔の密度が高い領域と、前記貫通孔の密度が低い領域とを含むように、複数の前記貫通孔を形成するステップと、第1の電気めっき処理を行って、前記金属層の表面と前記貫通孔の内表面とをカバーし、前記貫通孔の密度が高い領域に対応する位置に窪み領域を有する第1の導電層を形成するステップと、前記第1の導電層の上に遮蔽層を形成するステップと、前記遮蔽層の表面に開口を形成し、前記開口から前記第1の導電層の前記窪み領域を露出するステップと、第2の電気めっき処理を行って、前記開口から露出した前記第1の導電層の上に第2の導電層を形成し、前記第1の導電層をカバーするステップと、前記遮蔽層を除去するステップと、前記貫通孔の中に充填物を充填するステップと、前記第1の導電層の一部と前記第2の導電層の一部とを除去する平坦化処理を行うステップとを含む。   The method for manufacturing a circuit board according to the present invention includes a step of forming a metal layer on a surface of a substrate, a region having a high density of through holes penetrating the metal layer and the substrate, and a region having a low density of the through holes. A step of forming a plurality of the through holes and a first electroplating process so as to cover the surface of the metal layer and the inner surface of the through holes, and the density of the through holes is high. Forming a first conductive layer having a recessed region at a position corresponding to the step, forming a shielding layer on the first conductive layer, forming an opening on a surface of the shielding layer, and opening the opening A step of exposing the recessed region of the first conductive layer and a second electroplating process to form a second conductive layer on the first conductive layer exposed from the opening; Covering the first conductive layer; and Removing the layer, filling the through-hole with a filling, and performing a planarization process for removing a part of the first conductive layer and a part of the second conductive layer Including.

本発明の回路板の製造方法は、基板の表面に金属層を形成するステップと、前記金属層および前記基板を貫通する貫通孔の密度が高い領域と、前記貫通孔の密度が低い領域とを含むように、複数の前記貫通孔を形成するステップと、前記金属層の上に遮蔽層を形成するステップ、前記遮蔽層の表面に開口を形成し、前記開口から、前記貫通孔の密度が高い領域の前記金属層を露出させるステップと、第1の電気めっき処理を行って、前記開口から露出した前記金属層の表面に第1の導電層を形成するステップと、前記遮蔽層を除去するステップと、第2の電気めっき処理を行って、前記第1の導電層および前記金属層をカバーし、前記貫通孔内にも設けられる第2の導電層を形成するステップと、前記貫通孔の中に充填物を充填するステップと、前記第1の導電層の一部と前記第2の導電層の一部とを除去する平坦化処理を行うステップとを含む。   The method for manufacturing a circuit board according to the present invention includes a step of forming a metal layer on a surface of a substrate, a region having a high density of through holes penetrating the metal layer and the substrate, and a region having a low density of the through holes. A step of forming a plurality of the through holes, a step of forming a shielding layer on the metal layer, an opening is formed on a surface of the shielding layer, and the density of the through holes is high from the opening. Exposing the metal layer in a region; performing a first electroplating process to form a first conductive layer on a surface of the metal layer exposed from the opening; and removing the shielding layer Performing a second electroplating process to cover the first conductive layer and the metal layer and forming a second conductive layer also provided in the through hole; and in the through hole Filling the filling with , And performing a planarization process to remove a portion of the first conductive layer portion and the second conductive layer.

本発明の第1の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 1st Embodiment of this invention. 本発明の第1の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 1st Embodiment of this invention. 本発明の第1の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 1st Embodiment of this invention. 本発明の第1の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 1st Embodiment of this invention. 本発明の第1の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 1st Embodiment of this invention. 本発明の第2の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 2nd Embodiment of this invention. 本発明の第2の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 2nd Embodiment of this invention. 本発明の第2の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 2nd Embodiment of this invention. 本発明の第2の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 2nd Embodiment of this invention. 本発明の第2の実施形態に基づいた回路板の製造方法の一段階を示す概略断面図である。It is a schematic sectional drawing which shows one step of the manufacturing method of the circuit board based on the 2nd Embodiment of this invention. 従来技術の回路板の製造方法の電気めっき処理後に行った回路板表面の粗さ計分析の結果を示している。The result of the roughness meter analysis of the circuit board surface performed after the electroplating process of the manufacturing method of the circuit board of a prior art is shown. 従来技術の回路板の製造方法の平坦化処理後に行った回路板表面の粗さ計分析の結果を示している。The result of the roughness meter analysis of the circuit board surface performed after the planarization process of the manufacturing method of the circuit board of a prior art is shown. 本発明の第1の実施形態の回路板の製造方法の第2の電気めっき処理後に行った回路板表面の粗さ計分析の結果を示している。The result of the roughness meter analysis of the circuit board surface performed after the 2nd electroplating process of the manufacturing method of the circuit board of the 1st Embodiment of this invention is shown. 本発明の第1の実施形態の回路板の製造方法の平坦化処理後に行った回路板表面の粗さ計分析の結果を示している。The result of the roughness meter analysis of the circuit board surface performed after the planarization process of the manufacturing method of the circuit board of the 1st Embodiment of this invention is shown. 本発明の第2の実施形態の回路板の製造方法の第2の電気めっき処理後に行った回路板表面の粗さ計分析の結果を示している。The result of the roughness meter analysis of the circuit board surface performed after the 2nd electroplating process of the manufacturing method of the circuit board of the 2nd Embodiment of this invention is shown. 本発明の第2の実施形態の回路板の製造方法の平坦化処理後に行った回路板表面の粗さ計分析の結果を示している。The result of the roughness meter analysis of the circuit board surface performed after the planarization process of the manufacturing method of the circuit board of the 2nd Embodiment of this invention is shown.

本発明の目的、特徴、及び発明の効果をより詳細に理解するために、以下、好適な実施形態と添付の図面を用い、本発明の技術的事項をより詳細に説明する。   In order to understand the objects, features, and effects of the present invention in more detail, the technical items of the present invention will be described in detail below using preferred embodiments and the accompanying drawings.

本発明の実施形態の回路板およびその製造方法を以下で説明する。しかしながら、以下に示す実施形態は、特定の実施態様の単なる例示であり、本発明の範囲を限定するものではない。また、本発明の明細書および図面では、同一または類似の構成要素には同一の符号を用いて表している。   A circuit board and a manufacturing method thereof according to an embodiment of the present invention will be described below. However, the embodiments described below are merely illustrative of specific embodiments and do not limit the scope of the invention. In the specification and drawings of the present invention, the same or similar components are denoted by the same reference numerals.

