JP6558185B2 - Girder structure - Google Patents

Girder structure Download PDF

Info

Publication number
JP6558185B2
JP6558185B2 JP2015192604A JP2015192604A JP6558185B2 JP 6558185 B2 JP6558185 B2 JP 6558185B2 JP 2015192604 A JP2015192604 A JP 2015192604A JP 2015192604 A JP2015192604 A JP 2015192604A JP 6558185 B2 JP6558185 B2 JP 6558185B2
Authority
JP
Japan
Prior art keywords
composite material
girder structure
elastic modulus
metal member
longitudinal elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015192604A
Other languages
Japanese (ja)
Other versions
JP2017066700A (en
Inventor
幸太郎 猪瀬
幸太郎 猪瀬
謙二郎 山岸
謙二郎 山岸
理絵 坂元
理絵 坂元
山田 順子
順子 山田
直幸 松本
直幸 松本
弘人 山岡
弘人 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015192604A priority Critical patent/JP6558185B2/en
Publication of JP2017066700A publication Critical patent/JP2017066700A/en
Application granted granted Critical
Publication of JP6558185B2 publication Critical patent/JP6558185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

本発明は、桁構造体に係り、特に、曲げ荷重が負荷される桁構造体に関する。   The present invention relates to a girder structure, and more particularly to a girder structure to which a bending load is applied.

従来、船舶上部工、橋梁、運搬機、海洋構造物等の構造物には、鋼材等の金属材料で形成された桁構造体が用いられている。特許文献1には、橋梁、海洋構造物等に鋼桁を用いることが記載されている。   Conventionally, girders formed of metal materials such as steel are used for structures such as ship superstructures, bridges, transporters, and marine structures. Patent Document 1 describes the use of steel girders for bridges, offshore structures and the like.

特開2013−189845号公報JP2013-189845A

ところで、近年、橋梁、海洋構造物等の構造物が大型化するのに伴って、運搬や作業性等を向上させるために、桁構造体を軽量化することが求められている。   By the way, in recent years, as structures such as bridges and offshore structures increase in size, it is required to reduce the weight of the girder structure in order to improve transportation and workability.

そこで本発明の目的は、より軽量化が可能な桁構造体を提供することである。   Accordingly, an object of the present invention is to provide a girder structure that can be further reduced in weight.

本発明に係る桁構造体は、曲げ荷重が負荷される桁構造体であって、金属材料で形成される金属部材と、前記金属部材と接合され、前記金属部材と縦弾性係数が異なり、繊維強化樹脂複合材料で形成される複合材料部材と、を備え、前記金属部材と前記複合材料部材とにおいて、縦弾性係数が大きい方の部材が圧縮側に配置され、縦弾性係数が小さい方の部材が引張側に配置されることを特徴とする。   The girder structure according to the present invention is a girder structure to which a bending load is applied. The girder structure is bonded to a metal member formed of a metal material and the metal member. A composite material member formed of a reinforced resin composite material, and in the metal member and the composite material member, a member having a larger longitudinal elastic modulus is disposed on the compression side, and a member having a smaller longitudinal elastic modulus Is arranged on the tension side.

本発明に係る桁構造体は、前記金属部材と前記複合材料部材との接合部の位置と、中立軸の位置とのズレ量が、前記金属部材と前記複合材料部材とを合わせた高さの1/4以下であることを特徴とする。   In the girder structure according to the present invention, the amount of deviation between the position of the joint between the metal member and the composite material member and the position of the neutral shaft is a height obtained by combining the metal member and the composite material member. It is characterized by being 1/4 or less.

本発明に係る桁構造体において、前記接合部の位置と、中立軸の位置とが同じであることを特徴とする。   In the girder structure according to the present invention, the position of the joint portion and the position of the neutral shaft are the same.

上記構成によれば、桁構造体の一部を、繊維強化樹脂複合材料で形成される複合材料部材で構成することにより、桁構造体をより軽量化することが可能となる。   According to the above configuration, the girder structure can be further reduced in weight by configuring a part of the girder structure with the composite material member formed of the fiber reinforced resin composite material.

本発明の実施の形態において、桁構造体の構成を示す斜視図である。In embodiment of this invention, it is a perspective view which shows the structure of a girder structure. 本発明の実施の形態において、曲げ荷重が負荷されたときの桁構造体を示す図である。In embodiment of this invention, it is a figure which shows a girder structure when a bending load is loaded. 本発明の実施の形態において、桁構造体の構成を示す断面図である。In embodiment of this invention, it is sectional drawing which shows the structure of a girder structure. 本発明の実施の形態において、実施例1の桁構造体モデルを示す断面図である。In embodiment of this invention, it is sectional drawing which shows the girder structure model of Example 1. FIG. 本発明の実施の形態において、実施例2の桁構造体モデルを示す断面図である。In embodiment of this invention, it is sectional drawing which shows the girder structure model of Example 2. FIG. 本発明の実施の形態において、実施例1、2の桁構造体モデルへの曲げ荷重の負荷方法を示す図である。In embodiment of this invention, it is a figure which shows the loading method of the bending load to the girder structure model of Example 1,2. 本発明の実施の形態において、実施例1の桁構造体モデルの解析結果を示すグラフである。In embodiment of this invention, it is a graph which shows the analysis result of the girder structure model of Example 1. 本発明の実施の形態において、実施例2の桁構造体モデルの解析結果を示すグラフである。In embodiment of this invention, it is a graph which shows the analysis result of the girder structure model of Example 2.

以下に本発明の実施の形態について図面を用いて詳細に説明する。図1は、桁構造体10の構成を示す斜視図である。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a perspective view showing the configuration of the girder structure 10.

桁構造体10は、金属材料で形成される金属部材12と、金属部材12と接合され、金属部材12と縦弾性係数が異なり、繊維強化樹脂複合材料で形成される複合材料部材14と、を備えている。桁構造体10は、例えば、図1に示すようにI桁で構成されている。桁構造体10は、船舶上部工、橋梁、運搬機、海洋構造物等の構造物に用いられ、曲げ荷重が負荷される。   The girder structure 10 includes a metal member 12 formed of a metal material, and a composite material member 14 which is bonded to the metal member 12 and has a longitudinal elastic modulus different from that of the metal member 12 and formed of a fiber reinforced resin composite material. I have. The girder structure 10 is composed of, for example, I digits as shown in FIG. The girder structure 10 is used for structures such as ship superstructures, bridges, transporters, and marine structures, and is subjected to bending loads.

