JP2007075826A - Welded joint structure for reducing fatigue damage - Google Patents

Welded joint structure for reducing fatigue damage Download PDF

Info

Publication number
JP2007075826A
JP2007075826A JP2005263129A JP2005263129A JP2007075826A JP 2007075826 A JP2007075826 A JP 2007075826A JP 2005263129 A JP2005263129 A JP 2005263129A JP 2005263129 A JP2005263129 A JP 2005263129A JP 2007075826 A JP2007075826 A JP 2007075826A
Authority
JP
Japan
Prior art keywords
joint structure
welded joint
fatigue
putty
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005263129A
Other languages
Japanese (ja)
Inventor
Tatsuaki Sawai
達明 沢井
Osamu Murakishi
治 村岸
Koji Dojo
康二 道場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2005263129A priority Critical patent/JP2007075826A/en
Publication of JP2007075826A publication Critical patent/JP2007075826A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welded joint structure joined by fillet-welding a main plate and a rib plate, which welded joint structure can improve its fatigue strength by reducing the stress concentration produced at the toe portion of welding. <P>SOLUTION: Putty layers 4 are laminated on the whole surface of the welded metal 3 of the fillet welding and are stuck to the main plate 1 and the rib plate 2 so as to form concave cylindrical surfaces toward the welded portions. By this method, the putty layers can share the load applied to the fillet welded portion, and also can relax the stress concentration produced at the toe portion of welding. As a result, the fatigue strength of the welded joint structure can be improved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、十字継手、T継手、角継手などの金属材料の溶接継手構造に関し、特に隅肉継手部の疲労強度を向上させる疲労低減型溶接継手構造に関する。   The present invention relates to a welded joint structure of a metal material such as a cruciform joint, a T joint, and a corner joint, and more particularly to a fatigue reduction type welded joint structure that improves the fatigue strength of a fillet joint.

鋼やアルミ合金等の金属材料を用いた構造物の製造に隅肉溶接を用いた継手構造が広く用いられている。しかし、従来の隅肉溶接により接合した継手構造では、母材に引張応力や曲げ応力が掛かると隅肉溶接の止端部に応力が集中するため、繰り返し応力が掛かることにより溶接止端部に疲労亀裂が生じやすく、溶接部の疲労強度は母材に比べて著しく低くなっている。このため、構造物全体の疲労強度が溶接継手部に支配され、母材の特性を生かし切ることができなかった。   A joint structure using fillet welding is widely used for manufacturing structures using metal materials such as steel and aluminum alloys. However, in joint structures joined by conventional fillet welding, if tensile stress or bending stress is applied to the base metal, stress concentrates on the toe of the fillet weld, so that repeated stress is applied to the weld toe. Fatigue cracks are likely to occur, and the fatigue strength of the weld is significantly lower than that of the base material. For this reason, the fatigue strength of the entire structure is dominated by the welded joint, and the characteristics of the base material cannot be fully utilized.

溶接部の疲労強度を向上するためには、母材の板厚を増して応力に対する母材の歪みを軽減し、溶接止端部に掛かる応力を低下させる必要がある。しかし、構造物全体の設計強度に対して遙かに強度の高い母材を用いなければならず、非常に不経済な材料設計となる。   In order to improve the fatigue strength of the welded portion, it is necessary to increase the thickness of the base material to reduce the strain of the base material against the stress and to reduce the stress applied to the weld toe. However, it is necessary to use a base material whose strength is much higher than the design strength of the entire structure, which makes the material design very uneconomical.

そこで、従来は、溶接止端部をグラインダー等により切削、研削処理したり、TIGやプラズマなどにより再溶融して止端部を滑らかに再加工して止端部への応力集中を軽減し、疲労強度の向上を図っていた。しかし、これらの方法は、構造物形成後の溶接金属を加工する必要があるため多大な労力と手間を要し、コスト負荷が高くなっている。   Therefore, conventionally, the weld toe is cut and ground with a grinder or the like, or remelted with TIG or plasma to rework the toe smoothly to reduce stress concentration on the toe, The fatigue strength was improved. However, these methods need to process the weld metal after the formation of the structure, and thus require a lot of labor and labor, and the cost load is high.

また、溶接止端部への応力集中を軽減する方法として特許文献1に溶接部疲労強度向上方法が開示されている。この開示発明を説明する概略断面図を図9に示した。この開示発明は、主板90とリブ板91を隅肉溶接により接合した溶接継手において、母材90に対して、弾性率が5%〜150%、(弾性率)×(厚み)が1%〜50%となる繊維強化プラスチック(FRP)92を隅肉溶接の溶接止端部93を被覆するように母材90と隅肉溶接部91に固着し、溶接止端部93に掛かる応力集中をFRPの作用により分散させるものである。   Further, Patent Document 1 discloses a method for improving weld fatigue strength as a method for reducing stress concentration on the weld toe. A schematic cross-sectional view illustrating the disclosed invention is shown in FIG. In this disclosed invention, in a welded joint in which a main plate 90 and a rib plate 91 are joined by fillet welding, the elastic modulus is 5% to 150% and (elastic modulus) × (thickness) is 1% to the base material 90. 50% fiber reinforced plastic (FRP) 92 is fixed to the base material 90 and fillet weld 91 so as to cover the weld toe 93 of fillet weld, and the stress concentration applied to the weld toe 93 is FRP. It is dispersed by the action of.