本発明は、電気めっき処理を2回行う。より具体的には、1回目の電気めっき処理によって基板上に導電層を形成する。その後、基板上のめっきの密度が比較的小さい領域(貫通孔の密度が高く、基板上に形成された導電層が薄い領域)に、2回目のめっき処理によって導電層をさらに形成し、貫通孔の密度が高い領域の導電層の厚さが他の領域(貫通孔の密度が低い領域)の導電層の厚さより高くなるようにする。最後に、平坦化処理を行う。このようにして、本発明では、導電層全体の厚さの均一性が効果的に改善される。   In the present invention, the electroplating process is performed twice. More specifically, a conductive layer is formed on the substrate by the first electroplating process. Thereafter, a conductive layer is further formed by a second plating process in a region where the plating density on the substrate is relatively small (a region where the density of the through holes is high and the conductive layer formed on the substrate is thin). The thickness of the conductive layer in the region having a high density is made higher than the thickness of the conductive layer in the other region (the region having a low density of through holes). Finally, a flattening process is performed. Thus, in the present invention, the thickness uniformity of the entire conductive layer is effectively improved.

図1Eは、本発明の第1の実施形態の回路板の概略断面図である。本実施形態では、回路板は、樹脂材料でなり、対向する表面102(基板表面102ともいう)を有する基板100と、基板100の表面102に設けられた金属層110と、金属層110の表面に設けられた導電層170と、導電層170、金属層110、および基板100を貫通する複数の貫通孔とを含み、貫通孔には充填物が充填されて充填孔180となっている。本実施形態では、回路板には、貫通孔が不均一に形成されており、貫通孔の密度が高い領域(図1Aの122を参照)と貫通孔の密度が低い領域(図1Aの124を参照)とがある。本実施形態では、貫通孔の内表面にも導電層170が形成されており、貫通孔内に、導電材料や非導電材料でなる充填物が充填されている。   FIG. 1E is a schematic cross-sectional view of the circuit board according to the first embodiment of the present invention. In the present embodiment, the circuit board is made of a resin material and has a substrate 100 having an opposing surface 102 (also referred to as a substrate surface 102), a metal layer 110 provided on the surface 102 of the substrate 100, and a surface of the metal layer 110. And a plurality of through holes penetrating the conductive layer 170, the metal layer 110, and the substrate 100. The through holes are filled with a filler to form a filling hole 180. In the present embodiment, the circuit board has through-holes formed unevenly, and a region having a high density of through-holes (see 122 in FIG. 1A) and a region having a low density of through-holes (124 in FIG. 1A). See). In this embodiment, the conductive layer 170 is also formed on the inner surface of the through hole, and the through hole is filled with a filler made of a conductive material or a non-conductive material.

導電層170は、略平坦な上面172を有する。導電層170は、第1の導電層130および第2の導電層160を含み、且つ第1の導電層130および第2の導電層160の隣接部には、界面S1が存在する。第1の導電層130および第2の導電層160は、同じまたは異なる導電材料からなることができる。導電材料としては、例えば、銅、金、ニッケル、パラジウム、銀、スズ、またはこれらの材料から選択される複数の材料の組み合わせを用いることができる。本実施形態では、第1の導電層130および第2の導電層160は、銅である。   The conductive layer 170 has a substantially flat upper surface 172. The conductive layer 170 includes a first conductive layer 130 and a second conductive layer 160, and an interface S <b> 1 exists in an adjacent portion of the first conductive layer 130 and the second conductive layer 160. The first conductive layer 130 and the second conductive layer 160 can be made of the same or different conductive materials. As the conductive material, for example, copper, gold, nickel, palladium, silver, tin, or a combination of a plurality of materials selected from these materials can be used. In the present embodiment, the first conductive layer 130 and the second conductive layer 160 are copper.

本実施形態では、第2の導電層160は、第1の導電層130の上に設けられている。本実施形態では、図1Eに示すように、第1の導電層130の断面の輪郭は凹形状であり、第2の導電層160の断面の輪郭は凸形状であり、界面S1が窪んだ面状に存在している。   In the present embodiment, the second conductive layer 160 is provided on the first conductive layer 130. In the present embodiment, as shown in FIG. 1E, the cross-sectional outline of the first conductive layer 130 is a concave shape, the cross-sectional outline of the second conductive layer 160 is a convex shape, and the interface S1 is a concave surface. It exists in the form.

図2Eは、本発明の第2の実施形態の回路板の概略断面図を示である。本実施形態では、回路板は、樹脂材料でなり、対向する表面202(基板表面202ともいう)を有する基板200と、基板200の表面202に設けられた金属層210と、金属層210の表面に配置された導電層270と、導電層270、金属層210、および基板200を貫通する複数の貫通孔を含み、貫通孔には充填物が充填されて充填孔280となっている。本実施形態では、回路板には、貫通孔が不均一に形成されており、貫通孔の密度が高い領域(図2Aの222を参照)と貫通孔の密度が低い領域(図2Aの224を参照)とがある。本実施形態では、貫通孔の内表面にも導電層270が形成されており、貫通孔内には、導電材料や非導電材料でなる充填物が充填されている。   FIG. 2E is a schematic cross-sectional view of a circuit board according to a second embodiment of the present invention. In the present embodiment, the circuit board is made of a resin material and has a substrate 200 having an opposing surface 202 (also referred to as a substrate surface 202), a metal layer 210 provided on the surface 202 of the substrate 200, and a surface of the metal layer 210. And a plurality of through holes that penetrate the conductive layer 270, the metal layer 210, and the substrate 200, and the through holes are filled with a filler to form a filling hole 280. In the present embodiment, the circuit board is formed with non-uniform through-holes, and a region having a high through-hole density (see 222 in FIG. 2A) and a region having a low through-hole density (see 224 in FIG. 2A). See). In this embodiment, the conductive layer 270 is also formed on the inner surface of the through hole, and the through hole is filled with a filler made of a conductive material or a non-conductive material.

導電層270は、略平坦な上面272を有する。導電層270は、第1の導電層250および第2の導電層260を含み、且つ第1の導電層250および第2の導電層260の隣接部には、界面S2が存在する。第1の導電層250および第2の導電層260は、同じまたは異なる導電材料からなることができる。導電材料としては、例えば、銅、金、ニッケル、パラジウム、銀、スズ、またはこれらの材料から選択される複数の材料の組み合わせを用いることができる。本実施形態では、第1の導電層250および第2の導電層260は、銅である。   The conductive layer 270 has a substantially flat upper surface 272. The conductive layer 270 includes a first conductive layer 250 and a second conductive layer 260, and an interface S <b> 2 exists in an adjacent portion of the first conductive layer 250 and the second conductive layer 260. The first conductive layer 250 and the second conductive layer 260 can be made of the same or different conductive materials. As the conductive material, for example, copper, gold, nickel, palladium, silver, tin, or a combination of a plurality of materials selected from these materials can be used. In the present embodiment, the first conductive layer 250 and the second conductive layer 260 are copper.