金属部材12は、フランジ12aと、フランジ12aと一体的に形成されたウエブ12bと、を有している。金属部材12は、例えば、鉄鋼材料(炭素鋼、ステンレス鋼等)、アルミニウム材料(アルミニウム合金等)、チタン材料(チタン合金等)、ニッケル材料(ニッケル合金等)等の金属材料で形成されている。金属部材12は、一般的な金属材料の機械加工、溶接加工等で形成することができる。金属部材12の縦弾性係数については、使用する金属材料の種類や、熱処理条件等により調整することが可能である。   The metal member 12 has a flange 12a and a web 12b formed integrally with the flange 12a. The metal member 12 is formed of a metal material such as a steel material (carbon steel, stainless steel, etc.), an aluminum material (aluminum alloy, etc.), a titanium material (titanium alloy, etc.), a nickel material (nickel alloy, etc.), for example. . The metal member 12 can be formed by machining or welding of a general metal material. The longitudinal elastic modulus of the metal member 12 can be adjusted by the type of metal material used, heat treatment conditions, and the like.

複合材料部材14は、フランジ14aと、フランジ14aと一体的に形成されたウエブ14bと、を有している。複合材料部材14は、金属部材12と接合され、金属部材12と縦弾性係数が異なり、繊維強化樹脂複合材料(FRP)で形成されている。繊維強化樹脂複合材料は、金属材料よりも比重が小さく、比強度が大きいので、桁構造体10を軽量化することができる。   The composite material member 14 includes a flange 14a and a web 14b formed integrally with the flange 14a. The composite material member 14 is joined to the metal member 12, has a longitudinal elastic coefficient different from that of the metal member 12, and is formed of a fiber reinforced resin composite material (FRP). Since the fiber reinforced resin composite material has a specific gravity smaller than that of the metal material and a higher specific strength, the girder structure 10 can be reduced in weight.

繊維強化樹脂複合材料は、強化繊維と、マトリックス樹脂とから構成されている。強化繊維には、例えば、炭素繊維、アラミド繊維等の有機繊維、ガラス繊維等を用いることができる。マトリックス樹脂には、例えば、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂、フェノール樹脂等の熱硬化性樹脂や熱可塑性樹脂を用いることができる。   The fiber reinforced resin composite material is composed of a reinforced fiber and a matrix resin. For example, carbon fibers, organic fibers such as aramid fibers, glass fibers, and the like can be used as the reinforcing fibers. As the matrix resin, for example, a thermosetting resin or a thermoplastic resin such as an epoxy resin, a polyimide resin, a polyester resin, or a phenol resin can be used.

複合材料部材14は、例えば、一般的な繊維強化樹脂複合材料の成形方法で成形することができる。このような成形方法には、例えば、プリプレグを積層した後にオートクレーブ等で樹脂硬化して成形する方法や、織物で形成したプリフォームを金型に入れ、このプリフォームに樹脂含浸して硬化するRTM(Resin Transfer Molding)法等を適用可能である。   The composite material member 14 can be formed by, for example, a general fiber-reinforced resin composite material forming method. Such molding methods include, for example, a method in which a prepreg is laminated and then cured by resin curing with an autoclave or the like, or a preform formed from a woven fabric is placed in a mold, and the preform is impregnated with resin and cured. A (Resin Transfer Molding) method or the like can be applied.

複合材料部材14の縦弾性係数については、例えば、繊維強化樹脂複合材料の強化繊維、繊維含有率、繊維の配向等を変えることにより調整することができる。複合材料部材14の縦弾性係数を大きくする場合には、例えば、高弾性率繊維(例えば、高弾性率タイプ炭素繊維)からなる強化繊維を用いたり、繊維含有率を大きくすればよい。また、複合材料部材14の縦弾性係数を小さくする場合には、例えば、中弾性率繊維(例えば、中弾性率タイプ炭素繊維)、低弾性率繊維(例えば、低弾性率タイプ炭素繊維)からなる強化繊維を用いたり、繊維含有率を小さくすればよい。   The longitudinal elastic modulus of the composite material member 14 can be adjusted, for example, by changing the reinforcing fiber, fiber content, fiber orientation, and the like of the fiber reinforced resin composite material. In order to increase the longitudinal elastic modulus of the composite material member 14, for example, reinforcing fibers made of high elastic modulus fibers (for example, high elastic modulus type carbon fibers) may be used, or the fiber content may be increased. Moreover, when making the longitudinal elastic modulus of the composite material member 14 small, it consists of medium elastic modulus fiber (for example, medium elastic modulus type carbon fiber) and low elastic modulus fiber (for example, low elastic modulus type carbon fiber), for example. Reinforcing fibers may be used or the fiber content may be reduced.

金属部材12と複合材料部材14との接合部16は、例えば、エポキシ樹脂等の合成樹脂からなる接着剤で接合して形成することができる。桁構造体10に曲げ荷重が負荷されると、金属部材12と複合材料部材14との接合面には、せん断応力が発生する。このため、金属部材12と複合材料部材14とを接合する接着剤には、このせん断応力に耐えることが可能な接着強度を有するものを用いるとよい。   The joint portion 16 between the metal member 12 and the composite material member 14 can be formed by joining with an adhesive made of a synthetic resin such as an epoxy resin, for example. When a bending load is applied to the girder structure 10, a shearing stress is generated on the joint surface between the metal member 12 and the composite material member 14. For this reason, it is good to use what has the adhesive strength which can endure this shear stress as an adhesive agent which joins the metal member 12 and the composite material member 14. FIG.

