JP6570904B2 - 補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システム - Google Patents

補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システム Download PDF

Info

Publication number
JP6570904B2
JP6570904B2 JP2015139048A JP2015139048A JP6570904B2 JP 6570904 B2 JP6570904 B2 JP 6570904B2 JP 2015139048 A JP2015139048 A JP 2015139048A JP 2015139048 A JP2015139048 A JP 2015139048A JP 6570904 B2 JP6570904 B2 JP 6570904B2
Authority
JP
Japan
Prior art keywords
range
imaging
image processing
unit
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015139048A
Other languages
English (en)
Other versions
JP2017022574A (ja
Inventor
健二 君山
健二 君山
佐藤 俊雄
俊雄 佐藤
横井 謙太朗
謙太朗 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2015139048A priority Critical patent/JP6570904B2/ja
Publication of JP2017022574A publication Critical patent/JP2017022574A/ja
Application granted granted Critical
Publication of JP6570904B2 publication Critical patent/JP6570904B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)

Description

本発明の実施形態は、補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システムに関する。
近年、自動車等の移動体から撮影された映像に対して、高画質化の処理や、解析処理して情報を得るといった画像処理のニーズが増加している。
一般に、1枚の静止画よりも、映像(動画)の複数フレームを用いて画像処理(高画質化・解析処理)する方が良好な結果を得ることができる。また、映像を記録してから後でオフライン処理する場合、記録時にデータサイズ圧縮のために映像符号化すると、画像処理に必要な情報が削減され、処理結果に精度低下が生じるため、撮影と同時に結果を求めるリアルタイムでの画像処理が望まれている。
移動体から撮影された映像は、急激な撮影範囲の変化や振動が生じ、画像処理の障害となるため、事前に撮影範囲の補正処理を行い、撮影範囲を安定化する必要がある。リアルタイムでの画像処理を前提する用途では、高速性が求められるため、撮影範囲の補正処理に演算コストが高いアルゴリズムを使うことはできない。
撮影範囲の補正処理を行うためには、まず、フレーム間での撮影範囲の変化量(並進、拡大縮小、回転)を求める必要がある。撮影範囲の変化量を求める方式には、大別して特徴的な点を求めて、その動きを追跡する方法と、領域マッチングを用いる方法とがある。前者の方法は、演算コストが高いためリアルタイム処理に不向きである。後者の方法である領域マッチングは、フレーム間で急激な撮影範囲の変化が生じると、撮影範囲の変化量の計算に失敗する可能性がある。そのため、撮影範囲の補正処理に失敗し、複数フレームを用いた画像処理を行うことができない場合があった。
特開2003−179797号公報 特開2010−113513号公報 特開2003−158661号公報 特開平7−162853号公報
本発明が解決しようとする課題は、移動体に搭載された撮像装置で撮像された映像に生じる撮影範囲の変化を抑制することができる補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システムを提供することである。
実施形態の補正情報出力装置は、取得部と、第1の補正部とを持つ。取得部は、移動体に搭載された撮像装置における撮影範囲の変化量を取得する。第1の補正部は、撮影範囲の変化量が、取得部において撮影範囲の変化量を取得可能な範囲となるよう、又は、撮像装置で撮影された映像に対して所定の画像処理が可能な範囲となるよう、撮像装置の撮像方向又は撮像画角の制御を補正する第1の補正情報を出力する。
第1の実施形態の自動車に搭載された画像処理システムを示す図。 第1の実施形態の画像処理部65の詳細を示すブロック図。 領域マッチングにより、並進運動による変化量を求める手順を示す図。 領域マッチングにより、拡大縮小による変化量を求める手順を示す図。 拡大縮小により被写体のサイズが変化する場合の領域マッチングの手順を示す図。 第1の実施形態のカメラ61における撮影範囲の変化量の時間推移の例を示す図。 第1の実施形態の自動車60が進行方向を変化させる場合に、撮影範囲の変化量を補正する例を示す図。 第2の実施形態のドローンに搭載された画像処理システムを示す図。 第2の実施形態の画像処理部75の詳細を示すブロック図。 第2の実施形態のドローン70におけるカメラ71の並進運動の速度を示す図。
以下、実施形態の補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システムを、図面を参照して説明する。
(概略)
まず、本実施形態における画像処理装置及びその画像処理装置を備える画像処理システムの概略について説明する。
本実施形態における画像処理装置は、自動車、鉄道、ロボット、ヘリコプター、飛行機、ドローン(小型無人飛行機・マルチコプター)などの移動体に取り付けられたカメラで撮影した映像に対して、画像処理を行う。その画像処理は、映像を高画質化する処理、及び、映像を解析処理して色々な情報を得る処理の少なくとも一つを含む処理である。本実施形態における画像処理システムは、上記カメラと、そのカメラを制御するカメラ制御部と、上記画像処理装置と、上記移動体を制御する移動体制御部とを備える。これにより、画像処理システムは、画像処理装置での処理結果を用いて、カメラ制御部によりカメラを制御すること、及び、移動体制御部により移動体を制御することが可能である。
ここで、本実施形態における画像処理装置における高画質化および解析処理の目的及び内容について、一例を以下に説明する。
上記高画質化の目的は、例えば、中継放送などの用途で求められるレベルの画質の確保する事や、映像の目視検査での被写体の認識、被写体の種類の判別、及び、被写体の異常を、監視者等が発見可能なレベルの画質を得る事である。
また、地上を走行する移動体から撮影された映像の解析処理の目的は、例えば、自動運転、事故回避、交通量把握、路面点検、トンネル点検などである。また、解析処理の結果を利用した自動運転、事故回避、交通量把握を実現するためには、解析処理において、歩行者、他の車、車線、道路標識などを正確に識別する必要がある。また、路面点検、トンネル点検のための解析処理は、解析対象の所在だけでなくコンクリートなどの構造物の劣化度合いを識別する必要がある。
飛行する移動体から撮影された映像の解析処理の目的は、測量、災害予測、災害発生状況の把握、橋梁点検、トンネル点検、スポーツ中継での選手の追跡などである。目的によっては可視光以外の赤外線での撮影が可能なカメラが使われることもある。
(第1の実施形態)
次に、第1の実施形態として、移動体が自動車の場合の画像処理部(画像処理装置)及び画像処理システムについて説明する。図1は、第1の実施形態の自動車に搭載された画像処理システムを示す図である。図1に示すとおり、自動車60は、レンズ62を有するカメラ61が旋回装置63を介して取り付けられており、加速度センサ64と、画像処理部65と、走行制御部66と、送信部67と、アンテナ68とを備える。
カメラ61は、レンズ62が取り付けられ、旋回装置63によって撮影方向を調整することができる。加速度センサ64は、X軸、Y軸、Z軸の3方向に対する加速度と、ヨー、ピッチ、ロールの3軸方向に対する角速度の検出を行う複数のセンサから構成される。画像処理部65は、カメラ61からの映像に対して、高画質化や解析処理を含む画像処理を行う。走行制御部66は、自動車60の走行を制御する。送信部67は、画像処理結果(高画質化映像、または、解析データ)をアンテナ68によって外部に送信する。
