JP2007075826A - Welded joint structure for reducing fatigue damage - Google Patents
Welded joint structure for reducing fatigue damage Download PDFInfo
- Publication number
- JP2007075826A JP2007075826A JP2005263129A JP2005263129A JP2007075826A JP 2007075826 A JP2007075826 A JP 2007075826A JP 2005263129 A JP2005263129 A JP 2005263129A JP 2005263129 A JP2005263129 A JP 2005263129A JP 2007075826 A JP2007075826 A JP 2007075826A
- Authority
- JP
- Japan
- Prior art keywords
- joint structure
- welded joint
- fatigue
- putty
- structure according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
本発明は、十字継手、T継手、角継手などの金属材料の溶接継手構造に関し、特に隅肉継手部の疲労強度を向上させる疲労低減型溶接継手構造に関する。 The present invention relates to a welded joint structure of a metal material such as a cruciform joint, a T joint, and a corner joint, and more particularly to a fatigue reduction type welded joint structure that improves the fatigue strength of a fillet joint.
鋼やアルミ合金等の金属材料を用いた構造物の製造に隅肉溶接を用いた継手構造が広く用いられている。しかし、従来の隅肉溶接により接合した継手構造では、母材に引張応力や曲げ応力が掛かると隅肉溶接の止端部に応力が集中するため、繰り返し応力が掛かることにより溶接止端部に疲労亀裂が生じやすく、溶接部の疲労強度は母材に比べて著しく低くなっている。このため、構造物全体の疲労強度が溶接継手部に支配され、母材の特性を生かし切ることができなかった。 A joint structure using fillet welding is widely used for manufacturing structures using metal materials such as steel and aluminum alloys. However, in joint structures joined by conventional fillet welding, if tensile stress or bending stress is applied to the base metal, stress concentrates on the toe of the fillet weld, so that repeated stress is applied to the weld toe. Fatigue cracks are likely to occur, and the fatigue strength of the weld is significantly lower than that of the base material. For this reason, the fatigue strength of the entire structure is dominated by the welded joint, and the characteristics of the base material cannot be fully utilized.
溶接部の疲労強度を向上するためには、母材の板厚を増して応力に対する母材の歪みを軽減し、溶接止端部に掛かる応力を低下させる必要がある。しかし、構造物全体の設計強度に対して遙かに強度の高い母材を用いなければならず、非常に不経済な材料設計となる。 In order to improve the fatigue strength of the welded portion, it is necessary to increase the thickness of the base material to reduce the strain of the base material against the stress and to reduce the stress applied to the weld toe. However, it is necessary to use a base material whose strength is much higher than the design strength of the entire structure, which makes the material design very uneconomical.
そこで、従来は、溶接止端部をグラインダー等により切削、研削処理したり、TIGやプラズマなどにより再溶融して止端部を滑らかに再加工して止端部への応力集中を軽減し、疲労強度の向上を図っていた。しかし、これらの方法は、構造物形成後の溶接金属を加工する必要があるため多大な労力と手間を要し、コスト負荷が高くなっている。 Therefore, conventionally, the weld toe is cut and ground with a grinder or the like, or remelted with TIG or plasma to rework the toe smoothly to reduce stress concentration on the toe, The fatigue strength was improved. However, these methods need to process the weld metal after the formation of the structure, and thus require a lot of labor and labor, and the cost load is high.
また、溶接止端部への応力集中を軽減する方法として特許文献1に溶接部疲労強度向上方法が開示されている。この開示発明を説明する概略断面図を図9に示した。この開示発明は、主板90とリブ板91を隅肉溶接により接合した溶接継手において、母材90に対して、弾性率が5%〜150%、(弾性率)×(厚み)が1%〜50%となる繊維強化プラスチック(FRP)92を隅肉溶接の溶接止端部93を被覆するように母材90と隅肉溶接部91に固着し、溶接止端部93に掛かる応力集中をFRPの作用により分散させるものである。
Further,
この方法により溶接止端部への応力集中を分散し、隅肉溶接継手の疲労強度を向上させることができる。しかし、開示発明は、溶接止端部への応力集中のみに着目して発明された技術であり、溶接部に掛かる応力の総量を低下させるものでないため、効果が限定的であった。 This method can disperse the stress concentration on the weld toe and improve the fatigue strength of the fillet welded joint. However, the disclosed invention is a technique invented focusing only on the stress concentration at the weld toe, and does not reduce the total amount of stress applied to the welded portion, and thus has a limited effect.