金属部材12と複合材料部材14とにおいて、縦弾性係数が大きい方の部材が圧縮側に配置され、縦弾性係数が小さい方の部材が引張側に配置される。オイラーの座屈荷重(座屈荷重が、部材の縦弾性係数に比例する)等から明らかなように、縦弾性係数が大きい部材は、縦弾性係数が小さい部材よりも耐座屈特性が優れている。また、縦弾性係数が小さい部材は、縦弾性係数が大きい部材よりも伸び易く、引張特性に優れている。これらの理由から、金属部材12と複合材料部材14とにおいて、縦弾性係数が大きい方の部材を圧縮側に配置し、縦弾性係数が小さい方の部材を引張側に配置することで、桁構造体10の圧縮側では局部座屈破壊を抑制すると共に、桁構造体10の引張側では引張破壊を抑制することができる。   In the metal member 12 and the composite material member 14, a member having a larger longitudinal elastic modulus is disposed on the compression side, and a member having a smaller longitudinal elastic modulus is disposed on the tension side. As is clear from Euler's buckling load (the buckling load is proportional to the longitudinal elastic modulus of the member), etc., a member with a large longitudinal elastic modulus has better buckling resistance than a member with a small longitudinal elastic modulus. Yes. In addition, a member having a small longitudinal elastic modulus is easier to extend than a member having a large longitudinal elastic modulus, and is excellent in tensile properties. For these reasons, in the metal member 12 and the composite material member 14, a member having a larger longitudinal elastic modulus is disposed on the compression side, and a member having a smaller longitudinal elastic modulus is disposed on the tension side. The local buckling failure can be suppressed on the compression side of the body 10, and the tensile failure can be suppressed on the tension side of the girder structure 10.

図2は、曲げ荷重が負荷された桁構造体10を示す図であり、図2(a)は、金属部材12の縦弾性係数が、複合材料部材14の縦弾性係数より大きい場合を示す図であり、図2(b)は、金属部材12の縦弾性係数が、複合材料部材14の縦弾性係数より小さい場合を示す図である。   FIG. 2 is a view showing the girder structure 10 to which a bending load is applied. FIG. 2A is a view showing a case where the longitudinal elastic modulus of the metal member 12 is larger than the longitudinal elastic modulus of the composite material member 14. FIG. 2B is a diagram illustrating a case where the longitudinal elastic modulus of the metal member 12 is smaller than the longitudinal elastic modulus of the composite material member 14.

図2(a)に示すように、金属部材12の縦弾性係数が、複合材料部材14の縦弾性係数より大きい場合には、金属部材12が圧縮側に配置され、複合材料部材14が引張側に配置される。金属部材12の縦弾性係数が、複合材料部材14の縦弾性係数より大きい場合には、金属部材12は、複合材料部材14よりも耐座屈特性が優れており、複合材料部材14は、金属部材12よりも引張特性が優れている。このため、桁構造体10の圧縮側に金属部材12を配置して局部座屈破壊を抑制すると共に、桁構造体10の引張側に複合材料部材14を配置して引張破壊を抑制することができる。   As shown in FIG. 2A, when the longitudinal elastic modulus of the metal member 12 is larger than the longitudinal elastic modulus of the composite material member 14, the metal member 12 is disposed on the compression side, and the composite material member 14 is on the tension side. Placed in. When the longitudinal elastic modulus of the metal member 12 is greater than the longitudinal elastic modulus of the composite material member 14, the metal member 12 has better buckling resistance than the composite material member 14, and the composite material member 14 The tensile properties are superior to the member 12. For this reason, the metal member 12 is arranged on the compression side of the girder structure 10 to suppress local buckling failure, and the composite material member 14 is arranged on the tension side of the girder structure 10 to suppress tensile fracture. it can.

図2(b)に示すように、金属部材12の縦弾性係数が、複合材料部材14の縦弾性係数より小さい場合には、金属部材12が引張側に配置され、複合材料部材14が圧縮側に配置される。金属部材12の縦弾性係数が、複合材料部材14の縦弾性係数より小さい場合には、金属部材12は、複合材料部材14よりも引張特性が優れており、複合材料部材14は、金属部材12よりも耐座屈特性が優れている。このため、桁構造体10の圧縮側に複合材料部材14を配置して局部座屈破壊を抑制すると共に、桁構造体10の引張側に金属部材12を配置して引張破壊を抑制することができる。   As shown in FIG. 2B, when the longitudinal elastic modulus of the metal member 12 is smaller than the longitudinal elastic modulus of the composite material member 14, the metal member 12 is disposed on the tension side, and the composite material member 14 is on the compression side. Placed in. When the longitudinal elastic modulus of the metal member 12 is smaller than the longitudinal elastic modulus of the composite material member 14, the metal member 12 has superior tensile characteristics than the composite material member 14, and the composite material member 14 has the metal member 12. Better resistance to buckling than Therefore, the composite material member 14 is arranged on the compression side of the girder structure 10 to suppress local buckling failure, and the metal member 12 is arranged on the tension side of the girder structure 10 to suppress tensile fracture. it can.

金属部材12と複合材料部材14との接合部16の位置と、中立軸の位置とのズレ量は、金属部材12と複合材料部材14とを合わせた高さの1/4以下であってもよく、接合部16の位置と、中立軸の位置とが同じ(ズレ量がゼロ)でもよい。接合部16の位置と、中立軸の位置とのズレについては、接合部16は、中立軸より引張側にズレていてもよいし、中立軸より圧縮側にズレていてもよい。   Even if the amount of deviation between the position of the joint 16 between the metal member 12 and the composite material member 14 and the position of the neutral shaft is ¼ or less of the total height of the metal member 12 and the composite material member 14. The position of the joint portion 16 and the position of the neutral shaft may be the same (the amount of deviation is zero). About the shift | offset | difference of the position of the junction part 16 and the position of a neutral axis | shaft, the junction part 16 may be shifted | deviated to the tension | tensile_strength side from the neutral axis | shaft, and may be shifted | deviated from the neutral axis | shaft to the compression side.

図3は、桁構造体10の構成を示す断面図である。なお、HMeは、金属部材12の高さを表し、HFRPは、複合材料部材14の高さを表している。まず、桁構造体10の中立軸について説明する。中立軸とは、桁構造体10に曲げ荷重が負荷したときに、桁構造体10の断面に作用する垂直応力がゼロとなる軸のことである。 FIG. 3 is a cross-sectional view showing the configuration of the girder structure 10. H Me represents the height of the metal member 12, and H FRP represents the height of the composite material member 14. First, the neutral axis of the girder structure 10 will be described. The neutral axis is an axis where the vertical stress acting on the cross section of the girder structure 10 becomes zero when a bending load is applied to the girder structure 10.