第2の実施形態の回路板の図1Eに示される第1の実施形態の回路板と異なることは、第1の導電層250および第2の導電層260の両方が金属層210の表面上に設けられていることと、第1の導電層250が、貫通孔の密度が高い領域222に対応する位置に設けられ、第2の導電層260が、貫通孔の密度が低い領域224に設けられていることとである。また、図2Eに示すように、本実施形態では、第1の実施形態の回路板と異なり、第1の導電層250および第2の導電層260の隣接部に存在する界面S2は、基板表面202に対して垂直に存在する。   The circuit board of the second embodiment is different from the circuit board of the first embodiment shown in FIG. 1E in that both the first conductive layer 250 and the second conductive layer 260 are on the surface of the metal layer 210. The first conductive layer 250 is provided at a position corresponding to the region 222 having a high through-hole density, and the second conductive layer 260 is provided in the region 224 having a low through-hole density. It is that. As shown in FIG. 2E, in this embodiment, unlike the circuit board of the first embodiment, the interface S2 existing in the adjacent portion of the first conductive layer 250 and the second conductive layer 260 is the surface of the substrate. Exists perpendicular to 202.

従来技術で製造した回路板は、厚さが不均一な導電層を形成した後に、平坦化処理により導電層を平坦にして、導電層の厚さが均一となるようにしている。そのために、従来の回路板は、導電層の厚さが過度に薄くなってしまうことがある。これに対して本発明の製造方法では、貫通孔の密度が高い領域と、貫通孔の密度が低い領域との間の、電気メッキ処理によって形成される導電層の厚さの差を、2回の電気メッキ処理を行うことで、効果的に低減したのちに平坦化処理をしている。そのため、本発明では平坦化処理によって、導電層の上面をほぼ平坦にしても、導電層が十分な厚さを保つことができ、全体的な導電層の厚さの均一性を効果的に改善している。   In a circuit board manufactured by a conventional technique, after a conductive layer having a non-uniform thickness is formed, the conductive layer is flattened by a flattening process so that the thickness of the conductive layer is uniform. Therefore, the conventional circuit board may have an excessively thin conductive layer. In contrast, in the manufacturing method of the present invention, the difference in the thickness of the conductive layer formed by electroplating between the region where the density of the through holes is high and the region where the density of the through holes is low is calculated twice. By performing the electroplating process, the planarization process is performed after the effective reduction. Therefore, in the present invention, even when the upper surface of the conductive layer is made almost flat by the planarization treatment, the conductive layer can maintain a sufficient thickness, and the overall uniformity of the thickness of the conductive layer is effectively improved. doing.

図1A〜図1Eは、本発明の第1の実施形態に基づいた回路板の製造方法を示す概略断面図である。   1A to 1E are schematic cross-sectional views illustrating a method for manufacturing a circuit board according to the first embodiment of the present invention.

まず、対向する表面102を有する基板100を用意する。本実施形態では、樹脂材料でなる基板100を用いている。基板表面102に金属層110を形成する。次いで、レーザー穿孔処理または機械的穿孔処理によって、図1Aに示すように、対向する基板表面102に形成された金属層110および基板100を貫通する複数の貫通孔120を形成する。このとき、貫通孔120の密度が高い領域122と貫通孔120の密度が低い領域124とが形成されるように、貫通孔120を形成する。レーザー穿孔処理または機械的穿孔処理を行った後に、スミアを除去するステップを行い、レーザー穿孔または機械的穿孔によって生じた貫通孔120内の残留物(図示せず)を洗浄してもよい。   First, a substrate 100 having an opposing surface 102 is prepared. In the present embodiment, a substrate 100 made of a resin material is used. A metal layer 110 is formed on the substrate surface 102. Next, as shown in FIG. 1A, a plurality of through holes 120 penetrating the metal layer 110 and the substrate 100 formed on the opposing substrate surface 102 are formed by laser drilling or mechanical drilling. At this time, the through hole 120 is formed so that the region 122 having a high density of the through hole 120 and the region 124 having a low density of the through hole 120 are formed. After performing the laser drilling process or the mechanical drilling process, a step of removing smear may be performed to clean a residue (not shown) in the through-hole 120 generated by the laser drilling or the mechanical drilling.

次いで、図1Bに示すように、第1の電気めっき処理によって、金属層110の表面と貫通孔120の内表面とをカバーする第1の導電層130を形成する。形成された第1の導電層130は、貫通孔120の密度が高い領域122に対応する位置に窪み領域132を含む。窪み領域132の輪郭、すなわち、基板表面102を基準としたくぼみ領域の高さは、外周(断面では両側)から中央に向けて徐々に減少している。第1の電気めっき処理を行う前に、金属層110の表面および貫通孔120の内表面にシード層(図示せず)をコンフォーマルに形成してもよい。   Next, as shown in FIG. 1B, a first conductive layer 130 that covers the surface of the metal layer 110 and the inner surface of the through hole 120 is formed by a first electroplating process. The formed first conductive layer 130 includes a recessed region 132 at a position corresponding to the region 122 where the density of the through holes 120 is high. The contour of the recessed area 132, that is, the height of the recessed area with respect to the substrate surface 102, gradually decreases from the outer periphery (both sides in the cross section) toward the center. Before performing the first electroplating process, a seed layer (not shown) may be formed conformally on the surface of the metal layer 110 and the inner surface of the through hole 120.

画像転写処理を行い、第1の導電層130の上に遮蔽層140を形成する。遮蔽層140は、例えば、ドライフィルムなどのフォトレジスト層であってもよい。次いで、露光処理およびエッチング処理によって、遮蔽層140の表面に開口150を形成し、当該開口150から第1の導電層130の窪み領域132を露出する。次いで、第2の電気めっき処理を行って、図1Cに示すように、遮蔽層140に形成した開口150から露出した第1の導電層130の上に第2の導電層160を形成し、第1の導電層130をカバーする。第1の導電層130と第2の導電層160の隣接部には、界面S1が形成される。第1の導電層130の断面の輪郭は凹形状であり、第2の導電層160の断面の輪郭は凸形状であり、界面S1が窪んだ面状に存在している。図1Cに示されるように、界面S1の輪郭と窪み領域132の輪郭は同じである。   An image transfer process is performed to form a shielding layer 140 on the first conductive layer 130. The shielding layer 140 may be a photoresist layer such as a dry film, for example. Next, an opening 150 is formed on the surface of the shielding layer 140 by an exposure process and an etching process, and the recessed region 132 of the first conductive layer 130 is exposed from the opening 150. Next, a second electroplating process is performed to form a second conductive layer 160 on the first conductive layer 130 exposed from the opening 150 formed in the shielding layer 140, as shown in FIG. 1C. One conductive layer 130 is covered. An interface S <b> 1 is formed between adjacent portions of the first conductive layer 130 and the second conductive layer 160. The outline of the cross section of the first conductive layer 130 is a concave shape, the outline of the cross section of the second conductive layer 160 is a convex shape, and the interface S1 exists in a concave surface. As shown in FIG. 1C, the contour of the interface S1 and the contour of the hollow region 132 are the same.

第2の導電層160の厚さは、第1の導電層130の窪み領域132の深さに応じて調整することができる。本実施形態では、第2の導電層160の厚さを、窪み領域132の深さより大きくしている。   The thickness of the second conductive layer 160 can be adjusted according to the depth of the recessed region 132 of the first conductive layer 130. In the present embodiment, the thickness of the second conductive layer 160 is larger than the depth of the recessed region 132.