この方法により溶接止端部への応力集中を分散し、隅肉溶接継手の疲労強度を向上させることができる。しかし、開示発明は、溶接止端部への応力集中のみに着目して発明された技術であり、溶接部に掛かる応力の総量を低下させるものでないため、効果が限定的であった。   This method can disperse the stress concentration on the weld toe and improve the fatigue strength of the fillet welded joint. However, the disclosed invention is a technique invented focusing only on the stress concentration at the weld toe, and does not reduce the total amount of stress applied to the welded portion, and thus has a limited effect.

特開平8−243778号公報JP-A-8-243778

本発明が解決しようとする課題は、金属材料の継手構造において、隅肉溶接部の疲労強度を向上させることができる継手構造を提供することである。   The problem to be solved by the present invention is to provide a joint structure capable of improving the fatigue strength of a fillet weld in a joint structure of a metal material.

上記課題を解決するため、本発明の疲労低減型溶接継手構造は、隅肉溶接により主板にリブ材を接合する溶接継手構造において、隅肉溶接部を被覆し、主板およびリブ板に固着してパテ層を積層し、パテ層が隅肉溶接部の溶接止端部への応力集中を緩和すると共に隅肉溶接部に掛かる応力を分担して負担することを特徴とする。   In order to solve the above problems, the fatigue-reducing welded joint structure of the present invention is a welded joint structure in which a rib material is joined to a main plate by fillet welding, covers the fillet welded portion, and is fixed to the main plate and the rib plate. The putty layer is laminated, and the putty layer alleviates stress concentration on the weld toe of the fillet welded portion and shares and bears the stress applied to the fillet welded portion.

本発明の疲労低減型溶接継手構造によれば、隅肉溶接の止端部に集中する応力の流れをパテ層に分散して応力集中を緩和すると共に、従来隅肉溶接部に係っていた応力の一部をパテ層が分担し、隅肉溶接部に流れる応力を軽減することにより、溶接継手の疲労強度を向上させることができる。   According to the fatigue-reducing welded joint structure of the present invention, the stress flow concentrated on the toe portion of fillet weld is dispersed in the putty layer to alleviate the stress concentration, and related to the conventional fillet welded portion. Part of the stress is shared by the putty layer, and the fatigue strength of the welded joint can be improved by reducing the stress flowing through the fillet weld.

パテ層はプラスチックパテなど、主板およびリブ板に対して接着性がよく剛性の高い材料で形成する。パテ層のヤング率が主板およびリブ板に対して著しく低いと、パテ層が隅肉溶接部に掛かる応力を十分に負担することができなくなるため、例えば比較的剛性が高いエポキシ系パテを用いたり、強化用繊維が混練されたパテ材を用いるのが好ましい。なお、強化用繊維として、ガラス繊維、炭素繊維、アラミド繊維、鉄繊維などを利用することができる。
また、高分子パテ材に金属粉を混合した、例えば鉄パテなどのプラスチックメタルパテを用いると、パテ層の表面の質感が主板やリブ板の質感に近くなり仕上がりが良好である。例えばエポキシ系パテに鉄粉を混練したパテ材(商品名デブコンA(ITWインダストリー株式会社)など)が好適である。
The putty layer is formed of a material having high adhesion and high rigidity to the main plate and the rib plate such as a plastic putty. If the Young's modulus of the putty layer is significantly lower than that of the main plate and rib plate, the putty layer cannot sufficiently bear the stress applied to the fillet welds. For example, an epoxy putty with relatively high rigidity is used. It is preferable to use a putty material in which reinforcing fibers are kneaded. In addition, glass fiber, carbon fiber, aramid fiber, iron fiber, etc. can be utilized as the reinforcing fiber.
Moreover, when a plastic metal putty such as an iron putty, for example, in which metal powder is mixed with a polymer putty material, the texture of the surface of the putty layer is close to the texture of the main plate or rib plate, and the finish is good. For example, a putty material (trade name Debcon A (ITW Industry Co., Ltd.) or the like) in which iron powder is kneaded with an epoxy type putty is suitable.

なお、パテ層の表面は平面や曲面など任意の形状にすることができるが、表面を隅肉溶接部に向かって凹の円筒面にすると、パテ層の端部での応力集中を緩和できると共に、溶接部での水の溜まりを防止でき、仕上がりが美しくなる等の利点があり非常に好ましい。また、例えば双曲面にしても同様の効果が得られる。   The surface of the putty layer can be any shape such as a flat surface or curved surface, but if the surface is a concave cylindrical surface toward the fillet weld, the stress concentration at the end of the putty layer can be reduced. It is very preferable because there are advantages such as prevention of water accumulation at the welded portion and beautiful finish. Further, for example, a similar effect can be obtained even when a hyperboloid is used.