なお、送信部67とアンテナ68を用いずに、自動車60に搭載した図示していない情報記録媒体(光ディスクやメモリカード)に保存する構成としてもよい。図1に示した自動車60の用途としては、スポーツ中継車や、道路、橋梁、及び、トンネルなどのインフラ点検車などが考えられる。
次に、図1に示した画像処理部65の詳細について説明する。
図2は、第1の実施形態の画像処理部65の詳細を示すブロック図である。図2に示すように、画像処理部65は、補正量計算部110と、映像入力部111と、動き検出部112と、出力範囲補正部113と、画像処理制御部114と、画像処理実行部115と、カメラ制御部116とを備える。なお、第1の実施形態における画像処理システム69は、カメラ61と、レンズ62と、旋回装置63と、加速度センサ64と、画像処理部65と、走行制御部66と、送信部67と、アンテナ68とを備える。なお、図示していないが、第1の実施形態における補正情報出力装置は、補正量計算部110と、動き検出部112とを備える。また、図示していないが、第1の実施形態における撮像制御システムは、補正量計算部110と、動き検出部112と、カメラ制御部116とを備え、第1の実施形態における移動体制御システムは、補正量計算部110と、動き検出部112と、走行制御部66とを備える。
カメラ61は、画像センサを備え、画像センサで撮影されたRAW映像102を、映像入力部111へ出力する。加速度センサ64は、加速度情報100を補正量計算部110と動き検出部112へ出力する。
映像入力部111は、カメラ61から入力されたRAW映像102に対して、レンズ62のひずみ補正やガンマ補正などの一般的な補正処理を行って得た映像104を、動き検出部112及び出力範囲補正部113へ出力する。なお、複数回の画像の幾何変換による画質低下を防ぐため、映像入力部111と出力範囲補正部113とを、一体で構成してもよい。動き検出部112は、入力された映像104に対して、領域マッチング処理を行い、複数フレーム間における並進運動及び拡大縮小の変化量(撮影範囲の変化量)105を求める。
ここで、動き検出部112における領域マッチング処理の具体例について説明する。
動き検出部112は、時刻の異なるフレームに設定した2つの矩形領域に対して、領域マッチングを行う。その領域マッチングの方法としては、例えば、SAD(Sum of Absolute Differences)や、SSD(Sum of Squared Differences)といった相違度を求める方法と、NCC(Normalized Cross-Correlation)や位相相関法のように類似度を求める方法とがある。これらの方法は、映像の特徴により使い分けてもよい。
次に、領域マッチングにより、撮影範囲の変化量の1つである並進運動による変化量を求める手順について説明する。図3は、領域マッチングにより、並進運動による変化量を求める手順を示す図である。図3に示すように、まず、動き検出部112は、フレーム1の中心部にテンプレート矩形3を設定する。次に、動き検出部112は、カメラ61でフレーム1と別の時刻に撮影されたフレーム2に、フレーム1上のテンプレート矩形3と同じ位置を中心とした探索領域4を設定する。次に、動き検出部112は、探索領域4の範囲に対して、テンプレート矩形3を1画素ずつずらしながら、重なった領域における類似度(または相違度)を計算する。次に、動き検出部112は、類似度が最も大きい(または相違度が最も小さい)ピーク位置と探索領域4の中心との差を並進運動の変化量として計算する。
なお、探索領域4の大きさに応じて演算コストが増大するため、リアルタイム処理実現の観点から、検出可能な最大の並進運動の変化量は限定される。また、画像の周辺部ではレンズ62のひずみが影響し、画像の変形があるため、類似度の最大値のピークがあいまいになり、並進運動の変化量を正確に求めることが困難になるため、更に、検出可能な最大の変化量は限定される。
次に、領域マッチングにより、撮影範囲の変化量の1つである拡大縮小による変化量を求める手順について説明する。図4は、領域マッチングにより、拡大縮小による変化量を求める手順を示す図である。図4に示すように、動き検出部112は、基準となるフレーム10の2か所にテンプレート矩形11、12を設定する。次に、動き検出部112は、別の時刻に撮影されたフレーム20又はフレーム30に対して、テンプレート矩形と類似度が最も大きくなった位置の矩形領域であるマッチング矩形を求める。
カメラ61において画角をズームインしている場合は、フレーム10のテンプレート矩形11、12は、それぞれフレーム20に示すマッチング矩形21、22の位置に移動する。これらマッチング矩形21、22間の距離23は、テンプレート矩形11、12間の距離13に比べて短い。すなわち、フレーム20は、フレーム10よりも拡大された画角の画像と言える。
また、画角がズームアウトしている場合は、フレーム10のテンプレート矩形11、12は、それぞれフレーム30に示すマッチング矩形31、32の位置に移動する。マッチング矩形31、32間の距離33は、テンプレート矩形11、12間の距離13に比べて長い。すなわち、フレーム30は、フレーム10よりも縮小された画角の画像と言える。
よって、動き検出部112は、各矩形間の距離13と距離23、または、距離13と距離33の比率計算によって拡大縮小率を計算する。この方法では、拡大縮小率が大きいと、被写体のサイズが変わるため、類似度の最大値のピーク(または相違度の最小値のピーク)があいまいになり、撮影範囲の変化量を求めることが困難になる場合がある。
図5は、拡大縮小により被写体のサイズが変化する場合の領域マッチングの手順を示す図である。図5に示すように、動き検出部112は、フレーム5上でサイズが異なる複数の矩形40〜44を設定し、各矩形40〜44の領域の画像を、等サイズとなるような倍率で拡大、縮小したテンプレート矩形45〜49を生成する。具体例を示すと、矩形40を0.68倍してテンプレート矩形45を生成し、矩形41を0.81倍してテンプレート矩形46を生成し、矩形42を1倍してテンプレート矩形47を生成し、矩形43を1.3倍してテンプレート矩形48を生成し、矩形44を1.86倍してテンプレート矩形49を生成する。
次に、動き検出部112は、フレーム5と異なる時刻に撮影したフレーム6上の探索領域7に対して、各テンプレート矩形45〜49を用いて、順番に領域マッチングを行う。最も高い類似度(または低い相違度)のテンプレート矩形を生成した時の倍率が、拡大縮小による変化量となる。
撮影範囲の回転については、画像を対数極座標変換することで、回転の属性を並進運動に変換することができる。対数極座標変換後の画像に対して領域マッチングを行うことで、画角の回転量を求めることができる。この方式は、回転量が大きい場合に、画像の変形が大きくなるため、領域マッチングの類似度の最大値のピーク(相違度の最小値のピーク)があいまいになり、回転の変化量を求めることが困難になる。
ここで、図2の説明に戻る。動き検出部112は、求めた撮影範囲の変化量105を、補正量計算部110と出力範囲補正部113へ出力する。補正量計算部110は、入力された撮影範囲の変化量105又は加速度情報100に基づいて、入力された操作入力信号107に対してカメラ61の撮影範囲の変化量を領域マッチング等の画像処理を正常に処理可能な範囲に抑制するための補正量を算出して、その補正量により操作入力信号107を補正したカメラ制御信号101を出力する。また、補正量計算部110は、入力された撮影範囲の変化量105又は加速度情報100に基づいて、カメラ61の撮影範囲の変化量を領域マッチング等の画像処理を正常に処理可能な範囲に抑制するための運転補正量103を出力する。操作入力信号107は、例えば、カメラ61に対してユーザからの画像処理動作の開始又は画像処理動作の停止等の制御するようカメラ制御部116に指示する信号を含む信号である。なお、カメラ制御信号101は、カメラ61を制御するカメラ制御部116に対して、その制御量を指示する信号である。すなわち、カメラ制御部116は、カメラ制御信号101に応じて撮影範囲の変化を画像処理を正常に処理可能な範囲に抑制するようカメラ61を制御する。これにより、カメラ61の撮影範囲の変化量は、領域マッチング等の画像処理が正常に処理可能な範囲に抑制される。