金属部材12と複合材料部材14との接合部16の位置が、中立軸の位置と同じであるとき、金属部材12の断面積をAMe、金属部材12の縦弾性係数をEMe、金属部材12の断面重心位置Aから中立軸までの距離をLMe、複合材料部材14の断面積をAFRP、複合材料部材14の縦弾性係数をEFRP、複合材料部材14の断面重心位置Bから中立軸までの距離をLFRPとすると、数1に示す関係がある。 When the position of the joint portion 16 between the metal member 12 and the composite material member 14 is the same as the position of the neutral axis, the cross-sectional area of the metal member 12 is A Me , the longitudinal elastic modulus of the metal member 12 is E Me , and the metal member 12, the distance from the cross-sectional center of gravity position A to the neutral axis is L Me , the cross-sectional area of the composite material member 14 is A FRP , the longitudinal elastic modulus of the composite material member 14 is E FRP , and the cross-section center of gravity position B of the composite material member 14 is When the distance to the vertical axis is L FRP , there is a relationship shown in Equation 1.

Figure 0006558185
Figure 0006558185

接合部16の位置が、中立軸の位置と同じである場合には、金属部材12と複合材料部材14とには、引張応力及び圧縮応力のどちらか一方が作用する。金属部材12が複合材料部材14より縦弾性係数が大きく、金属部材12が中立軸より圧縮側に配置され、複合材料部材14が中立軸より引張側に配置される場合には、金属部材12には圧縮応力が作用し、複合材料部材14には引張応力が作用する。この場合において、金属部材12に作用する引張応力と、複合材料部材14に作用する圧縮応力とは、略ゼロになる。   When the position of the joint portion 16 is the same as the position of the neutral axis, either the tensile stress or the compressive stress acts on the metal member 12 and the composite material member 14. When the metal member 12 has a larger longitudinal elastic modulus than the composite material member 14, the metal member 12 is arranged on the compression side from the neutral shaft, and the composite material member 14 is arranged on the tension side from the neutral shaft, the metal member 12 Compressive stress acts on the composite material member 14 and tensile stress acts on the composite material member 14. In this case, the tensile stress acting on the metal member 12 and the compressive stress acting on the composite material member 14 are substantially zero.

また、金属部材12が複合材料部材14より縦弾性係数が小さく、金属部材12が中立軸より引張側に配置され、複合材料部材14が中立軸より圧縮側に配置される場合には、金属部材12には引張応力が作用し、複合材料部材14には圧縮応力が作用する。この場合において、金属部材12に作用する圧縮応力と、複合材料部材14に作用する引張応力とは、略ゼロになる。   Further, when the metal member 12 has a smaller longitudinal elastic modulus than the composite material member 14, the metal member 12 is arranged on the tension side from the neutral shaft, and the composite material member 14 is arranged on the compression side from the neutral shaft, the metal member A tensile stress acts on 12 and a compressive stress acts on the composite material member 14. In this case, the compressive stress acting on the metal member 12 and the tensile stress acting on the composite material member 14 are substantially zero.

このように、縦弾性係数が大きい方の耐座屈特性に優れた部材には圧縮応力が作用し、縦弾性係数が小さい方の引張特性に優れた部材には引張応力が作用し、縦弾性係数が大きい方の部材に作用する引張応力と、縦弾性係数が小さい方の部材に作用する圧縮応力とが略ゼロとなる。このため、桁構造体10は、金属部材12及び複合材料部材14の縦弾性係数に基づいて合理的に構成されており、曲げ荷重が負荷された桁構造体10において、金属部材12及び複合材料部材14を有効に機能させることが可能となる。   In this way, compressive stress acts on a member with a higher longitudinal elastic modulus and excellent buckling resistance, and tensile stress acts on a member with a smaller longitudinal elastic modulus and excellent tensile properties, thereby causing longitudinal elasticity. The tensile stress acting on the member having the larger modulus and the compressive stress acting on the member having the smaller longitudinal elastic modulus are substantially zero. For this reason, the girder structure 10 is rationally configured based on the longitudinal elastic modulus of the metal member 12 and the composite material member 14, and the metal member 12 and the composite material in the girder structure 10 loaded with a bending load. It becomes possible to make the member 14 function effectively.

接合部16の位置と、中立軸の位置とがズレている場合には、金属部材12と複合材料部材14とのどちらか一方に、引張応力と圧縮応力との両方が作用する。例えば、接合部16が中立軸より引張側にズレており、金属部材12が複合材料部材14より縦弾性係数が大きく、金属部材12が接合部16より圧縮側に配置され、複合材料部材14が接合部16より引張側に配置される場合には、金属部材12には圧縮応力と引張応力との両方が作用し、複合材料部材14には引張応力が作用する。   When the position of the joint 16 and the position of the neutral axis are shifted, both tensile stress and compressive stress act on either the metal member 12 or the composite material member 14. For example, the joining portion 16 is displaced from the neutral axis to the tension side, the metal member 12 has a larger longitudinal elastic modulus than the composite material member 14, the metal member 12 is disposed on the compression side from the joining portion 16, and the composite material member 14 is When arranged on the tension side from the joint 16, both the compressive stress and the tensile stress act on the metal member 12, and the tensile stress acts on the composite material member 14.