次いで、図1Dに示すように、遮蔽層140を除去する。   Next, as shown in FIG. 1D, the shielding layer 140 is removed.

続いて、貫通孔120の中に充填物を充填する。充填物は、導電材料であってもよく、非導電材料であってもよい。次いで、平坦化処理を行って、第1の導電層130の一部と第2の導電層160の一部とを除去し、図1Eに示すように、導電層170および複数の充填孔180を有する回路板を得る。導電層170は、略平坦な上面172を有している。   Subsequently, the through hole 120 is filled with a filler. The filling may be a conductive material or a non-conductive material. Next, planarization treatment is performed to remove a part of the first conductive layer 130 and a part of the second conductive layer 160, and as shown in FIG. 1E, the conductive layer 170 and the plurality of filling holes 180 are formed. A circuit board is obtained. The conductive layer 170 has a substantially flat upper surface 172.

ここで本発明の第1の実施形態の回路板が完成した。図1Eに見られるように、導電層170は、全体的に、均一な厚さを有する。従来の回路板にみられる、貫通孔の分布が不均一であることに起因する導電層の厚さの不均一性が、本実施形態の回路板では改善し、導電層170の厚さの差は明らかに低減し、全体的な導電層の均一性を向上させる目的を達成している。   Here, the circuit board of the first embodiment of the present invention was completed. As seen in FIG. 1E, the conductive layer 170 generally has a uniform thickness. The non-uniformity of the thickness of the conductive layer due to the non-uniform distribution of the through-holes seen in the conventional circuit board is improved in the circuit board of this embodiment, and the difference in the thickness of the conductive layer 170 Clearly achieves the objective of reducing and improving the uniformity of the overall conductive layer.

本実施形態は、従来技術の1回の電気めっき処理だけを行って導電層を形成し、導電層の厚さが不均一となる問題がよく生じることに対して、効果的に解決する方法を提供する。本実施形態は、2回の電気めっき処理によって導電層を形成する。第1の導電層130が有する窪み領域132に、第2の電気めっき処理によって導電材料を充填して第2の導電層160を形成し、貫通孔の密度が高い領域の導電層の厚さを貫通孔の密度が低い領域の導電層の厚さより高くする。次いで、本実施形態は、平坦化処理によって、平坦な導電層170を形成し、全体的に均一な導電層を有する回路板を製造し、後続の工程の安定性を向上させる。   This embodiment is a method for effectively solving the problem that the conductive layer is formed by performing only one electroplating process of the prior art and the thickness of the conductive layer is often uneven. provide. In this embodiment, the conductive layer is formed by two electroplating processes. The second conductive layer 160 is formed by filling the hollow region 132 of the first conductive layer 130 with a conductive material by the second electroplating process, and the thickness of the conductive layer in the region where the density of the through holes is high is set. It is higher than the thickness of the conductive layer in the region where the density of the through holes is low. Next, in the present embodiment, a flat conductive layer 170 is formed by a planarization process, a circuit board having a uniform conductive layer as a whole is manufactured, and the stability of subsequent processes is improved.

図2A〜図2Eは、本発明の第2の実施形態に基づいた回路板の製造方法を示す概略断面図である。   2A to 2E are schematic cross-sectional views illustrating a method for manufacturing a circuit board according to the second embodiment of the present invention.

まず、対向する表面202を有する基板200を用意する。本実施形態では、樹脂材料でなる基板200を用いている。基板表面202に金属層210を形成する。次いで、レーザー穿孔処理または機械的穿孔処理によって、図2Aに示すように、対向する基板表面202に形成された金属層210および基板200を貫通する複数の貫通孔220を形成する。このとき、貫通孔220の密度が高い領域222と貫通孔220の密度が低い領域224とが形成されるように、貫通孔220を形成する。レーザー穿孔処理または機械的穿孔処理を行った後に、スミアを除去するステップを行い、レーザー穿孔または機械的穿孔によって生じた貫通孔220内の残留物(図示せず)を洗浄してもよい。   First, a substrate 200 having an opposing surface 202 is prepared. In the present embodiment, a substrate 200 made of a resin material is used. A metal layer 210 is formed on the substrate surface 202. Next, as shown in FIG. 2A, a plurality of through holes 220 penetrating the metal layer 210 and the substrate 200 formed on the opposing substrate surface 202 are formed by laser drilling or mechanical drilling. At this time, the through hole 220 is formed so that the region 222 having a high density of the through hole 220 and the region 224 having a low density of the through hole 220 are formed. After performing the laser drilling process or the mechanical drilling process, a step of removing smear may be performed to clean a residue (not shown) in the through hole 220 generated by the laser drilling or the mechanical drilling.

次いで、金属層210の上に遮蔽層230を形成する。遮蔽層230は、例えば、ドライフィルムなどのフォトレジスト層であってもよい。金属層210の上に遮蔽層230を形成する前に、金属層210の表面および貫通孔220の内表面にシード層(図示せず)をコンフォーマルに形成してもよい。画像転写処理を行い、露光およびエッチング処理によって、遮蔽層シードの中に開口240を形成し、貫通孔の密度が高い領域222の金属層210の一部を開口240から露出させる。次いで、第1の電気めっきを行い、図2Bに示すように、開口240から露出した金属層210の表面に第1の導電層250を形成する。このとき、貫通孔220の内表面にも第1の導電層250が形成される。   Next, the shielding layer 230 is formed on the metal layer 210. The shielding layer 230 may be a photoresist layer such as a dry film, for example. Before forming the shielding layer 230 on the metal layer 210, a seed layer (not shown) may be conformally formed on the surface of the metal layer 210 and the inner surface of the through hole 220. An image transfer process is performed, and an opening 240 is formed in the shielding layer seed by exposure and etching processes, and a part of the metal layer 210 in the region 222 having a high through-hole density is exposed from the opening 240. Next, first electroplating is performed to form a first conductive layer 250 on the surface of the metal layer 210 exposed from the opening 240 as shown in FIG. 2B. At this time, the first conductive layer 250 is also formed on the inner surface of the through hole 220.

第1の導電層250の厚さは、適宜調整できるが、従来技術で周知の厚さが不均一な導電層における、最も厚い部分と最も薄い部分との厚さの差に、すなわち、同一基板上の貫通孔の密度が低い領域と、貫通孔の密度が高い領域とに、電気めっき処理によって形成される導電層の厚さの差に基づいて調整することが望ましい。本実施形態では、第1の導電層250の厚さは、このような従来技術で周知の導電層の厚さの差より大きくなるようにしている。   The thickness of the first conductive layer 250 can be adjusted as appropriate, but the difference between the thickness of the thickest portion and the thinnest portion in the conductive layer having a non-uniform thickness known in the prior art, that is, the same substrate. It is desirable to adjust the region where the density of the upper through hole is low and the region where the density of the through hole is high based on the difference in thickness of the conductive layer formed by the electroplating process. In the present embodiment, the thickness of the first conductive layer 250 is set to be larger than the difference in thickness of the conductive layers known in the prior art.