また、運転補正量103は、後述する走行制御部66に対して、カメラ61の撮影範囲の変化量を、領域マッチングを正常に処理可能な範囲に抑制するための制御補正量である。この制御補正量とは、例えば、自動車60の走行速度を落とすように自動で運転制御するための補正量である。この運転補正量103によって、自動車60の走行速度を自動的に落とすことで、カメラ61で撮影される撮影範囲の変化量を減少させることができる。
加速度情報100に基づいて、カメラ61において、大幅な撮影範囲の変化が生じたことが分かった場合は、動き検出部112は、領域マッチングの手順を、図5に示した領域マッチングの手順に切り替える。自動車60が路面を走行している場合は、撮影範囲に回転の変化が生じることはまれではあるが、図5に示すテンプレート矩形45〜49を生成する処理と同様の処理で対応することができる。具体的には、動き検出部112は、複数種類の角度で回転させたテンプレート矩形を生成して、領域マッチングを行うことで、撮影範囲の回転角度を計算することができる。その際に、動き検出部112は、加速度情報100を参考に、限定した数の倍率、回転角度のみテンプレート矩形を生成するように構成してもよい。これにより、各テンプレート矩形を用いた領域マッチングの演算コストは、限定していない倍率のバリエーション数×限定していない回転角度のバリエーション数のテンプレート矩形を用いて、領域マッチングを行う場合と比較して小さい。
動き検出部112は、図4の手順と図5の手順を切り替えることにより、倍率変化が少ない場合には、精密に撮影範囲の変化量を計算でき、倍率変化が高い場合には、低い処理コストで撮影範囲の変化量を計算することができる。領域マッチングには、検出可能な画角の変化量は小さいが正確に求まるアルゴリズムと、大きな画角変化量に対応できるが処理コストが大きいアルゴリズムがある。動き検出部112は、加速度センサ64からの加速度情報100を用いて、2つのアルゴリズムを切り替えることで、変化量の計算精度と広い計算範囲への対応を両立させることができる。
出力範囲補正部113は、撮影範囲の変化量105を用いて、映像の切り出し範囲の補正処理を行う。具体的には、出力範囲補正部113は、撮影対象の範囲の変化とは逆方向に、映像から切り出す範囲を、並進ずらし、拡大縮小し、回転処理する。これにより、映像から切り出す範囲となる撮影範囲を安定化させることができる。なお、カメラ61が備える画像センサがCMOS型センサの場合は、CMOS型センサに特有のローリングシャッター歪みが生じる可能性がある。よって、画像センサがCMOS型センサの場合は、出力範囲補正部113は、映像から切り出す範囲を制御することで、ローリングシャッター歪みの補正も行う。
また、出力範囲補正部113は、高解像度化および高画質化の機能を更に備えてもよい。出力範囲補正部113は、複数フレームを用いた超解像アルゴリズムを用いることで、並進ずらし、拡大縮小、回転処理の補間画素生成時に解像度を増大させることができる。なお、解析処理が目的の場合は、画像処理部65は、出力範囲補正部113を備えない構成であってもよい。その場合は、解析処理の入力データの1つとして撮影範囲の変化量105を画像処理実行部115に与えてもよい。
画像処理制御部114は、画像処理部65の備える図示しない操作部からの操作入力信号107を受け付けて、画像処理部65の制御を行う。
画像処理動作の停止中は、レンズ62の制御、移動体の手動(自動)操縦の自動補正、及び、旋回装置63の制御を停止してもよい。ユーザによって、画像処理動作の開始が指示された時には、画像処理制御部114は、補正量の計算の実行又は停止を示す補正量計算指示信号118を補正量計算部110へ出力する。これによって、補正量計算部110は、レンズ62の制御、移動体の手動(自動)操縦の自動補正、旋回装置63の制御の1つ、または、複数を補正する補正量を計算する。さらに、画像処理制御部114は、画像処理の実行又は停止を示す画像処理指示信号121を画像処理実行部115へ出力する。これにより、画像処理実行部115は、画像処理指示信号121に応じて画像処理を開始又は停止する。
移動体である自動車60の急激な姿勢変化などで、撮影範囲の変化量の取得が不能となった場合は、動き検出部112は、動き検出状態信号119として「無効」を示す信号を画像処理制御部114へ出力する。これにより、画像処理制御部114は、画像処理指示信号121によって画像処理実行部115における画像処理を停止させる。その後、撮影範囲の変化量の取得が可能な状態に復帰した場合は、動き検出部112は、動き検出状態信号119として「有効」を示す信号を出力する。これにより、画像処理制御部114は、画像処理指示信号121によって画像処理実行部115における画像処理を自動開始させる。
画像処理実行部115は、画像処理が不可能な場合は、画像処理状態信号120として「無効」を示す信号を、画像処理制御部114へ出力する。これにより、画像処理制御部114は、停止を示す補正量計算指示信号118を出力し、補正量計算部110を自動停止させる。その後、画像処理実行部115において画像処理が可能な状態に復帰した場合は、画像処理状態信号120として「有効」を示す信号を、画像処理制御部114へ出力する。これにより、画像処理制御部114は、実行を示す補正量計算指示信号118を出力し、補正量計算部110を自動開始させる。
どちらが原因の自動停止の期間でも、補正量計算部110は、レンズ62のズーム位置や、旋回装置63の旋回位置が端点に達していた場合は、中間位置に移動させることができる。また、現在も並進と拡大縮小の変化が継続している場合には、補正量計算部110は、補正制御が可能な側の端点に、レンズ62のズーム位置や旋回装置63の旋回位置を移動させることが出来る。これにより、端点に達したことで撮影範囲の変化量の取得が不能となった時は、レンズ62のズーム位置や旋回装置63の旋回位置を変更してから、動き検出部112は、動き検出状態信号119として「有効」を出力する。
画像処理実行部115は、映像から切り出す範囲を補正する出力範囲補正部113が出力する映像106に対して、画像処理(高画質化・解析処理)を行い、画像処理結果108を出力する。
ここで、画像処理実行部115における高画質化の画像処理の具体例について説明する。高画質化の画像処理は、複数フレーム超解像による高解像化処理と、時間平均を行うノイズフィルタによるノイズ除去処理を含む。これらの画像処理は、画質の改善効果が高いが、撮影範囲が安定化された映像の入力を前提としている。複数フレーム超解像は、前述のように出力範囲補正部113において処理してもよい。出力範囲補正部113は、複数フレーム超解像を行う場合に、複数フレームの画像を入力して、1フレームの高解像画像を出力する。また、出力範囲補正部113は、連続して複数フレーム超解像の処理を行うことで、動画像を高解像化することも可能である。
また、出力範囲補正部113は、以下のURL1、2に示す高解像度化の処理を用いてもよい。
URL1:http://www.toshiba.co.jp/regza/detail/superresolution/resolution.html
URL2:http://www.toshiba.co.jp/regza/function/11b/function01.html
URL1には、低解像度のデジタルコンテンツ映像であっても、高精細な画像に変換し再生することを可能にする「超解像技術」が開示されている。この「超解像技術」は、地上デジタルハイビジョン放送の番組の映像を、さらに高解像の緻密な映像で再現する技術である。また、URL2には、画素数がフルHD(1920×1080)に満たない映像に対し、画素を復元する超解像処理技術が開示されている。この超解像処理技術は、複数フレームによる超解像技術と色の超解像技術、さらにカラーテクスチャー復元を駆使し、元映像に近いより鮮明で色彩豊かな映像を再現する技術である。
なお、高解像化するためには、前後フレームの被写体の同じ部分を重ね合わせしなければならない。よって、フレーム間でズーム変化量が大きい部分は、被写体のサイズが異なるために重ね合わせが出来ない。また、フレーム間で、並進移動の変化量が大きい部分は、フレーム間で被写体の同じ部分を探索する処理負荷が大きくなる。
次に、画像処理実行部115における解析処理の画像処理の具体例について説明する。
解析処理のアルゴリズムは、HOG(Histogram of Oriented Gradients)特徴量を用いた人物や車両検知、Hough変換による道路白線検出、SfM(Structure from Motion)による物体の形状推定、赤外画像の解析による劣化度推定などを用いればよい。画像処理実行部115は、撮影範囲の変化量105を用いて、認識対象の動きと撮影対象の範囲の変化を分離し、認識対象の追跡によって安定した処理結果を得ることができる。また、出力範囲補正部113の補正により、撮影範囲の変化を抑制した安定化された複数フレームの解析結果を得ることができる。このような、安定化された複数フレームの解析結果を重畳することで、例えば、コンクリートのひび割れといった検査対象の異常を際立たせる処理を実現することができる。