隅肉溶接部に積層するパテ層の厚さは任意である。しかし、隅肉溶接部に掛かる応力を軽減するにはパテ層で応力を負担する必要があるため、一定程度以上の厚さが必要になる。例えば表面を円筒面とした場合は、表面の曲率半径が主板の板厚の1倍以上でなくてはならない。また、パテ層の厚みに対して疲労軽減効果が飽和すること、構造物が無用に大型化することなどから、面の曲率半径を主板の板厚の20倍程度以下にするのが好ましい。   The thickness of the putty layer laminated on the fillet weld is arbitrary. However, in order to reduce the stress applied to the fillet weld, it is necessary to bear the stress in the putty layer, so a thickness of a certain level or more is required. For example, when the surface is a cylindrical surface, the curvature radius of the surface must be at least one times the plate thickness of the main plate. In addition, it is preferable that the radius of curvature of the surface is about 20 times or less the plate thickness of the main plate because the fatigue reduction effect is saturated with respect to the thickness of the putty layer and the structure is unnecessarily enlarged.

本発明の疲労低減型溶接継手構造は、パテ層の内部にパテ層を形成するパテ材より剛性が高い補強部材を埋設すると、より高い疲労低減効果が得られる。
特に主板やリブ板のヤング値が高い場合は、パテ材のみでパテ層を形成したときにパテ層の剛性が不足し、隅肉溶接部に掛かる応力をパテ層が十分に分担できなくなることから、所定の疲労低減効果が得られない可能性がある。そこで、パテ層の内部に剛性の高い補強部材を埋設し、補強部材が補佐的に応力を負担するようにすると良い。
In the fatigue-reducing welded joint structure of the present invention, when a reinforcing member having higher rigidity than the putty material forming the putty layer is embedded in the putty layer, a higher fatigue reduction effect is obtained.
Especially when the Young's value of the main plate or rib plate is high, when the putty layer is formed only with the putty material, the putty layer lacks rigidity, and the putty layer cannot sufficiently share the stress applied to the fillet weld. The predetermined fatigue reduction effect may not be obtained. Therefore, it is preferable to embed a highly rigid reinforcing member inside the putty layer so that the reinforcing member bears a stress in a supplemental manner.

例えば補強部材を鋼板などの板材とし、隅肉溶接部の表面に平行に設置することができる。また、補強部材を線材とし、主板とリブ板の間に掛かる圧縮応力や引張応力に抗する方向に配置しても良い。補強部材を線材とした場合、主板とリブ板の対向する面を掛け渡す方向に線材を配するのが効果的である。必要に応じて多数の線材を並べて配しても良い。しかし、施工上困難である場合は、複数の線材を、主板とリブ板の交線に平行に、線材と線材が接するよう密に埋設し、線材の直径方向への圧力に対する抗力を発生させて圧縮応力に抵抗できるようにしても良い。
補強部材の材質や配置姿勢は主板とリブ板に掛かる応力の方向や強度等に応じて適宜選択すればよい。
For example, the reinforcing member can be a plate material such as a steel plate and can be installed in parallel to the surface of the fillet weld. Further, the reinforcing member may be a wire, and may be disposed in a direction against a compressive stress or a tensile stress applied between the main plate and the rib plate. When the reinforcing member is a wire, it is effective to arrange the wire in a direction that spans the opposing surfaces of the main plate and the rib plate. A large number of wires may be arranged side by side as necessary. However, if it is difficult to construct, embed multiple wires in close contact with the crossing line of the main plate and rib plate so that the wire and wire are in contact with each other, and generate resistance against the pressure in the diameter direction of the wire. It may be possible to resist compressive stress.
What is necessary is just to select suitably the material and arrangement | positioning attitude | position of a reinforcement member according to the direction of the stress concerning a main board and a rib board, intensity | strength, etc. FIG.

また、パテ層の表面を補強板で覆って補強層を形成することでパテ層の応力負担を補助しても良い。補強層をパテ層の全面に密着させて積層する。この形態の溶接継手構造では、補強層がパテ層に掛かる応力の一部を補佐的に負担し、パテ層と共に隅肉溶接部に掛かる応力集中を緩和する。
補強層には繊維強化プラスチック(FRP)シートやガラス繊維強化プラスチック(GFRP)シートなどを用いることができる。
Further, the stress load of the putty layer may be assisted by covering the surface of the putty layer with a reinforcing plate to form a reinforcing layer. A reinforcing layer is laminated in close contact with the entire surface of the putty layer. In the welded joint structure of this embodiment, the reinforcing layer bears a part of the stress applied to the putty layer and relaxes the stress concentration applied to the fillet welded portion together with the putty layer.
As the reinforcing layer, a fiber reinforced plastic (FRP) sheet, a glass fiber reinforced plastic (GFRP) sheet, or the like can be used.

以上のように本発明の疲労低減型溶接継手構造によれば、隅肉溶接部の上面に積層したパテ層が、隅肉溶接部にかかる応力集中を緩和し、溶接止端部の応力疲労を軽減して継手構造の疲労強度を向上することができる。したがって、溶接部の疲労設計荷重を上げることができ、母材の軽量化、低コスト化等による溶接構造物の品質向上を図ることができる。
本発明の疲労低減型溶接継手構造は、例えば自動車やオートバイなどの比較的小型の構造物から、橋梁などの大型構造物まで幅広い分野の溶接構造物に適用することができる。
また、本発明の溶接継手構造は、特に既設構造体に適用するときや現場施工が必要なときに、簡単な道具を使って容易に施工ができ、電源装置などを必要とせず、グラインダー処理や肉盛溶接など他の施工法と比較して、大きなメリットがある。
As described above, according to the fatigue-reducing welded joint structure of the present invention, the putty layer laminated on the upper surface of the fillet weld zone relieves stress concentration on the fillet weld portion, and stress fatigue of the weld toe portion is reduced. This can reduce the fatigue strength of the joint structure. Therefore, the fatigue design load of the welded portion can be increased, and the quality of the welded structure can be improved by reducing the weight and cost of the base material.
The fatigue-reducing welded joint structure of the present invention can be applied to welded structures in a wide range of fields from relatively small structures such as automobiles and motorcycles to large structures such as bridges.
In addition, the welded joint structure of the present invention can be easily constructed using a simple tool, particularly when applied to an existing structure or when on-site construction is required. Compared to other construction methods such as overlay welding, there are significant advantages.