本発明が解決しようとする課題は、金属材料の継手構造において、隅肉溶接部の疲労強度を向上させることができる継手構造を提供することである。 The problem to be solved by the present invention is to provide a joint structure capable of improving the fatigue strength of a fillet weld in a joint structure of a metal material.
上記課題を解決するため、本発明の疲労低減型溶接継手構造は、隅肉溶接により主板にリブ材を接合する溶接継手構造において、隅肉溶接部を被覆し、主板およびリブ板に固着してパテ層を積層し、パテ層が隅肉溶接部の溶接止端部への応力集中を緩和すると共に隅肉溶接部に掛かる応力を分担して負担することを特徴とする。 In order to solve the above problems, the fatigue-reducing welded joint structure of the present invention is a welded joint structure in which a rib material is joined to a main plate by fillet welding, covers the fillet welded portion, and is fixed to the main plate and the rib plate. The putty layer is laminated, and the putty layer alleviates stress concentration on the weld toe of the fillet welded portion and shares and bears the stress applied to the fillet welded portion.
本発明の疲労低減型溶接継手構造によれば、隅肉溶接の止端部に集中する応力の流れをパテ層に分散して応力集中を緩和すると共に、従来隅肉溶接部に係っていた応力の一部をパテ層が分担し、隅肉溶接部に流れる応力を軽減することにより、溶接継手の疲労強度を向上させることができる。 According to the fatigue-reducing welded joint structure of the present invention, the stress flow concentrated on the toe portion of fillet weld is dispersed in the putty layer to alleviate the stress concentration, and related to the conventional fillet welded portion. Part of the stress is shared by the putty layer, and the fatigue strength of the welded joint can be improved by reducing the stress flowing through the fillet weld.
パテ層はプラスチックパテなど、主板およびリブ板に対して接着性がよく剛性の高い材料で形成する。パテ層のヤング率が主板およびリブ板に対して著しく低いと、パテ層が隅肉溶接部に掛かる応力を十分に負担することができなくなるため、例えば比較的剛性が高いエポキシ系パテを用いたり、強化用繊維が混練されたパテ材を用いるのが好ましい。なお、強化用繊維として、ガラス繊維、炭素繊維、アラミド繊維、鉄繊維などを利用することができる。
また、高分子パテ材に金属粉を混合した、例えば鉄パテなどのプラスチックメタルパテを用いると、パテ層の表面の質感が主板やリブ板の質感に近くなり仕上がりが良好である。例えばエポキシ系パテに鉄粉を混練したパテ材(商品名デブコンA(ITWインダストリー株式会社)など)が好適である。
The putty layer is formed of a material having high adhesion and high rigidity to the main plate and the rib plate such as a plastic putty. If the Young's modulus of the putty layer is significantly lower than that of the main plate and rib plate, the putty layer cannot sufficiently bear the stress applied to the fillet welds. For example, an epoxy putty with relatively high rigidity is used. It is preferable to use a putty material in which reinforcing fibers are kneaded. In addition, glass fiber, carbon fiber, aramid fiber, iron fiber, etc. can be utilized as the reinforcing fiber.
Moreover, when a plastic metal putty such as an iron putty, for example, in which metal powder is mixed with a polymer putty material, the texture of the surface of the putty layer is close to the texture of the main plate or rib plate, and the finish is good. For example, a putty material (trade name Debcon A (ITW Industry Co., Ltd.) or the like) in which iron powder is kneaded with an epoxy type putty is suitable.