画像処理実行部115は、上記HOG特徴量を用いた人物や車両検知を行う。まず、画像処理実行部115は、1フレームの画像から対象物を探索して、検出した位置座標を出力する。検出精度を高めるためには、画像処理実行部115は、複数フレームで連続、対象物を検出して、対象物の動きを追跡する。移動体である自動車60から撮影された映像では、対象物の位置変化と、カメラ61の移動やズーム操作に起因する撮影範囲の変化が合成されているために追跡が難しくなる。しかし、第1の実施形態における画像処理部65を用いることで、カメラ61の移動やズーム操作に起因する撮影範囲の変化が少なくなるように補正を行うことができる。これにより、第1の実施形態における画像処理部65は、対象物の追跡が容易となり、対象物の検出精度を高めることが出来る。
なお、Hough変換による道路白線検出は、1フレームの画像から対象物を探索して、検出した白線の位置座標を結果として出力する。まず、画像処理実行部115は、画像からHough変換によって線分の検出を行う。次に、画像処理実行部115は、自動車60の姿勢に関する情報から、白線のあるべき位置の線分を結果として選択する。この結果だけであると、未検出や誤検出が多いため、画像処理実行部115は、複数のフレームの画像を用いて結果の補間と修正を行う。
補正量計算部110は、加速度情報100、撮影範囲の変化量105及び補正量計算指示信号118の少なくとも1つに基づいて、操作入力信号107に対して撮影範囲の変化を抑制するための補正量を予測計算し、その補正量により操作入力信号107を補正したカメラ制御信号101をカメラ制御部116に出力する。また、補正量計算部110は、加速度情報100、撮影範囲の変化量105及び補正量計算指示信号118の少なくとも1つに基づいて、撮影範囲の変化を抑制するための運転補正量103を計算し、走行制御部66に出力する。
カメラ制御部116は、ユーザの操作等に応じた操作入力信号107を補正したカメラ制御信号101に基づいて、レンズ62のズーム、フォーカス、絞りを制御する。なお、レンズ62において、複数枚構成のレンズの一部に、撮影範囲を補正するための可動レンズを追加することで、レンズ62によって荒い撮影範囲の補正を行うことも可能である。また、カメラ制御部116は、ユーザの操作等に応じた操作入力信号107を補正したカメラ制御信号101に基づいて、旋回装置63のパン、チルトを制御する。カメラ制御部116は、カメラ制御信号101に基づいて、レンズ62又は旋回装置63を制御する。
自動車60の運転方法は、手動運転でも、自動運転でもよい。走行制御部66は、ドライバーの運転操作に応じて取得される、又は、自動運転制御部(図示せず)による自動運転の制御に応じて取得される運転指示信号117と、補正量計算部110からの運転補正量103とを合成し、運転制御信号109を出力する。なお、運転指示信号117とは、例えば、アクセル、ブレーキ、ハンドル操作等の操作量を示す信号である。自動運転の場合は、画像処理部65の解析データを用いて走行制御を行う構成としてもよい。その場合は、画像処理実行部115は、画像処理結果108を、自動運転制御部に対しても出力する。
次に、カメラ61におけるズーム量に応じた撮影範囲の変化量と、自動車60の走行速度に応じた撮影範囲の変化量との関係について説明し、合わせて、補正量計算部110が出力するカメラ制御信号101及び運転補正量103による制御の具体例について説明する。
図6は、第1の実施形態のカメラ61における撮影範囲の変化量の時間推移の例を示す図である。図6に示すグラフは、縦軸がカメラ61における撮影範囲の変化量を示し、横軸は時間の経過を示している。また、点線150は、カメラ61の撮影範囲の変化量における、領域マッチング等の画像処理が正常に処理可能な範囲の上限値を示す点線である(以下、閾値150という)。すなわち、カメラ61における撮影範囲の変化量が、閾値150を超える量となると、動き検出部112における領域マッチングや、画像処理実行部115における画像解析等の画像処理が正常に処理できなくなる。
図6(A)は、従来の画像処理システムにおけるカメラ61における撮影範囲の変化量の例を示す図である。図6(A)において、変化量152aは、自動車60の走行速度に応じた撮影範囲の変化量を示しており、一定の値である。すなわち、自動車60は一定の速度で走行しているため、並進運動による変化量である変化量152aの値も一定である。変化量152aは、自動車60の走行速度、自動車60の走行方向に対するカメラ61の向き等を考慮して求めることができる。
また、図6(A)の変化量151aは、画像処理部65のユーザが、レンズ62のズーム操作を行うことで発生する、レンズ62のズーム量を指示する操作入力信号107に応じた撮影範囲の変化量である。図6(A)に示すように、カメラ61における撮影範囲の変化量は、レンズ62のズーム量に応じた変化量151aと、並進運動による変化量152aとを加算したものである。図6(A)に示すように、レンズ62がズームを行っている間、その合計値は、画角が正常に求まる撮影範囲の変化量の閾値150を超えている。この場合は、画像処理部65における画像処理が破たんしてしまう。
図6(B)は、第1の実施形態における移動速度優先の制御を行った場合のカメラ61の撮影範囲の変化量を示す図である。なお、図6(B)において、ユーザが行うズームの操作によるレンズ62のズーム量は、レンズ62のズーム量を補正しない場合に、図6(A)に示したように、カメラ61の撮影範囲の変化量が閾値150を超えてしまうものであるとする。このような場合に、第1の実施形態における画像処理部65は、レンズ62のズーム量または自動車60の走行速度を抑制することで、カメラ61の撮影範囲の変化量が、閾値150を超えないようにすることができる。
図6(B)では、移動速度優先の制御であるので、画像処理部65は、レンズ62のズーム量を指示する操作入力信号107を、カメラ61の撮影範囲の変化量が閾値150を超えないように補正する。具体的には、補正量計算部110は、カメラ61の撮影範囲の変化量が閾値150を超えないようにするために操作入力信号107を補正したカメラ制御信号101を計算してカメラ制御部116へ出力する。カメラ制御部116は、その補正されたカメラ制御信号101に応じて、レンズ62のズーム量(ズーム速度)を制御する。これにより、図6(B)に示すように、レンズ62のズーム量に応じた変化量151bと、並進運動による変化量152bとを加算した値は、閾値150を超えない値となる。すなわち、画像処理部65は、図6(A)に示した自動車60の走行速度と同等の走行速度を維持したまま、領域マッチングや、画像解析等の画像処理を正常に処理することができる。
図6(C)は、第1の実施形態におけるズーム速度優先の制御を行った場合のカメラ61の撮影範囲の変化量を示す図である。なお、図6(C)において、ユーザが行うズームの操作によるレンズ62のズーム量は、自動車60の走行速度等を補正しない場合に、図6(A)に示したように、カメラ61の撮影範囲の変化量が閾値150を超えてしまうものであるとする。
図6(C)では、ズーム速度優先の制御であるので、画像処理部65は、ズームに先立って自動車60の走行速度を、カメラ61の撮影範囲の変化量が閾値150を超えないように補正する。具体的には、補正量計算部110は、ズームに先立って、カメラ61の撮影範囲の変化量が閾値150を超えないようにするための運転補正量103を計算して走行制御部66へ出力する。走行制御部66は、その運転補正量103に応じて、自動車60の走行速度を補正する。これにより、図6(C)に示すように、レンズ62のズーム量に応じた変化量151cと、並進運動による変化量152cとを加算した値は、閾値150を超えない値となる。すなわち、画像処理部65は、図6(A)に示したズーム速度と同等のズーム速度を維持したまま、領域マッチングや、画像解析等の画像処理を正常に処理することができる。