以下、図面を用いて本発明の疲労低減型溶接継手構造の最良の形態について詳細に説明する。   Hereinafter, the best mode of a fatigue reduction type welded joint structure of the present invention will be described in detail with reference to the drawings.

図1は本実施例の疲労低減型溶接継手構造の施工例を示す概念斜視図である。図1では十字継手に施工した例を示した。主板1およびリブ板2が溶接金属3により十字に接合している。本実施例の疲労低減型溶接継手構造は、隅肉溶接の溶接金属3にパテ層4を積層することで成る。パテ層4は溶接金属3の全面を被覆し、溶接金属3および主板1とリブ板2に固着して積層される。パテ層4の上面は任意の形状でよいが、本実施例では溶接部に向かって凹の円筒面とした。   FIG. 1 is a conceptual perspective view showing a construction example of the fatigue reduction type welded joint structure of the present embodiment. FIG. 1 shows an example of construction on a cross joint. The main plate 1 and the rib plate 2 are joined to each other by a weld metal 3. The fatigue reduction type welded joint structure of the present embodiment is formed by laminating a putty layer 4 on a fillet weld metal 3. The putty layer 4 covers the entire surface of the weld metal 3 and is adhered and laminated to the weld metal 3 and the main plate 1 and the rib plate 2. Although the upper surface of the putty layer 4 may have an arbitrary shape, in this embodiment, it is a concave cylindrical surface toward the weld.

以下にパテ層4を施工する手順を示す。まず、溶接金属3の表面をアセトンで拭いて脱脂する。続いて、主剤と硬化剤を混練したパテ材を溶接金属3に盛りつける。その後、図2に示したように、目的の曲率半径を持つ円柱形の型材20をパテ材に押しつけ、24時間固定した後、型材を外して完成させる。
型材は木材の表面にフッ素樹脂シート21を貼付したものを用いた。なお、図2では参考として曲率半径20mmの型材20と曲率半径25mmの型材22の2種類の型材を使用した状態を図示した。
The procedure for constructing the putty layer 4 is shown below. First, the surface of the weld metal 3 is degreased by wiping with acetone. Subsequently, a putty material obtained by kneading the main agent and the curing agent is placed on the weld metal 3. After that, as shown in FIG. 2, a cylindrical mold member 20 having a desired radius of curvature is pressed against the putty member, fixed for 24 hours, and then removed to complete.
As the mold material, a material obtained by attaching a fluororesin sheet 21 to the surface of wood was used. FIG. 2 shows a state in which two types of mold materials, a mold material 20 having a curvature radius of 20 mm and a mold material 22 having a curvature radius of 25 mm, are used as a reference.

図3に他の形態の疲労低減型溶接継手構造の施工例を表す概念斜視図を示した。図中、右上部の溶接継手構造のみを図示し、他については省略してある。本実施例では、溶接金属30の上面に盛られたパテ層31に、両端部が屈曲した鋼板32が溶接金属30の表面に平行に埋設されている。本実施例の溶接継手構造は、溶接金属30の表面を脱脂して少量のパテ材を盛り、鋼板32を載置した後、実施例1と同様にパテ層31を形成する。形成されたパテ層31の曲率半径は25mmとなっている。   The conceptual perspective view showing the construction example of the fatigue reduction type welded joint structure of another form in FIG. 3 was shown. In the figure, only the welded joint structure in the upper right part is shown, and the others are omitted. In this embodiment, a steel plate 32 having both ends bent is embedded in a putty layer 31 stacked on the upper surface of the weld metal 30 in parallel with the surface of the weld metal 30. In the welded joint structure of the present embodiment, the surface of the weld metal 30 is degreased to deposit a small amount of putty material, and after placing the steel plate 32, the putty layer 31 is formed in the same manner as in the first embodiment. The curvature radius of the formed putty layer 31 is 25 mm.

図4に第3の形態の疲労低減型溶接継手構造の施工例を表す概念斜視図を示した。図中、右上部の溶接継手構造のみを図示し、他については省略してある。溶接金属40にパテ層41が形成されており、さらにガラス繊維強化プラスチックシート(GFRPシート)42が積層されている。実施例1と同様に溶接金属40にパテ材を盛りつけた後、型材を押圧して仮成型し、GFRPシート42を載置して型材で圧着して施工した。本実施例では、パテ層41の曲率半径は20mmとなっている。   The conceptual perspective view showing the construction example of the fatigue reduction type welded joint structure of a 3rd form was shown in FIG. In the figure, only the welded joint structure in the upper right part is shown, and the others are omitted. A putty layer 41 is formed on the weld metal 40, and a glass fiber reinforced plastic sheet (GFRP sheet) 42 is further laminated. After putting the putty material on the weld metal 40 in the same manner as in Example 1, the mold material was pressed and temporarily molded, and the GFRP sheet 42 was placed and crimped with the mold material. In this embodiment, the radius of curvature of the putty layer 41 is 20 mm.