なお、パテ層の表面は平面や曲面など任意の形状にすることができるが、表面を隅肉溶接部に向かって凹の円筒面にすると、パテ層の端部での応力集中を緩和できると共に、溶接部での水の溜まりを防止でき、仕上がりが美しくなる等の利点があり非常に好ましい。また、例えば双曲面にしても同様の効果が得られる。 The surface of the putty layer can be any shape such as a flat surface or curved surface, but if the surface is a concave cylindrical surface toward the fillet weld, the stress concentration at the end of the putty layer can be reduced. It is very preferable because there are advantages such as prevention of water accumulation at the welded portion and beautiful finish. Further, for example, a similar effect can be obtained even when a hyperboloid is used.
隅肉溶接部に積層するパテ層の厚さは任意である。しかし、隅肉溶接部に掛かる応力を軽減するにはパテ層で応力を負担する必要があるため、一定程度以上の厚さが必要になる。例えば表面を円筒面とした場合は、表面の曲率半径が主板の板厚の1倍以上でなくてはならない。また、パテ層の厚みに対して疲労軽減効果が飽和すること、構造物が無用に大型化することなどから、面の曲率半径を主板の板厚の20倍程度以下にするのが好ましい。 The thickness of the putty layer laminated on the fillet weld is arbitrary. However, in order to reduce the stress applied to the fillet weld, it is necessary to bear the stress in the putty layer, so a thickness of a certain level or more is required. For example, when the surface is a cylindrical surface, the curvature radius of the surface must be at least one times the plate thickness of the main plate. In addition, it is preferable that the radius of curvature of the surface is about 20 times or less the plate thickness of the main plate because the fatigue reduction effect is saturated with respect to the thickness of the putty layer and the structure is unnecessarily enlarged.
本発明の疲労低減型溶接継手構造は、パテ層の内部にパテ層を形成するパテ材より剛性が高い補強部材を埋設すると、より高い疲労低減効果が得られる。
特に主板やリブ板のヤング値が高い場合は、パテ材のみでパテ層を形成したときにパテ層の剛性が不足し、隅肉溶接部に掛かる応力をパテ層が十分に分担できなくなることから、所定の疲労低減効果が得られない可能性がある。そこで、パテ層の内部に剛性の高い補強部材を埋設し、補強部材が補佐的に応力を負担するようにすると良い。
In the fatigue-reducing welded joint structure of the present invention, when a reinforcing member having higher rigidity than the putty material forming the putty layer is embedded in the putty layer, a higher fatigue reduction effect is obtained.
Especially when the Young's value of the main plate or rib plate is high, when the putty layer is formed only with the putty material, the putty layer lacks rigidity, and the putty layer cannot sufficiently share the stress applied to the fillet weld. The predetermined fatigue reduction effect may not be obtained. Therefore, it is preferable to embed a highly rigid reinforcing member inside the putty layer so that the reinforcing member bears a stress in a supplemental manner.
例えば補強部材を鋼板などの板材とし、隅肉溶接部の表面に平行に設置することができる。また、補強部材を線材とし、主板とリブ板の間に掛かる圧縮応力や引張応力に抗する方向に配置しても良い。補強部材を線材とした場合、主板とリブ板の対向する面を掛け渡す方向に線材を配するのが効果的である。必要に応じて多数の線材を並べて配しても良い。しかし、施工上困難である場合は、複数の線材を、主板とリブ板の交線に平行に、線材と線材が接するよう密に埋設し、線材の直径方向への圧力に対する抗力を発生させて圧縮応力に抵抗できるようにしても良い。
補強部材の材質や配置姿勢は主板とリブ板に掛かる応力の方向や強度等に応じて適宜選択すればよい。
For example, the reinforcing member can be a plate material such as a steel plate and can be installed in parallel to the surface of the fillet weld. Further, the reinforcing member may be a wire, and may be disposed in a direction against a compressive stress or a tensile stress applied between the main plate and the rib plate. When the reinforcing member is a wire, it is effective to arrange the wire in a direction that spans the opposing surfaces of the main plate and the rib plate. A large number of wires may be arranged side by side as necessary. However, if it is difficult to construct, embed multiple wires in close contact with the crossing line of the main plate and rib plate so that the wire and wire are in contact with each other, and generate resistance against the pressure in the diameter direction of the wire. It may be possible to resist compressive stress.