なお、レンズ62におけるズームが終了した場合は、補正量計算部110は運転補正量103をズーム前の値に戻す。すなわち、レンズ62におけるズーム終了後は、自動車60は、ズーム前の走行速度(移動速度)に戻される。なお、走行制御部66は、自動車60の運転が手動の場合には、運転手に対して、走行速度を抑制するよう指示するメッセージを、自動車60内に設置されたカーナビゲーション等の運転手が視認可能な表示装置(図示していない)に表示したり、自動車60内に設置されたスピーカ(図示していない)から発音したりするための運転指示信号117を出力する構成としてもよい。
次に、自動車60が進行方向を変化させる場合の、画像処理部65の動作について説明する。
図7は、第1の実施形態の自動車60が進行方向を変化させる場合に、撮影範囲の変化量を補正する例を示す図である。図7(A)では、自動車60の進行方向160aと、カメラ61の撮影方向161aは同じ向きである。図7(B)では、自動車60の進行方向160bと、カメラ61の撮影方向161bは異なる向きである。このような図7(A)の状態から、自動車60のハンドル操作により、図7(B)の状態に移行する場合の画像処理部65の動作について説明する。
図7に示すように、ハンドル操作によって自動車60の進行方向160aが、進行方向160bに変化した場合に、補正量計算部110は、急激な撮影範囲の変化を抑制するため、旋回装置63の旋回方向を補正したカメラ制御信号101を計算して、カメラ制御部116へ出力する。これにより、カメラ61の撮影範囲の変化量を、画像処理部65における領域マッチングや画像解析等の画像処理を、正常に処理することができる範囲に制限することができる。また、走行上の問題がなければ、補正量計算部110は、急ハンドルを抑制するような運転補正量103を計算して、走行制御部66へ出力する。これにより、カメラ61の撮影範囲の変化量を、画像処理部65における領域マッチングや画像解析等の画像処理を、正常に処理することができる範囲に制限することができる。
なお、走行制御部66は、自動車60の運転が手動の場合には、運転手に対して、急ハンドルを抑制するよう指示するメッセージを、カーナビゲーション等の運転手が視認可能な表示装置に表示したり、スピーカから発音したりするための運転指示信号117を出力する構成としてもよい。
また、上述した、レンズ62のズーム量の補正と、自動車60の走行速度の補正と、カメラ61の旋回方向の補正とは、それぞれ独立して動作させてもよく、3つの内の2つ以上の補正を組み合わせて動作させてもよい。
また、第1の実施形態の画像処理システム69は、カメラ61と、レンズ62と、旋回装置63と、加速度センサ64と、画像処理部65と、走行制御部66と、送信部67と、アンテナ68とを備える構成としたが、これに限定されるものではない。画像処理システム69は、画像処理部65に加えて、カメラ61、レンズ62、旋回装置63、加速度センサ64、走行制御部66、及び、送信部67の少なくとも一つを備える構成であってもよい。また、第1の実施形態の画像処理部65は、カメラ制御部116を備える構成としたが、これに限定されるものではない。例えば、カメラ制御部116は、画像処理部65の外部であって、画像処理システム69の内部の適切な場所に設けられてもよい。
(第1の実施形態の変形例)
画像処理部65において、画像処理の内容によっては、映像の全フレームを処理する必要はない。例えば、画像処理として解析処理を行う場合は、解析対象となる複数のフレームを処理すればよい。それらの複数のフレームは、解析処理の内容によっては、時間的に連続していなくてもよい。そして、画像処理部65は、解析処理の対象となる複数のフレーム間において、撮影範囲の変化量を抑制する制御を行うようにしてもよい。
画像処理部65において、画像処理アルゴリズムの特性により、処理対象とする複数フレーム間では撮影範囲が一定していることが望ましい場合がある。移動体である自動車60を静止できない状況で、補正量計算部110は、例えばユーザが指示した所定の期間、撮影範囲を一定に保つために補正されたカメラ制御信号101を、カメラ制御部116に対して出力する。これにより、カメラ制御部116は、レンズ62と旋回装置63を制御して、撮影範囲をユーザが指示した一定期間固定する。なお、レンズ62が対応できる撮影範囲の変更量には限界がるため、撮影範囲を一定に保つことができる期間は限られる。
移動体である自動車60に搭載するカメラ61として、広角レンズを備えたカメラと、望遠レンズを備えたカメラとの2台のカメラ含む構成としてもよい。なお、広角レンズを備えたカメラの撮影範囲と、望遠レンズを備えたカメラの撮影範囲は、重なっており、例えば、双方の撮影範囲の中心が一致している。画像処理部65は、広角レンズを備えたカメラと、望遠レンズを備えたカメラの双方から映像を受け取る。画像処理部65は、広角レンズを備えたカメラからの映像に基づいて、撮影範囲の変化量を取得する。画像処理部65は、取得した撮影範囲の変化量に基づいて、望遠レンズを備えたカメラからの映像に対して、撮影範囲の補正、または、画像処理を行う。これにより、広角レンズで撮影された映像の方が撮影範囲の変化が少ないという特性を利用して、画像処理部65は、安定して撮影範囲の変化量を取得することができる。
また、カメラ61として、広角と望遠両方の映像を同時に取得できる1台のカメラを用いてもよい。例えば、カメラ61の備える撮像素子の受光領域を、広角撮像用の領域と、望遠撮像用の領域とに領域分割し、広角撮像用の領域に広角レンズを通して結像させ、望遠撮像用の領域に望遠レンズを通して結像させる。画像処理部65は、広角撮像用の領域で撮像された映像に基づいて、撮影範囲の変化量を取得する。また、画像処理部65は、取得した撮影範囲の変化量に基づいて、望遠撮像用の領域で撮像された映像に対して、画像処理を行う。上述した広角レンズを備えたカメラと、望遠レンズを備えたカメラとの2台のカメラを用いる場合と比べて、カメラが1台で済むため費用を低減することができる。
また、カメラ61として、高フレームレートでの撮影と低フレームレートでの撮影とを、切り替えて撮影することが可能なカメラを用いてもよい。画像処理部65は、高フレームレートで撮影された映像に基づいて、撮影範囲の変化量を取得する。また、画像処理部65は、取得した撮影範囲の変化量に基づいて、低フレームレートで撮影された映像に対して、画像処理を行う。高フレームレートで撮影された映像は、フレーム間の時間差が少なく、撮影範囲の変化量も少ない。よって、高フレームレートで撮影された映像に基づいて撮影範囲の変化量を取得する場合は、低フレームレートで撮影された映像に基づいて撮影範囲の変化量を取得する場合に比べて、撮影範囲の変化量を取得できる自動車60の走行速度、又は、レンズ62のズーム速度の上限値を、大きくすることができる。
また、画像処理部65は、撮影範囲の変化量の取得が不能となるカメラ61の姿勢変化が生じた場合は、自動車60の運転者に、撮影範囲の変化量を取得可能となるような操縦方法のアドバイスを伝えることができる構成としてもよい。また、自動車60の運転者に、撮影範囲の変化量を取得不能となりそうな状況を通知することで、適切な運転方法のトレーニングにも応用できる。
(第2の実施形態)
次に、第2の実施形態として、移動体がドローンの場合の画像処理部(画像処理装置)及び画像処理システムについて説明する。ここで、ドローンとは、小型の無人飛行機であって、複数のローターを有するマルチコプター等である。近年、ドローンは、スポーツ中継や、災害現場の中継などに使われるようになっている。また、ドローンの用途として、高所にある橋梁やトンネル天井などのインフラ点検に用いる試みも始まっている。
図8は、第2の実施形態のドローンに搭載された画像処理システムを示す図である。図8に示すとおり、ドローン70は、レンズ72を有するカメラ71と、旋回装置73と、加速度センサ74と、画像処理部75と、飛行制御部76と、送受信部77と、アンテナ78と、プロペラ(回転翼)及びプロペラを回転させる動力モータを有するプロペラ部79とを備える。
ドローン70は、複数のプロペラで揚力を得て浮上し、リモコン82によって遠隔で手動操縦することができる。なお、ドローン70は、GPS(Global Positioning System)センサを備え、あらかじめ設定されている行程を自動航行する構成であってもよい。カメラ71は、画像センサを備え、ズーム可能なレンズ72が取り付け可能であり、旋回装置73によって撮影方向を調整することができる。
加速度センサ74は、X軸、Y軸、Z軸の3方向に対する加速度と、ヨー、ピッチ、ロールの3軸方向に対する角速度の検出を行うセンサである。画像処理部75は、カメラ71からのRAW映像202を処理して、高画質化や解析処理等の画像処理を行う。飛行制御部76は、複数のプロペラ部79の各々の回転数等を制御することで、ドローン70の飛行速度、飛行方向等を制御する。画像処理部75において、高画質化を行った映像または解析処理を行った解析結果データは、送受信部77とアンテナ78を介して、処理結果受信機80に送信される。処理結果受信機80は、受信した映像または解析結果データを表示する表示部81を備える。