以下に、上記実施例の疲労低減型溶接継手構造の疲労低減効果を示す。疲労低減効果は、主板上の12点に歪みゲージを配置し4点曲げ治具により曲げ圧力を掛けて、歪みゲージの出力を計測することで測定した。
図5に歪みゲージの配置図を示した。主板50の上面および下面に、主板50の中心線上および主板50の両端部からそれぞれ10mm、リブ板51の両側面と主板50の交線から10mmの位置に計12個の歪みゲージ52を設置した。また、図6に4点曲げ治具の配置図を示した。主板60の下面にはリブ板61の中心からそれぞれ50mmの位置に、主板60の上面にはリブ板61の中心からそれぞれ110mmの位置に治具62を配し、上下から荷重を掛けて主板61に曲げ応力を負荷した。
Below, the fatigue reduction effect of the fatigue reduction type welded joint structure of the said Example is shown. The fatigue reduction effect was measured by placing strain gauges at 12 points on the main plate, applying bending pressure with a 4-point bending jig, and measuring the strain gauge output.
FIG. 5 shows a layout diagram of strain gauges. A total of twelve strain gauges 52 are installed on the upper and lower surfaces of the main plate 50 on the center line of the main plate 50 and 10 mm from both ends of the main plate 50 and 10 mm from the intersecting line of both side surfaces of the rib plate 51 and the main plate 50. . Further, FIG. 6 shows a layout diagram of a four-point bending jig. A jig 62 is disposed on the lower surface of the main plate 60 at a position 50 mm from the center of the rib plate 61, and a jig 62 is disposed on the upper surface of the main plate 60 at a position of 110 mm from the center of the rib plate 61. Bending stress was applied to the.

図7に上記の測定具を用いて測定した試験結果を示す。4点曲げ治具の圧力を最大荷重200kgfまで2サイクル漸増、漸減して負荷を行い、12個の歪みゲージで測定される出力を平均したものを歪みの指標として用いた。施工後の歪み値を施工前の歪み値で除したものを歪み低減率とし、歪み低減率の3乗の逆数を寿命増加予測値とした。
また、本試験では、パテ材としてエポキシ系パテに鉄粉を混練した鉄パテ(商品名:デブコンA)を用いた。
FIG. 7 shows the test results measured using the above measuring tool. The load was applied by gradually increasing and decreasing the pressure of the 4-point bending jig up to a maximum load of 200 kgf for 2 cycles, and the average of the outputs measured by 12 strain gauges was used as an index of strain. A value obtained by dividing the strain value after construction by the strain value before construction was defined as the strain reduction rate, and the inverse of the cube of the strain reduction rate was defined as the predicted increase in life.
In this test, an iron putty (trade name: Devcon A) in which iron powder was kneaded with an epoxy-based putty was used as a putty material.

図7に示されている通り、パテ層をR20mmとした際に継手構造の寿命が1.6倍になっており、パテ層をR25mmにするとさらに寿命が長くなっている。また、R25mmのパテ層に鋼板を埋設することでパテ材のみの場合に比べて寿命が1.2倍になり、R20mmのパテ層にGFRPシートを積層することでパテ材のみの場合に比べて寿命が1.4倍になっている。   As shown in FIG. 7, when the putty layer is R20 mm, the life of the joint structure is 1.6 times longer, and when the putty layer is R25 mm, the life is further increased. In addition, by embedding a steel plate in the R25mm putty layer, the life is 1.2 times longer than in the case of using only the putty material. Life is 1.4 times longer.

一方、特に隅肉溶接の止端部に係る応力集中を緩和する効果について算出した結果を図8に示した。本試験では、パテ層の曲率半径を変化させた際の板曲げ負荷および引張り負荷に対する応力緩和効果を、施工前を1とした発生応力の比として示した。図中、板曲げ負荷は主板に対して板厚方向に圧力を掛けた際に掛かる曲げモーメントを表し、引張り負荷は主板の長手方向に掛かる引張力を表している。
なお、主板およびリブ板の板厚を6mm、ヤング率200GPa、溶接金属の足長を主板側、リブ板側それぞれ6mm、溶接金属止端部の曲率半径を0.3mm、パテ材のヤング率を6GPaとしてシミュレーションにより算出した。
On the other hand, FIG. 8 shows the result of calculation regarding the effect of relieving the stress concentration related to the toe portion of fillet welding. In this test, the stress relaxation effect with respect to the plate bending load and the tensile load when the radius of curvature of the putty layer is changed is shown as a ratio of the generated stress with 1 before construction. In the figure, the plate bending load represents the bending moment applied when pressure is applied to the main plate in the plate thickness direction, and the tensile load represents the tensile force applied in the longitudinal direction of the main plate.
The plate thickness of the main plate and rib plate is 6 mm, Young's modulus is 200 GPa, the foot length of the weld metal is 6 mm for the main plate side and the rib plate side, the curvature radius of the weld metal toe is 0.3 mm, and the Young's modulus of the putty material is It was calculated by simulation as 6 GPa.