次いで、図2Cに示すように、遮蔽層230を除去する。   Next, as shown in FIG. 2C, the shielding layer 230 is removed.

続いて、第2の電気めっき処理を行い、図2Dに示すように、第1の導電層250および金属層210をカバーする第2の導電層260を形成する。このとき、貫通孔220の内表面に形成された第1の導電層250の表面にも第2の導電層が形成され、貫通孔220内にも第2の導電層が設けられる。第1の導電層250と第2の導電層260の隣接部には、界面S2が存在する。界面S2は、図2Dに示すように、基板表面202に対して垂直の界面である。   Subsequently, a second electroplating process is performed to form a second conductive layer 260 that covers the first conductive layer 250 and the metal layer 210 as shown in FIG. 2D. At this time, the second conductive layer is also formed on the surface of the first conductive layer 250 formed on the inner surface of the through hole 220, and the second conductive layer is also provided in the through hole 220. An interface S <b> 2 exists in an adjacent portion between the first conductive layer 250 and the second conductive layer 260. The interface S2 is an interface perpendicular to the substrate surface 202, as shown in FIG. 2D.

次に、これらの貫通孔220の中に充填物を充填する。充填物は、導電材料であってもよく、または非導電材料であってもよい。次いで、平坦化工程を行い、第1の導電層250の一部と第2の導電層260の一部とを除去して、図2Eに示すように、平坦な導電層270および複数の充填孔280を有する回路板を得る。   Next, a filling material is filled into these through holes 220. The filling may be a conductive material or a non-conductive material. Next, a planarization process is performed to remove a part of the first conductive layer 250 and a part of the second conductive layer 260, and as shown in FIG. 2E, the flat conductive layer 270 and the plurality of filling holes A circuit board with 280 is obtained.

ここで本発明の第2の実施形態の回路板が完成した。図2Eに見られるように、導電層270は、全体的に、均一な厚さを有する。従来の回路板にみられる、貫通孔の分布が不均一であることに起因する導電層270の厚さの不均一性が、本実施形態の回路板では改善し、導電層170の厚さの差は明らかに低減し、全体的な導電層の均一性を向上させる目的を達成している。   Here, the circuit board of the second embodiment of the present invention was completed. As seen in FIG. 2E, the conductive layer 270 generally has a uniform thickness. The non-uniformity of the thickness of the conductive layer 270 due to the non-uniform distribution of the through holes, which is observed in the conventional circuit board, is improved in the circuit board of the present embodiment, and the thickness of the conductive layer 170 is reduced. The difference is clearly reduced and the objective of improving the overall conductive layer uniformity is achieved.

なお、貫通孔の分布の不均一なことにより、第2の導電層260も、貫通孔の密度が高い領域222では厚さが薄く形成され、貫通孔の密度が低い領域224では厚さが厚く形成される。これに対して、本実施形態は、第1のめっき処理によって、貫通孔の密度が高い領域222に第1の導電層250を形成し、第2のめっき処理で発生する可能性がある厚さの差を補うことによって、均一な導電層270を形成する。このように、本実施形態では、第1のめっき処理で、貫通孔の密度か高い領域222に第1の導電層250を形成した後、第2の電気めっき処理で第2の導電層260を形成し、貫通孔の密度が高い領域222の導電層の厚さを貫通孔の密度が低い領域224の厚さより厚くしてから、後続の平坦化処理によって、平坦な導電層270を形成する。よって本実施形態では、全体的な導電層の均一性および後続の工程の安定性を向上させる。そして、本実施形態も、2回の電気めっき処理によって導電層を形成することで、従来技術のように1回の電気めっき処理だけで導電層を形成することで導電層の厚さが不均一となる問題が生じることに対して、効果的に解決する方法を提供する。   Note that due to the uneven distribution of the through holes, the second conductive layer 260 is also formed with a small thickness in the region 222 where the density of the through holes is high, and thick in the region 224 where the density of the through holes is low. It is formed. On the other hand, in the present embodiment, the first conductive layer 250 is formed in the region 222 where the density of the through holes is high by the first plating process, and the thickness may be generated by the second plating process. The uniform conductive layer 270 is formed by compensating for the difference. As described above, in the present embodiment, after the first conductive layer 250 is formed in the region 222 having a high through-hole density by the first plating process, the second conductive layer 260 is formed by the second electroplating process. Then, after the thickness of the conductive layer in the region 222 with a high through-hole density is made thicker than the thickness of the region 224 with a low through-hole density, the flat conductive layer 270 is formed by a subsequent planarization process. Therefore, in this embodiment, the uniformity of the entire conductive layer and the stability of subsequent processes are improved. In this embodiment, the conductive layer is formed by two electroplating processes, and the conductive layer is formed by only one electroplating process as in the prior art, so that the thickness of the conductive layer is not uniform. It provides a method for effectively solving the problem.

製品が機能性の高い設計となっているために、基板に形成される貫通孔の数は、ますます多くなり、特に、チップ搭載領域の領域に集中している。そのため、基板に形成される貫通孔の分布が不均一になっており、貫通孔の密度が高い領域と貫通孔の密度が低い領域とで、電気めっき処理後に導電層の厚さが不均一になる現象が生じる。本発明が提供する回路板の製造方法は、画像転写処理と組み合わせた2回の電気めっき処理(第1のめっき処理と第2のめっき処理)を用いて、電気めっき処理によって形成される導電層の厚さが他の部分よりも薄くなると予想される領域に導電層を更にめっきし、貫通孔の密度が高い領域の導電層の厚さを貫通孔の密度が低い領域の導電層の厚さより厚くし、その後、平坦化処理で導電層を平坦化することで、貫通孔の密度が高い領域と貫通孔の密度が低い領域との導電層内の厚さの差を大幅に低減し、全体的な導電層の均一性を効果的に改善することができる。本発明により導電層の厚さが均一な状態になったことで、後続の配線回路成形のエッチング処理を行うときに、安定した配線幅を維持することができ、配線回路の幅が安定しない、または回路板上に残留物が残留している状態が発生するのを防ぐことができる。さらに、本発明により導電層の厚さの均一性が向上したことで、後続の工程、例えばパッケージング工程の安定性も更に向上させることができる。   Since the product has a highly functional design, the number of through-holes formed in the substrate is increasing more and more particularly in the chip mounting area. For this reason, the distribution of through holes formed in the substrate is non-uniform, and the thickness of the conductive layer is non-uniform after electroplating in an area where the density of the through holes is high and an area where the density of the through holes is low. The phenomenon that occurs. The circuit board manufacturing method provided by the present invention is a conductive layer formed by electroplating using two electroplating processes (first plating process and second plating process) combined with an image transfer process. The conductive layer is further plated in a region where the thickness of the through hole is expected to be thinner than other portions, and the thickness of the conductive layer in the region where the through-hole density is high is larger than the thickness of the conductive layer in the region where the through-hole density is low Thickening and then flattening the conductive layer by a flattening process greatly reduces the difference in thickness in the conductive layer between the region where the through-hole density is high and the region where the through-hole density is low. The uniformity of the conductive layer can be effectively improved. Since the thickness of the conductive layer is uniform according to the present invention, a stable wiring width can be maintained when performing etching processing for subsequent wiring circuit molding, and the width of the wiring circuit is not stable. Alternatively, it is possible to prevent a state in which a residue remains on the circuit board. Furthermore, the uniformity of the thickness of the conductive layer is improved by the present invention, so that the stability of the subsequent process, for example, the packaging process can be further improved.