なお、カメラ71は、専用の挿入口に挿入されたメモリカード(図示していない)を備える構成であってもよく、当該メモリカードに、高画質化を行った映像や解析結果データを記録してもよい。メモリカードは取り外し可能であり、撮影を終えて、ドローン70の機体を回収後に、カメラ71より取り外し、PC(パーソナル コンピュータ)のメモリーカードリーダーに接続してもよい。これにより、PCにおいて、メモリカードから読み出された高画質化された映像や解析結果データの確認を行うことができる。
次に、図8に示した画像処理部75の詳細について説明する。
図9は、第2の実施形態の画像処理部75の詳細を示すブロック図である。図9に示すように、画像処理部75は、補正量計算部210と、映像入力部211と、動き検出部212と、出力範囲補正部213と、画像処理制御部214と、画像処理実行部215と、カメラ制御部216とを備える。
なお、第2の実施形態における画像処理システム83は、カメラ71と、レンズ72と、旋回装置73と、加速度センサ74と、画像処理部75と、飛行制御部76と、送受信部77と、アンテナ78とを備える。また、図9に示す出力範囲補正部213、画像処理制御部214、及び、画像処理実行部215は、それぞれ、図2に示した出力範囲補正部113、画像処理制御部114、及び、画像処理実行部115と同様の動作を行うものであり、その説明を省略する。
カメラ71は、画像センサで撮影されたRAW映像102を、映像入力部211へ出力する。加速度センサ74は、加速度情報200を補正量計算部210と動き検出部212へ出力する。映像入力部211は、カメラ71から入力されたRAW映像302に対して、レンズ72のひずみ補正やガンマ補正などの一般的な補正処理を行って得た映像204を、動き検出部212及び出力範囲補正部213へ出力する。なお、複数回の画像の幾何変換による画質低下を防ぐため、映像入力部211と出力範囲補正部213とを、一体で構成してもよい。
動き検出部212は、入力された映像204に対して、領域マッチング処理を行い、複数フレーム間における並進運動及び拡大縮小の変化量(撮影範囲の変化量)205を求める。ドローン70に搭載された画像処理部75の場合は、ドローン70本体の回転により撮影範囲の変化が生じやすい。よって、動き検出部212で行う領域マッチングとしては、図4に示した方法は良い精度を得られない場合が多く、図3、5に示した方法を用いる。レンズ72のズームによる撮影範囲の変化の場合は、動き検出部212は、図5に示した領域マッチングを行う。また、回転による撮影範囲の変化の場合は、動き検出部212は、回転させたテンプレート矩形で領域マッチングを行う。その際に、動き検出部212は、加速度情報200を参考にして、限定した数の倍率及び回転角度のみテンプレート矩形を作成することができる。
補正量計算部210は、入力された撮影範囲の変化量205又は加速度情報200に基づいて入力された画像処理制御命令207に含まれる制御信号に対して、カメラ71の撮影範囲の変化量を、領域マッチング等の画像処理を正常に処理可能な範囲に抑制するための補正量を計算し、その補正量で画像処理制御命令207に含まれる制御信号を補正したカメラ制御信号201を出力する。また、補正量計算部210は、入力された撮影範囲の変化量205又は加速度情報200に基づいてカメラ71の撮影範囲の変化量を、領域マッチング等の画像処理を正常に処理可能な範囲に抑制するための飛行補正量203を計算する。なお、カメラ制御信号201は、カメラ制御部216によりカメラ71を制御する制御量を指示する信号である。また、飛行補正量203は、飛行制御部76に対して、カメラ71の撮影範囲の変化量を、領域マッチングを正常に処理可能な範囲に抑制するための補正量である。この補正量とは、例えば、ドローン70の回転速度を落とすように自動で飛行制御するための補正量である。
なお、ドローン70が手動操縦のときは、リモコン82からの命令データを乗せた電波を、アンテナ78が受信する。送受信部77は、受信した命令データを解読して飛行制御命令217を飛行制御部76へ出力し、画像処理制御命令207を補正量計算部210及び画像処理制御部214へ出力する。飛行制御命令209は、ドローンを飛行させる方向と速度を指示する信号である。画像処理制御命令207は、例えば、レンズ72のズーム制御や、旋回装置73の旋回方向を指示する信号である。
次に、ドローン70におけるカメラ71の並進運動の速度について説明する。
図10は、第2の実施形態のドローン70におけるカメラ71の並進運動の速度を示す図である。図10に示すように、プロペラ部79によってズーム可能なレンズ72が取り付けられたカメラ71が移動する状況を示している。ドローン70の進行方向および進行速度を示すベクトル300と、レンズ72の光軸方向のなす角度から、カメラ71で撮影される撮影範囲の並進運動の速度成分301を求めることができる。これにより、画像処理部75は、並進運動による撮影範囲の変化量を計算して、撮影範囲の変化量を、領域マッチング等の画像処理を正常に処理可能な範囲に抑制する制御に用いることができる。
上記各実施形態において、画像処理部65内の補正量計算部110、動き検出部112、出力範囲補正部113、画像処理制御部114、画像処理実行部115、及び、カメラ制御部116、及び、画像処理部75内の補正量計算部210、動き検出部212、出力範囲補正部213、画像処理制御部214、画像処理実行部215、及び、カメラ制御部216は、CPU(中央演算装置)等を利用してソフトウェアで実現してもよく、LSI等のハードウェアで実現してもよい。
以上説明した少なくともひとつの実施形態によれば、補正量計算部を持つことにより、移動体の有するカメラで撮影された映像で生じる撮影範囲の変化を抑制することができる。
また、以上に説明した画像処理部65内の補正量計算部110、動き検出部112、出力範囲補正部113、画像処理制御部114、画像処理実行部115、及び、カメラ制御部116、及び、画像処理部75内の補正量計算部210、動き検出部212、出力範囲補正部213、画像処理制御部214、画像処理実行部215、及び、カメラ制御部216の機能をソフトウェアによって実現する場合は、それらの機能を実現するためのプログラムを、コンピューター読み取り可能な記録媒体に記録し、そのプログラムをコンピューターシステムに読み込ませて実行するようにしてもよい。なお、ここでいう「コンピューターシステム」とは、OS(Operating System)や周辺機器等のハードウェアを含むものとする。また、「コンピューター読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD(Compact Disk)−ROM等の可搬媒体、コンピューターシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピューター読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバーやクライアントとなるコンピューターシステム内部の揮発性メモリー(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
また、上記のプログラムは、このプログラムを記憶装置等に格納したコンピューターシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピューターシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
また、上記のプログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、上記のプログラムは、前述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
60…自動車、61,71…カメラ、62,72…レンズ、63,73…旋回装置、64,74…加速度センサ、65,75…画像処理部、66…走行制御部、67…送信部、68,78…アンテナ、76…飛行制御部、77…送受信部、79…プロペラ部、80…処理結果受信機、81…表示部、82…リモコン、110,210…補正量計算部、112,212…動き検出部、113,213…出力範囲補正部、114,214…画像処理制御部、115,215…画像処理実行部、116,216…カメラ制御部