接合部16の位置と、中立軸の位置とのズレ量が、金属部材12と複合材料部材14とを合わせた高さ(HMe+HFRP)の1/4以下である場合には、接合部16は、中立軸の近傍に位置している。曲げ荷重が負荷されたときの桁構造体10の垂直歪は、中立軸の位置で略ゼロとなり、中立軸から離れて外縁側となるほど大きくなる。接合部16が中立軸の近傍に位置する場合には、金属部材12の引張歪が小さくなる。このため、縦弾性係数が大きい方の引張特性に劣る金属部材12に作用する引張応力は小さく、縦弾性係数が小さい方の引張特性に優れた複合材料部材14が、桁構造体10に作用する引張応力の大部分を負担する。これにより、曲げ荷重が負荷された桁構造体10において、金属部材12及び複合材料部材14を有効に機能させることができる。 When the amount of deviation between the position of the joint portion 16 and the position of the neutral shaft is equal to or less than ¼ of the combined height of the metal member 12 and the composite material member 14 (H Me + H FRP ) 16 is located in the vicinity of the neutral axis. The vertical strain of the girder structure 10 when a bending load is applied becomes substantially zero at the position of the neutral axis, and increases as the distance from the neutral axis increases toward the outer edge. When the joint 16 is located near the neutral axis, the tensile strain of the metal member 12 is reduced. For this reason, the tensile stress acting on the metal member 12 having the smaller longitudinal elastic modulus and the tensile property acting on the metal member 12 having the smaller longitudinal elastic modulus acts on the girder structure 10. It bears most of the tensile stress. Thereby, in the girder structure 10 to which the bending load is applied, the metal member 12 and the composite material member 14 can function effectively.

これに対して、接合部16の位置と、中立軸の位置とのズレ量が、金属部材12と複合材料部材14とを合わせた高さ(HMe+HFRP)の1/4より大きい場合には、接合部16は、中立軸の近傍ではなく、中立軸から離れたところに位置している。このため、金属部材12の引張歪が相対的に大きくなり、金属部材12に作用する引張応力も相対的に大きくなる。この場合には、縦弾性係数が大きい方の引張特性に劣る金属部材12が負担する引張応力が大きくなり、縦弾性係数が小さい方の引張特性に優れる複合材料部材14が負担する引張応力が小さくなる。これにより、曲げ荷重が負荷された桁構造体10において、金属部材12の負担が大きくなると共に複合材料部材14が十分に活用されてなく、金属部材12及び複合材料部材14を有効に機能させることが難しくなる。 On the other hand, when the amount of deviation between the position of the joint 16 and the position of the neutral shaft is larger than ¼ of the combined height of the metal member 12 and the composite material member 14 (H Me + H FRP ). The joint 16 is not located in the vicinity of the neutral axis but is located away from the neutral axis. For this reason, the tensile strain of the metal member 12 becomes relatively large, and the tensile stress acting on the metal member 12 also becomes relatively large. In this case, the tensile stress borne by the metal member 12 that is inferior in tensile properties with the larger longitudinal elastic modulus is increased, and the tensile stress borne by the composite material member 14 that is superior in tensile properties with the smaller longitudinal elastic modulus is decreased. Become. Thereby, in the girder structure 10 to which a bending load is applied, the burden on the metal member 12 is increased and the composite material member 14 is not fully utilized, so that the metal member 12 and the composite material member 14 function effectively. Becomes difficult.

このように、金属部材12と複合材料部材14との接合部16の位置と、中立軸の位置とのズレ量を、金属部材12と複合材料部材14とを合わせた高さ(HMe+HFRP)の1/4以下とすることにより、曲げ荷重が負荷された桁構造体10において、金属部材12及び複合材料部材14を有効に機能させることが可能となる。 In this way, the amount of deviation between the position of the joint 16 between the metal member 12 and the composite material member 14 and the position of the neutral shaft is set to the height (H Me + H FRP ) of the metal member 12 and the composite material member 14. ) Or less, the metal member 12 and the composite material member 14 can function effectively in the girder structure 10 loaded with a bending load.

なお、桁構造体10は、I桁で構成されていてもよいし、箱桁等で構成されていてもよい。また、桁構造体10の断面形状は、矩形状だけでなく、他の多角形状でもよいし、円形状等でもよい。   The girder structure 10 may be composed of I-digits, box girder, or the like. Further, the cross-sectional shape of the girder structure 10 is not limited to a rectangular shape, but may be another polygonal shape, a circular shape, or the like.

上記構成の桁構造体によれば、金属部材と、金属部材と接合される複合材料部材と、を備えており、桁構造体の一部を、金属材料よりも比重が小さく、比強度が大きい繊維強化樹脂複合材料で形成される複合材料部材で構成することにより、金属製の桁構造体よりも軽量化することが可能となる。また、上記構成の桁構造体によれば、金属部材を備えているので、他の構造体と溶接等で接合することができる。   According to the girder structure having the above-described configuration, the girder structure includes a metal member and a composite material member joined to the metal member. By comprising the composite material member formed of the fiber reinforced resin composite material, it is possible to reduce the weight as compared with the metal girder structure. Moreover, according to the girder structure having the above configuration, since the metal member is provided, it can be joined to another structure by welding or the like.

上記構成の桁構造体によれば、金属部材と複合材料部材とにおいて、縦弾性係数が大きい方の部材が圧縮側に配置され、縦弾性係数が小さい方の部材が引張側に配置されるので、桁構造体の圧縮側では耐座屈特性が向上し、引張側では引張特性が向上し、曲げ荷重が負荷したときの桁構造体の破壊を抑制することができる。   According to the girder structure having the above configuration, in the metal member and the composite material member, the member having the larger longitudinal elastic modulus is disposed on the compression side, and the member having the smaller longitudinal elastic modulus is disposed on the tension side. The buckling resistance is improved on the compression side of the girder structure, the tensile characteristics are improved on the tension side, and the breakage of the girder structure when a bending load is applied can be suppressed.

上記構成の桁構造体によれば、金属部材と複合材料部材との接合部の位置と、中立軸の位置とのズレ量が、金属部材と複合材料部材とを合わせた高さの1/4以下とすることにより、曲げ荷重が負荷された桁構造体において、金属部材及び複合材料部材を有効に機能させることが可能となる。   According to the girder structure configured as described above, the amount of deviation between the position of the joint between the metal member and the composite material member and the position of the neutral shaft is ¼ of the combined height of the metal member and the composite material member. By setting it as the following, it becomes possible to make a metal member and a composite material member function effectively in the girder structure to which the bending load was loaded.