図中に示されている通り、パテ層の曲率半径を18mm(主板の板厚tの3倍)としたときに引張り負荷について約0.9倍、板曲げ負荷について約0.75倍の応力集中緩和効果がある。パテ層の曲率半径を4t、5tに増加すると、板曲げ負荷について応力集中の緩和効果が劇的に増加しており、曲率半径5tとした場合は止端部での応力集中が施工前の半分以下になっている。
また、図示していないが、パテ層の厚さを一定とし、パテ材のヤング率を変化させる試験においても、パテ材のヤング率を増すことで引張り負荷、板曲げ負荷の双方について応力集中の緩和効果が増加するとの結果が得られている。したがって、例えばガラス繊維、炭素繊維、アラミド繊維、鉄繊維などを混練した強化用繊維混練パテを用いたり、鋼板や鋼線等の補強部材を埋設するなどしてパテ層のヤング率を増加させると効果的である。
As shown in the figure, when the radius of curvature of the putty layer is 18 mm (three times the plate thickness t of the main plate), the stress is about 0.9 times for the tensile load and about 0.75 times for the plate bending load. Concentration relaxation effect. When the radius of curvature of the putty layer is increased to 4t and 5t, the stress concentration mitigating effect on the plate bending load is dramatically increased. When the radius of curvature is 5t, the stress concentration at the toe is half that before construction. It is as follows.
Although not shown, even in a test in which the putty layer thickness is constant and the Young's modulus of the putty material is changed, the stress concentration is increased for both tensile load and plate bending load by increasing the Young's modulus of the putty material. The result that the relaxation effect increases is obtained. Therefore, when the Young's modulus of the putty layer is increased by using, for example, a reinforcing fiber kneading putty kneaded with glass fiber, carbon fiber, aramid fiber, iron fiber, or by embedding a reinforcing member such as a steel plate or steel wire. It is effective.

以上のように、本実施例の疲労低減型溶接継手構造によれば、隅肉溶接部に積層したパテ層が隅肉溶接部に掛かる応力を軽減し、かつ溶接止端部に掛かる応力集中を緩和するため、繰り返し応力が掛かることによる隅肉溶接部の疲労亀裂を阻止することができ、溶接継手の疲労寿命を向上することができる。
したがって、溶接継手構造の疲労設計荷重を上げることができ、構造物の軽量化、低コスト化を図ることができる。
本実施例の疲労低減型溶接継手構造は、安価な材料と簡易な施工で疲労低減効果を得ることができるため、広範な工業分野に導入することができる。
As described above, according to the fatigue reduction type welded joint structure of this example, the putty layer laminated on the fillet weld part reduces the stress applied to the fillet weld part, and the stress concentration applied to the weld toe part is reduced. Since it relaxes, the fatigue crack of the fillet welded part due to repeated stress can be prevented, and the fatigue life of the welded joint can be improved.
Therefore, the fatigue design load of the welded joint structure can be increased, and the weight and cost of the structure can be reduced.
Since the fatigue reduction type welded joint structure of the present embodiment can obtain a fatigue reduction effect with an inexpensive material and simple construction, it can be introduced into a wide range of industrial fields.

本発明の第1実施例にかかる疲労低減型溶接継手構造の施工例を示す概念斜視図である。It is a conceptual perspective view which shows the construction example of the fatigue reduction type welded joint structure concerning 1st Example of this invention. 本発明の第1実施例にかかる施工法を説明する斜視図である。It is a perspective view explaining the construction method concerning the 1st example of the present invention. 本発明の第2の形態にかかる疲労低減型溶接継手構造の施工例を表す概念斜視図である。It is a conceptual perspective view showing the construction example of the fatigue reduction type welded joint structure concerning the 2nd form of this invention. 本発明の第3の形態にかかる疲労低減型溶接継手構造の施工例を表す概念斜視図である。It is a conceptual perspective view showing the construction example of the fatigue reduction type welded joint structure concerning the 3rd form of this invention. 本発明の効果を説明する試験における歪みゲージの配置図である。It is an arrangement view of strain gauges in a test for explaining the effect of the present invention. 本発明の効果を説明する試験における4点曲げ治具の配置図であるIt is an arrangement view of a four-point bending jig in a test for explaining the effect of the present invention. 本発明の効果を説明する試験の試験結果を示す表である。It is a table | surface which shows the test result of the test explaining the effect of this invention. 本実施例の疲労低減型溶接継手構造において応力集中を緩和する効果を示すグラフである。It is a graph which shows the effect which relieves stress concentration in the fatigue reduction type welded joint structure of a present Example. 従来の技術を説明する概略断面図である。It is a schematic sectional drawing explaining the prior art.