従来技術で製造した回路板を比較例とし、本発明の製造方法で製造した回路板を実施例として、本発明と従来技術の違いを以下で説明する。   The difference between the present invention and the prior art will be described below using the circuit board manufactured by the prior art as a comparative example and the circuit board manufactured by the manufacturing method of the present invention as an example.

(比較例)
比較例として、従来技術の回路板の製造方法で回路板を製造し、めっき処理後と平坦化処理後との2回、回路板表面の粗さ分析を行った。図3Aは、従来技術の回路板の製造方法の電気めっき処理後に行った回路板表面の粗さ計分析の結果を示し、図3Bは、従来技術の回路板の製造方法の平坦化処理後に行った回路板表面の粗さ計分析の結果を示している。図3Aに示すように、従来技術で製造した回路板では、電気めっき処理後の導電層に回路板表面からの高さ約−15μmの窪みが形成されている。図3Bに示すように、平坦化処理後の導電層では、窪みの回路板表面からの高さは、約−10μmである。
(Comparative example)
As a comparative example, a circuit board was manufactured by a conventional circuit board manufacturing method, and the roughness of the circuit board surface was analyzed twice after plating and after flattening. FIG. 3A shows the result of a roughness meter analysis of the circuit board surface performed after the electroplating process of the prior art circuit board manufacturing method, and FIG. 3B is performed after the planarization process of the prior art circuit board manufacturing method. The result of roughness meter analysis on the surface of a printed circuit board is shown. As shown in FIG. 3A, in the circuit board manufactured by the conventional technique, a recess having a height of about −15 μm from the surface of the circuit board is formed in the conductive layer after the electroplating process. As shown in FIG. 3B, in the conductive layer after the planarization treatment, the height of the depression from the circuit board surface is about −10 μm.

(実施例1)
実施例1として、第1の実施形態の回路板の製造方法で回路板を製造し、めっき処理後と平坦化処理後との2回、回路板表面の粗さ分析を行った。図4Aは、本発明の第1の実施形態の回路板の製造方法の第2の電気めっき処理後に行った回路板表面の粗さ計分析の結果を示し、図4Bは、本発明の第1の実施形態の回路板の製造方法の平坦化処理後に行った回路板表面の粗さ計分析の結果を示している。図4Aに示すように、本発明の第1の実施形態で製造した回路板の第2の電気めっき処理後(図1Dに示された構造と同様)の導電層には、回路板表面からの高さが、約+10μmの凸部が形成されている。図4Bに示すように、平坦化処理後(図1Eに示された構造と同様)には、導電層に形成された凸部が、回路板表面からの高さが約−3μmの窪みとなっている。
Example 1
As Example 1, a circuit board was manufactured by the circuit board manufacturing method of the first embodiment, and the roughness of the circuit board surface was analyzed twice after plating and after planarization. FIG. 4A shows the result of a roughness meter analysis of the circuit board surface performed after the second electroplating process of the circuit board manufacturing method of the first embodiment of the present invention, and FIG. 4B shows the first of the present invention. The result of the roughness meter analysis of the circuit board surface performed after the planarization process of the manufacturing method of the circuit board of this embodiment is shown. As shown in FIG. 4A, the conductive layer after the second electroplating process (similar to the structure shown in FIG. 1D) of the circuit board manufactured in the first embodiment of the present invention is formed from the surface of the circuit board. A convex portion having a height of about +10 μm is formed. As shown in FIG. 4B, after the planarization process (similar to the structure shown in FIG. 1E), the protrusion formed on the conductive layer becomes a depression having a height of about −3 μm from the circuit board surface. ing.

(実施例2)
実施例2として、第2の実施形態の回路板の製造方法で回路板を製造し、めっき処理後と平坦化処理後との2回、回路板表面の粗さ分析を行った。図5Aは、本発明の第2の実施形態の回路板の製造方法の第2の電気めっき処理後に行った回路板表面の粗さ計分析の結果を示し、図5Bは、本発明の第2の実施形態の回路板の製造方法の平坦化処理後に行った回路板表面の粗さ計分析の結果を示している。図5Aに示すように、本発明の第2の実施形態で製造した回路板を電気めっき処理後(図2Dに示された構造と同様)の導電層には、基板表面からの高さが約+5μmの凸部が形成されている。図5Bに示すように、平坦化処理後(図2Eに示された構造と同様)には、導電層に形成された凸部が、回路板表面からの高さが約−4μmの窪みとなっている。
(Example 2)
As Example 2, a circuit board was manufactured by the circuit board manufacturing method of the second embodiment, and the roughness of the circuit board surface was analyzed twice after plating and after planarization. FIG. 5A shows the result of a roughness meter analysis of the circuit board surface performed after the second electroplating process of the circuit board manufacturing method of the second embodiment of the present invention, and FIG. 5B shows the second of the present invention. The result of the roughness meter analysis of the circuit board surface performed after the planarization process of the manufacturing method of the circuit board of this embodiment is shown. As shown in FIG. 5A, the conductive layer after electroplating the circuit board manufactured in the second embodiment of the present invention (similar to the structure shown in FIG. 2D) has a height from the substrate surface of about A convex part of +5 μm is formed. As shown in FIG. 5B, after the planarization process (similar to the structure shown in FIG. 2E), the protrusion formed on the conductive layer becomes a depression having a height of about −4 μm from the circuit board surface. ing.

上述の結果を以下の表1に整理する。従来技術と本発明で製造された回路板を比較してみられるように、本発明の第1または第2の実施形態のどちらを用いて製造された回路板でも、平坦化処理後の導電層の厚さの差は、従来技術の導電層の厚さの差より明らかに小さくなっており、本発明の第1または第2の実施形態を用いて製造された回路板の導電層(銅層)の厚さの均一性は、大幅に改善されている。   The above results are summarized in Table 1 below. As can be seen from comparison between the prior art and the circuit board manufactured according to the present invention, the circuit board manufactured using either the first or second embodiment of the present invention has a conductive layer after planarization. The difference in thickness of the circuit board is clearly smaller than the difference in thickness of the conductive layer of the prior art, and the conductive layer (copper layer) of the circuit board manufactured using the first or second embodiment of the present invention. ) Thickness uniformity has been greatly improved.