曲げ荷重下の桁構造体について構造解析を行った。まず、桁構造体の解析モデルについて説明する。図4は、実施例1の桁構造体モデル20を示す断面図である。実施例1の桁構造体モデル20には、I桁を用いた。桁構造体モデル20の寸法については、長さを1200mmとし、幅を80mmとし、高さを100mmとした。桁構造体モデル20は、軟鋼で形成した鋼部材22と、炭素繊維強化樹脂複合材料(CFRP)で形成したCFRP部材24とから構成されている。表1に、各部材の材料定数を示す。なお、CFRP部材24のE、Eについては面内方向の縦弾性係数を表しており、Ezについては面外方向(厚み方向)の縦弾性係数を表している。また、CFRP部材24のGxy、Gxz、Gyzについては、せん断弾性係数(横弾性係数)を表している。 Structural analysis was performed on the girder structure under bending load. First, an analysis model of a girder structure will be described. FIG. 4 is a cross-sectional view showing the girder structure model 20 of the first embodiment. For the girder structure model 20 of Example 1, an I-digit was used. Regarding the dimensions of the girder structure model 20, the length was 1200 mm, the width was 80 mm, and the height was 100 mm. The girder structure model 20 includes a steel member 22 formed of mild steel and a CFRP member 24 formed of a carbon fiber reinforced resin composite material (CFRP). Table 1 shows the material constant of each member. It should be noted that E x and E y of the CFRP member 24 represent the longitudinal elastic modulus in the in-plane direction, and Ez represents the longitudinal elastic modulus in the out-of-plane direction (thickness direction). Further, G xy , G xz , and G yz of the CFRP member 24 represent shear elastic modulus (lateral elastic modulus).

Figure 0006558185
Figure 0006558185

桁構造体モデル20では、鋼部材22がCFRP部材24よりも縦弾性係数が大きいことから、鋼部材22を圧縮側に配置し、CFRP部材24を引張側に配置した。鋼部材22については、幅が80mm、高さが15mm、フランジ22aの厚みが6mm、ウエブ22bの厚みが4.5mmとした。CFRP部材24については、幅が80mm、高さが85mm、フランジ24aの厚みが4mm、ウエブ24bの厚みが4.5mmとした。鋼部材22とCFRP部材24との接合部26の位置については、中立軸の位置と同じとした。   In the girder structure model 20, the steel member 22 has a greater longitudinal elastic modulus than the CFRP member 24, so that the steel member 22 is disposed on the compression side and the CFRP member 24 is disposed on the tension side. Regarding the steel member 22, the width was 80mm, the height was 15mm, the thickness of the flange 22a was 6mm, and the thickness of the web 22b was 4.5mm. Regarding the CFRP member 24, the width was 80 mm, the height was 85 mm, the thickness of the flange 24a was 4 mm, and the thickness of the web 24b was 4.5 mm. The position of the joint portion 26 between the steel member 22 and the CFRP member 24 is the same as the position of the neutral shaft.

次に、実施例2の桁構造体の解析モデルについて説明する。図5は、実施例2の桁構造体モデル30を示す断面図である。実施例2の桁構造体モデル30は、実施例1の桁構造体モデル20と、鋼部材32とCFRP部材34との高さ及び接合部36の位置が相違しており、その他の構成については同じとした。実施例2の桁構造体モデル30では、鋼部材32の高さを50mm、CFRP部材34の高さを50mmとし、鋼部材32とCFRP部材34との接合部36の位置を、中立軸から引張側に32mmずらした位置とした。鋼部材32とCFRP部材34との接合部36の位置は、中立軸の位置とのズレ量が、鋼部材32とCFRP部材34とを合わせた高さ(100mm)の1/4である25mmより大きくなるようにした。   Next, an analysis model of the girder structure according to the second embodiment will be described. FIG. 5 is a cross-sectional view showing the girder structure model 30 of the second embodiment. The girder structure model 30 of the second embodiment is different from the girder structure model 20 of the first embodiment in the height of the steel member 32 and the CFRP member 34 and the position of the joint 36. Same as above. In the girder structure model 30 of the second embodiment, the height of the steel member 32 is 50 mm, the height of the CFRP member 34 is 50 mm, and the position of the joint 36 between the steel member 32 and the CFRP member 34 is pulled from the neutral shaft. The position was shifted 32 mm to the side. The position of the joint portion 36 between the steel member 32 and the CFRP member 34 is from 25 mm where the amount of deviation from the position of the neutral shaft is 1/4 of the combined height (100 mm) of the steel member 32 and the CFRP member 34. I tried to get bigger.

図6は、実施例1、2の桁構造体モデル20、30への曲げ荷重の負荷方法を示す図である。実施例1、2の桁構造体モデル20、30への曲げ荷重の負荷方法については、集中荷重を負荷した4点曲げとした。有限要素法(FEM)による構造解析を行って、実施例1、2の桁構造体モデル20、30における軸方向の垂直歪分布と、軸方向の垂直応力分布とを求めた。   FIG. 6 is a diagram illustrating a method of applying a bending load to the girder structure models 20 and 30 according to the first and second embodiments. The bending load applied to the girder structure models 20 and 30 of Examples 1 and 2 was four-point bending with a concentrated load. The structural analysis by the finite element method (FEM) was performed, and the vertical strain distribution in the axial direction and the vertical stress distribution in the axial direction in the girder structure models 20 and 30 of Examples 1 and 2 were obtained.

図7は、実施例1の桁構造体モデル20の解析結果を示すグラフであり、図7(a)は、垂直歪分布を示すグラフであり、図7(b)は、垂直応力分布を示すグラフである。図7(a)のグラフにおいて、横軸に垂直歪を取り、縦軸に桁構造体モデル20の高さ方向の位置を取り、桁構造体モデル20の高さ方向の各位置に対する垂直歪を白丸で示している。図7(b)のグラフにおいて、横軸に垂直応力を取り、縦軸に桁構造体モデル20の高さ方向の位置を取り、桁構造体モデル20の高さ方向の各位置に対する垂直応力を白丸で示している。また、桁構造体モデル20の高さ方向の位置については、CFRP部材24の外縁(フランジ24aの外面)を0mmとし、鋼部材22の外縁(フランジ22aの外面)を100mmとしている。なお、垂直歪及び垂直応力において、正が引張側を表しており、負が圧縮側を表している。   7 is a graph showing an analysis result of the girder structure model 20 of Example 1, FIG. 7A is a graph showing a vertical strain distribution, and FIG. 7B is a graph showing a vertical stress distribution. It is a graph. In the graph of FIG. 7A, the horizontal strain is taken as the vertical strain, the vertical axis is taken as the position in the height direction of the girder structure model 20, and the vertical strain for each position in the height direction of the girder structure model 20 is taken. It is indicated by a white circle. In the graph of FIG. 7 (b), the vertical stress is taken on the horizontal axis, the position in the height direction of the girder structure model 20 is taken on the vertical axis, and the vertical stress for each position in the height direction of the girder structure model 20 is taken. It is indicated by a white circle. Further, regarding the position in the height direction of the girder structure model 20, the outer edge of the CFRP member 24 (outer surface of the flange 24a) is 0 mm, and the outer edge of the steel member 22 (outer surface of the flange 22a) is 100 mm. In the normal strain and the normal stress, positive represents the tension side and negative represents the compression side.