符号の説明Explanation of symbols

1、50、60、90 主板
2、51、61、91 リブ板
3、30、40 溶接金属
4、31、41、 パテ層
20、22 型材
21 フッ素樹脂シート
32 鋼板
42 GFRPシート
52 歪みゲージ
62 治具
92 FRP
93 溶接止端部
1, 50, 60, 90 Main plate 2, 51, 61, 91 Rib plate 3, 30, 40 Weld metal 4, 31, 41, Putty layer 20, 22 Mold material 21 Fluorine resin sheet 32 Steel plate 42 GFRP sheet 52 Strain gauge 62 Healing Tool 92 FRP
93 Weld toe

Claims (15)

隅肉溶接により主板とリブ板を接合する溶接継手構造において、該隅肉溶接部を被覆し該主板および該リブ板に固着してパテ層を積層し、該パテ層が該隅肉溶接部の溶接止端部への応力集中を緩和すると共に該隅肉溶接部に掛かる応力を分担して負担することを特徴とする疲労低減型溶接継手構造。   In a welded joint structure in which a main plate and a rib plate are joined by fillet welding, the fillet welded portion is covered and laminated to the main plate and the rib plate, and a putty layer is laminated. A fatigue-reducing welded joint structure characterized in that stress concentration on a weld toe is alleviated and stress applied to the fillet weld is shared and borne. 前記パテ層がプラスチックパテで形成されることを特徴とする請求項1に記載の疲労低減型溶接継手構造   The fatigue-reducing welded joint structure according to claim 1, wherein the putty layer is formed of a plastic putty. 前記パテ層がエポキシ系パテで形成されることを特徴とする請求項2に記載の疲労低減型溶接継手構造。   The fatigue-reducing welded joint structure according to claim 2, wherein the putty layer is formed of an epoxy putty. 前記パテ層がプラスチックパテ材に金属粉を混合したプラスチックスチールパテで形成されることを特徴とする請求項2または3に記載の疲労低減型溶接継手構造。   4. The fatigue-reducing welded joint structure according to claim 2, wherein the putty layer is formed of a plastic steel putty in which metal powder is mixed with a plastic putty material. 前記パテ層を形成するパテ材に強化用繊維が混練されていることを特徴とする請求項1から4に記載の疲労低減型溶接継手構造。   5. The fatigue-reducing welded joint structure according to claim 1, wherein reinforcing fibers are kneaded in the putty material forming the putty layer. 前記強化用繊維は、ガラス繊維、炭素繊維、アラミド繊維、鉄繊維のいずれかであることを特徴とした請求項5に記載の疲労低減型溶接継手構造。   6. The fatigue-reducing welded joint structure according to claim 5, wherein the reinforcing fiber is one of glass fiber, carbon fiber, aramid fiber, and iron fiber. 前記主板および前記リブ板の交線に垂直に切った断面において前記パテ層の断面形状が表面凹の円弧状であることを特徴とする請求項1から6に記載の疲労低減型溶接継手構造。   7. The fatigue-reducing welded joint structure according to claim 1, wherein a cross-sectional shape of the putty layer is a circular arc with a concave surface in a cross section cut perpendicular to the line of intersection of the main plate and the rib plate. 前記パテ層の断面形状の曲率半径が前記主板の板厚の1倍〜20倍であることを特徴とする請求項7に記載の疲労低減型溶接継手構造。   The fatigue reduction type welded joint structure according to claim 7, wherein a radius of curvature of a cross-sectional shape of the putty layer is 1 to 20 times a plate thickness of the main plate. 前記パテ層の内部に該パテ層を形成するパテ材より剛性が高い補強部材が埋設されていることを特徴とする請求項1から8のいずれかに記載の疲労低減型溶接継手構造。   The fatigue-reducing welded joint structure according to any one of claims 1 to 8, wherein a reinforcing member having higher rigidity than the putty material forming the putty layer is embedded in the putty layer. 前記補強部材が板材であることを特徴とする請求項9に記載の疲労低減型溶接継手構造。   The fatigue-reducing welded joint structure according to claim 9, wherein the reinforcing member is a plate material. 前記補強部材が線材であって、該補強部材が前記主板および前記リブ板の対向する面を掛け渡す向きに配されていることを特徴とする請求項9に記載の疲労低減型溶接継手構造。   The fatigue-reducing welded joint structure according to claim 9, wherein the reinforcing member is a wire, and the reinforcing member is arranged in a direction that spans the opposing surfaces of the main plate and the rib plate. 前記補強部材が線材であって、該補強部材が前記主板および前記リブ板の交線に平行に複数本配されていることを特徴とする請求項9に記載の疲労低減型溶接継手構造。   The fatigue-reducing welded joint structure according to claim 9, wherein the reinforcing member is a wire, and a plurality of the reinforcing members are arranged in parallel to the intersection line of the main plate and the rib plate. 前記パテ層の表面に補強層が積層されていることを特徴とする請求項1から12のいずれかに記載の疲労低減型溶接継手構造。   The fatigue reduction type welded joint structure according to any one of claims 1 to 12, wherein a reinforcing layer is laminated on a surface of the putty layer. 前記補強層が繊維強化プラスチック(FRP)シートであることを特徴とする請求項13に記載の疲労低減型溶接継手構造。   The fatigue-reducing welded joint structure according to claim 13, wherein the reinforcing layer is a fiber reinforced plastic (FRP) sheet. 前記補強層がガラス繊維強化プラスチック(GFRP)シートであることを特徴とする請求項14に記載の疲労低減型溶接継手構造。   The fatigue-reducing welded joint structure according to claim 14, wherein the reinforcing layer is a glass fiber reinforced plastic (GFRP) sheet.
JP2005263129A 2005-09-12 2005-09-12 Welded joint structure for reducing fatigue damage Pending JP2007075826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005263129A JP2007075826A (en) 2005-09-12 2005-09-12 Welded joint structure for reducing fatigue damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005263129A JP2007075826A (en) 2005-09-12 2005-09-12 Welded joint structure for reducing fatigue damage