What is necessary is just to select suitably the material and arrangement | positioning attitude | position of a reinforcement member according to the direction of the stress concerning a main board and a rib board, intensity | strength, etc. FIG.
また、パテ層の表面を補強板で覆って補強層を形成することでパテ層の応力負担を補助しても良い。補強層をパテ層の全面に密着させて積層する。この形態の溶接継手構造では、補強層がパテ層に掛かる応力の一部を補佐的に負担し、パテ層と共に隅肉溶接部に掛かる応力集中を緩和する。
補強層には繊維強化プラスチック(FRP)シートやガラス繊維強化プラスチック(GFRP)シートなどを用いることができる。
Further, the stress load of the putty layer may be assisted by covering the surface of the putty layer with a reinforcing plate to form a reinforcing layer. A reinforcing layer is laminated in close contact with the entire surface of the putty layer. In the welded joint structure of this embodiment, the reinforcing layer bears a part of the stress applied to the putty layer and relaxes the stress concentration applied to the fillet welded portion together with the putty layer.
As the reinforcing layer, a fiber reinforced plastic (FRP) sheet, a glass fiber reinforced plastic (GFRP) sheet, or the like can be used.
以上のように本発明の疲労低減型溶接継手構造によれば、隅肉溶接部の上面に積層したパテ層が、隅肉溶接部にかかる応力集中を緩和し、溶接止端部の応力疲労を軽減して継手構造の疲労強度を向上することができる。したがって、溶接部の疲労設計荷重を上げることができ、母材の軽量化、低コスト化等による溶接構造物の品質向上を図ることができる。
本発明の疲労低減型溶接継手構造は、例えば自動車やオートバイなどの比較的小型の構造物から、橋梁などの大型構造物まで幅広い分野の溶接構造物に適用することができる。
また、本発明の溶接継手構造は、特に既設構造体に適用するときや現場施工が必要なときに、簡単な道具を使って容易に施工ができ、電源装置などを必要とせず、グラインダー処理や肉盛溶接など他の施工法と比較して、大きなメリットがある。
As described above, according to the fatigue-reducing welded joint structure of the present invention, the putty layer laminated on the upper surface of the fillet weld zone relieves stress concentration on the fillet weld portion, and stress fatigue of the weld toe portion is reduced. This can reduce the fatigue strength of the joint structure. Therefore, the fatigue design load of the welded portion can be increased, and the quality of the welded structure can be improved by reducing the weight and cost of the base material.
The fatigue-reducing welded joint structure of the present invention can be applied to welded structures in a wide range of fields from relatively small structures such as automobiles and motorcycles to large structures such as bridges.
In addition, the welded joint structure of the present invention can be easily constructed using a simple tool, particularly when applied to an existing structure or when on-site construction is required. Compared to other construction methods such as overlay welding, there are significant advantages.
以下、図面を用いて本発明の疲労低減型溶接継手構造の最良の形態について詳細に説明する。 Hereinafter, the best mode of a fatigue reduction type welded joint structure of the present invention will be described in detail with reference to the drawings.