実施例1の桁構造体モデル20では、鋼部材22とCFRP部材24との接合部26の位置で垂直歪と垂直応力とがゼロになった。縦弾性係数が大きい方の鋼部材22には圧縮応力が作用し、縦弾性係数が小さい方のCFRP部材24には引張応力が作用し、鋼部材22に作用する引張応力と、CFRP部材24に作用する圧縮応力とは、略ゼロであった。鋼部材22及びCFRP部材24において、各部材の外縁に作用する応力が最大応力となった。また、鋼部材22に作用する縁応力の大きさと、CFRP部材24に作用する縁応力の大きさとは、略同じになった。このように実施例1の桁構造体モデル20では、曲げ荷重が負荷された桁構造体モデル20において、鋼部材22及びCFRP部材24を有効に機能させることができた。   In the girder structure model 20 of Example 1, the vertical strain and the normal stress became zero at the position of the joint portion 26 between the steel member 22 and the CFRP member 24. A compressive stress acts on the steel member 22 having a larger longitudinal elastic modulus, a tensile stress acts on the CFRP member 24 having a smaller longitudinal elastic modulus, and a tensile stress acting on the steel member 22 and the CFRP member 24. The acting compressive stress was substantially zero. In the steel member 22 and the CFRP member 24, the stress acting on the outer edge of each member became the maximum stress. Further, the magnitude of the edge stress acting on the steel member 22 and the magnitude of the edge stress acting on the CFRP member 24 are substantially the same. Thus, in the girder structure model 20 of Example 1, the steel member 22 and the CFRP member 24 were able to function effectively in the girder structure model 20 to which the bending load was applied.

図8は、実施例2の桁構造体モデル30の解析結果を示すグラフであり、図8(a)は、垂直歪分布を示すグラフであり、図8(b)は、垂直応力分布を示すグラフである。図8(a)のグラフにおいて、横軸に垂直歪を取り、縦軸に桁構造体モデル30の高さ方向の位置を取り、桁構造体モデル30の高さ方向の各位置に対する垂直歪を白丸で示している。図8(b)のグラフにおいて、横軸に垂直応力を取り、縦軸に桁構造体モデル30の高さ方向の位置を取り、桁構造体モデル30の高さ方向の各位置に対する垂直応力を白丸で示している。また、桁構造体モデル30の高さ方向の位置については、CFRP部材34の外縁(フランジ34aの外面)を0mmとし、鋼部材32の外縁(フランジ32aの外面)を100mmとしている。なお、垂直歪及び垂直応力において、正が引張側を表しており、負が圧縮側を表している。   FIG. 8 is a graph showing an analysis result of the girder structure model 30 of Example 2, FIG. 8A is a graph showing a vertical strain distribution, and FIG. 8B is a graph showing a vertical stress distribution. It is a graph. In the graph of FIG. 8A, the horizontal axis represents vertical strain, the vertical axis represents the position in the height direction of the girder structure model 30, and the vertical strain for each position in the height direction of the girder structure model 30. It is indicated by a white circle. In the graph of FIG. 8B, the horizontal stress is taken as the vertical stress, the vertical axis is taken as the position in the height direction of the girder structure model 30, and the vertical stress for each position in the height direction of the girder structure model 30 is taken. It is indicated by a white circle. In addition, regarding the position in the height direction of the girder structure model 30, the outer edge of the CFRP member 34 (the outer surface of the flange 34a) is 0 mm, and the outer edge of the steel member 32 (the outer surface of the flange 32a) is 100 mm. In the normal strain and the normal stress, positive represents the tension side and negative represents the compression side.

実施例2の桁構造体モデル30では、鋼部材32に圧縮応力と引張応力とが作用し、CFRP部材34に引張応力が作用した。鋼部材32に作用する引張応力は、接合部36の位置で最も大きくなり、CFRP部材34の最大引張応力である縁応力よりも大きくなった。実施例2の桁構造体モデル30では、接合部36の位置と、中立軸の位置とのズレ量が、鋼部材32とCFRP部材34とを合わせた高さ(100mm)の1/4より大きく、接合部36は、中立軸の近傍ではなく、中立軸から離れたところに位置している。このため、鋼部材32の引張歪が相対的に大きくなり、鋼部材32に作用する引張応力も相対的に大きくなった。その結果、縦弾性係数が大きい方の引張特性に劣る鋼部材32が負担する引張応力が大きくなり、縦弾性係数が小さい方の引張特性に優れるCFRP部材34が負担する引張応力が小さくなった。これにより、曲げ荷重が負荷された実施例2の桁構造体モデル30において、実施例1の桁構造体モデル20よりも、鋼部材32の負担が大きくなると共にCFRP部材34が十分に活用されてなく、鋼部材32及びCFRP部材34が有効に機能していないことがわかった。   In the girder structure model 30 of Example 2, compressive stress and tensile stress acted on the steel member 32, and tensile stress acted on the CFRP member 34. The tensile stress acting on the steel member 32 was the largest at the position of the joint portion 36 and was larger than the edge stress that is the maximum tensile stress of the CFRP member 34. In the girder structure model 30 of the second embodiment, the amount of deviation between the position of the joint portion 36 and the position of the neutral shaft is larger than ¼ of the combined height (100 mm) of the steel member 32 and the CFRP member 34. The joint 36 is not located in the vicinity of the neutral axis but is located away from the neutral axis. For this reason, the tensile strain of the steel member 32 became relatively large, and the tensile stress acting on the steel member 32 also became relatively large. As a result, the tensile stress borne by the steel member 32 having inferior tensile properties with the larger longitudinal elastic modulus was increased, and the tensile stress borne by the CFRP member 34 having superior tensile properties with the smaller longitudinal elastic modulus was decreased. As a result, in the girder structure model 30 of the second embodiment in which a bending load is applied, the burden on the steel member 32 becomes larger and the CFRP member 34 is fully utilized than in the girder structure model 20 of the first embodiment. It was found that the steel member 32 and the CFRP member 34 are not functioning effectively.