Claims (12)

  1. 移動体に搭載された撮像装置によって撮像された画像間のマッチング処理により、前記撮像装置の範囲の変化量を取得する取得部と、
    フィードバック制御により、前記取得部記変化量を取得することができる第1の範囲、又は、画像処理部が前記撮像装置で撮像された画像に対して所定の画像処理を行うことができる第2の範囲に、前記撮像範囲を調整する第1の補正部と、
    を備え、
    前記第1の補正部は、前記撮像範囲が前記第1の範囲又は前記第2の範囲となるように前記撮像装置の撮像方向又は撮像画角を補正する第1の補正情報を出力する
    補正情報出力装置。
  2. 移動体に搭載された撮像装置によって撮像された画像間のマッチング処理により、前記撮像装置の範囲の変化量を取得する取得部と、
    フィードバック制御により、前記取得部記変化量を取得することができる第1の範囲、又は、画像処理部が前記撮像装置で撮像された画像に対して所定の画像処理を行うことができる第2の範囲に、前記撮像範囲を調整する第2の補正部と、
    を備え、
    前記第2の補正部は、前記撮像範囲が前記第1の範囲又は前記第2の範囲となるように前記移動体の移動方向又は移動速度を補正する第2の補正情報を出力する
    補正情報出力装置。
  3. 前記第1の補正部は、所定の期間、前記撮範囲が略同一の範囲に固定されるよう前記撮像方向又は撮像画角を補正する第1の補正情報を出力する
    請求項1に記載の補正情報出力装置。
  4. 前記取得部は、領域マッチングを行うことで前記撮像装置における前記撮範囲の変化量を取得し、かつ、前記移動体の加速度に関する情報に基づいて、前記領域マッチングの手法を切り替える
    請求項1から3のいずれか一項に記載の補正情報出力装置。
  5. 請求項1から4のいずれか一項に記載の補正情報出力装置と、
    記画像処理部と
    を備え、
    前記撮像装置は、第1の撮像装置で広角の撮像を行い、第2の撮像装置で望遠の撮像を行い
    前記取得部は、第1の撮像装置で撮像された画像に基づいて、前記撮範囲の変化量を取得し、
    前記画像処理部は、前記第2の撮像装置で撮像された画像に対して、前記所定の画像処理を行う
    画像処理装置。
  6. 請求項1から4のいずれか一項に記載の補正情報出力装置と、
    記画像処理部と
    を備え、
    前記撮像装置は、広角の画像と、望遠の画像とを同時に取得可能であり、
    前記取得部は、前記広角の画像に基づいて、前記撮範囲の変化量を取得し、
    前記画像処理部は、前記望遠の画像に対して、前記所定の画像処理を行う
    画像処理装置。
  7. 請求項1から4のいずれか一項に記載の補正情報出力装置と、
    記画像処理部と
    を備え、
    前記撮像装置は、高フレームレートでの撮像と、低フレームレートでの撮像とを切り替えて撮像可能であり、
    前記取得部は、前記高フレームレートで撮像された画像に基づいて、前記撮範囲の変化量を取得し、
    前記画像処理部は、前記低フレームレートで撮像された画像に対して、前記所定の画像処理を行う
    画像処理装置。
  8. 前記取得部が、前記撮範囲の変化量を取得できない場合に、その旨を通知する通知部をさらに備える
    請求項5から7のいずれか一項に記載の画像処理装置。
  9. 取得部が、移動体に搭載された撮像装置によって撮像された画像間のマッチング処理により、前記撮像装置範囲の変化量を取得する取得ステップと、
    第1の補正部が、フィードバック制御により、前記取得部が記変化量を取得することができる第1の範囲、又は、画像処理部が前記撮像装置で撮像された画像に対して所定の画像処理を行うことができる第2の範囲に、前記撮像範囲を調整する第1の補正ステップと、
    を有し、
    前記第1の補正ステップにおいて、前記第1の補正部が、前記撮像範囲が前記第1の範囲又は前記第2の範囲となるように前記撮像装置の撮像方向又は撮像画角を補正する第1の補正情報を出力する
    補正情報出力方法。
  10. 取得部が、移動体に搭載された撮像装置によって撮像された画像間のマッチング処理により、前記撮像装置の範囲の変化量を取得する取得ステップと、
    第2の補正部が、フィードバック制御により、前記取得部が記変化量を取得することができる第1の範囲、又は、画像処理部が前記撮像装置で撮像された画像に対して所定の画像処理を行うことができる第2の範囲に、前記撮像範囲を調整する第2の補正ステップと、
    を有し、
    前記第2の補正ステップにおいて、前記第2の補正部が、前記撮像範囲が前記第1の範囲又は前記第2の範囲となるように前記移動体の移動方向又は移動速度を補正する第2の補正情報を出力する
    補正情報出力方法。
  11. 移動体に搭載された撮像装置の撮像方向又は撮像画角を制御する第1の制御部と、
    前記撮像装置によって撮像された画像間のマッチング処理により、前記撮像装置の範囲の変化量を取得する取得部と、
    フィードバック制御により、前記取得部記変化量を取得することができる第1の範囲、又は、画像処理部が前記撮像装置で撮された画像に対して所定の画像処理を行うことができる第2の範囲に、前記撮像範囲を調整する第1の補正部と、
    を備え、
    前記第1の補正部は、前記撮像範囲が前記第1の範囲又は前記第2の範囲となるように前記第1の制御部によって決定された前記撮像方向又は撮像画角を補正する
    撮像制御システム。
  12. 移動体の移動方向又は移動速度を制御する第2の制御部と、
    前記移動体に搭載された撮像装置によって撮像された画像間のマッチング処理により、前記撮像装置範囲の変化量を取得する取得部と、
    フィードバック制御により、前記取得部記変化量を取得することができる第1の範囲、又は、画像処理部が前記撮像装置で撮された画像に対して所定の画像処理を行うことができる第2の範囲に、前記撮像範囲を調整する第2の補正部と、
    を備え、
    前記第2の補正部は、前記撮像範囲が前記第1の範囲又は前記第2の範囲となるように前記第2の制御部によって決定された前記移動方向又は前記移動速度を補正する
    移動体制御システム。
JP2015139048A 2015-07-10 2015-07-10 補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システム Active JP6570904B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139048A JP6570904B2 (ja) 2015-07-10 2015-07-10 補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139048A JP6570904B2 (ja) 2015-07-10 2015-07-10 補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システム