図1は本実施例の疲労低減型溶接継手構造の施工例を示す概念斜視図である。図1では十字継手に施工した例を示した。主板1およびリブ板2が溶接金属3により十字に接合している。本実施例の疲労低減型溶接継手構造は、隅肉溶接の溶接金属3にパテ層4を積層することで成る。パテ層4は溶接金属3の全面を被覆し、溶接金属3および主板1とリブ板2に固着して積層される。パテ層4の上面は任意の形状でよいが、本実施例では溶接部に向かって凹の円筒面とした。
FIG. 1 is a conceptual perspective view showing a construction example of the fatigue reduction type welded joint structure of the present embodiment. FIG. 1 shows an example of construction on a cross joint. The
以下にパテ層4を施工する手順を示す。まず、溶接金属3の表面をアセトンで拭いて脱脂する。続いて、主剤と硬化剤を混練したパテ材を溶接金属3に盛りつける。その後、図2に示したように、目的の曲率半径を持つ円柱形の型材20をパテ材に押しつけ、24時間固定した後、型材を外して完成させる。
型材は木材の表面にフッ素樹脂シート21を貼付したものを用いた。なお、図2では参考として曲率半径20mmの型材20と曲率半径25mmの型材22の2種類の型材を使用した状態を図示した。
The procedure for constructing the
As the mold material, a material obtained by attaching a
図3に他の形態の疲労低減型溶接継手構造の施工例を表す概念斜視図を示した。図中、右上部の溶接継手構造のみを図示し、他については省略してある。本実施例では、溶接金属30の上面に盛られたパテ層31に、両端部が屈曲した鋼板32が溶接金属30の表面に平行に埋設されている。本実施例の溶接継手構造は、溶接金属30の表面を脱脂して少量のパテ材を盛り、鋼板32を載置した後、実施例1と同様にパテ層31を形成する。形成されたパテ層31の曲率半径は25mmとなっている。
The conceptual perspective view showing the construction example of the fatigue reduction type welded joint structure of another form in FIG. 3 was shown. In the figure, only the welded joint structure in the upper right part is shown, and the others are omitted. In this embodiment, a
図4に第3の形態の疲労低減型溶接継手構造の施工例を表す概念斜視図を示した。図中、右上部の溶接継手構造のみを図示し、他については省略してある。溶接金属40にパテ層41が形成されており、さらにガラス繊維強化プラスチックシート(GFRPシート)42が積層されている。実施例1と同様に溶接金属40にパテ材を盛りつけた後、型材を押圧して仮成型し、GFRPシート42を載置して型材で圧着して施工した。本実施例では、パテ層41の曲率半径は20mmとなっている。
The conceptual perspective view showing the construction example of the fatigue reduction type welded joint structure of a 3rd form was shown in FIG. In the figure, only the welded joint structure in the upper right part is shown, and the others are omitted. A
以下に、上記実施例の疲労低減型溶接継手構造の疲労低減効果を示す。疲労低減効果は、主板上の12点に歪みゲージを配置し4点曲げ治具により曲げ圧力を掛けて、歪みゲージの出力を計測することで測定した。
図5に歪みゲージの配置図を示した。主板50の上面および下面に、主板50の中心線上および主板50の両端部からそれぞれ10mm、リブ板51の両側面と主板50の交線から10mmの位置に計12個の歪みゲージ52を設置した。また、図6に4点曲げ治具の配置図を示した。主板60の下面にはリブ板61の中心からそれぞれ50mmの位置に、主板60の上面にはリブ板61の中心からそれぞれ110mmの位置に治具62を配し、上下から荷重を掛けて主板61に曲げ応力を負荷した。
Below, the fatigue reduction effect of the fatigue reduction type welded joint structure of the said Example is shown. The fatigue reduction effect was measured by placing strain gauges at 12 points on the main plate, applying bending pressure with a 4-point bending jig, and measuring the strain gauge output.
FIG. 5 shows a layout diagram of strain gauges. A total of twelve
図7に上記の測定具を用いて測定した試験結果を示す。4点曲げ治具の圧力を最大荷重200kgfまで2サイクル漸増、漸減して負荷を行い、12個の歪みゲージで測定される出力を平均したものを歪みの指標として用いた。施工後の歪み値を施工前の歪み値で除したものを歪み低減率とし、歪み低減率の3乗の逆数を寿命増加予測値とした。
また、本試験では、パテ材としてエポキシ系パテに鉄粉を混練した鉄パテ(商品名:デブコンA)を用いた。
FIG. 7 shows the test results measured using the above measuring tool. The load was applied by gradually increasing and decreasing the pressure of the 4-point bending jig up to a maximum load of 200 kgf for 2 cycles, and the average of the outputs measured by 12 strain gauges was used as an index of strain. A value obtained by dividing the strain value after construction by the strain value before construction was defined as the strain reduction rate, and the inverse of the cube of the strain reduction rate was defined as the predicted increase in life.