10 桁構造体
12 金属部材
14 複合材料部材
16 接合部
10 Girder Structure 12 Metal Member 14 Composite Material Member 16 Joint

Claims (2)

曲げ荷重が負荷される桁構造体であって、
金属材料で形成される金属部材と、
前記金属部材と接合され、前記金属部材と縦弾性係数が異なり、繊維強化樹脂複合材料で形成される複合材料部材と、を備え、
前記金属部材と前記複合材料部材とにおいて、縦弾性係数が大きい方の部材が圧縮側に配置され、縦弾性係数が小さい方の部材が引張側に配置され
前記金属部材と前記複合材料部材との接合部の位置と、中立軸の位置とのズレ量が、前記金属部材と前記複合材料部材とを合わせた高さの1/4以下であることを特徴とする桁構造体。
A girder structure to which a bending load is applied,
A metal member formed of a metal material;
A composite material member that is joined to the metal member, has a longitudinal elastic modulus different from that of the metal member, and is formed of a fiber reinforced resin composite material,
In the metal member and the composite material member, a member having a larger longitudinal elastic modulus is disposed on the compression side, and a member having a smaller longitudinal elastic modulus is disposed on the tension side ,
The amount of deviation between the position of the joint between the metal member and the composite material member and the position of the neutral shaft is ¼ or less of the total height of the metal member and the composite material member. A digit structure.
請求項に記載の桁構造体であって、
前記接合部の位置と、中立軸の位置とが同じであることを特徴とする桁構造体。
The girder structure according to claim 1 ,
The position of the said junction part and the position of a neutral axis are the same, The girder structure characterized by the above-mentioned.
JP2015192604A 2015-09-30 2015-09-30 Girder structure Active JP6558185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192604A JP6558185B2 (en) 2015-09-30 2015-09-30 Girder structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192604A JP6558185B2 (en) 2015-09-30 2015-09-30 Girder structure

Publications (2)

Publication Number Publication Date
JP2017066700A JP2017066700A (en) 2017-04-06
JP6558185B2 true JP6558185B2 (en) 2019-08-14

Family

ID=58494191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192604A Active JP6558185B2 (en) 2015-09-30 2015-09-30 Girder structure

Country Status (1)

Country Link
JP (1) JP6558185B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6822275B2 (en) * 2017-03-30 2021-01-27 株式会社Ihi Girder structure
JP6502416B2 (en) * 2017-04-18 2019-04-17 サノヤス造船株式会社 Ship structure and method of making the same
CN113031375B (en) * 2021-03-18 2022-09-30 深圳市火乐科技发展有限公司 Optical assembly and projection equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101732A (en) * 1992-09-17 1994-04-12 Kobe Steel Ltd Shock absorbing member for composite structure
JP3724663B2 (en) * 1995-11-22 2005-12-07 東レ株式会社 FRP profile
JP2003129611A (en) * 2001-08-01 2003-05-08 Kobe Steel Ltd Flexural strength member
GB2384461B (en) * 2002-01-28 2005-03-16 Intelligent Engineering Improved structural sandwich plate members
JP4030003B2 (en) * 2002-03-26 2008-01-09 東プレ株式会社 Hollow panel structure
JP2004060406A (en) * 2002-07-31 2004-02-26 Nippon Oil Corp Structural member made of fiber reinforced plastics (frp)
JP5265268B2 (en) * 2008-07-31 2013-08-14 学校法人鶴学園 Steel structure reinforcement structure and steel structure reinforcement method
JP5942497B2 (en) * 2012-03-13 2016-06-29 Jfeスチール株式会社 Steel structure reinforcement method
JP3181380U (en) * 2012-11-22 2013-01-31 国立大学法人埼玉大学 Bridge

Also Published As

Publication number Publication date
JP2017066700A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
EP2108083B1 (en) Reinforced blade for wind turbine
RU2518927C2 (en) Structure made of composite materials, aircraft main wing and body containing said structure
CA2763113C (en) Structural component and production method for a structural component
JP6558185B2 (en) Girder structure
CN106029346B (en) The manufacturing method of composite material structure body, the aviation machine wing with the composite material structure body and aviation machine fuselage and composite material structure body
JP5548516B2 (en) Fiber reinforced plastic spring
JP6004669B2 (en) Composite structure, aircraft wing and aircraft fuselage provided with the same, and method for manufacturing composite structure
US9878225B2 (en) Golf club shaft and golf club using the same
US7850118B2 (en) Structural element, method for manufacturing a structural element and use of a structural element for an aircraft hull
JP2012035442A (en) Fiber-reinforced resin member, and fastening structure
CN102186722A (en) Structural element for reinforcing a fuselage of an aircraft
US20160194071A1 (en) Joint, and aircraft structure
JP2010208180A (en) Frp sandwich panel
JP7090409B2 (en) Composite structure
JP6961984B2 (en) Column structure
CN109094820A (en) Ring plate stove formula composite material main force support structure part
JP6822275B2 (en) Girder structure
JP2012202454A (en) Fiber-reinforced plastic spring
Dominguez Ruiz et al. Superstructure design: combination of fiberglass panel and tubular structure with naval steel hull
JP2007075826A (en) Welded joint structure for reducing fatigue damage
JP4971645B2 (en) Body structure and vehicle
JP5415602B2 (en) Fatigue reduction welded joint structure
JP7112950B2 (en) Composite design methods and composites
JP4893328B2 (en) FRP reinforcing method for structure and reinforcing structure for structure
EP3663196A1 (en) Landing gear for rotary-wing aircraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190701

R151 Written notification of patent or utility model registration

Ref document number: 6558185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151