Figure 0006573332
Figure 0006573332

本明細書では、複数の好ましい実施形態を説明してきたが、本開示は開示された実施形態に限定されるものではなく、添付の請求の範囲によって定義されるように、本開示の精神および範囲を逸脱せずに、本明細書において種々の変更、代替、および改変をすることができることを理解すべきである。   Although a number of preferred embodiments have been described herein, the disclosure is not limited to the disclosed embodiments, and the spirit and scope of the disclosure as defined by the appended claims. It should be understood that various changes, substitutions, and modifications can be made herein without departing from the invention.

100、200 基板
102、202 表面
110、210 金属層
120、220 貫通孔
122、222 貫通孔の密度が高い領域
124、224 貫通孔の密度が低い領域
130、250 第1の導電層
140、230 遮蔽層
150、240 開口
160、260 第2の導電層
170、270 導電層
172、272 上面
180、280 充填孔
S1、S2 界面

100, 200 Substrate 102, 202 Surface 110, 210 Metal layer 120, 220 Through hole 122, 222 High density of through hole 124, 224 Low density of through hole 130, 250 First conductive layer 140, 230 Shielding Layer 150, 240 Opening 160, 260 Second conductive layer 170, 270 Conductive layer 172, 272 Upper surface 180, 280 Filling hole S1, S2 Interface

Claims (11)

基板と、
前記基板表面に設けられた金属層と、
前記金属層の表面に設けられ、第1の導電層および第2の導電層を含む導電層と、
前記導電層、前記金属層、および前記基板を貫通する複数の貫通孔と
を含み、
前記第1の導電層および前記第2の導電層は電気めっき層であり、
前記貫通孔の密度が高い領域と、前記貫通孔の密度が低い領域とがあり、
前記導電層は、略平坦な上面を有し、且つ前記第1の導電層および前記第2の導電層の隣接部に、界面が存在し、
前記第2の導電層は、前記第1の導電層の上に設けられ、
前記第1の導電層の断面の輪郭は前記貫通孔の密度が高い領域に対応する位置に窪み領域を有する凹形状であり、前記第2の導電層の断面の輪郭は凸形状であり、前記界面が窪んだ面状に存在する
回路板。
A substrate,
A metal layer provided on the substrate surface;
A conductive layer provided on a surface of the metal layer and including a first conductive layer and a second conductive layer;
A plurality of through holes penetrating the conductive layer, the metal layer, and the substrate;
The first conductive layer and the second conductive layer are electroplated layers;
There are a region where the density of the through holes is high and a region where the density of the through holes is low,
The conductive layer has a substantially flat upper surface, and an interface exists between adjacent portions of the first conductive layer and the second conductive layer,
The second conductive layer is provided on the first conductive layer,
The outline of the cross section of the first conductive layer is a concave shape having a recessed area at a position corresponding to the area where the density of the through holes is high, and the outline of the cross section of the second conductive layer is a convex shape, A circuit board that exists in the form of a concave interface.
基板と、
前記基板表面に設けられた金属層と、
前記金属層の表面に設けられ、第1の導電層および第2の導電層を含む導電層と、
前記導電層、前記金属層、および前記基板を貫通する複数の貫通孔と
を含み、
前記第1の導電層および前記第2の導電層は電気めっき層であり、
前記貫通孔の密度が高い領域と、前記貫通孔の密度が低い領域とがあり、
前記導電層は、略平坦な上面を有し、且つ前記第1の導電層および前記第2の導電層の隣接部に、界面が存在し、
前記第1の導電層および前記第2の導電層は、前記金属層の表面に設けられ、且つ前記第1の導電層は、前記貫通孔の密度が高い領域に設けられ、前記第2の導電層は、前記貫通孔の密度が低い領域に設けられており、
前記界面は、前記基板表面に対して垂直に存在する
回路板。
A substrate,
A metal layer provided on the substrate surface;
A conductive layer provided on a surface of the metal layer and including a first conductive layer and a second conductive layer;
A plurality of through holes penetrating the conductive layer, the metal layer, and the substrate;
The first conductive layer and the second conductive layer are electroplated layers;
There are a region where the density of the through holes is high and a region where the density of the through holes is low,
The conductive layer has a substantially flat upper surface, and an interface exists between adjacent portions of the first conductive layer and the second conductive layer,
The first conductive layer and the second conductive layer are provided on a surface of the metal layer, and the first conductive layer is provided in a region where the density of the through holes is high , and the second conductive layer is provided. The layer is provided in a region where the density of the through holes is low,
The interface is perpendicular to the substrate surface.
前記第1の導電層および前記第2の導電層は、同じまたは異なる導電材料からなる
請求項1又は2に記載の回路板。
The circuit board according to claim 1, wherein the first conductive layer and the second conductive layer are made of the same or different conductive materials.
基板の表面に金属層を形成するステップと、
前記金属層および前記基板を貫通する貫通孔の密度が高い領域と、前記貫通孔の密度が低い領域とを含むように、複数の前記貫通孔を形成するステップと、
第1の電気めっき処理を行って、前記金属層の表面と前記貫通孔の内表面とをカバーし、前記貫通孔の密度が高い領域に対応する位置に窪み領域を有する第1の導電層を形成するステップと、
前記第1の導電層の上に遮蔽層を形成するステップと、
前記遮蔽層の表面に開口を形成し、前記開口から前記第1の導電層の前記窪み領域を露出するステップと、
第2の電気めっき処理を行って、前記開口から露出した前記第1の導電層の上に第2の導電層を形成し、前記第1の導電層をカバーするステップと、
前記遮蔽層を除去するステップと、
前記貫通孔の中に充填物を充填するステップと、
前記第1の導電層の一部と前記第2の導電層の一部とを除去する平坦化処理を行うステップと
を含む回路板の製造方法。
Forming a metal layer on the surface of the substrate;
Forming a plurality of the through holes so as to include a region having a high density of through holes penetrating the metal layer and the substrate, and a region having a low density of the through holes;
A first electroplating process is performed to cover the surface of the metal layer and the inner surface of the through hole, and a first conductive layer having a recessed region at a position corresponding to a region where the density of the through hole is high Forming step;
Forming a shielding layer on the first conductive layer;
Forming an opening in the surface of the shielding layer, exposing the recessed region of the first conductive layer from the opening;
Performing a second electroplating process to form a second conductive layer on the first conductive layer exposed from the opening and covering the first conductive layer;
Removing the shielding layer;
Filling the through hole with a filler;
And a planarization process for removing a part of the first conductive layer and a part of the second conductive layer.
前記第1の電気めっき処理を行う前に、前記金属層の表面および前記貫通孔の内表面にシード層をコンフォーマルに形成するステップを更に含む
請求項4に記載の回路板の製造方法。
The method for manufacturing a circuit board according to claim 4, further comprising a step of conformally forming a seed layer on a surface of the metal layer and an inner surface of the through-hole before performing the first electroplating process.
前記遮蔽層は、フォトレジスト層である
請求項4に記載の回路板の製造方法。
The method for manufacturing a circuit board according to claim 4, wherein the shielding layer is a photoresist layer.
前記基板表面を基準とした前記窪み領域の高さは、両側から中央に向けて徐々に減少する
請求項4に記載の回路板の製造方法。
The method for manufacturing a circuit board according to claim 4, wherein the height of the recessed region with respect to the substrate surface gradually decreases from both sides toward the center.
基板の表面に金属層を形成するステップと、
前記金属層および前記基板を貫通する貫通孔の密度が高い領域と、前記貫通孔の密度が低い領域とを含むように、複数の前記貫通孔を形成するステップと、
前記金属層の上に遮蔽層を形成するステップ
前記遮蔽層の表面に開口を形成し、前記開口から、前記貫通孔の密度が高い領域の前記金属層を露出させるステップと、
第1の電気めっき処理を行って、前記開口から露出した前記金属層の表面と前記貫通孔の内表面とに第1の導電層を形成するステップと、
前記遮蔽層を除去するステップと、
第2の電気めっき処理を行って、前記第1の導電層および前記金属層をカバーし、前記貫通孔内にも設けられる第2の導電層を形成するステップと、
前記貫通孔の中に充填物を充填するステップと、
前記第1の導電層の一部と前記第2の導電層の一部とを除去する平坦化処理を行うステップと
を含む回路板の製造方法。
Forming a metal layer on the surface of the substrate;
Forming a plurality of the through holes so as to include a region having a high density of through holes penetrating the metal layer and the substrate, and a region having a low density of the through holes;
Forming a shielding layer on the metal layer,
Forming an opening in the surface of the shielding layer, and exposing the metal layer in a region where the density of the through holes is high from the opening;
Performing a first electroplating process to form a first conductive layer on the surface of the metal layer exposed from the opening and the inner surface of the through hole;
Removing the shielding layer;
Performing a second electroplating treatment to cover the first conductive layer and the metal layer, and to form a second conductive layer also provided in the through hole;
Filling the through hole with a filler;
And a planarization process for removing a part of the first conductive layer and a part of the second conductive layer.
前記金属層の上に前記遮蔽層を形成する前に、前記金属層の表面および前記貫通孔の内表面にシード層をコンフォーマルに形成するステップを更に含む
請求項8に記載の回路板の製造方法。
The circuit board manufacturing method according to claim 8, further comprising: forming a seed layer conformally on a surface of the metal layer and an inner surface of the through hole before forming the shielding layer on the metal layer. Method.
前記遮蔽層は、フォトレジスト層である
請求項8に記載の回路板の製造方法。
The method for manufacturing a circuit board according to claim 8, wherein the shielding layer is a photoresist layer.
前記第1の導電層および前記第2の導電層の隣接部に、前記基板表面に対して垂直な界面が形成される
請求項8に記載の回路板の製造方法。
The method for manufacturing a circuit board according to claim 8, wherein an interface perpendicular to the substrate surface is formed in an adjacent portion of the first conductive layer and the second conductive layer.
JP2017152029A 2016-11-10 2017-08-04 Circuit board and manufacturing method thereof Active JP6573332B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW105136583A TWI605733B (en) 2016-11-10 2016-11-10 Printed circuit board and methods for forming the same
TW105136583 2016-11-10