Publications (2)

Publication Number Publication Date
JP2017022574A JP2017022574A (ja) 2017-01-26
JP6570904B2 true JP6570904B2 (ja) 2019-09-04

Family

ID=57888479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139048A Active JP6570904B2 (ja) 2015-07-10 2015-07-10 補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システム

Country Status (1)

Country Link
JP (1) JP6570904B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211926A1 (ja) 2017-05-16 2018-11-22 富士フイルム株式会社 画像生成装置、画像生成システム、画像生成方法、及び画像生成プログラム
JP6331180B1 (ja) * 2017-06-15 2018-05-30 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、撮像装置、撮像システム、飛行体、制御方法、及びプログラム
JP7153306B2 (ja) * 2018-04-17 2022-10-14 株式会社ロックガレッジ 検出対象位置特定システム
JP7037436B2 (ja) 2018-05-29 2022-03-16 京セラ株式会社 飛行装置、飛行装置の制御方法、飛行装置の制御プログラム、及び飛行装置の経路を成す構造物
JP6964772B2 (ja) 2018-06-21 2021-11-10 富士フイルム株式会社 撮像装置、無人移動体、撮像方法、システム、及びプログラム
JP2020005146A (ja) * 2018-06-28 2020-01-09 株式会社リコー 出力制御装置、表示端末、情報処理装置、移動体、遠隔制御システム、出力制御方法、プログラムおよび撮影制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636887B2 (ja) * 2005-01-11 2011-02-23 キヤノン株式会社 光学機器
WO2007097431A1 (ja) * 2006-02-23 2007-08-30 Matsushita Electric Industrial Co., Ltd. 画像補正装置、方法、プログラム、集積回路、システム
JP2008289032A (ja) * 2007-05-21 2008-11-27 Canon Inc 撮像装置
JP2009065472A (ja) * 2007-09-06 2009-03-26 Pioneer Electronic Corp 走行画像撮影装置、走行画像撮影方法及び走行画像撮影プログラム
JP2010219933A (ja) * 2009-03-17 2010-09-30 Victor Co Of Japan Ltd 撮像装置
CN103426282A (zh) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 遥控方法及终端
JP5995808B2 (ja) * 2013-09-02 2016-09-21 公益財団法人鉄道総合技術研究所 レール消失点検出装置、鉄道用前方監視カメラ装置、鉄道車両、およびレール消失点検出方法ならびに制御方法
JP6034767B2 (ja) * 2013-09-02 2016-11-30 公益財団法人鉄道総合技術研究所 レール検出装置、鉄道用前方監視カメラ装置、鉄道車両、およびレール検出方法ならびに制御方法
JP6147172B2 (ja) * 2013-11-20 2017-06-14 キヤノン株式会社 撮像装置、画像処理装置、画像処理方法、及びプログラム

Also Published As

Publication number Publication date
JP2017022574A (ja) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6570904B2 (ja) 補正情報出力装置、画像処理装置、補正情報出力方法、撮像制御システム及び移動体制御システム
CN106740841B (zh) 基于动态控制的车道线检测方法、装置及车载设备
EP2815569B1 (en) Video image stabilization
US9398226B2 (en) Image-capturing device for moving body
US10325339B2 (en) Method and device for capturing image of traffic sign
CN109005334B (zh) 一种成像方法、装置、终端和存储介质
JP5703448B2 (ja) 画像表示装置及び画像表示方法
JP2012185540A (ja) 画像処理装置、画像処理方法、及び画像処理プログラム
WO2012086188A1 (ja) カメラ装置、画像処理システム、画像処理方法および画像処理プログラム
US20050052533A1 (en) Object tracking method and object tracking apparatus
EP3633598B1 (en) Image processing device, image processing method, and program
EP2680567A1 (en) Video noise reduction
JP6152261B2 (ja) 車載用駐車枠認識装置
JP2006127083A (ja) 画像処理方法及び画像処理装置
JP5872171B2 (ja) カメラシステム
WO2021084818A1 (ja) 物体検出装置、物体検出方法、及び物体検出プログラム
JP4857159B2 (ja) 車両運転支援装置
JP2016110312A (ja) 画像処理方法、画像処理装置及びプログラム
CN114821544B (zh) 感知信息生成方法、装置、车辆、电子设备及存储介质
CN112272829A (zh) 用于汽车或监控应用具有扫描光路折叠元件的相机
JP6852878B2 (ja) 画像処理装置、画像処理プログラムおよび画像処理方法
CN111684784B (zh) 图像处理方法和装置
KR102042131B1 (ko) 단말기에서 실시간 글자 인식시 영상을 안정화하는 방법
JP2007134886A (ja) ビデオカメラシステムおよび撮像ノイズ除去方法
JP5040831B2 (ja) 車両用撮影装置および撮影方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170912

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190807

R150 Certificate of patent or registration of utility model

Ref document number: 6570904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150