In this test, an iron putty (trade name: Devcon A) in which iron powder was kneaded with an epoxy-based putty was used as a putty material.
図7に示されている通り、パテ層をR20mmとした際に継手構造の寿命が1.6倍になっており、パテ層をR25mmにするとさらに寿命が長くなっている。また、R25mmのパテ層に鋼板を埋設することでパテ材のみの場合に比べて寿命が1.2倍になり、R20mmのパテ層にGFRPシートを積層することでパテ材のみの場合に比べて寿命が1.4倍になっている。 As shown in FIG. 7, when the putty layer is R20 mm, the life of the joint structure is 1.6 times longer, and when the putty layer is R25 mm, the life is further increased. In addition, by embedding a steel plate in the R25mm putty layer, the life is 1.2 times longer than in the case of using only the putty material. Life is 1.4 times longer.
一方、特に隅肉溶接の止端部に係る応力集中を緩和する効果について算出した結果を図8に示した。本試験では、パテ層の曲率半径を変化させた際の板曲げ負荷および引張り負荷に対する応力緩和効果を、施工前を1とした発生応力の比として示した。図中、板曲げ負荷は主板に対して板厚方向に圧力を掛けた際に掛かる曲げモーメントを表し、引張り負荷は主板の長手方向に掛かる引張力を表している。
なお、主板およびリブ板の板厚を6mm、ヤング率200GPa、溶接金属の足長を主板側、リブ板側それぞれ6mm、溶接金属止端部の曲率半径を0.3mm、パテ材のヤング率を6GPaとしてシミュレーションにより算出した。
On the other hand, FIG. 8 shows the result of calculation regarding the effect of relieving the stress concentration related to the toe portion of fillet welding. In this test, the stress relaxation effect with respect to the plate bending load and the tensile load when the radius of curvature of the putty layer is changed is shown as a ratio of the generated stress with 1 before construction. In the figure, the plate bending load represents the bending moment applied when pressure is applied to the main plate in the plate thickness direction, and the tensile load represents the tensile force applied in the longitudinal direction of the main plate.
The plate thickness of the main plate and rib plate is 6 mm, Young's modulus is 200 GPa, the foot length of the weld metal is 6 mm for the main plate side and the rib plate side, the curvature radius of the weld metal toe is 0.3 mm, and the Young's modulus of the putty material is It was calculated by simulation as 6 GPa.
図中に示されている通り、パテ層の曲率半径を18mm(主板の板厚tの3倍)としたときに引張り負荷について約0.9倍、板曲げ負荷について約0.75倍の応力集中緩和効果がある。パテ層の曲率半径を4t、5tに増加すると、板曲げ負荷について応力集中の緩和効果が劇的に増加しており、曲率半径5tとした場合は止端部での応力集中が施工前の半分以下になっている。
また、図示していないが、パテ層の厚さを一定とし、パテ材のヤング率を変化させる試験においても、パテ材のヤング率を増すことで引張り負荷、板曲げ負荷の双方について応力集中の緩和効果が増加するとの結果が得られている。したがって、例えばガラス繊維、炭素繊維、アラミド繊維、鉄繊維などを混練した強化用繊維混練パテを用いたり、鋼板や鋼線等の補強部材を埋設するなどしてパテ層のヤング率を増加させると効果的である。
As shown in the figure, when the radius of curvature of the putty layer is 18 mm (three times the plate thickness t of the main plate), the stress is about 0.9 times for the tensile load and about 0.75 times for the plate bending load. Concentration relaxation effect. When the radius of curvature of the putty layer is increased to 4t and 5t, the stress concentration mitigating effect on the plate bending load is dramatically increased. When the radius of curvature is 5t, the stress concentration at the toe is half that before construction. It is as follows.