Publications (2)

Publication Number Publication Date
JP2018078273A JP2018078273A (en) 2018-05-17
JP6573332B2 true JP6573332B2 (en) 2019-09-11

Family

ID=61023150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152029A Active JP6573332B2 (en) 2016-11-10 2017-08-04 Circuit board and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6573332B2 (en)
CN (1) CN108076586B (en)
TW (1) TWI605733B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110769617B (en) * 2018-07-27 2020-12-29 北大方正集团有限公司 Aperture compensation method and device in PCB
JP7502170B2 (en) 2020-12-14 2024-06-18 イビデン株式会社 Method for manufacturing printed wiring board
JP7502173B2 (en) 2020-12-21 2024-06-18 イビデン株式会社 Method for manufacturing printed wiring board
CN114980568A (en) * 2021-02-20 2022-08-30 嘉联益电子(昆山)有限公司 Method for manufacturing circuit board circuit structure with through hole and manufactured circuit board circuit structure with through hole

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05145221A (en) * 1991-11-20 1993-06-11 Matsushita Electric Ind Co Ltd Manufacture of printed circuit board
JP4291729B2 (en) * 2004-04-23 2009-07-08 新光電気工業株式会社 Substrate and semiconductor device
JP4824397B2 (en) * 2005-12-27 2011-11-30 イビデン株式会社 Multilayer printed wiring board
TWI334750B (en) * 2007-06-06 2010-12-11 Unimicron Technology Corp Circuit board and process thereof
TWI455954B (en) * 2008-05-07 2014-10-11 Taiyo Holdings Co Ltd a thermosetting resin composition for hole filling, a combination unit of the composition and a photocurable thermosetting resin composition for forming a solder resist layer, and a printed circuit board
CN101697666B (en) * 2009-10-16 2011-04-06 深圳崇达多层线路板有限公司 Circuit board plating device and method
TWI626863B (en) * 2015-04-30 2018-06-11 Circuit board structure

Also Published As

Publication number Publication date
TW201818790A (en) 2018-05-16
TWI605733B (en) 2017-11-11
CN108076586A (en) 2018-05-25
CN108076586B (en) 2020-06-05
JP2018078273A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6573332B2 (en) Circuit board and manufacturing method thereof
US10834821B2 (en) Electronic circuit module
US20110283535A1 (en) Wiring board and method of manufacturing the same
TWI606765B (en) Printed circuit board and method for manufacturing same
US20130032485A1 (en) Method of fabricating circuit board
KR101287761B1 (en) Printed circuit board and method for manufacturing the same
KR20050025285A (en) Etching method and method of manufacturing circuit device using the same
KR100714774B1 (en) Printed circuit board having alloyed solder bump
TWI625991B (en) Circuit board structure and method for forming the same
JP2021068884A (en) Production method of electromagnetic wave shield film
US7776199B2 (en) Printed wiring board and production method thereof
US7033917B2 (en) Packaging substrate without plating bar and a method of forming the same
JP2005191100A (en) Semiconductor board and its manufacturing method
JP2023045568A (en) Wiring board and method for manufacturing wiring board
CN107979921B (en) Circuit board and method for manufacturing the same
KR20150031031A (en) Printed Circuit Board and Method of the Manufacturing for the same
WO2021210150A1 (en) Circuit board production method
JP2010199530A (en) Printed circuit board, and manufacturing method thereof
KR101553462B1 (en) double-sided flexible printed circuit board manufacturing method
US20180160533A1 (en) Multilayer printed circuit board
JP2015207678A (en) Manufacturing method for wiring board
JP2013222786A (en) Semiconductor substrate, method for manufacturing semiconductor substrate, and electronic equipment
KR20200105031A (en) Printed circuit board having fine pitch circuit structure and method of manufacturing the same
KR20090055750A (en) Mask preventing electrostatic discharge for paste printing
JP2020096097A (en) Multilayer wiring board, semiconductor package, and manufacturing method of multilayer wiring board and semiconductor package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190808

R150 Certificate of patent or registration of utility model

Ref document number: 6573332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250