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012204009A Division JP5415602B2 (en) 2012-09-18 2012-09-18 Fatigue reduction welded joint structure

Publications (1)

Publication Number Publication Date
JP2007075826A true JP2007075826A (en) 2007-03-29

Family

ID=37936639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005263129A Pending JP2007075826A (en) 2005-09-12 2005-09-12 Welded joint structure for reducing fatigue damage

Country Status (1)

Country Link
JP (1) JP2007075826A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000760A (en) * 2006-06-20 2008-01-10 Kawasaki Heavy Ind Ltd Method of forming welded joint structure capable of reducing fatigue damage, and reinforcing resin block
JP2009192142A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Feed water heater
FR2973262A1 (en) * 2011-04-04 2012-10-05 Peugeot Citroen Automobiles Sa Method for corrosion protection of e.g. hollow frame unit of car, involves placing fusible solid products e.g. wax, in hollow body, melting products, and allowing products to cool to freeze corrosion product in gap
CN106112224A (en) * 2016-07-21 2016-11-16 武汉天高熔接股份有限公司 Steel construction U-shaped floor angle welding full penetration technique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296964A (en) * 1986-06-13 1987-12-24 Mitsubishi Heavy Ind Ltd Reinforcing method for welded joint
JPH02280971A (en) * 1989-04-18 1990-11-16 Matsushita Electric Ind Co Ltd Welding joining method of surface treated steel plates
JPH08243778A (en) * 1995-03-07 1996-09-24 Nippon Steel Corp Weld zone fatigue strength improvement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62296964A (en) * 1986-06-13 1987-12-24 Mitsubishi Heavy Ind Ltd Reinforcing method for welded joint
JPH02280971A (en) * 1989-04-18 1990-11-16 Matsushita Electric Ind Co Ltd Welding joining method of surface treated steel plates
JPH08243778A (en) * 1995-03-07 1996-09-24 Nippon Steel Corp Weld zone fatigue strength improvement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000760A (en) * 2006-06-20 2008-01-10 Kawasaki Heavy Ind Ltd Method of forming welded joint structure capable of reducing fatigue damage, and reinforcing resin block
JP4694423B2 (en) * 2006-06-20 2011-06-08 川崎重工業株式会社 Fatigue reduction type weld joint structure forming method and reinforced resin block
JP2009192142A (en) * 2008-02-14 2009-08-27 Hitachi Ltd Feed water heater
FR2973262A1 (en) * 2011-04-04 2012-10-05 Peugeot Citroen Automobiles Sa Method for corrosion protection of e.g. hollow frame unit of car, involves placing fusible solid products e.g. wax, in hollow body, melting products, and allowing products to cool to freeze corrosion product in gap
CN106112224A (en) * 2016-07-21 2016-11-16 武汉天高熔接股份有限公司 Steel construction U-shaped floor angle welding full penetration technique

Similar Documents

Publication Publication Date Title
WO2009002268A1 (en) Method
JP2007075826A (en) Welded joint structure for reducing fatigue damage
Harries et al. Steel-FRP composite structural systems
JP5415602B2 (en) Fatigue reduction welded joint structure
KR101683367B1 (en) Fiber Reinforced Concrete Structure With End Slip Prevention
JPH0528300B2 (en)
JP2007308881A (en) Steel plate floor reinforcing construction method by cf plate
Dawood Fundamental behavior of steel-concrete composite beams strengthened with high modulus carbon fiber reinforced polymer (CFRP) materials
KR101790166B1 (en) Composite Plate Eeinforcement Structure and Construction Method thereof
JP4694423B2 (en) Fatigue reduction type weld joint structure forming method and reinforced resin block
JP2017066700A (en) Girder structure
JP4340256B2 (en) FRP plate with fixing tool
You et al. Fatigue performance of bridge deck reinforced with cost-to-performance optimized GFRP rebar with 900 MPa guaranteed tensile strength
JP4127811B2 (en) Reinforcement method for steel structure
P. Marioli-Riga, GJ Tsamasphyros, GN Kanderakis Design of emergency aircraft repairs using composite patches
JP4680550B2 (en) Method of repairing steel structure with carbon fiber reinforced resin plate, carbon fiber reinforced resin plate used in the method, and steel structure repaired and reinforced
Dawood Bond characteristics and environmental durability of CFRP materials for strengthening steel bridges and structures
Farley Selective reinforcement to enhance the structural performance of metallic compression panels
JP4893328B2 (en) FRP reinforcing method for structure and reinforcing structure for structure
CN111168809A (en) Method for realizing crack resistance of concrete beam component by optimizing ribbed FRP (fiber reinforced Plastic) ribs
JP4885327B1 (en) Steel material repair structure and steel material repair method
Canyurt et al. Pre-stressed adhesive strap joints for thick composite sandwich structures
KR20140124262A (en) Steel Girder reinforced using Fiber Reinforced Polymer
JP2002307585A (en) Frp structural material
JP5772086B2 (en) Reinforced structure of existing concrete slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080905

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110302

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Effective date: 20111125

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20120918

Free format text: JAPANESE INTERMEDIATE CODE: A523