Although not shown, even in a test in which the putty layer thickness is constant and the Young's modulus of the putty material is changed, the stress concentration is increased for both tensile load and plate bending load by increasing the Young's modulus of the putty material. The result that the relaxation effect increases is obtained. Therefore, when the Young's modulus of the putty layer is increased by using, for example, a reinforcing fiber kneading putty kneaded with glass fiber, carbon fiber, aramid fiber, iron fiber, or by embedding a reinforcing member such as a steel plate or steel wire. It is effective.
以上のように、本実施例の疲労低減型溶接継手構造によれば、隅肉溶接部に積層したパテ層が隅肉溶接部に掛かる応力を軽減し、かつ溶接止端部に掛かる応力集中を緩和するため、繰り返し応力が掛かることによる隅肉溶接部の疲労亀裂を阻止することができ、溶接継手の疲労寿命を向上することができる。
したがって、溶接継手構造の疲労設計荷重を上げることができ、構造物の軽量化、低コスト化を図ることができる。
本実施例の疲労低減型溶接継手構造は、安価な材料と簡易な施工で疲労低減効果を得ることができるため、広範な工業分野に導入することができる。
As described above, according to the fatigue reduction type welded joint structure of this example, the putty layer laminated on the fillet weld part reduces the stress applied to the fillet weld part, and the stress concentration applied to the weld toe part is reduced. Since it relaxes, the fatigue crack of the fillet welded part due to repeated stress can be prevented, and the fatigue life of the welded joint can be improved.
Therefore, the fatigue design load of the welded joint structure can be increased, and the weight and cost of the structure can be reduced.
Since the fatigue reduction type welded joint structure of the present embodiment can obtain a fatigue reduction effect with an inexpensive material and simple construction, it can be introduced into a wide range of industrial fields.
1、50、60、90 主板
2、51、61、91 リブ板
3、30、40 溶接金属
4、31、41、 パテ層
20、22 型材
21 フッ素樹脂シート
32 鋼板
42 GFRPシート
52 歪みゲージ
62 治具
92 FRP
93 溶接止端部
1, 50, 60, 90
93 Weld toe
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005263129A JP2007075826A (en) | 2005-09-12 | 2005-09-12 | Welded joint structure for reducing fatigue damage |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005263129A JP2007075826A (en) | 2005-09-12 | 2005-09-12 | Welded joint structure for reducing fatigue damage |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012204009A Division JP5415602B2 (en) | 2012-09-18 | 2012-09-18 | Fatigue reduction welded joint structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007075826A true JP2007075826A (en) | 2007-03-29 |
Family
ID=37936639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005263129A Pending JP2007075826A (en) | 2005-09-12 | 2005-09-12 | Welded joint structure for reducing fatigue damage |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007075826A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008000760A (en) * | 2006-06-20 | 2008-01-10 | Kawasaki Heavy Ind Ltd | Method of forming welded joint structure capable of reducing fatigue damage, and reinforcing resin block |
JP2009192142A (en) * | 2008-02-14 | 2009-08-27 | Hitachi Ltd | Feed water heater |
FR2973262A1 (en) * | 2011-04-04 | 2012-10-05 | Peugeot Citroen Automobiles Sa | Method for corrosion protection of e.g. hollow frame unit of car, involves placing fusible solid products e.g. wax, in hollow body, melting products, and allowing products to cool to freeze corrosion product in gap |
CN106112224A (en) * | 2016-07-21 | 2016-11-16 | 武汉天高熔接股份有限公司 | Steel construction U-shaped floor angle welding full penetration technique |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62296964A (en) * | 1986-06-13 | 1987-12-24 | Mitsubishi Heavy Ind Ltd | Reinforcing method for welded joint |
JPH02280971A (en) * | 1989-04-18 | 1990-11-16 | Matsushita Electric Ind Co Ltd | Welding joining method of surface treated steel plates |
JPH08243778A (en) * | 1995-03-07 | 1996-09-24 | Nippon Steel Corp | Weld zone fatigue strength improvement method |
-
2005
- 2005-09-12 JP JP2005263129A patent/JP2007075826A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62296964A (en) * | 1986-06-13 | 1987-12-24 | Mitsubishi Heavy Ind Ltd | Reinforcing method for welded joint |
JPH02280971A (en) * | 1989-04-18 | 1990-11-16 | Matsushita Electric Ind Co Ltd | Welding joining method of surface treated steel plates |
JPH08243778A (en) * | 1995-03-07 | 1996-09-24 | Nippon Steel Corp | Weld zone fatigue strength improvement method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008000760A (en) * | 2006-06-20 | 2008-01-10 | Kawasaki Heavy Ind Ltd | Method of forming welded joint structure capable of reducing fatigue damage, and reinforcing resin block |
JP4694423B2 (en) * | 2006-06-20 | 2011-06-08 | 川崎重工業株式会社 | Fatigue reduction type weld joint structure forming method and reinforced resin block |
JP2009192142A (en) * | 2008-02-14 | 2009-08-27 | Hitachi Ltd | Feed water heater |
FR2973262A1 (en) * | 2011-04-04 | 2012-10-05 | Peugeot Citroen Automobiles Sa | Method for corrosion protection of e.g. hollow frame unit of car, involves placing fusible solid products e.g. wax, in hollow body, melting products, and allowing products to cool to freeze corrosion product in gap |
CN106112224A (en) * | 2016-07-21 | 2016-11-16 | 武汉天高熔接股份有限公司 | Steel construction U-shaped floor angle welding full penetration technique |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009002268A1 (en) | Method | |
JP2007075826A (en) | Welded joint structure for reducing fatigue damage | |
Harries et al. | Steel-FRP composite structural systems | |
JP5415602B2 (en) | Fatigue reduction welded joint structure | |
KR101683367B1 (en) | Fiber Reinforced Concrete Structure With End Slip Prevention | |
JPH0528300B2 (en) | ||
JP2007308881A (en) | Steel plate floor reinforcing construction method by cf plate | |
Dawood | Fundamental behavior of steel-concrete composite beams strengthened with high modulus carbon fiber reinforced polymer (CFRP) materials | |
KR101790166B1 (en) | Composite Plate Eeinforcement Structure and Construction Method thereof | |
JP4694423B2 (en) | Fatigue reduction type weld joint structure forming method and reinforced resin block | |
JP2017066700A (en) | Girder structure | |
JP4340256B2 (en) | FRP plate with fixing tool | |
You et al. | Fatigue performance of bridge deck reinforced with cost-to-performance optimized GFRP rebar with 900 MPa guaranteed tensile strength | |
JP4127811B2 (en) | Reinforcement method for steel structure | |
P. Marioli-Riga, GJ Tsamasphyros, GN Kanderakis | Design of emergency aircraft repairs using composite patches | |
JP4680550B2 (en) | Method of repairing steel structure with carbon fiber reinforced resin plate, carbon fiber reinforced resin plate used in the method, and steel structure repaired and reinforced | |
Dawood | Bond characteristics and environmental durability of CFRP materials for strengthening steel bridges and structures | |
Farley | Selective reinforcement to enhance the structural performance of metallic compression panels | |
JP4893328B2 (en) | FRP reinforcing method for structure and reinforcing structure for structure | |
CN111168809A (en) | Method for realizing crack resistance of concrete beam component by optimizing ribbed FRP (fiber reinforced Plastic) ribs | |
JP4885327B1 (en) | Steel material repair structure and steel material repair method | |
Canyurt et al. | Pre-stressed adhesive strap joints for thick composite sandwich structures | |
KR20140124262A (en) | Steel Girder reinforced using Fiber Reinforced Polymer | |
JP2002307585A (en) | Frp structural material | |
JP5772086B2 (en) | Reinforced structure of existing concrete slab |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20080905 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20110302 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110308 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Written amendment |
Effective date: 20111125 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20120619 Free format text: JAPANESE INTERMEDIATE CODE: A02 |
|
A521 | Written amendment |
Effective date: 20120918 Free format text: JAPANESE INTERMEDIATE CODE: A523 |